Temperature effects on fish production across a natural thermal gradient

Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 22; no. 9; pp. 3206 - 3220
Main Authors O'Gorman, Eoin J., Ólafsson, Ólafur P., Demars, Benoît O. L., Friberg, Nikolai, Guðbergsson, Guðni, Hannesdóttir, Elísabet R., Jackson, Michelle C., Johansson, Liselotte S., McLaughlin, Órla B., Ólafsson, Jón S., Woodward, Guy, Gíslason, Gísli M.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.09.2016
Wiley
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4–25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five‐month mark‐recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient‐replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning.
AbstractList Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning.
Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4–25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five‐month mark‐recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient‐replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning.
Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning.Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning.
Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 degrees C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning.
Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 degree C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning.
Author Ólafsson, Jón S.
Woodward, Guy
Johansson, Liselotte S.
McLaughlin, Órla B.
Friberg, Nikolai
Demars, Benoît O. L.
Ólafsson, Ólafur P.
Hannesdóttir, Elísabet R.
Gíslason, Gísli M.
O'Gorman, Eoin J.
Guðbergsson, Guðni
Jackson, Michelle C.
AuthorAffiliation 5 Institute of Freshwater Fisheries Keldnaholt Reykjavík 112 Iceland
2 Institute of Life and Environmental Sciences University of Iceland Askja, Sturlugata 7 Reykjavík 101 Iceland
7 Department of Bioscience Aarhus University Silkeborg Denmark
6 Centre for Invasion Biology Department of Zoology and Entomology University of Pretoria Hatfield 0026 Gauteng South Africa
3 The James Hutton Institute Aberdeen AB15 8QH UK
8 Institut National de la Recherche Agronomique (INRA) UMR 1347 Agroécologie 17 rue Sully ‐ BP 86510 Dijon 21065 France
4 Norwegian Institute for Water Research (NIVA) Gaustadalléen 21 Oslo N‐0349 Norway
1 Department of Life Sciences Imperial College London Silwood Park Campus, Buckhurst Road, Ascot Berkshire SL5 7PY UK
AuthorAffiliation_xml – name: 7 Department of Bioscience Aarhus University Silkeborg Denmark
– name: 8 Institut National de la Recherche Agronomique (INRA) UMR 1347 Agroécologie 17 rue Sully ‐ BP 86510 Dijon 21065 France
– name: 4 Norwegian Institute for Water Research (NIVA) Gaustadalléen 21 Oslo N‐0349 Norway
– name: 3 The James Hutton Institute Aberdeen AB15 8QH UK
– name: 6 Centre for Invasion Biology Department of Zoology and Entomology University of Pretoria Hatfield 0026 Gauteng South Africa
– name: 1 Department of Life Sciences Imperial College London Silwood Park Campus, Buckhurst Road, Ascot Berkshire SL5 7PY UK
– name: 2 Institute of Life and Environmental Sciences University of Iceland Askja, Sturlugata 7 Reykjavík 101 Iceland
– name: 5 Institute of Freshwater Fisheries Keldnaholt Reykjavík 112 Iceland
Author_xml – sequence: 1
  givenname: Eoin J.
  surname: O'Gorman
  fullname: O'Gorman, Eoin J.
  email: e.ogorman@imperial.ac.uk
  organization: Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK
– sequence: 2
  givenname: Ólafur P.
  surname: Ólafsson
  fullname: Ólafsson, Ólafur P.
  organization: Institute of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 101, Reykjavík, Iceland
– sequence: 3
  givenname: Benoît O. L.
  surname: Demars
  fullname: Demars, Benoît O. L.
  organization: The James Hutton Institute, AB15 8QH, Aberdeen, UK
– sequence: 4
  givenname: Nikolai
  surname: Friberg
  fullname: Friberg, Nikolai
  organization: Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway
– sequence: 5
  givenname: Guðni
  surname: Guðbergsson
  fullname: Guðbergsson, Guðni
  organization: Institute of Freshwater Fisheries, Keldnaholt, 112, Reykjavík, Iceland
– sequence: 6
  givenname: Elísabet R.
  surname: Hannesdóttir
  fullname: Hannesdóttir, Elísabet R.
  organization: Institute of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 101, Reykjavík, Iceland
– sequence: 7
  givenname: Michelle C.
  surname: Jackson
  fullname: Jackson, Michelle C.
  organization: Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Hatfield 0026, Gauteng, South Africa
– sequence: 8
  givenname: Liselotte S.
  surname: Johansson
  fullname: Johansson, Liselotte S.
  organization: Department of Bioscience, Aarhus University, Silkeborg, Denmark
– sequence: 9
  givenname: Órla B.
  surname: McLaughlin
  fullname: McLaughlin, Órla B.
  organization: Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK
– sequence: 10
  givenname: Jón S.
  surname: Ólafsson
  fullname: Ólafsson, Jón S.
  organization: Institute of Freshwater Fisheries, Keldnaholt, 112, Reykjavík, Iceland
– sequence: 11
  givenname: Guy
  surname: Woodward
  fullname: Woodward, Guy
  organization: Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK
– sequence: 12
  givenname: Gísli M.
  surname: Gíslason
  fullname: Gíslason, Gísli M.
  email: e.ogorman@imperial.ac.uk
  organization: Institute of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 101, Reykjavík, Iceland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26936833$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01604316$$DView record in HAL
BookMark eNqNkklvEzEYhi1URBc48AfQSFzgMK335YJUIpggonAp4mh5HDtxmcyk9kyh_x5P0gaIxOKLt-f99lNw1HatA-A5gucor4ulrc8RwYQ8AieIcFZiKvnReGa0RBCRY3Ca0jWEkGDIn4BjzBXhkpATML1y642Lph-iK5z3zvap6NrCh7QqNrFbDLYP-W5s7FIqTNGOqGmKfuXiOu_LaBbBtf1T8NibJrln9_sZ-Pz-3dVkWs4-VR8ml7PSCilIyQ2DTHmBa-mYZYRaSDkX1CGvqPT5DSrOvFPOq5qYGiuI8QJ6wTA0GFtyBt7s7G6Geu0WNrvO4ehNDGsT73Rngv79pw0rvexuNVUKYcGygdc7A6sD2fRypsc3iDikBPFblNlX985idzO41Ot1SNY1jWldNySNc0kRw5zBf6JIIiQVzSH8BwqFlFTBMYCXB-h1N8Q2F3hLcY6z60y9-LUm-6we2vwz520Xo_N7BEE9jpDOI6S3I5TZiwPWht6MQ5DLGZq_Kb6Fxt392bSuJm8fFOVOEVLvvu8VJn7VXBDB9Jd5pSsxJ_OJ_Kgr8gMWjONd
CitedBy_id crossref_primary_10_1007_s10641_021_01149_w
crossref_primary_10_1111_fme_12724
crossref_primary_10_1016_j_envpol_2019_06_058
crossref_primary_10_17352_2455_8400_000051
crossref_primary_10_1002_ece3_8194
crossref_primary_10_1016_j_watres_2023_120842
crossref_primary_10_1038_s42003_024_05936_w
crossref_primary_10_1111_gcb_17518
crossref_primary_10_3389_fmars_2021_646733
crossref_primary_10_1016_j_scitotenv_2023_169201
crossref_primary_10_1080_09640568_2021_1987865
crossref_primary_10_1111_1365_2656_13060
crossref_primary_10_3390_fishes7030131
crossref_primary_10_1016_j_scitotenv_2018_12_325
crossref_primary_10_1371_journal_pone_0196560
crossref_primary_10_1007_s10499_024_01436_0
crossref_primary_10_3390_su15021679
crossref_primary_10_1086_733197
crossref_primary_10_1111_fwb_13799
crossref_primary_10_1111_fwb_13798
crossref_primary_10_1007_s10584_020_02887_z
crossref_primary_10_1016_j_ecolecon_2020_106782
crossref_primary_10_1016_j_aquaculture_2023_740450
crossref_primary_10_1016_j_fishres_2020_105549
crossref_primary_10_1111_brv_12366
crossref_primary_10_1002_tafs_10319
crossref_primary_10_7717_peerj_15985
crossref_primary_10_1038_s41467_023_43478_7
crossref_primary_10_1111_lre_12401
crossref_primary_10_1016_j_ecss_2019_03_020
crossref_primary_10_1080_0035919X_2019_1639564
crossref_primary_10_3389_fevo_2021_795603
crossref_primary_10_1139_cjfas_2020_0140
crossref_primary_10_1038_s41467_022_29808_1
crossref_primary_10_1016_j_scitotenv_2020_141458
crossref_primary_10_1111_jfb_15153
crossref_primary_10_1155_2023_6761331
crossref_primary_10_1038_nclimate3368
crossref_primary_10_7717_peerj_14530
crossref_primary_10_1038_s41467_020_19462_w
crossref_primary_10_1186_s12983_019_0327_8
crossref_primary_10_3390_fishes8060322
crossref_primary_10_3389_fphys_2021_813451
crossref_primary_10_3390_ani14050778
crossref_primary_10_1111_gcb_14551
crossref_primary_10_1111_gcb_14990
crossref_primary_10_1098_rspb_2019_2227
crossref_primary_10_1098_rspb_2021_2144
crossref_primary_10_1007_s10750_020_04409_5
crossref_primary_10_1016_j_pocean_2019_04_008
crossref_primary_10_1093_conphys_coaa087
crossref_primary_10_1002_aqc_3811
crossref_primary_10_1111_1365_2435_13538
crossref_primary_10_1016_j_ecolind_2020_107280
crossref_primary_10_1093_cz_zoy011
crossref_primary_10_1016_j_scitotenv_2019_135270
crossref_primary_10_1038_s41467_024_48279_0
crossref_primary_10_1111_gcb_16446
crossref_primary_10_3389_fevo_2021_675261
crossref_primary_10_1111_1365_2435_13065
crossref_primary_10_1038_s41559_023_02216_4
crossref_primary_10_1002_wat2_1724
crossref_primary_10_1111_1365_2656_12798
crossref_primary_10_3390_rs13091768
crossref_primary_10_3390_w12030779
crossref_primary_10_1016_j_apmt_2024_102225
crossref_primary_10_3390_w16020292
crossref_primary_10_3390_su14063456
crossref_primary_10_1111_fwb_13850
crossref_primary_10_1002_ece3_10907
crossref_primary_10_3390_microorganisms11041049
crossref_primary_10_1111_ele_13147
crossref_primary_10_1111_fme_12337
crossref_primary_10_1088_1755_1315_800_1_012003
crossref_primary_10_3390_fishes7050270
crossref_primary_10_1016_j_baae_2021_01_001
crossref_primary_10_1002_lno_12305
crossref_primary_10_1242_bio_060223
crossref_primary_10_1111_1365_2656_12560
crossref_primary_10_1186_s12864_020_06946_8
crossref_primary_10_1139_cjfas_2018_0207
crossref_primary_10_1002_jez_2667
crossref_primary_10_1002_ece3_3412
crossref_primary_10_1007_s12237_022_01164_9
crossref_primary_10_1016_j_jtherbio_2023_103599
crossref_primary_10_3390_ijms23147494
crossref_primary_10_3390_w15061008
crossref_primary_10_1038_s41558_019_0513_x
crossref_primary_10_1098_rstb_2019_0449
crossref_primary_10_1038_s41467_020_15735_6
crossref_primary_10_1016_j_envpol_2017_05_090
crossref_primary_10_3389_fenvs_2022_963693
Cites_doi 10.1242/jeb.037473
10.1111/j.1365-2427.2010.02554.x
10.1139/f95-275
10.1111/gcb.12602
10.1034/j.1600-0633.2001.100306.x
10.1038/374255a0
10.1023/A:1007871820796
10.1111/j.0030-1299.2007.15768.x
10.1073/pnas.1015178108
10.1111/j.1442-9993.2001.01070.pp.x
10.1890/0012-9658(1999)080[2435:TALRAI]2.0.CO;2
10.1046/j.1461-0248.2003.00529.x
10.2307/2390576
10.1016/j.jembe.2005.12.017
10.1023/A:1014976612970
10.1016/B978-0-12-398315-2.00002-8
10.1016/j.tree.2009.08.001
10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
10.4319/lo.1996.41.5.1102
10.2307/1937838
10.1890/14-1667.1
10.1016/j.tibs.2013.11.001
10.1126/science.1206432
10.1577/1548-8446(1988)013<0002:TROGIT>2.0.CO;2
10.1016/S0306-4565(00)00038-3
10.1098/rstb.2012.0243
10.1007/s10750-007-9264-1
10.1080/02705060.2003.9663979
10.2307/2425980
10.1098/rstb.2012.0005
10.1111/j.1365-2486.2011.02540.x
10.1577/1548-8659(1978)107<432:GADOTF>2.0.CO;2
10.1111/j.1365-3040.2001.00668.x
10.1038/47023
10.1111/j.1095-8649.2008.02119.x
10.1890/0012-9658(2003)084[0701:TIIDTL]2.0.CO;2
10.1111/j.1095-8649.2010.02762.x
10.1073/pnas.0503198103
10.1111/j.1365-2486.2010.02329.x
10.1073/pnas.0902080106
10.1073/pnas.1210460109
10.1126/science.1163156
10.1007/BF02596720
10.1016/j.tree.2009.10.009
10.1111/j.1365-2435.2005.00952.x
10.1046/j.1365-2427.1996.00080.x
10.1034/j.1600-0633.2001.100101.x
10.1007/BF00345047
10.1111/gcb.13028
10.4319/lo.1974.19.4.0591
10.1890/03-9000
10.1098/rstb.2012.0231
10.1016/j.tree.2011.03.005
10.1071/IT01040
10.2307/2265617
10.1073/pnas.0710214104
10.1111/fwb.12013
10.2307/3832
10.1111/j.1365-2427.2010.02571.x
10.1577/1548-8659(1977)106<354:RBORAB>2.0.CO;2
10.1111/j.1365-2656.2008.01408.x
10.1111/j.1095-8649.2009.02380.x
10.1093/icb/icr097
10.1073/pnas.0806886105
10.1016/j.aquabot.2011.08.003
10.1093/acprof:oso/9780198527084.003.0001
10.1007/s10452-010-9349-1
10.1098/rstb.2010.0021
10.1146/annurev.es.10.110179.001051
10.1098/rstb.2011.0212
10.1111/fwb.12468
10.1146/annurev.en.25.010180.000535
10.1111/j.1365-2427.2009.02234.x
10.1126/science.1111322
10.1111/j.1365-2486.2009.02124.x
10.1111/j.1469-8137.1988.tb00282.x
10.1046/j.1095-8649.2003.00049.x
10.1111/gcb.12285
10.1111/gcb.12809
10.2307/2426711
10.1079/BJN19700050
10.1016/S1546-5098(08)60146-6
10.1111/j.2041-210x.2012.00261.x
10.1007/s11120-014-0067-8
10.1890/ES11-00097.1
10.1073/pnas.98.1.166
10.1007/s11160-007-9059-5
10.1016/0044-8486(84)90336-3
10.2307/1936079
10.1073/pnas.0710672105
10.1111/j.1365-2486.2009.02052.x
10.1111/j.1365-2486.2010.02321.x
10.1038/nature09670
10.1111/j.1365-2656.2011.01806.x
10.1111/j.1365-2486.2011.02608.x
10.2307/1934846
10.1098/rstb.2012.0237
10.1093/oso/9780198546788.001.0001
ContentType Journal Article
Copyright 2016 The Authors. Published by John Wiley & Sons Ltd.
2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Copyright © 2016 John Wiley & Sons Ltd
Attribution
Copyright_xml – notice: 2016 The Authors. Published by John Wiley & Sons Ltd.
– notice: 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
– notice: Copyright © 2016 John Wiley & Sons Ltd
– notice: Attribution
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
1XC
VOOES
5PM
DOI 10.1111/gcb.13233
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
CrossRef
MEDLINE
AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
DocumentTitleAlternate E. J. O'Gorman et al
EISSN 1365-2486
EndPage 3220
ExternalDocumentID PMC4991275
oai_HAL_hal_01604316v1
4132401251
26936833
10_1111_gcb_13233
GCB13233
ark_67375_WNG_G7N3NC8K_G
Genre article
Journal Article
GeographicLocations ANE, Atlantic, Iceland
Iceland
GeographicLocations_xml – name: ANE, Atlantic, Iceland
– name: Iceland
GrantInformation_xml – fundername: Fisheries Society of the British Isles
– fundername: Grand Challenges in Ecosystems and Environment initiative at Imperial College London
– fundername: British Ecological Society
  funderid: 4009‐4884
– fundername: Scottish Government Rural and Environment Science and Analytical Services (RESAS)
– fundername: University of Iceland
  funderid: GMG2006; GMG2007
– fundername: Salmonid Fisheries Management Fund
– fundername: Royal Society
  funderid: RG140601
– fundername: NERC
  funderid: NE/L011840/1; NE/I009280/2
– fundername: Scottish Government Rural and Environment Science
– fundername: University of Iceland
  grantid: GMG2006; GMG2007
– fundername: British Ecological Society
  grantid: 4009‐4884
– fundername: Royal Society
  grantid: RG140601
– fundername: NERC
  grantid: NE/L011840/1; NE/I009280/2
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
24P
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
1XC
VOOES
5PM
ID FETCH-LOGICAL-c7873-6a5059f72b8e5c534c046674e1f948fe5c0965fe9ef9b3ab29022d0f7520a22c3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Thu Aug 21 14:07:57 EDT 2025
Fri May 09 12:22:13 EDT 2025
Fri Jul 11 18:32:00 EDT 2025
Fri Jul 11 14:02:58 EDT 2025
Thu Jul 10 17:27:32 EDT 2025
Fri Jul 25 11:00:49 EDT 2025
Mon Jul 21 06:01:54 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
Tue Jul 01 03:52:55 EDT 2025
Wed Jan 22 16:32:52 EST 2025
Wed Oct 30 09:49:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords PIT tag
natural experiment
Salmo trutta fario
Hengill
freshwater
Arctic
mark-recapture
ecosystem services
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Attribution: http://creativecommons.org/licenses/by
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7873-6a5059f72b8e5c534c046674e1f948fe5c0965fe9ef9b3ab29022d0f7520a22c3
Notes Scottish Government Rural and Environment Science
Royal Society - No. RG140601
istex:7048557469639E0C0144991BC344F8384D058501
Scottish Government Rural and Environment Science and Analytical Services (RESAS)
ArticleID:GCB13233
Figure S1. Map of the Hengill geothermal valley. Figure S2. Length-weight relationship for brown trout. Figure S3. Scale radius to fish length relationships. Figure S4. Dietary niche width of trout and invertebrates. Figure S5. Selectivity in the feeding of trout on common prey groups. Table S1. Sample sizes for estimating dietary niche width of trout and invertebrates Table S2. Details of sampling occasions during the trout mark-recapture study Table S3. Linear regression statistics for selectivity of trout feeding
Grand Challenges in Ecosystems and Environment initiative at Imperial College London
ark:/67375/WNG-G7N3NC8K-G
British Ecological Society - No. 4009-4884
Fisheries Society of the British Isles
NERC - No. NE/L011840/1; No. NE/I009280/2
University of Iceland - No. GMG2006; No. GMG2007
Salmonid Fisheries Management Fund
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13233
PMID 26936833
PQID 1807662503
PQPubID 30327
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4991275
hal_primary_oai_HAL_hal_01604316v1
proquest_miscellaneous_2000152650
proquest_miscellaneous_1811894127
proquest_miscellaneous_1807884901
proquest_journals_1807662503
pubmed_primary_26936833
crossref_primary_10_1111_gcb_13233
crossref_citationtrail_10_1111_gcb_13233
wiley_primary_10_1111_gcb_13233_GCB13233
istex_primary_ark_67375_WNG_G7N3NC8K_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: John Wiley and Sons Inc
References Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America, 98, 166-170.
Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature, 402, 69-72.
Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences of the United States of America, 108, 10591-10596.
Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics, 10, 147-172.
O'Gorman EJ, Pichler DE, Adams G et al. (2012) Impacts of warming on the structure and functioning of aquatic communities: individual- to ecosystem-level responses. Advances in Ecological Research, 47, 81-176.
Friberg N, Dybkjaer JB, Ólafsson JS, Gíslason GM, Larsen SE, Lauridsen TL (2009) Relationships between structure and function in streams contrasting in temperature. Freshwater Biology, 54, 2051-2068.
Rothfels KH (1981) Cytological approaches to the study of black fly systematics and evolution. In: Application of Genetics and Cytology in Insect Systematics and Evolution, Forest, Wildlife, and Range Experiment Station (ed. Stock MW), pp. 67-83. University of Idaho, Moscow.
Wallace JB, Merritt RW (1980) Filter-feeding ecology of aquatic insects. Annual Review of Entomology, 25, 103-132.
Almodóvar A, Nicola GG, Ayllón D, Elvira B (2012) Global warming threatens the persistence of Mediterranean brown trout. Global Change Biology, 18, 1549-1560.
Hilker M, Meiners T (2002) Chemoecology of Insect Eggs and Egg Deposition. John Wiley & Sons, Berlin.
Vucic-Pestic O, Ehnes RB, Rall BC, Brose U (2011) Warming up the system: higher predator feeding rates but lower energetic efficiencies. Global Change Biology, 17, 1301-1310.
Anderson-Teixeira KJ, Vitousek PM, Brown JH (2008) Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawai'i. Proceedings of the National Academy of Sciences of the United States of America, 105, 228-233.
Bernacchi C, Singsaas E, Pimentel C, Portis A Jr, Long S (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment, 24, 253-259.
Winfield IJ, James JB, Fletcher JM (2008) Northern pike (Esox lucius) in a warming lake: changes in population size and individual condition in relation to prey abundance. Hydrobiologia, 601, 29-40.
Adams G, Pichler DE, Cox EJ, O'Gorman EJ, Seeney A, Woodward G, Reuman DC (2013) Diatoms can be an important exception to temperature-size rules at species and community levels of organization. Global Change Biology, 19, 3540-3552.
Woodward G, Dybkjaer JB, Ólafsson JS, Gíslason GM, Hannesdóttir ER, Friberg N (2010) Sentinel systems on the razor's edge: effects of warming on Arctic geothermal stream ecosystems. Global Change Biology, 16, 1979-1991.
Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80, 595-602.
Ojanguren AF, Reyes-Gavilán FG, Braña F (2001) Thermal sensitivity of growth, food intake and activity of juvenile brown trout. Journal of Thermal Biology, 26, 165-170.
Wesner JS (2012) Emerging aquatic insects as predators in terrestrial systems across a gradient of stream temperature in North and South America. Freshwater Biology, 57, 2465-2474.
Yvon-Durocher G, Montoya JM, Trimmer M, Woodward GUY (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology, 17, 1681-1694.
Hannesdóttir ER, Gíslason GM, Ólafsson JS, Ólafsson ÓP, O'Gorman EJ (2013) Increased stream productivity with warming supports higher trophic levels. Advances in Ecological Research, 48, 283-340.
Southgate D, Durnin J (1970) Calorie conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets. British Journal of Nutrition, 24, 517-535.
Kaeding LR, Kaya CM (1978) Growth and diets of trout from contrasting environments in a geothermally heated stream: the Firehole River of Yellowstone National Park. Transactions of the American Fisheries Society, 107, 432-438.
Ojanguren A, Brana F (2003) Thermal dependence of embryonic growth and development in brown trout. Journal of Fish Biology, 62, 580-590.
Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D (2015) Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology, 21, 1025-1040.
Elliott J, Hurley M, Fryer R (1995) A new, improved growth model for brown trout, Salmo trutta. Functional Ecology, 92, 290-298.
Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 493-507.
Hopcraft JGC, Olff H, Sinclair A (2010) Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends in Ecology and Evolution, 25, 119-128.
Griffiths D (1977) Caloric variation in Crustacea and other animals. The Journal of Animal Ecology, 46, 593-605.
Fochetti R, Amici I, Argano R (2003) Seasonal changes and selectivity in the diet of brown trout in the River Nera (Central Italy). Journal of Freshwater Ecology, 18, 437-444.
Kaya CM (1977) Reproductive biology of rainbow and brown trout in a geothermally heated stream: the Firehole River of Yellowstone National Park. Transactions of the American Fisheries Society, 106, 354-361.
Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proceedings of the National Academy of Sciences, 105, 20776-20780.
Martin J, Guryev V, Blinov A, Edward D (2002) A molecular assessment of the extent of variation and dispersal between Australian populations of the genus Archaeochlus Brundin (Diptera: Chironomidae). Invertebrate Systematics, 16, 599-603.
Walther G-R (2010) Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2019-2024.
Galmés J, Kapralov M, Copolovici L, Hermida-Carrera C, Niinemets Ü (2015) Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynthesis Research, 123, 183-201.
Cada GF, Loar JM, Cox DK (1987) Food and feeding preferences of rainbow and brown trout in southern Appalachian streams. American Midland Naturalist, 117, 374-385.
Nakano S, Miyasaka H, Kuhara N (1999) Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology, 80, 2435-2441.
Grey J (2001) Ontogeny and dietary specialization in brown trout (Salmo trutta L.) from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen. Ecology of Freshwater Fish, 10, 168-176.
Blanchard JL, Jennings S, Holmes R et al. (2012) Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2979-2989.
Jochum M, Schneider FD, Crowe TP, Brose U, O'Gorman EJ (2012) Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2962-2970.
Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends in Ecology and Evolution, 26, 285-291.
Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32-46.
Meisner J, Rosenfeld J, Regier H (1988) The role of groundwater in the impact of climate warming on stream salmonines. Fisheries, 13, 2-8.
Rall BC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U (2010) Temperature, predator-prey interaction strength and population stability. Global Change Biology, 16, 2145-2157.
Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integrative and Comparative Biology, 51, 691-702.
Brock ML, Wiegert RG, Brock TD (1969) Feeding by Paracoenia and Ephydra (Diptera> Ephydridae) on the microorganisms of hot springs. Ecology, 50, 192-200.
Ebersole J, Liss W, Frissell C (2001) Relationship between stream temperature, thermal refugia and rainbow trout Oncorhynchus mykiss abundance in arid-land streams in the northwestern United States. Ecology of Freshwater Fish, 10, 1-10.
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
Elliott JM (1994) Quantitative Ecology and the Brown Trout. Oxford University Press, USA.
Jackson M, Loewen C, Vinebrooke R, Chimimba C (2016) Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Global Change Biology, 22, 180-189.
Petchey OL, Beckerman AP, Riede JO, Warren PH (2008) Size, foraging, and food web structure. Proceedings of the National Academy of Sciences of the United States of America, 105, 4191-4196.
Pelini SL, Boudreau M, McCoy N, Ellison AM, Gotelli NJ, Sanders NJ, Dunn RR (2011) Effects of short-term warming on low and high latitude forest ant communities. Ecosphere, 2, art62.
Chesson J (1983) The estimation and analysis of preference and its relatioship to foraging models. Ecology, 64, 1297-1304.
Demars BOL, Manson JR, Ólafsson JS et al. (2011) Temperature and the metabolic balance of streams. Freshwater Biology, 56, 1106-1121.
Cummins KW (1967) Calorific Equivalents for Studies in Ecological Energetics. University of Pittsburgh, Pennsylvania.
Greig HS, Kratina P, Thompson PL, P
2002; 16
2010; 16
2013; 4
1973; 12
1969; 33
2006; 330
1974
2012; 18
2008; 105
2008; 77
2011; 56
2003; 18
1971
2012; 367
1996; 36
1995; 374
2011; 17
2011; 470
2012; 57
1999; 80
1999; 402
1996; 77
2014; 20
2013; 19
2009; 54
2010; 25
1987; 117
2000
2002; 83
2000; 13
2003; 6
1983; 64
2005; 308
1981
2011; 26
1996; 135
2003; 84
1978; 107
1979; 60
2001; 10
2001; 98
1970; 24
2007; 17
2010; 77
2004; 85
2011; 333
1980; 25
2013; 48
1995; 92
2011; 2
1969; 50
2011; 80
2015; 123
2015; 96
2010; 365
1951
1988; 13
2008; 601
2001; 26
1994
2005
1977; 46
1977; 106
1992
2002
2008; 322
2001; 24
1979; 10
1996; 53
2012; 109
2005; 19
2009; 74
2011; 108
2007; 116
2009; 75
2015; 60
2002; 63
1984; 38
2010; 213
2011; 95
2011; 51
2015; 21
1996; 41
1988; 110
2001; 3
2011; 45
2014
2014; 39
2013
2012; 47
2003; 62
1967
2006; 103
2009; 106
2016; 22
e_1_2_7_108_1
Hilker M (e_1_2_7_48_1) 2002
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
Elliott JM (e_1_2_7_30_1) 1981
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
Slobodkin LB (e_1_2_7_97_1) 2001; 3
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_29_1
Hannesdóttir ER (e_1_2_7_47_1) 2013; 48
Ware D (e_1_2_7_105_1) 2000
Elliott JM (e_1_2_7_31_1) 1994
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
Chapman DG (e_1_2_7_15_1) 1951
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_77_1
Rothfels KH (e_1_2_7_93_1) 1981
e_1_2_7_96_1
e_1_2_7_35_1
e_1_2_7_58_1
Cummins KW (e_1_2_7_21_1) 1967
e_1_2_7_39_1
IPCC (e_1_2_7_54_1) 2013
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – reference: Wesner JS (2012) Emerging aquatic insects as predators in terrestrial systems across a gradient of stream temperature in North and South America. Freshwater Biology, 57, 2465-2474.
– reference: Krosch M, Baker A, Mather PB, Cranston P (2011) Spatial population genetic structure reveals strong natal site fidelity in Echinocladius martini (Diptera: Chironomidae) in northeast Queensland, Australia. Freshwater Biology, 56, 1328-1341.
– reference: Kaya CM (1977) Reproductive biology of rainbow and brown trout in a geothermally heated stream: the Firehole River of Yellowstone National Park. Transactions of the American Fisheries Society, 106, 354-361.
– reference: O'Gorman EJ, Pichler DE, Adams G et al. (2012) Impacts of warming on the structure and functioning of aquatic communities: individual- to ecosystem-level responses. Advances in Ecological Research, 47, 81-176.
– reference: Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026.
– reference: Southgate D, Durnin J (1970) Calorie conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets. British Journal of Nutrition, 24, 517-535.
– reference: Wallace JB, Merritt RW (1980) Filter-feeding ecology of aquatic insects. Annual Review of Entomology, 25, 103-132.
– reference: Ebersole J, Liss W, Frissell C (2001) Relationship between stream temperature, thermal refugia and rainbow trout Oncorhynchus mykiss abundance in arid-land streams in the northwestern United States. Ecology of Freshwater Fish, 10, 1-10.
– reference: Allen A, Gillooly J, Brown J (2005) Linking the global carbon cycle to individual metabolism. Functional Ecology, 19, 202-213.
– reference: Walker MD, Wahren CH, Hollister RD et al. (2006) Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 103, 1342-1346.
– reference: Rasmussen J, Baattrup-Pedersen A, Riis T, Friberg N (2011) Stream ecosystem properties and processes along a temperature gradient. Aquatic Ecology, 45, 231-242.
– reference: Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytologist, 110, 441-461.
– reference: Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends in Ecology and Evolution, 25, 250-260.
– reference: Hannesdóttir ER, Gíslason GM, Ólafsson JS, Ólafsson ÓP, O'Gorman EJ (2013) Increased stream productivity with warming supports higher trophic levels. Advances in Ecological Research, 48, 283-340.
– reference: Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences of the United States of America, 109, 19310-19314.
– reference: Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature, 470, 479-485.
– reference: Elliott J, Elliott J (2010) Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. Journal of Fish Biology, 77, 1793-1817.
– reference: Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133-142.
– reference: Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 1665-1679.
– reference: Griffiths D (1977) Caloric variation in Crustacea and other animals. The Journal of Animal Ecology, 46, 593-605.
– reference: Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology, 330, 55-80.
– reference: Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics, 10, 147-172.
– reference: Jackson M, Loewen C, Vinebrooke R, Chimimba C (2016) Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Global Change Biology, 22, 180-189.
– reference: Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 12788-12793.
– reference: Blanchard JL, Jennings S, Holmes R et al. (2012) Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2979-2989.
– reference: Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
– reference: IPCC (2013) Working Group I Contribution to the IPCC Fifth Assessment Report. Climate Change 2013: The Physical Sciences Basis. Cambridge University Press, Cambridge, UK.
– reference: Pörtner H-O, Farrell AP (2008) Physiology and climate change. Science, 322, 690-692.
– reference: Hilker M, Meiners T (2002) Chemoecology of Insect Eggs and Egg Deposition. John Wiley & Sons, Berlin.
– reference: Fochetti R, Amici I, Argano R (2003) Seasonal changes and selectivity in the diet of brown trout in the River Nera (Central Italy). Journal of Freshwater Ecology, 18, 437-444.
– reference: Chapman DG (1951) Some Properties of the Hypergeometric Distribution with Applications to Zoological Sample Censuses. University of California Press, Oakland, CA.
– reference: Kaeding LR (1996) Summer use of coolwater tributaries of a geothermally heated stream by rainbow and brown trout, Oncorhynchus mykiss and Salmo trutta. American Midland Naturalist, 135, 283-292.
– reference: Jonsson B, Jonsson N (2009) A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. Journal of Fish Biology, 75, 2381-2447.
– reference: Walther G-R (2010) Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2019-2024.
– reference: Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature, 374, 255-257.
– reference: Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D (2015) Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology, 21, 1025-1040.
– reference: Hogg ID, Williams DD (1996) Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology, 77, 395-407.
– reference: Jonsson M, Hedström P, Stenroth K, Hotchkiss ER, Vasconcelos FR, Karlsson J, Byström P (2015) Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshwater Biology, 60, 78-88.
– reference: Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science, 308, 1912-1915.
– reference: Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proceedings of the National Academy of Sciences, 105, 20776-20780.
– reference: Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83, 703-718.
– reference: Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature, 402, 69-72.
– reference: Petchey OL, Beckerman AP, Riede JO, Warren PH (2008) Size, foraging, and food web structure. Proceedings of the National Academy of Sciences of the United States of America, 105, 4191-4196.
– reference: Cloe WW III, Garman G (1996) The energetic importance of terrestrial arthropod inputs to three warm-water streams. Freshwater Biology, 36, 104-114.
– reference: Elliott J, Hurley M, Fryer R (1995) A new, improved growth model for brown trout, Salmo trutta. Functional Ecology, 92, 290-298.
– reference: Slobodkin LB (2001) The good, the bad and the reified. Evolutionary Ecology Research, 3, 1-13.
– reference: Arnason B, Theodorsson P, Björnsson S, Saemundsson K (1969) Hengill, a high temperature thermal area in Iceland. Bulletin of Volcanology, 33, 245-259.
– reference: Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17, 581-613.
– reference: Jennings S, Mackinson S (2003) Abundance-body mass relationships in size-structured food webs. Ecology Letters, 6, 971-974.
– reference: Greig HS, Kratina P, Thompson PL, Palen WJ, Richardson JS, Shurin JB (2012) Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems. Global Change Biology, 18, 504-514.
– reference: Adams G, Pichler DE, Cox EJ, O'Gorman EJ, Seeney A, Woodward G, Reuman DC (2013) Diatoms can be an important exception to temperature-size rules at species and community levels of organization. Global Change Biology, 19, 3540-3552.
– reference: Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL (2012) Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3008-3017.
– reference: Meisner J, Rosenfeld J, Regier H (1988) The role of groundwater in the impact of climate warming on stream salmonines. Fisheries, 13, 2-8.
– reference: Forseth T, Larsson S, Jensen A, Jonsson B, Näslund I, Berglund I (2009) Thermal growth performance of juvenile brown trout Salmo trutta: no support for thermal adaptation hypotheses. Journal of Fish Biology, 74, 133-149.
– reference: Cada GF, Loar JM, Cox DK (1987) Food and feeding preferences of rainbow and brown trout in southern Appalachian streams. American Midland Naturalist, 117, 374-385.
– reference: Elliott J (1973) The food of brown and rainbow trout (Salmo trutta and S. gairdneri) in relation to the abundance of drifting invertebrates in a mountain stream. Oecologia, 12, 329-347.
– reference: Elias M, Wieczorek G, Rosenne S, Tawfik DS (2014) The universality of enzymatic rate-temperature dependency. Trends in Biochemical Sciences, 39, 1-7.
– reference: Jungwirth M, Winkler H (1984) The temperature dependence of embryonic development of grayling Thymallus thymallus, Danube salmon Hucho hucho, Arctic char Salvelinus alpinus and brown trout Salmo trutta fario. Aquaculture, 38, 315-327.
– reference: Demars BOL, Manson JR, Ólafsson JS et al. (2011) Temperature and the metabolic balance of streams. Freshwater Biology, 56, 1106-1121.
– reference: Ojanguren A, Brana F (2003) Thermal dependence of embryonic growth and development in brown trout. Journal of Fish Biology, 62, 580-590.
– reference: Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'. The Journal of Experimental Biology, 213, 912-920.
– reference: Martin J, Guryev V, Blinov A, Edward D (2002) A molecular assessment of the extent of variation and dispersal between Australian populations of the genus Archaeochlus Brundin (Diptera: Chironomidae). Invertebrate Systematics, 16, 599-603.
– reference: Hopcraft JGC, Olff H, Sinclair A (2010) Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends in Ecology and Evolution, 25, 119-128.
– reference: Welter JR, Benstead JP, Cross WF, Hood JM, Huryn AD, Johnson PW, Williamson TJ (2015) Does N2-fixation amplify the temperature dependence of ecosystem metabolism? Ecology, 96, 603-610.
– reference: McDonald ME, Hershey AE, Miller MC (1996) Global warming impacts on lake trout in arctic lakes. Limnology and Oceanography, 41, 1102-1108.
– reference: Steingrímsson SÓ, Gíslason GM (2002) Body size, diet and growth of landlocked brown trout, Salmo trutta, in the subarctic River Laxá, north-east Iceland. Environmental Biology of Fishes, 63, 417-426.
– reference: Elliott JM (1994) Quantitative Ecology and the Brown Trout. Oxford University Press, USA.
– reference: Jochum M, Schneider FD, Crowe TP, Brose U, O'Gorman EJ (2012) Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2962-2970.
– reference: Cunjak RA (1996) Winter habitat of selected stream fishes and potential impacts from land-use activity. Canadian Journal of Fisheries and Aquatic Sciences, 53, 267-282.
– reference: Ojanguren AF, Reyes-Gavilán FG, Braña F (2001) Thermal sensitivity of growth, food intake and activity of juvenile brown trout. Journal of Thermal Biology, 26, 165-170.
– reference: Kaeding LR, Kaya CM (1978) Growth and diets of trout from contrasting environments in a geothermally heated stream: the Firehole River of Yellowstone National Park. Transactions of the American Fisheries Society, 107, 432-438.
– reference: Rall BC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U (2010) Temperature, predator-prey interaction strength and population stability. Global Change Biology, 16, 2145-2157.
– reference: Pelini SL, Boudreau M, McCoy N, Ellison AM, Gotelli NJ, Sanders NJ, Dunn RR (2011) Effects of short-term warming on low and high latitude forest ant communities. Ecosphere, 2, art62.
– reference: Brock ML, Wiegert RG, Brock TD (1969) Feeding by Paracoenia and Ephydra (Diptera> Ephydridae) on the microorganisms of hot springs. Ecology, 50, 192-200.
– reference: Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integrative and Comparative Biology, 51, 691-702.
– reference: Yvon-Durocher G, Montoya JM, Trimmer M, Woodward GUY (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology, 17, 1681-1694.
– reference: Friberg N, Dybkjaer JB, Ólafsson JS, Gíslason GM, Larsen SE, Lauridsen TL (2009) Relationships between structure and function in streams contrasting in temperature. Freshwater Biology, 54, 2051-2068.
– reference: Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 493-507.
– reference: Brose U, Ehnes R, Rall B, Vucic-Pestic O, Berlow E, Scheu S (2008) Foraging theory predicts predator-prey energy fluxes. Journal of Animal Ecology, 77, 1072-1078.
– reference: Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32-46.
– reference: Almodóvar A, Nicola GG, Ayllón D, Elvira B (2012) Global warming threatens the persistence of Mediterranean brown trout. Global Change Biology, 18, 1549-1560.
– reference: Grey J (2001) Ontogeny and dietary specialization in brown trout (Salmo trutta L.) from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen. Ecology of Freshwater Fish, 10, 168-176.
– reference: Cummins KW (1967) Calorific Equivalents for Studies in Ecological Energetics. University of Pittsburgh, Pennsylvania.
– reference: McCullough DA, Minshall GW, Cushing CE (1979) Bioenergetics of lotic filter-feeding insects Simulium spp. (Diptera) and Hydropsyche occidentalis (Trichoptera) and their function in controlling organic transport in streams. Ecology, 60, 585-596.
– reference: Chesson J (1983) The estimation and analysis of preference and its relatioship to foraging models. Ecology, 64, 1297-1304.
– reference: Hunter FF, Jain H (2000) Do gravid black flies (Diptera: Simuliidae) oviposit at their natal site? Journal of Insect Behavior, 13, 585-595.
– reference: Rothfels KH (1981) Cytological approaches to the study of black fly systematics and evolution. In: Application of Genetics and Cytology in Insect Systematics and Evolution, Forest, Wildlife, and Range Experiment Station (ed. Stock MW), pp. 67-83. University of Idaho, Moscow.
– reference: Bernacchi C, Singsaas E, Pimentel C, Portis A Jr, Long S (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment, 24, 253-259.
– reference: Galmés J, Kapralov M, Copolovici L, Hermida-Carrera C, Niinemets Ü (2015) Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynthesis Research, 123, 183-201.
– reference: Kawaguchi Y, Taniguchi Y, Nakano S (2003) Terrestrial invertebrate inputs determine the local abundance of stream fishes in a forested stream. Ecology, 84, 701-708.
– reference: O'Gorman EJ, Benstead JP, Cross WF et al. (2014) Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia. Global Change Biology, 20, 3291-3299.
– reference: Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends in Ecology and Evolution, 26, 285-291.
– reference: Gudmundsdottir R, Gislason GM, Palsson S et al. (2011) Effects of temperature regime on primary producers in Icelandic geothermal streams. Aquatic Botany, 95, 278-286.
– reference: Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences of the United States of America, 108, 10591-10596.
– reference: Woodward G, Dybkjaer JB, Ólafsson JS, Gíslason GM, Hannesdóttir ER, Friberg N (2010) Sentinel systems on the razor's edge: effects of warming on Arctic geothermal stream ecosystems. Global Change Biology, 16, 1979-1991.
– reference: Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America, 98, 166-170.
– reference: Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80, 595-602.
– reference: Anderson-Teixeira KJ, Vitousek PM, Brown JH (2008) Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawai'i. Proceedings of the National Academy of Sciences of the United States of America, 105, 228-233.
– reference: Winfield IJ, James JB, Fletcher JM (2008) Northern pike (Esox lucius) in a warming lake: changes in population size and individual condition in relation to prey abundance. Hydrobiologia, 601, 29-40.
– reference: Nakano S, Miyasaka H, Kuhara N (1999) Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology, 80, 2435-2441.
– reference: Vucic-Pestic O, Ehnes RB, Rall BC, Brose U (2011) Warming up the system: higher predator feeding rates but lower energetic efficiencies. Global Change Biology, 17, 1301-1310.
– reference: Arim M, Bozinovic F, Marquet PA (2007) On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis. Oikos, 116, 1524-1530.
– volume: 108
  start-page: 10591
  year: 2011
  end-page: 10596
  article-title: Systematic variation in the temperature dependence of physiological and ecological traits
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 57
  start-page: 2465
  year: 2012
  end-page: 2474
  article-title: Emerging aquatic insects as predators in terrestrial systems across a gradient of stream temperature in North and South America
  publication-title: Freshwater Biology
– volume: 54
  start-page: 2051
  year: 2009
  end-page: 2068
  article-title: Relationships between structure and function in streams contrasting in temperature
  publication-title: Freshwater Biology
– volume: 10
  start-page: 168
  year: 2001
  end-page: 176
  article-title: Ontogeny and dietary specialization in brown trout ( L.) from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen
  publication-title: Ecology of Freshwater Fish
– volume: 48
  start-page: 283
  year: 2013
  end-page: 340
  article-title: Increased stream productivity with warming supports higher trophic levels
  publication-title: Advances in Ecological Research
– volume: 10
  start-page: 147
  year: 1979
  end-page: 172
  article-title: Feeding ecology of stream invertebrates
  publication-title: Annual Review of Ecology and Systematics
– volume: 19
  start-page: 202
  year: 2005
  end-page: 213
  article-title: Linking the global carbon cycle to individual metabolism
  publication-title: Functional Ecology
– volume: 77
  start-page: 395
  year: 1996
  end-page: 407
  article-title: Response of stream invertebrates to a global‐warming thermal regime: an ecosystem‐level manipulation
  publication-title: Ecology
– volume: 36
  start-page: 104
  year: 1996
  end-page: 114
  article-title: The energetic importance of terrestrial arthropod inputs to three warm‐water streams
  publication-title: Freshwater Biology
– volume: 4
  start-page: 133
  year: 2013
  end-page: 142
  article-title: A general and simple method for obtaining R2 from generalized linear mixed‐effects models
  publication-title: Methods in Ecology and Evolution
– volume: 64
  start-page: 1297
  year: 1983
  end-page: 1304
  article-title: The estimation and analysis of preference and its relatioship to foraging models
  publication-title: Ecology
– volume: 80
  start-page: 595
  year: 2011
  end-page: 602
  article-title: Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R
  publication-title: Journal of Animal Ecology
– volume: 25
  start-page: 119
  year: 2010
  end-page: 128
  article-title: Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas
  publication-title: Trends in Ecology and Evolution
– volume: 56
  start-page: 1328
  year: 2011
  end-page: 1341
  article-title: Spatial population genetic structure reveals strong natal site fidelity in (Diptera: Chironomidae) in northeast Queensland, Australia
  publication-title: Freshwater Biology
– year: 2014
– volume: 16
  start-page: 599
  year: 2002
  end-page: 603
  article-title: A molecular assessment of the extent of variation and dispersal between Australian populations of the genus Archaeochlus Brundin (Diptera: Chironomidae)
  publication-title: Invertebrate Systematics
– volume: 85
  start-page: 1771
  year: 2004
  end-page: 1789
  article-title: Toward a metabolic theory of ecology
  publication-title: Ecology
– volume: 123
  start-page: 183
  year: 2015
  end-page: 201
  article-title: Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade‐offs, and importance for carbon gain
  publication-title: Photosynthesis Research
– volume: 106
  start-page: 354
  year: 1977
  end-page: 361
  article-title: Reproductive biology of rainbow and brown trout in a geothermally heated stream: the Firehole River of Yellowstone National Park
  publication-title: Transactions of the American Fisheries Society
– volume: 367
  start-page: 3008
  year: 2012
  end-page: 3017
  article-title: Warming shifts top‐down and bottom‐up control of pond food web structure and function
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 96
  start-page: 603
  year: 2015
  end-page: 610
  article-title: Does N2‐fixation amplify the temperature dependence of ecosystem metabolism?
  publication-title: Ecology
– volume: 60
  start-page: 78
  year: 2015
  end-page: 88
  article-title: Climate change modifies the size structure of assemblages of emerging aquatic insects
  publication-title: Freshwater Biology
– volume: 26
  start-page: 32
  year: 2001
  end-page: 46
  article-title: A new method for non‐parametric multivariate analysis of variance
  publication-title: Austral Ecology
– volume: 16
  start-page: 2145
  year: 2010
  end-page: 2157
  article-title: Temperature, predator–prey interaction strength and population stability
  publication-title: Global Change Biology
– volume: 367
  start-page: 2979
  year: 2012
  end-page: 2989
  article-title: Potential consequences of climate change for primary production and fish production in large marine ecosystems
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 333
  start-page: 1024
  year: 2011
  end-page: 1026
  article-title: Rapid range shifts of species associated with high levels of climate warming
  publication-title: Science
– volume: 18
  start-page: 504
  year: 2012
  end-page: 514
  article-title: Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems
  publication-title: Global Change Biology
– volume: 3
  start-page: 1
  year: 2001
  end-page: 13
  article-title: The good, the bad and the reified
  publication-title: Evolutionary Ecology Research
– volume: 60
  start-page: 585
  year: 1979
  end-page: 596
  article-title: Bioenergetics of lotic filter‐feeding insects spp. (Diptera) and Hydropsyche occidentalis (Trichoptera) and their function in controlling organic transport in streams
  publication-title: Ecology
– volume: 109
  start-page: 19310
  year: 2012
  end-page: 19314
  article-title: Warming‐induced reductions in body size are greater in aquatic than terrestrial species
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 161
  year: 2000
  end-page: 194
– volume: 17
  start-page: 1301
  year: 2011
  end-page: 1310
  article-title: Warming up the system: higher predator feeding rates but lower energetic efficiencies
  publication-title: Global Change Biology
– volume: 51
  start-page: 691
  year: 2011
  end-page: 702
  article-title: Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure
  publication-title: Integrative and Comparative Biology
– start-page: 67
  year: 1981
  end-page: 83
  article-title: Cytological approaches to the study of black fly systematics and evolution
  publication-title: Application of Genetics and Cytology in Insect Systematics and Evolution, Forest, Wildlife, and Range Experiment Station
– volume: 56
  start-page: 1106
  year: 2011
  end-page: 1121
  article-title: Temperature and the metabolic balance of streams
  publication-title: Freshwater Biology
– volume: 17
  start-page: 581
  year: 2007
  end-page: 613
  article-title: Potential impacts of global climate change on freshwater fisheries
  publication-title: Reviews in Fish Biology and Fisheries
– volume: 110
  start-page: 441
  year: 1988
  end-page: 461
  article-title: Temperature and algal growth
  publication-title: New Phytologist
– volume: 374
  start-page: 255
  year: 1995
  end-page: 257
  article-title: Primary production required to sustain global fisheries
  publication-title: Nature
– volume: 105
  start-page: 228
  year: 2008
  end-page: 233
  article-title: Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawai'i
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 12
  start-page: 329
  year: 1973
  end-page: 347
  article-title: The food of brown and rainbow trout ( and ) in relation to the abundance of drifting invertebrates in a mountain stream
  publication-title: Oecologia
– year: 1992
– volume: 116
  start-page: 1524
  year: 2007
  end-page: 1530
  article-title: On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis
  publication-title: Oikos
– volume: 402
  start-page: 69
  year: 1999
  end-page: 72
  article-title: Environmental warming alters food‐web structure and ecosystem function
  publication-title: Nature
– volume: 103
  start-page: 1342
  year: 2006
  end-page: 1346
  article-title: Plant community responses to experimental warming across the tundra biome
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 1967
– volume: 92
  start-page: 290
  year: 1995
  end-page: 298
  article-title: A new, improved growth model for brown trout,
  publication-title: Functional Ecology
– volume: 367
  start-page: 1665
  year: 2012
  end-page: 1679
  article-title: Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation
  publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences
– year: 2002
– volume: 10
  start-page: 1
  year: 2001
  end-page: 10
  article-title: Relationship between stream temperature, thermal refugia and rainbow trout abundance in arid‐land streams in the northwestern United States
  publication-title: Ecology of Freshwater Fish
– volume: 20
  start-page: 3291
  year: 2014
  end-page: 3299
  article-title: Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia
  publication-title: Global Change Biology
– start-page: 1
  year: 1971
  end-page: 98
– volume: 33
  start-page: 245
  year: 1969
  end-page: 259
  article-title: Hengill, a high temperature thermal area in Iceland
  publication-title: Bulletin of Volcanology
– volume: 18
  start-page: 437
  year: 2003
  end-page: 444
  article-title: Seasonal changes and selectivity in the diet of brown trout in the River Nera (Central Italy)
  publication-title: Journal of Freshwater Ecology
– volume: 80
  start-page: 2435
  year: 1999
  end-page: 2441
  article-title: Terrestrial‐aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web
  publication-title: Ecology
– volume: 17
  start-page: 1681
  year: 2011
  end-page: 1694
  article-title: Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems
  publication-title: Global Change Biology
– volume: 24
  start-page: 517
  year: 1970
  end-page: 535
  article-title: Calorie conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets
  publication-title: British Journal of Nutrition
– volume: 365
  start-page: 2019
  year: 2010
  end-page: 2024
  article-title: Community and ecosystem responses to recent climate change
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– start-page: 1
  year: 2005
  end-page: 17
– volume: 41
  start-page: 1102
  year: 1996
  end-page: 1108
  article-title: Global warming impacts on lake trout in arctic lakes
  publication-title: Limnology and Oceanography
– volume: 106
  start-page: 12788
  year: 2009
  end-page: 12793
  article-title: Global warming benefits the small in aquatic ecosystems
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2013
– volume: 47
  start-page: 81
  year: 2012
  end-page: 176
  article-title: Impacts of warming on the structure and functioning of aquatic communities: individual‐ to ecosystem‐level responses
  publication-title: Advances in Ecological Research
– volume: 213
  start-page: 912
  year: 2010
  end-page: 920
  article-title: The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’
  publication-title: The Journal of Experimental Biology
– volume: 322
  start-page: 690
  year: 2008
  end-page: 692
  article-title: Physiology and climate change
  publication-title: Science
– volume: 25
  start-page: 103
  year: 1980
  end-page: 132
  article-title: Filter‐feeding ecology of aquatic insects
  publication-title: Annual Review of Entomology
– volume: 24
  start-page: 253
  year: 2001
  end-page: 259
  article-title: Improved temperature response functions for models of Rubisco‐limited photosynthesis
  publication-title: Plant, Cell and Environment
– volume: 39
  start-page: 1
  year: 2014
  end-page: 7
  article-title: The universality of enzymatic rate–temperature dependency
  publication-title: Trends in Biochemical Sciences
– volume: 62
  start-page: 580
  year: 2003
  end-page: 590
  article-title: Thermal dependence of embryonic growth and development in brown trout
  publication-title: Journal of Fish Biology
– year: 1994
– volume: 98
  start-page: 166
  year: 2001
  end-page: 170
  article-title: Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 117
  start-page: 374
  year: 1987
  end-page: 385
  article-title: Food and feeding preferences of rainbow and brown trout in southern Appalachian streams
  publication-title: American Midland Naturalist
– volume: 26
  start-page: 285
  year: 2011
  end-page: 291
  article-title: Declining body size: a third universal response to warming?
  publication-title: Trends in Ecology and Evolution
– volume: 25
  start-page: 250
  year: 2010
  end-page: 260
  article-title: Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea
  publication-title: Trends in Ecology and Evolution
– volume: 50
  start-page: 192
  year: 1969
  end-page: 200
  article-title: Feeding by Paracoenia and Ephydra (Diptera> Ephydridae) on the microorganisms of hot springs
  publication-title: Ecology
– volume: 601
  start-page: 29
  year: 2008
  end-page: 40
  article-title: Northern pike ( ) in a warming lake: changes in population size and individual condition in relation to prey abundance
  publication-title: Hydrobiologia
– volume: 105
  start-page: 20776
  year: 2008
  end-page: 20780
  article-title: Synergistic effects of climate‐related variables suggest future physiological impairment in a top oceanic predator
  publication-title: Proceedings of the National Academy of Sciences
– volume: 95
  start-page: 278
  year: 2011
  end-page: 286
  article-title: Effects of temperature regime on primary producers in Icelandic geothermal streams
  publication-title: Aquatic Botany
– volume: 2
  start-page: art62
  year: 2011
  article-title: Effects of short‐term warming on low and high latitude forest ant communities
  publication-title: Ecosphere
– volume: 21
  start-page: 1025
  year: 2015
  end-page: 1040
  article-title: Interactions between temperature and nutrients across levels of ecological organization
  publication-title: Global Change Biology
– volume: 46
  start-page: 593
  year: 1977
  end-page: 605
  article-title: Caloric variation in Crustacea and other animals
  publication-title: The Journal of Animal Ecology
– year: 1951
– volume: 16
  start-page: 1979
  year: 2010
  end-page: 1991
  article-title: Sentinel systems on the razor's edge: effects of warming on Arctic geothermal stream ecosystems
  publication-title: Global Change Biology
– volume: 77
  start-page: 1072
  year: 2008
  end-page: 1078
  article-title: Foraging theory predicts predator–prey energy fluxes
  publication-title: Journal of Animal Ecology
– volume: 367
  start-page: 493
  year: 2012
  end-page: 507
  article-title: Algal evolution in relation to atmospheric CO2: carboxylases, carbon‐concentrating mechanisms and carbon oxidation cycles
  publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences
– volume: 13
  start-page: 585
  year: 2000
  end-page: 595
  article-title: Do gravid black flies (Diptera: Simuliidae) oviposit at their natal site?
  publication-title: Journal of Insect Behavior
– volume: 75
  start-page: 2381
  year: 2009
  end-page: 2447
  article-title: A review of the likely effects of climate change on anadromous Atlantic salmon and brown trout , with particular reference to water temperature and flow
  publication-title: Journal of Fish Biology
– volume: 53
  start-page: 267
  year: 1996
  end-page: 282
  article-title: Winter habitat of selected stream fishes and potential impacts from land‐use activity
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 135
  start-page: 283
  year: 1996
  end-page: 292
  article-title: Summer use of coolwater tributaries of a geothermally heated stream by rainbow and brown trout, and
  publication-title: American Midland Naturalist
– volume: 470
  start-page: 479
  year: 2011
  end-page: 485
  article-title: Climate change and evolutionary adaptation
  publication-title: Nature
– year: 2000
– volume: 6
  start-page: 971
  year: 2003
  end-page: 974
  article-title: Abundance–body mass relationships in size‐structured food webs
  publication-title: Ecology Letters
– volume: 83
  start-page: 703
  year: 2002
  end-page: 718
  article-title: Using stable isotopes to estimate trophic position: models, methods, and assumptions
  publication-title: Ecology
– volume: 105
  start-page: 4191
  year: 2008
  end-page: 4196
  article-title: Size, foraging, and food web structure
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 367
  start-page: 2962
  year: 2012
  end-page: 2970
  article-title: Climate‐induced changes in bottom‐up and top‐down processes independently alter a marine ecosystem
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 77
  start-page: 1793
  year: 2010
  end-page: 1817
  article-title: Temperature requirements of Atlantic salmon , brown trout and Arctic charr : predicting the effects of climate change
  publication-title: Journal of Fish Biology
– volume: 18
  start-page: 1549
  year: 2012
  end-page: 1560
  article-title: Global warming threatens the persistence of Mediterranean brown trout
  publication-title: Global Change Biology
– volume: 19
  start-page: 3540
  year: 2013
  end-page: 3552
  article-title: Diatoms can be an important exception to temperature‐size rules at species and community levels of organization
  publication-title: Global Change Biology
– volume: 74
  start-page: 133
  year: 2009
  end-page: 149
  article-title: Thermal growth performance of juvenile brown trout : no support for thermal adaptation hypotheses
  publication-title: Journal of Fish Biology
– volume: 45
  start-page: 231
  year: 2011
  end-page: 242
  article-title: Stream ecosystem properties and processes along a temperature gradient
  publication-title: Aquatic Ecology
– volume: 63
  start-page: 417
  year: 2002
  end-page: 426
  article-title: Body size, diet and growth of landlocked brown trout , in the subarctic River Laxá, north‐east Iceland
  publication-title: Environmental Biology of Fishes
– volume: 22
  start-page: 180
  year: 2016
  end-page: 189
  article-title: Net effects of multiple stressors in freshwater ecosystems: a meta‐analysis
  publication-title: Global Change Biology
– volume: 107
  start-page: 432
  year: 1978
  end-page: 438
  article-title: Growth and diets of trout from contrasting environments in a geothermally heated stream: the Firehole River of Yellowstone National Park
  publication-title: Transactions of the American Fisheries Society
– year: 1974
– volume: 26
  start-page: 165
  year: 2001
  end-page: 170
  article-title: Thermal sensitivity of growth, food intake and activity of juvenile brown trout
  publication-title: Journal of Thermal Biology
– volume: 330
  start-page: 55
  year: 2006
  end-page: 80
  article-title: On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero‐adjusted Bray‐Curtis coefficient for denuded assemblages
  publication-title: Journal of Experimental Marine Biology and Ecology
– volume: 308
  start-page: 1912
  year: 2005
  end-page: 1915
  article-title: Climate change and distribution shifts in marine fishes
  publication-title: Science
– volume: 38
  start-page: 315
  year: 1984
  end-page: 327
  article-title: The temperature dependence of embryonic development of grayling , Danube salmon , Arctic char and brown trout fario
  publication-title: Aquaculture
– volume: 84
  start-page: 701
  year: 2003
  end-page: 708
  article-title: Terrestrial invertebrate inputs determine the local abundance of stream fishes in a forested stream
  publication-title: Ecology
– start-page: 209
  year: 1981
  end-page: 245
– volume: 13
  start-page: 2
  year: 1988
  end-page: 8
  article-title: The role of groundwater in the impact of climate warming on stream salmonines
  publication-title: Fisheries
– ident: e_1_2_7_98_1
  doi: 10.1242/jeb.037473
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1365-2427.2010.02554.x
– ident: e_1_2_7_87_1
– ident: e_1_2_7_23_1
  doi: 10.1139/f95-275
– ident: e_1_2_7_77_1
  doi: 10.1111/gcb.12602
– ident: e_1_2_7_44_1
  doi: 10.1034/j.1600-0633.2001.100306.x
– ident: e_1_2_7_80_1
  doi: 10.1038/374255a0
– ident: e_1_2_7_53_1
  doi: 10.1023/A:1007871820796
– ident: e_1_2_7_7_1
  doi: 10.1111/j.0030-1299.2007.15768.x
– ident: e_1_2_7_25_1
  doi: 10.1073/pnas.1015178108
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1442-9993.2001.01070.pp.x
– ident: e_1_2_7_75_1
  doi: 10.1890/0012-9658(1999)080[2435:TALRAI]2.0.CO;2
– ident: e_1_2_7_57_1
  doi: 10.1046/j.1461-0248.2003.00529.x
– ident: e_1_2_7_33_1
  doi: 10.2307/2390576
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jembe.2005.12.017
– ident: e_1_2_7_100_1
  doi: 10.1023/A:1014976612970
– ident: e_1_2_7_76_1
  doi: 10.1016/B978-0-12-398315-2.00002-8
– ident: e_1_2_7_51_1
  doi: 10.1016/j.tree.2009.08.001
– ident: e_1_2_7_86_1
  doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
– ident: e_1_2_7_70_1
  doi: 10.4319/lo.1996.41.5.1102
– ident: e_1_2_7_17_1
  doi: 10.2307/1937838
– volume-title: Calorific Equivalents for Studies in Ecological Energetics
  year: 1967
  ident: e_1_2_7_21_1
– ident: e_1_2_7_106_1
  doi: 10.1890/14-1667.1
– ident: e_1_2_7_28_1
  doi: 10.1016/j.tibs.2013.11.001
– ident: e_1_2_7_16_1
  doi: 10.1126/science.1206432
– ident: e_1_2_7_71_1
  doi: 10.1577/1548-8446(1988)013<0002:TROGIT>2.0.CO;2
– ident: e_1_2_7_79_1
  doi: 10.1016/S0306-4565(00)00038-3
– ident: e_1_2_7_96_1
  doi: 10.1098/rstb.2012.0243
– ident: e_1_2_7_109_1
  doi: 10.1007/s10750-007-9264-1
– ident: e_1_2_7_35_1
  doi: 10.1080/02705060.2003.9663979
– ident: e_1_2_7_14_1
  doi: 10.2307/2425980
– ident: e_1_2_7_52_1
  doi: 10.1098/rstb.2012.0005
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-2486.2011.02540.x
– ident: e_1_2_7_63_1
  doi: 10.1577/1548-8659(1978)107<432:GADOTF>2.0.CO;2
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-3040.2001.00668.x
– volume: 48
  start-page: 283
  year: 2013
  ident: e_1_2_7_47_1
  article-title: Increased stream productivity with warming supports higher trophic levels
  publication-title: Advances in Ecological Research
– ident: e_1_2_7_83_1
  doi: 10.1038/47023
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1095-8649.2008.02119.x
– ident: e_1_2_7_64_1
  doi: 10.1890/0012-9658(2003)084[0701:TIIDTL]2.0.CO;2
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1095-8649.2010.02762.x
– ident: e_1_2_7_102_1
  doi: 10.1073/pnas.0503198103
– ident: e_1_2_7_101_1
  doi: 10.1111/j.1365-2486.2010.02329.x
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.0902080106
– ident: e_1_2_7_37_1
  doi: 10.1073/pnas.1210460109
– ident: e_1_2_7_85_1
  doi: 10.1126/science.1163156
– ident: e_1_2_7_8_1
  doi: 10.1007/BF02596720
– ident: e_1_2_7_67_1
  doi: 10.1016/j.tree.2009.10.009
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365-2435.2005.00952.x
– ident: e_1_2_7_19_1
  doi: 10.1046/j.1365-2427.1996.00080.x
– ident: e_1_2_7_27_1
  doi: 10.1034/j.1600-0633.2001.100101.x
– ident: e_1_2_7_29_1
  doi: 10.1007/BF00345047
– ident: e_1_2_7_56_1
  doi: 10.1111/gcb.13028
– ident: e_1_2_7_42_1
– ident: e_1_2_7_72_1
  doi: 10.4319/lo.1974.19.4.0591
– ident: e_1_2_7_13_1
  doi: 10.1890/03-9000
– ident: e_1_2_7_10_1
  doi: 10.1098/rstb.2012.0231
– ident: e_1_2_7_41_1
  doi: 10.1016/j.tree.2011.03.005
– ident: e_1_2_7_68_1
  doi: 10.1071/IT01040
– ident: e_1_2_7_50_1
  doi: 10.2307/2265617
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.0710214104
– volume: 3
  start-page: 1
  year: 2001
  ident: e_1_2_7_97_1
  article-title: The good, the bad and the reified
  publication-title: Evolutionary Ecology Research
– ident: e_1_2_7_107_1
  doi: 10.1111/fwb.12013
– volume-title: Some Properties of the Hypergeometric Distribution with Applications to Zoological Sample Censuses
  year: 1951
  ident: e_1_2_7_15_1
– ident: e_1_2_7_45_1
  doi: 10.2307/3832
– ident: e_1_2_7_66_1
  doi: 10.1111/j.1365-2427.2010.02571.x
– ident: e_1_2_7_65_1
  doi: 10.1577/1548-8659(1977)106<354:RBORAB>2.0.CO;2
– start-page: 209
  volume-title: Stress and Fish
  year: 1981
  ident: e_1_2_7_30_1
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1365-2656.2008.01408.x
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1095-8649.2009.02380.x
– ident: e_1_2_7_94_1
  doi: 10.1093/icb/icr097
– ident: e_1_2_7_92_1
  doi: 10.1073/pnas.0806886105
– ident: e_1_2_7_46_1
  doi: 10.1016/j.aquabot.2011.08.003
– volume-title: Working Group I Contribution to the IPCC Fifth Assessment Report. Climate Change 2013: The Physical Sciences Basis
  year: 2013
  ident: e_1_2_7_54_1
– ident: e_1_2_7_108_1
  doi: 10.1093/acprof:oso/9780198527084.003.0001
– ident: e_1_2_7_89_1
  doi: 10.1007/s10452-010-9349-1
– start-page: 67
  year: 1981
  ident: e_1_2_7_93_1
  article-title: Cytological approaches to the study of black fly systematics and evolution
  publication-title: Application of Genetics and Cytology in Insect Systematics and Evolution, Forest, Wildlife, and Range Experiment Station
– ident: e_1_2_7_95_1
– ident: e_1_2_7_104_1
  doi: 10.1098/rstb.2010.0021
– ident: e_1_2_7_22_1
  doi: 10.1146/annurev.es.10.110179.001051
– ident: e_1_2_7_91_1
  doi: 10.1098/rstb.2011.0212
– ident: e_1_2_7_60_1
  doi: 10.1111/fwb.12468
– ident: e_1_2_7_103_1
  doi: 10.1146/annurev.en.25.010180.000535
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1365-2427.2009.02234.x
– ident: e_1_2_7_82_1
  doi: 10.1126/science.1111322
– ident: e_1_2_7_88_1
  doi: 10.1111/j.1365-2486.2009.02124.x
– ident: e_1_2_7_90_1
  doi: 10.1111/j.1469-8137.1988.tb00282.x
– ident: e_1_2_7_78_1
  doi: 10.1046/j.1095-8649.2003.00049.x
– ident: e_1_2_7_2_1
  doi: 10.1111/gcb.12285
– ident: e_1_2_7_20_1
  doi: 10.1111/gcb.12809
– ident: e_1_2_7_62_1
  doi: 10.2307/2426711
– ident: e_1_2_7_99_1
  doi: 10.1079/BJN19700050
– volume-title: Chemoecology of Insect Eggs and Egg Deposition
  year: 2002
  ident: e_1_2_7_48_1
– ident: e_1_2_7_39_1
  doi: 10.1016/S1546-5098(08)60146-6
– ident: e_1_2_7_73_1
  doi: 10.1111/j.2041-210x.2012.00261.x
– ident: e_1_2_7_40_1
  doi: 10.1007/s11120-014-0067-8
– ident: e_1_2_7_81_1
  doi: 10.1890/ES11-00097.1
– ident: e_1_2_7_74_1
  doi: 10.1073/pnas.98.1.166
– ident: e_1_2_7_34_1
  doi: 10.1007/s11160-007-9059-5
– ident: e_1_2_7_61_1
  doi: 10.1016/0044-8486(84)90336-3
– ident: e_1_2_7_69_1
  doi: 10.2307/1936079
– ident: e_1_2_7_84_1
  doi: 10.1073/pnas.0710672105
– ident: e_1_2_7_110_1
  doi: 10.1111/j.1365-2486.2009.02052.x
– ident: e_1_2_7_111_1
  doi: 10.1111/j.1365-2486.2010.02321.x
– ident: e_1_2_7_49_1
  doi: 10.1038/nature09670
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1365-2656.2011.01806.x
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1365-2486.2011.02608.x
– start-page: 161
  volume-title: Fisheries Oceanography and Integrative Approach to Fisheries Ecology and Management
  year: 2000
  ident: e_1_2_7_105_1
– ident: e_1_2_7_11_1
  doi: 10.2307/1934846
– ident: e_1_2_7_58_1
  doi: 10.1098/rstb.2012.0237
– volume-title: Quantitative Ecology and the Brown Trout
  year: 1994
  ident: e_1_2_7_31_1
  doi: 10.1093/oso/9780198546788.001.0001
SSID ssj0003206
Score 2.5201628
Snippet Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3206
SubjectTerms Animals
Aquatic ecosystems
Arctic
biomass production
Climate change
Diet
Ecological function
Ecosystem
ecosystem services
ecosystems
fish production
Food Chain
Food chains
freshwater
Geographical distribution
Global warming
Hengill
Iceland
Life Sciences
mark-recapture
mark-recapture studies
natural experiment
PIT tag
Predation
Predators
prediction
Primary
Primary s
Resource availability
Salmo trutta
Salmo trutta fario
streams
subsidies
Temperature
Temperature effects
Temperature gradients
Trophic levels
Trout
water temperature
Title Temperature effects on fish production across a natural thermal gradient
URI https://api.istex.fr/ark:/67375/WNG-G7N3NC8K-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13233
https://www.ncbi.nlm.nih.gov/pubmed/26936833
https://www.proquest.com/docview/1807662503
https://www.proquest.com/docview/1807884901
https://www.proquest.com/docview/1811894127
https://www.proquest.com/docview/2000152650
https://hal.science/hal-01604316
https://pubmed.ncbi.nlm.nih.gov/PMC4991275
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ0i8wChsBMZkEJp4aZU4jpOIp63aWvFRIbSJPSBFjuOs1UY69QMBfz13dpKtsCHEU9v4-uHrz5ffJeffAbxKCiS1RquuNFJ2RYAwTpThiOUij7QpKR-jaouRHJ6It6fR6Rq8afbCOH2I9oIbrQwbr2mBq3x-bZGf6byHqVRISp9Uq0WE6NOVdFTIbV_NIIwEhpogrFWFqIqnfefKuWh9TJWQd8i532-im39WTV5ns_Z0dPQAvjQTcVUo573lIu_pn79pPP7nTDfhfk1T2b7D1UNYM1UH7rrGlT86sHV4tT8OzeoAMe-A9wFJ-HRmzdge619MkBHbV49geGyQozsNZ1bXkbBpxcrJfMwunfIsooQp6y2mmBUdxY8njvoVH89mtj5t8RhOjg6P-8Nu3cihqzEehF2pkGelZczzxEQ6CoXGrFzGwgRlKpISj5EGTWlSxEYeqpynyCwKv4wj7ivOdbgFG9W0Mk-A-TpVeZoWhQhKodJERSKXJiqFMTE3AffgdfOXZrpWOadmGxdZk-2gNzPrTQ9etqaXTtrjRiPERTtOYtzD_fcZHSNtPhIS-BZ4sGdh05qp2TkVzMVR9nk0yAbxKBz1k3fZwIOdBldZHSvmWZD4scQ01Mcve9EO4yqnWzeqMtOls0kSgeTtbzaYLKYi4PHtNtzunedIyz3YdnBufzSXaSgTmnK8AvSVya-OVJOxVSTHtJkaBaDzLY5vd2c26B_YJ0__3fQZ3EOWKl1h3w5sLGZL8xyZ4CLfhXUuPu7ahf8LU75ZPQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN7pYxi48AiUGgoIBjpcnIllWbYPHEraxiWpD0w69CZkR24ybZ1OHkD5TfwV_hMr-dEGWoZLD5wcWzu2Hrur_Zz1twCvgwEGtSqVNlec28xBNQ6koqjLg8RLVabxmM62iHl0wD4ceodL8KP6Fqbgh6hfuGnLMP5aG7h-IX3Jyo_SpIlYyq1KV3fV-VcEbNN3e9u4um8o3d3ptyO7rClgp6iars0lbvlh5tMkUF7quSxFgMh9ppwsZEGG1zQdSqZC7GbiyoSGuMkNWpnv0ZakNHXxvsuwqiuIa6b-7Y8XZFUuNZU8Hddj6Nwct-Qx0nlDdVcXdr_loc69XNXL-e2qAPfPPM3L8bPZAHfvwc9q6oq8l-PmfJY00--_sUr-L3N7H-6WkTjZKkznASypvAG3itqc5w1Y27n4BBDFSh84bYC1jzhjPDFiZJO0T0YY9JuzhxD1FcKQgqaalKkyZJyTbDQdkrOCXBcNgUizPEQSw6uKt9dh-CkejyYmBW_2CA5uZOxrsJKPc7UOpJWGMgnDwYA5GZNhID2WcOVlTCmfKoda8LbSIZGWRO66nsiJqAAdrp4wq2fBq1r0rGAvuVIIFbFu13zj0VZP6GuaflBzJXxxLNg0elqLycmxzgn0PfEp7oiOH7txO-iKjgUblSKL0h1OhRO0fI5Iu4UPe1k3oyPT_07JXI3nhUwQMIxP_yaDeDhkDvWvl6GGHoAi8rDgcWE_dacpD10e6CH7C5a1MPjFlnw0NKTrDIEU9T2cfGM410-n6LTfmx9P_l30BdyO-vs90duLu0_hDgblvMhj3ICV2WSunmHgO0ueG39D4PNNG-EviNO0wg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwEN7pY2C4MBAouBQQDHS4mLFlWbYOHEraJCXF00M79CZkW24ytE4mSYH-Jv4kK_lBM7QMl56SWDu2pF2tvo1X3wK8iXMEtTpTLtecu8xHM46VpmjLeRpmujDxmMm2SPjgmH06CU9W4FdzFqbih2j_cDMrw_prs8CneXFlkZ9m6XsMpYKmcvVQX_7AeG3-YX8XlfuW0t7eUXfg1iUF3AwtM3C5wh1fFBFNYx1mYcAyjA95xLRfCBYXeM2woRRaYC_TQKVU4B6Xe0UUUk9RmgV431VYNy8XTf4YZYet2w-oLeTpByFD3-YHNY2RSRtqu7q0-a2OTOrlutHmz-vw7d9pmlfhs93_eg_gfg1cyU5laQ9hRZcduFOVsrzswMbenxNzKFa7jHkHnM8IyyczK0a2SfdsjBjZ_noEgyONqL1idSZ1ZgmZlKQYz0dkWnHRot0QZYdDFLE0pHh7g1rP8fN0ZjPWFo_h-Fb0sAFr5aTUT4F4mVCpEHnO_IIpEauQpVyHBdM6otqnDrxr5lxmNe-5Kb9xJpv4B9UjrXoceN2KTiuyj2uFUHFtu6HnHuwcSHPNsPUZaoHvvgPbVq-tmJp9Myl0USi_JH3Zj5Ig6cZD2Xdgq1G8rL3HXPqxF3EMTD182Ku2Gde9eZmjSj25qGTimCGc-5cMho-C-TS6WYba0_QUgboDTyp7aztNuQh4bIYcLVni0uCXW8rxyHKUYyBtSgfg5FubvXk6Zb_70X7Z_H_Rl3D3cLcnD_aT4TO4hxCWV1l_W7C2mF3o5wgTF-kLuzwJfL1tf_AbE0pz2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+effects+on+fish+production+across+a+natural+thermal+gradient&rft.jtitle=Global+change+biology&rft.au=O%27Gorman%2C+Eoin+J&rft.au=%C3%93lafsson%2C+%C3%93lafur+P&rft.au=Demars%2C+B+O+L&rft.au=Friberg%2C+Nikolai&rft.date=2016-09-01&rft.issn=1354-1013&rft.volume=22&rft.issue=9+p.3206-3220&rft.spage=3206&rft.epage=3220&rft_id=info:doi/10.1111%2Fgcb.13233&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon