Temperature effects on fish production across a natural thermal gradient
Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future...
Saved in:
Published in | Global change biology Vol. 22; no. 9; pp. 3206 - 3220 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.09.2016
Wiley John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4–25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five‐month mark‐recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient‐replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning. |
---|---|
AbstractList | Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning. Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4–25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five‐month mark‐recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient‐replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning. Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning.Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning. Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 degrees C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning. Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 degree C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning. |
Author | Ólafsson, Jón S. Woodward, Guy Johansson, Liselotte S. McLaughlin, Órla B. Friberg, Nikolai Demars, Benoît O. L. Ólafsson, Ólafur P. Hannesdóttir, Elísabet R. Gíslason, Gísli M. O'Gorman, Eoin J. Guðbergsson, Guðni Jackson, Michelle C. |
AuthorAffiliation | 5 Institute of Freshwater Fisheries Keldnaholt Reykjavík 112 Iceland 2 Institute of Life and Environmental Sciences University of Iceland Askja, Sturlugata 7 Reykjavík 101 Iceland 7 Department of Bioscience Aarhus University Silkeborg Denmark 6 Centre for Invasion Biology Department of Zoology and Entomology University of Pretoria Hatfield 0026 Gauteng South Africa 3 The James Hutton Institute Aberdeen AB15 8QH UK 8 Institut National de la Recherche Agronomique (INRA) UMR 1347 Agroécologie 17 rue Sully ‐ BP 86510 Dijon 21065 France 4 Norwegian Institute for Water Research (NIVA) Gaustadalléen 21 Oslo N‐0349 Norway 1 Department of Life Sciences Imperial College London Silwood Park Campus, Buckhurst Road, Ascot Berkshire SL5 7PY UK |
AuthorAffiliation_xml | – name: 7 Department of Bioscience Aarhus University Silkeborg Denmark – name: 8 Institut National de la Recherche Agronomique (INRA) UMR 1347 Agroécologie 17 rue Sully ‐ BP 86510 Dijon 21065 France – name: 4 Norwegian Institute for Water Research (NIVA) Gaustadalléen 21 Oslo N‐0349 Norway – name: 3 The James Hutton Institute Aberdeen AB15 8QH UK – name: 6 Centre for Invasion Biology Department of Zoology and Entomology University of Pretoria Hatfield 0026 Gauteng South Africa – name: 1 Department of Life Sciences Imperial College London Silwood Park Campus, Buckhurst Road, Ascot Berkshire SL5 7PY UK – name: 2 Institute of Life and Environmental Sciences University of Iceland Askja, Sturlugata 7 Reykjavík 101 Iceland – name: 5 Institute of Freshwater Fisheries Keldnaholt Reykjavík 112 Iceland |
Author_xml | – sequence: 1 givenname: Eoin J. surname: O'Gorman fullname: O'Gorman, Eoin J. email: e.ogorman@imperial.ac.uk organization: Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK – sequence: 2 givenname: Ólafur P. surname: Ólafsson fullname: Ólafsson, Ólafur P. organization: Institute of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 101, Reykjavík, Iceland – sequence: 3 givenname: Benoît O. L. surname: Demars fullname: Demars, Benoît O. L. organization: The James Hutton Institute, AB15 8QH, Aberdeen, UK – sequence: 4 givenname: Nikolai surname: Friberg fullname: Friberg, Nikolai organization: Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway – sequence: 5 givenname: Guðni surname: Guðbergsson fullname: Guðbergsson, Guðni organization: Institute of Freshwater Fisheries, Keldnaholt, 112, Reykjavík, Iceland – sequence: 6 givenname: Elísabet R. surname: Hannesdóttir fullname: Hannesdóttir, Elísabet R. organization: Institute of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 101, Reykjavík, Iceland – sequence: 7 givenname: Michelle C. surname: Jackson fullname: Jackson, Michelle C. organization: Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Hatfield 0026, Gauteng, South Africa – sequence: 8 givenname: Liselotte S. surname: Johansson fullname: Johansson, Liselotte S. organization: Department of Bioscience, Aarhus University, Silkeborg, Denmark – sequence: 9 givenname: Órla B. surname: McLaughlin fullname: McLaughlin, Órla B. organization: Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK – sequence: 10 givenname: Jón S. surname: Ólafsson fullname: Ólafsson, Jón S. organization: Institute of Freshwater Fisheries, Keldnaholt, 112, Reykjavík, Iceland – sequence: 11 givenname: Guy surname: Woodward fullname: Woodward, Guy organization: Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK – sequence: 12 givenname: Gísli M. surname: Gíslason fullname: Gíslason, Gísli M. email: e.ogorman@imperial.ac.uk organization: Institute of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 101, Reykjavík, Iceland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26936833$$D View this record in MEDLINE/PubMed https://hal.science/hal-01604316$$DView record in HAL |
BookMark | eNqNkklvEzEYhi1URBc48AfQSFzgMK335YJUIpggonAp4mh5HDtxmcyk9kyh_x5P0gaIxOKLt-f99lNw1HatA-A5gucor4ulrc8RwYQ8AieIcFZiKvnReGa0RBCRY3Ca0jWEkGDIn4BjzBXhkpATML1y642Lph-iK5z3zvap6NrCh7QqNrFbDLYP-W5s7FIqTNGOqGmKfuXiOu_LaBbBtf1T8NibJrln9_sZ-Pz-3dVkWs4-VR8ml7PSCilIyQ2DTHmBa-mYZYRaSDkX1CGvqPT5DSrOvFPOq5qYGiuI8QJ6wTA0GFtyBt7s7G6Geu0WNrvO4ehNDGsT73Rngv79pw0rvexuNVUKYcGygdc7A6sD2fRypsc3iDikBPFblNlX985idzO41Ot1SNY1jWldNySNc0kRw5zBf6JIIiQVzSH8BwqFlFTBMYCXB-h1N8Q2F3hLcY6z60y9-LUm-6we2vwz520Xo_N7BEE9jpDOI6S3I5TZiwPWht6MQ5DLGZq_Kb6Fxt392bSuJm8fFOVOEVLvvu8VJn7VXBDB9Jd5pSsxJ_OJ_Kgr8gMWjONd |
CitedBy_id | crossref_primary_10_1007_s10641_021_01149_w crossref_primary_10_1111_fme_12724 crossref_primary_10_1016_j_envpol_2019_06_058 crossref_primary_10_17352_2455_8400_000051 crossref_primary_10_1002_ece3_8194 crossref_primary_10_1016_j_watres_2023_120842 crossref_primary_10_1038_s42003_024_05936_w crossref_primary_10_1111_gcb_17518 crossref_primary_10_3389_fmars_2021_646733 crossref_primary_10_1016_j_scitotenv_2023_169201 crossref_primary_10_1080_09640568_2021_1987865 crossref_primary_10_1111_1365_2656_13060 crossref_primary_10_3390_fishes7030131 crossref_primary_10_1016_j_scitotenv_2018_12_325 crossref_primary_10_1371_journal_pone_0196560 crossref_primary_10_1007_s10499_024_01436_0 crossref_primary_10_3390_su15021679 crossref_primary_10_1086_733197 crossref_primary_10_1111_fwb_13799 crossref_primary_10_1111_fwb_13798 crossref_primary_10_1007_s10584_020_02887_z crossref_primary_10_1016_j_ecolecon_2020_106782 crossref_primary_10_1016_j_aquaculture_2023_740450 crossref_primary_10_1016_j_fishres_2020_105549 crossref_primary_10_1111_brv_12366 crossref_primary_10_1002_tafs_10319 crossref_primary_10_7717_peerj_15985 crossref_primary_10_1038_s41467_023_43478_7 crossref_primary_10_1111_lre_12401 crossref_primary_10_1016_j_ecss_2019_03_020 crossref_primary_10_1080_0035919X_2019_1639564 crossref_primary_10_3389_fevo_2021_795603 crossref_primary_10_1139_cjfas_2020_0140 crossref_primary_10_1038_s41467_022_29808_1 crossref_primary_10_1016_j_scitotenv_2020_141458 crossref_primary_10_1111_jfb_15153 crossref_primary_10_1155_2023_6761331 crossref_primary_10_1038_nclimate3368 crossref_primary_10_7717_peerj_14530 crossref_primary_10_1038_s41467_020_19462_w crossref_primary_10_1186_s12983_019_0327_8 crossref_primary_10_3390_fishes8060322 crossref_primary_10_3389_fphys_2021_813451 crossref_primary_10_3390_ani14050778 crossref_primary_10_1111_gcb_14551 crossref_primary_10_1111_gcb_14990 crossref_primary_10_1098_rspb_2019_2227 crossref_primary_10_1098_rspb_2021_2144 crossref_primary_10_1007_s10750_020_04409_5 crossref_primary_10_1016_j_pocean_2019_04_008 crossref_primary_10_1093_conphys_coaa087 crossref_primary_10_1002_aqc_3811 crossref_primary_10_1111_1365_2435_13538 crossref_primary_10_1016_j_ecolind_2020_107280 crossref_primary_10_1093_cz_zoy011 crossref_primary_10_1016_j_scitotenv_2019_135270 crossref_primary_10_1038_s41467_024_48279_0 crossref_primary_10_1111_gcb_16446 crossref_primary_10_3389_fevo_2021_675261 crossref_primary_10_1111_1365_2435_13065 crossref_primary_10_1038_s41559_023_02216_4 crossref_primary_10_1002_wat2_1724 crossref_primary_10_1111_1365_2656_12798 crossref_primary_10_3390_rs13091768 crossref_primary_10_3390_w12030779 crossref_primary_10_1016_j_apmt_2024_102225 crossref_primary_10_3390_w16020292 crossref_primary_10_3390_su14063456 crossref_primary_10_1111_fwb_13850 crossref_primary_10_1002_ece3_10907 crossref_primary_10_3390_microorganisms11041049 crossref_primary_10_1111_ele_13147 crossref_primary_10_1111_fme_12337 crossref_primary_10_1088_1755_1315_800_1_012003 crossref_primary_10_3390_fishes7050270 crossref_primary_10_1016_j_baae_2021_01_001 crossref_primary_10_1002_lno_12305 crossref_primary_10_1242_bio_060223 crossref_primary_10_1111_1365_2656_12560 crossref_primary_10_1186_s12864_020_06946_8 crossref_primary_10_1139_cjfas_2018_0207 crossref_primary_10_1002_jez_2667 crossref_primary_10_1002_ece3_3412 crossref_primary_10_1007_s12237_022_01164_9 crossref_primary_10_1016_j_jtherbio_2023_103599 crossref_primary_10_3390_ijms23147494 crossref_primary_10_3390_w15061008 crossref_primary_10_1038_s41558_019_0513_x crossref_primary_10_1098_rstb_2019_0449 crossref_primary_10_1038_s41467_020_15735_6 crossref_primary_10_1016_j_envpol_2017_05_090 crossref_primary_10_3389_fenvs_2022_963693 |
Cites_doi | 10.1242/jeb.037473 10.1111/j.1365-2427.2010.02554.x 10.1139/f95-275 10.1111/gcb.12602 10.1034/j.1600-0633.2001.100306.x 10.1038/374255a0 10.1023/A:1007871820796 10.1111/j.0030-1299.2007.15768.x 10.1073/pnas.1015178108 10.1111/j.1442-9993.2001.01070.pp.x 10.1890/0012-9658(1999)080[2435:TALRAI]2.0.CO;2 10.1046/j.1461-0248.2003.00529.x 10.2307/2390576 10.1016/j.jembe.2005.12.017 10.1023/A:1014976612970 10.1016/B978-0-12-398315-2.00002-8 10.1016/j.tree.2009.08.001 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 10.4319/lo.1996.41.5.1102 10.2307/1937838 10.1890/14-1667.1 10.1016/j.tibs.2013.11.001 10.1126/science.1206432 10.1577/1548-8446(1988)013<0002:TROGIT>2.0.CO;2 10.1016/S0306-4565(00)00038-3 10.1098/rstb.2012.0243 10.1007/s10750-007-9264-1 10.1080/02705060.2003.9663979 10.2307/2425980 10.1098/rstb.2012.0005 10.1111/j.1365-2486.2011.02540.x 10.1577/1548-8659(1978)107<432:GADOTF>2.0.CO;2 10.1111/j.1365-3040.2001.00668.x 10.1038/47023 10.1111/j.1095-8649.2008.02119.x 10.1890/0012-9658(2003)084[0701:TIIDTL]2.0.CO;2 10.1111/j.1095-8649.2010.02762.x 10.1073/pnas.0503198103 10.1111/j.1365-2486.2010.02329.x 10.1073/pnas.0902080106 10.1073/pnas.1210460109 10.1126/science.1163156 10.1007/BF02596720 10.1016/j.tree.2009.10.009 10.1111/j.1365-2435.2005.00952.x 10.1046/j.1365-2427.1996.00080.x 10.1034/j.1600-0633.2001.100101.x 10.1007/BF00345047 10.1111/gcb.13028 10.4319/lo.1974.19.4.0591 10.1890/03-9000 10.1098/rstb.2012.0231 10.1016/j.tree.2011.03.005 10.1071/IT01040 10.2307/2265617 10.1073/pnas.0710214104 10.1111/fwb.12013 10.2307/3832 10.1111/j.1365-2427.2010.02571.x 10.1577/1548-8659(1977)106<354:RBORAB>2.0.CO;2 10.1111/j.1365-2656.2008.01408.x 10.1111/j.1095-8649.2009.02380.x 10.1093/icb/icr097 10.1073/pnas.0806886105 10.1016/j.aquabot.2011.08.003 10.1093/acprof:oso/9780198527084.003.0001 10.1007/s10452-010-9349-1 10.1098/rstb.2010.0021 10.1146/annurev.es.10.110179.001051 10.1098/rstb.2011.0212 10.1111/fwb.12468 10.1146/annurev.en.25.010180.000535 10.1111/j.1365-2427.2009.02234.x 10.1126/science.1111322 10.1111/j.1365-2486.2009.02124.x 10.1111/j.1469-8137.1988.tb00282.x 10.1046/j.1095-8649.2003.00049.x 10.1111/gcb.12285 10.1111/gcb.12809 10.2307/2426711 10.1079/BJN19700050 10.1016/S1546-5098(08)60146-6 10.1111/j.2041-210x.2012.00261.x 10.1007/s11120-014-0067-8 10.1890/ES11-00097.1 10.1073/pnas.98.1.166 10.1007/s11160-007-9059-5 10.1016/0044-8486(84)90336-3 10.2307/1936079 10.1073/pnas.0710672105 10.1111/j.1365-2486.2009.02052.x 10.1111/j.1365-2486.2010.02321.x 10.1038/nature09670 10.1111/j.1365-2656.2011.01806.x 10.1111/j.1365-2486.2011.02608.x 10.2307/1934846 10.1098/rstb.2012.0237 10.1093/oso/9780198546788.001.0001 |
ContentType | Journal Article |
Copyright | 2016 The Authors. Published by John Wiley & Sons Ltd. 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. Copyright © 2016 John Wiley & Sons Ltd Attribution |
Copyright_xml | – notice: 2016 The Authors. Published by John Wiley & Sons Ltd. – notice: 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. – notice: Copyright © 2016 John Wiley & Sons Ltd – notice: Attribution |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 1XC VOOES 5PM |
DOI | 10.1111/gcb.13233 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic CrossRef MEDLINE AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
DocumentTitleAlternate | E. J. O'Gorman et al |
EISSN | 1365-2486 |
EndPage | 3220 |
ExternalDocumentID | PMC4991275 oai_HAL_hal_01604316v1 4132401251 26936833 10_1111_gcb_13233 GCB13233 ark_67375_WNG_G7N3NC8K_G |
Genre | article Journal Article |
GeographicLocations | ANE, Atlantic, Iceland Iceland |
GeographicLocations_xml | – name: ANE, Atlantic, Iceland – name: Iceland |
GrantInformation_xml | – fundername: Fisheries Society of the British Isles – fundername: Grand Challenges in Ecosystems and Environment initiative at Imperial College London – fundername: British Ecological Society funderid: 4009‐4884 – fundername: Scottish Government Rural and Environment Science and Analytical Services (RESAS) – fundername: University of Iceland funderid: GMG2006; GMG2007 – fundername: Salmonid Fisheries Management Fund – fundername: Royal Society funderid: RG140601 – fundername: NERC funderid: NE/L011840/1; NE/I009280/2 – fundername: Scottish Government Rural and Environment Science – fundername: University of Iceland grantid: GMG2006; GMG2007 – fundername: British Ecological Society grantid: 4009‐4884 – fundername: Royal Society grantid: RG140601 – fundername: NERC grantid: NE/L011840/1; NE/I009280/2 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT 24P AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c7873-6a5059f72b8e5c534c046674e1f948fe5c0965fe9ef9b3ab29022d0f7520a22c3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Thu Aug 21 14:07:57 EDT 2025 Fri May 09 12:22:13 EDT 2025 Fri Jul 11 18:32:00 EDT 2025 Fri Jul 11 14:02:58 EDT 2025 Thu Jul 10 17:27:32 EDT 2025 Fri Jul 25 11:00:49 EDT 2025 Mon Jul 21 06:01:54 EDT 2025 Thu Apr 24 23:00:25 EDT 2025 Tue Jul 01 03:52:55 EDT 2025 Wed Jan 22 16:32:52 EST 2025 Wed Oct 30 09:49:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | PIT tag natural experiment Salmo trutta fario Hengill freshwater Arctic mark-recapture ecosystem services |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. Attribution: http://creativecommons.org/licenses/by This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c7873-6a5059f72b8e5c534c046674e1f948fe5c0965fe9ef9b3ab29022d0f7520a22c3 |
Notes | Scottish Government Rural and Environment Science Royal Society - No. RG140601 istex:7048557469639E0C0144991BC344F8384D058501 Scottish Government Rural and Environment Science and Analytical Services (RESAS) ArticleID:GCB13233 Figure S1. Map of the Hengill geothermal valley. Figure S2. Length-weight relationship for brown trout. Figure S3. Scale radius to fish length relationships. Figure S4. Dietary niche width of trout and invertebrates. Figure S5. Selectivity in the feeding of trout on common prey groups. Table S1. Sample sizes for estimating dietary niche width of trout and invertebrates Table S2. Details of sampling occasions during the trout mark-recapture study Table S3. Linear regression statistics for selectivity of trout feeding Grand Challenges in Ecosystems and Environment initiative at Imperial College London ark:/67375/WNG-G7N3NC8K-G British Ecological Society - No. 4009-4884 Fisheries Society of the British Isles NERC - No. NE/L011840/1; No. NE/I009280/2 University of Iceland - No. GMG2006; No. GMG2007 Salmonid Fisheries Management Fund ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13233 |
PMID | 26936833 |
PQID | 1807662503 |
PQPubID | 30327 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4991275 hal_primary_oai_HAL_hal_01604316v1 proquest_miscellaneous_2000152650 proquest_miscellaneous_1811894127 proquest_miscellaneous_1807884901 proquest_journals_1807662503 pubmed_primary_26936833 crossref_primary_10_1111_gcb_13233 crossref_citationtrail_10_1111_gcb_13233 wiley_primary_10_1111_gcb_13233_GCB13233 istex_primary_ark_67375_WNG_G7N3NC8K_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: John Wiley and Sons Inc |
References | Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America, 98, 166-170. Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature, 402, 69-72. Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences of the United States of America, 108, 10591-10596. Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics, 10, 147-172. O'Gorman EJ, Pichler DE, Adams G et al. (2012) Impacts of warming on the structure and functioning of aquatic communities: individual- to ecosystem-level responses. Advances in Ecological Research, 47, 81-176. Friberg N, Dybkjaer JB, Ólafsson JS, Gíslason GM, Larsen SE, Lauridsen TL (2009) Relationships between structure and function in streams contrasting in temperature. Freshwater Biology, 54, 2051-2068. Rothfels KH (1981) Cytological approaches to the study of black fly systematics and evolution. In: Application of Genetics and Cytology in Insect Systematics and Evolution, Forest, Wildlife, and Range Experiment Station (ed. Stock MW), pp. 67-83. University of Idaho, Moscow. Wallace JB, Merritt RW (1980) Filter-feeding ecology of aquatic insects. Annual Review of Entomology, 25, 103-132. Almodóvar A, Nicola GG, Ayllón D, Elvira B (2012) Global warming threatens the persistence of Mediterranean brown trout. Global Change Biology, 18, 1549-1560. Hilker M, Meiners T (2002) Chemoecology of Insect Eggs and Egg Deposition. John Wiley & Sons, Berlin. Vucic-Pestic O, Ehnes RB, Rall BC, Brose U (2011) Warming up the system: higher predator feeding rates but lower energetic efficiencies. Global Change Biology, 17, 1301-1310. Anderson-Teixeira KJ, Vitousek PM, Brown JH (2008) Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawai'i. Proceedings of the National Academy of Sciences of the United States of America, 105, 228-233. Bernacchi C, Singsaas E, Pimentel C, Portis A Jr, Long S (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment, 24, 253-259. Winfield IJ, James JB, Fletcher JM (2008) Northern pike (Esox lucius) in a warming lake: changes in population size and individual condition in relation to prey abundance. Hydrobiologia, 601, 29-40. Adams G, Pichler DE, Cox EJ, O'Gorman EJ, Seeney A, Woodward G, Reuman DC (2013) Diatoms can be an important exception to temperature-size rules at species and community levels of organization. Global Change Biology, 19, 3540-3552. Woodward G, Dybkjaer JB, Ólafsson JS, Gíslason GM, Hannesdóttir ER, Friberg N (2010) Sentinel systems on the razor's edge: effects of warming on Arctic geothermal stream ecosystems. Global Change Biology, 16, 1979-1991. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80, 595-602. Ojanguren AF, Reyes-Gavilán FG, Braña F (2001) Thermal sensitivity of growth, food intake and activity of juvenile brown trout. Journal of Thermal Biology, 26, 165-170. Wesner JS (2012) Emerging aquatic insects as predators in terrestrial systems across a gradient of stream temperature in North and South America. Freshwater Biology, 57, 2465-2474. Yvon-Durocher G, Montoya JM, Trimmer M, Woodward GUY (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology, 17, 1681-1694. Hannesdóttir ER, Gíslason GM, Ólafsson JS, Ólafsson ÓP, O'Gorman EJ (2013) Increased stream productivity with warming supports higher trophic levels. Advances in Ecological Research, 48, 283-340. Southgate D, Durnin J (1970) Calorie conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets. British Journal of Nutrition, 24, 517-535. Kaeding LR, Kaya CM (1978) Growth and diets of trout from contrasting environments in a geothermally heated stream: the Firehole River of Yellowstone National Park. Transactions of the American Fisheries Society, 107, 432-438. Ojanguren A, Brana F (2003) Thermal dependence of embryonic growth and development in brown trout. Journal of Fish Biology, 62, 580-590. Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D (2015) Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology, 21, 1025-1040. Elliott J, Hurley M, Fryer R (1995) A new, improved growth model for brown trout, Salmo trutta. Functional Ecology, 92, 290-298. Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 493-507. Hopcraft JGC, Olff H, Sinclair A (2010) Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends in Ecology and Evolution, 25, 119-128. Griffiths D (1977) Caloric variation in Crustacea and other animals. The Journal of Animal Ecology, 46, 593-605. Fochetti R, Amici I, Argano R (2003) Seasonal changes and selectivity in the diet of brown trout in the River Nera (Central Italy). Journal of Freshwater Ecology, 18, 437-444. Kaya CM (1977) Reproductive biology of rainbow and brown trout in a geothermally heated stream: the Firehole River of Yellowstone National Park. Transactions of the American Fisheries Society, 106, 354-361. Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proceedings of the National Academy of Sciences, 105, 20776-20780. Martin J, Guryev V, Blinov A, Edward D (2002) A molecular assessment of the extent of variation and dispersal between Australian populations of the genus Archaeochlus Brundin (Diptera: Chironomidae). Invertebrate Systematics, 16, 599-603. Walther G-R (2010) Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2019-2024. Galmés J, Kapralov M, Copolovici L, Hermida-Carrera C, Niinemets Ü (2015) Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynthesis Research, 123, 183-201. Cada GF, Loar JM, Cox DK (1987) Food and feeding preferences of rainbow and brown trout in southern Appalachian streams. American Midland Naturalist, 117, 374-385. Nakano S, Miyasaka H, Kuhara N (1999) Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology, 80, 2435-2441. Grey J (2001) Ontogeny and dietary specialization in brown trout (Salmo trutta L.) from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen. Ecology of Freshwater Fish, 10, 168-176. Blanchard JL, Jennings S, Holmes R et al. (2012) Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2979-2989. Jochum M, Schneider FD, Crowe TP, Brose U, O'Gorman EJ (2012) Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2962-2970. Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends in Ecology and Evolution, 26, 285-291. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32-46. Meisner J, Rosenfeld J, Regier H (1988) The role of groundwater in the impact of climate warming on stream salmonines. Fisheries, 13, 2-8. Rall BC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U (2010) Temperature, predator-prey interaction strength and population stability. Global Change Biology, 16, 2145-2157. Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integrative and Comparative Biology, 51, 691-702. Brock ML, Wiegert RG, Brock TD (1969) Feeding by Paracoenia and Ephydra (Diptera> Ephydridae) on the microorganisms of hot springs. Ecology, 50, 192-200. Ebersole J, Liss W, Frissell C (2001) Relationship between stream temperature, thermal refugia and rainbow trout Oncorhynchus mykiss abundance in arid-land streams in the northwestern United States. Ecology of Freshwater Fish, 10, 1-10. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. Elliott JM (1994) Quantitative Ecology and the Brown Trout. Oxford University Press, USA. Jackson M, Loewen C, Vinebrooke R, Chimimba C (2016) Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Global Change Biology, 22, 180-189. Petchey OL, Beckerman AP, Riede JO, Warren PH (2008) Size, foraging, and food web structure. Proceedings of the National Academy of Sciences of the United States of America, 105, 4191-4196. Pelini SL, Boudreau M, McCoy N, Ellison AM, Gotelli NJ, Sanders NJ, Dunn RR (2011) Effects of short-term warming on low and high latitude forest ant communities. Ecosphere, 2, art62. Chesson J (1983) The estimation and analysis of preference and its relatioship to foraging models. Ecology, 64, 1297-1304. Demars BOL, Manson JR, Ólafsson JS et al. (2011) Temperature and the metabolic balance of streams. Freshwater Biology, 56, 1106-1121. Cummins KW (1967) Calorific Equivalents for Studies in Ecological Energetics. University of Pittsburgh, Pennsylvania. Greig HS, Kratina P, Thompson PL, P 2002; 16 2010; 16 2013; 4 1973; 12 1969; 33 2006; 330 1974 2012; 18 2008; 105 2008; 77 2011; 56 2003; 18 1971 2012; 367 1996; 36 1995; 374 2011; 17 2011; 470 2012; 57 1999; 80 1999; 402 1996; 77 2014; 20 2013; 19 2009; 54 2010; 25 1987; 117 2000 2002; 83 2000; 13 2003; 6 1983; 64 2005; 308 1981 2011; 26 1996; 135 2003; 84 1978; 107 1979; 60 2001; 10 2001; 98 1970; 24 2007; 17 2010; 77 2004; 85 2011; 333 1980; 25 2013; 48 1995; 92 2011; 2 1969; 50 2011; 80 2015; 123 2015; 96 2010; 365 1951 1988; 13 2008; 601 2001; 26 1994 2005 1977; 46 1977; 106 1992 2002 2008; 322 2001; 24 1979; 10 1996; 53 2012; 109 2005; 19 2009; 74 2011; 108 2007; 116 2009; 75 2015; 60 2002; 63 1984; 38 2010; 213 2011; 95 2011; 51 2015; 21 1996; 41 1988; 110 2001; 3 2011; 45 2014 2014; 39 2013 2012; 47 2003; 62 1967 2006; 103 2009; 106 2016; 22 e_1_2_7_108_1 Hilker M (e_1_2_7_48_1) 2002 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 Elliott JM (e_1_2_7_30_1) 1981 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 Slobodkin LB (e_1_2_7_97_1) 2001; 3 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_29_1 Hannesdóttir ER (e_1_2_7_47_1) 2013; 48 Ware D (e_1_2_7_105_1) 2000 Elliott JM (e_1_2_7_31_1) 1994 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 Chapman DG (e_1_2_7_15_1) 1951 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_77_1 Rothfels KH (e_1_2_7_93_1) 1981 e_1_2_7_96_1 e_1_2_7_35_1 e_1_2_7_58_1 Cummins KW (e_1_2_7_21_1) 1967 e_1_2_7_39_1 IPCC (e_1_2_7_54_1) 2013 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – reference: Wesner JS (2012) Emerging aquatic insects as predators in terrestrial systems across a gradient of stream temperature in North and South America. Freshwater Biology, 57, 2465-2474. – reference: Krosch M, Baker A, Mather PB, Cranston P (2011) Spatial population genetic structure reveals strong natal site fidelity in Echinocladius martini (Diptera: Chironomidae) in northeast Queensland, Australia. Freshwater Biology, 56, 1328-1341. – reference: Kaya CM (1977) Reproductive biology of rainbow and brown trout in a geothermally heated stream: the Firehole River of Yellowstone National Park. Transactions of the American Fisheries Society, 106, 354-361. – reference: O'Gorman EJ, Pichler DE, Adams G et al. (2012) Impacts of warming on the structure and functioning of aquatic communities: individual- to ecosystem-level responses. Advances in Ecological Research, 47, 81-176. – reference: Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026. – reference: Southgate D, Durnin J (1970) Calorie conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets. British Journal of Nutrition, 24, 517-535. – reference: Wallace JB, Merritt RW (1980) Filter-feeding ecology of aquatic insects. Annual Review of Entomology, 25, 103-132. – reference: Ebersole J, Liss W, Frissell C (2001) Relationship between stream temperature, thermal refugia and rainbow trout Oncorhynchus mykiss abundance in arid-land streams in the northwestern United States. Ecology of Freshwater Fish, 10, 1-10. – reference: Allen A, Gillooly J, Brown J (2005) Linking the global carbon cycle to individual metabolism. Functional Ecology, 19, 202-213. – reference: Walker MD, Wahren CH, Hollister RD et al. (2006) Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 103, 1342-1346. – reference: Rasmussen J, Baattrup-Pedersen A, Riis T, Friberg N (2011) Stream ecosystem properties and processes along a temperature gradient. Aquatic Ecology, 45, 231-242. – reference: Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytologist, 110, 441-461. – reference: Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends in Ecology and Evolution, 25, 250-260. – reference: Hannesdóttir ER, Gíslason GM, Ólafsson JS, Ólafsson ÓP, O'Gorman EJ (2013) Increased stream productivity with warming supports higher trophic levels. Advances in Ecological Research, 48, 283-340. – reference: Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences of the United States of America, 109, 19310-19314. – reference: Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature, 470, 479-485. – reference: Elliott J, Elliott J (2010) Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. Journal of Fish Biology, 77, 1793-1817. – reference: Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133-142. – reference: Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 1665-1679. – reference: Griffiths D (1977) Caloric variation in Crustacea and other animals. The Journal of Animal Ecology, 46, 593-605. – reference: Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology, 330, 55-80. – reference: Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics, 10, 147-172. – reference: Jackson M, Loewen C, Vinebrooke R, Chimimba C (2016) Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Global Change Biology, 22, 180-189. – reference: Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 12788-12793. – reference: Blanchard JL, Jennings S, Holmes R et al. (2012) Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2979-2989. – reference: Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. – reference: IPCC (2013) Working Group I Contribution to the IPCC Fifth Assessment Report. Climate Change 2013: The Physical Sciences Basis. Cambridge University Press, Cambridge, UK. – reference: Pörtner H-O, Farrell AP (2008) Physiology and climate change. Science, 322, 690-692. – reference: Hilker M, Meiners T (2002) Chemoecology of Insect Eggs and Egg Deposition. John Wiley & Sons, Berlin. – reference: Fochetti R, Amici I, Argano R (2003) Seasonal changes and selectivity in the diet of brown trout in the River Nera (Central Italy). Journal of Freshwater Ecology, 18, 437-444. – reference: Chapman DG (1951) Some Properties of the Hypergeometric Distribution with Applications to Zoological Sample Censuses. University of California Press, Oakland, CA. – reference: Kaeding LR (1996) Summer use of coolwater tributaries of a geothermally heated stream by rainbow and brown trout, Oncorhynchus mykiss and Salmo trutta. American Midland Naturalist, 135, 283-292. – reference: Jonsson B, Jonsson N (2009) A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. Journal of Fish Biology, 75, 2381-2447. – reference: Walther G-R (2010) Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2019-2024. – reference: Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature, 374, 255-257. – reference: Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D (2015) Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology, 21, 1025-1040. – reference: Hogg ID, Williams DD (1996) Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology, 77, 395-407. – reference: Jonsson M, Hedström P, Stenroth K, Hotchkiss ER, Vasconcelos FR, Karlsson J, Byström P (2015) Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshwater Biology, 60, 78-88. – reference: Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science, 308, 1912-1915. – reference: Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proceedings of the National Academy of Sciences, 105, 20776-20780. – reference: Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83, 703-718. – reference: Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature, 402, 69-72. – reference: Petchey OL, Beckerman AP, Riede JO, Warren PH (2008) Size, foraging, and food web structure. Proceedings of the National Academy of Sciences of the United States of America, 105, 4191-4196. – reference: Cloe WW III, Garman G (1996) The energetic importance of terrestrial arthropod inputs to three warm-water streams. Freshwater Biology, 36, 104-114. – reference: Elliott J, Hurley M, Fryer R (1995) A new, improved growth model for brown trout, Salmo trutta. Functional Ecology, 92, 290-298. – reference: Slobodkin LB (2001) The good, the bad and the reified. Evolutionary Ecology Research, 3, 1-13. – reference: Arnason B, Theodorsson P, Björnsson S, Saemundsson K (1969) Hengill, a high temperature thermal area in Iceland. Bulletin of Volcanology, 33, 245-259. – reference: Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17, 581-613. – reference: Jennings S, Mackinson S (2003) Abundance-body mass relationships in size-structured food webs. Ecology Letters, 6, 971-974. – reference: Greig HS, Kratina P, Thompson PL, Palen WJ, Richardson JS, Shurin JB (2012) Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems. Global Change Biology, 18, 504-514. – reference: Adams G, Pichler DE, Cox EJ, O'Gorman EJ, Seeney A, Woodward G, Reuman DC (2013) Diatoms can be an important exception to temperature-size rules at species and community levels of organization. Global Change Biology, 19, 3540-3552. – reference: Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL (2012) Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3008-3017. – reference: Meisner J, Rosenfeld J, Regier H (1988) The role of groundwater in the impact of climate warming on stream salmonines. Fisheries, 13, 2-8. – reference: Forseth T, Larsson S, Jensen A, Jonsson B, Näslund I, Berglund I (2009) Thermal growth performance of juvenile brown trout Salmo trutta: no support for thermal adaptation hypotheses. Journal of Fish Biology, 74, 133-149. – reference: Cada GF, Loar JM, Cox DK (1987) Food and feeding preferences of rainbow and brown trout in southern Appalachian streams. American Midland Naturalist, 117, 374-385. – reference: Elliott J (1973) The food of brown and rainbow trout (Salmo trutta and S. gairdneri) in relation to the abundance of drifting invertebrates in a mountain stream. Oecologia, 12, 329-347. – reference: Elias M, Wieczorek G, Rosenne S, Tawfik DS (2014) The universality of enzymatic rate-temperature dependency. Trends in Biochemical Sciences, 39, 1-7. – reference: Jungwirth M, Winkler H (1984) The temperature dependence of embryonic development of grayling Thymallus thymallus, Danube salmon Hucho hucho, Arctic char Salvelinus alpinus and brown trout Salmo trutta fario. Aquaculture, 38, 315-327. – reference: Demars BOL, Manson JR, Ólafsson JS et al. (2011) Temperature and the metabolic balance of streams. Freshwater Biology, 56, 1106-1121. – reference: Ojanguren A, Brana F (2003) Thermal dependence of embryonic growth and development in brown trout. Journal of Fish Biology, 62, 580-590. – reference: Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'. The Journal of Experimental Biology, 213, 912-920. – reference: Martin J, Guryev V, Blinov A, Edward D (2002) A molecular assessment of the extent of variation and dispersal between Australian populations of the genus Archaeochlus Brundin (Diptera: Chironomidae). Invertebrate Systematics, 16, 599-603. – reference: Hopcraft JGC, Olff H, Sinclair A (2010) Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends in Ecology and Evolution, 25, 119-128. – reference: Welter JR, Benstead JP, Cross WF, Hood JM, Huryn AD, Johnson PW, Williamson TJ (2015) Does N2-fixation amplify the temperature dependence of ecosystem metabolism? Ecology, 96, 603-610. – reference: McDonald ME, Hershey AE, Miller MC (1996) Global warming impacts on lake trout in arctic lakes. Limnology and Oceanography, 41, 1102-1108. – reference: Steingrímsson SÓ, Gíslason GM (2002) Body size, diet and growth of landlocked brown trout, Salmo trutta, in the subarctic River Laxá, north-east Iceland. Environmental Biology of Fishes, 63, 417-426. – reference: Elliott JM (1994) Quantitative Ecology and the Brown Trout. Oxford University Press, USA. – reference: Jochum M, Schneider FD, Crowe TP, Brose U, O'Gorman EJ (2012) Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2962-2970. – reference: Cunjak RA (1996) Winter habitat of selected stream fishes and potential impacts from land-use activity. Canadian Journal of Fisheries and Aquatic Sciences, 53, 267-282. – reference: Ojanguren AF, Reyes-Gavilán FG, Braña F (2001) Thermal sensitivity of growth, food intake and activity of juvenile brown trout. Journal of Thermal Biology, 26, 165-170. – reference: Kaeding LR, Kaya CM (1978) Growth and diets of trout from contrasting environments in a geothermally heated stream: the Firehole River of Yellowstone National Park. Transactions of the American Fisheries Society, 107, 432-438. – reference: Rall BC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U (2010) Temperature, predator-prey interaction strength and population stability. Global Change Biology, 16, 2145-2157. – reference: Pelini SL, Boudreau M, McCoy N, Ellison AM, Gotelli NJ, Sanders NJ, Dunn RR (2011) Effects of short-term warming on low and high latitude forest ant communities. Ecosphere, 2, art62. – reference: Brock ML, Wiegert RG, Brock TD (1969) Feeding by Paracoenia and Ephydra (Diptera> Ephydridae) on the microorganisms of hot springs. Ecology, 50, 192-200. – reference: Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integrative and Comparative Biology, 51, 691-702. – reference: Yvon-Durocher G, Montoya JM, Trimmer M, Woodward GUY (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology, 17, 1681-1694. – reference: Friberg N, Dybkjaer JB, Ólafsson JS, Gíslason GM, Larsen SE, Lauridsen TL (2009) Relationships between structure and function in streams contrasting in temperature. Freshwater Biology, 54, 2051-2068. – reference: Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 493-507. – reference: Brose U, Ehnes R, Rall B, Vucic-Pestic O, Berlow E, Scheu S (2008) Foraging theory predicts predator-prey energy fluxes. Journal of Animal Ecology, 77, 1072-1078. – reference: Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32-46. – reference: Almodóvar A, Nicola GG, Ayllón D, Elvira B (2012) Global warming threatens the persistence of Mediterranean brown trout. Global Change Biology, 18, 1549-1560. – reference: Grey J (2001) Ontogeny and dietary specialization in brown trout (Salmo trutta L.) from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen. Ecology of Freshwater Fish, 10, 168-176. – reference: Cummins KW (1967) Calorific Equivalents for Studies in Ecological Energetics. University of Pittsburgh, Pennsylvania. – reference: McCullough DA, Minshall GW, Cushing CE (1979) Bioenergetics of lotic filter-feeding insects Simulium spp. (Diptera) and Hydropsyche occidentalis (Trichoptera) and their function in controlling organic transport in streams. Ecology, 60, 585-596. – reference: Chesson J (1983) The estimation and analysis of preference and its relatioship to foraging models. Ecology, 64, 1297-1304. – reference: Hunter FF, Jain H (2000) Do gravid black flies (Diptera: Simuliidae) oviposit at their natal site? Journal of Insect Behavior, 13, 585-595. – reference: Rothfels KH (1981) Cytological approaches to the study of black fly systematics and evolution. In: Application of Genetics and Cytology in Insect Systematics and Evolution, Forest, Wildlife, and Range Experiment Station (ed. Stock MW), pp. 67-83. University of Idaho, Moscow. – reference: Bernacchi C, Singsaas E, Pimentel C, Portis A Jr, Long S (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment, 24, 253-259. – reference: Galmés J, Kapralov M, Copolovici L, Hermida-Carrera C, Niinemets Ü (2015) Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynthesis Research, 123, 183-201. – reference: Kawaguchi Y, Taniguchi Y, Nakano S (2003) Terrestrial invertebrate inputs determine the local abundance of stream fishes in a forested stream. Ecology, 84, 701-708. – reference: O'Gorman EJ, Benstead JP, Cross WF et al. (2014) Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia. Global Change Biology, 20, 3291-3299. – reference: Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends in Ecology and Evolution, 26, 285-291. – reference: Gudmundsdottir R, Gislason GM, Palsson S et al. (2011) Effects of temperature regime on primary producers in Icelandic geothermal streams. Aquatic Botany, 95, 278-286. – reference: Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences of the United States of America, 108, 10591-10596. – reference: Woodward G, Dybkjaer JB, Ólafsson JS, Gíslason GM, Hannesdóttir ER, Friberg N (2010) Sentinel systems on the razor's edge: effects of warming on Arctic geothermal stream ecosystems. Global Change Biology, 16, 1979-1991. – reference: Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America, 98, 166-170. – reference: Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80, 595-602. – reference: Anderson-Teixeira KJ, Vitousek PM, Brown JH (2008) Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawai'i. Proceedings of the National Academy of Sciences of the United States of America, 105, 228-233. – reference: Winfield IJ, James JB, Fletcher JM (2008) Northern pike (Esox lucius) in a warming lake: changes in population size and individual condition in relation to prey abundance. Hydrobiologia, 601, 29-40. – reference: Nakano S, Miyasaka H, Kuhara N (1999) Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology, 80, 2435-2441. – reference: Vucic-Pestic O, Ehnes RB, Rall BC, Brose U (2011) Warming up the system: higher predator feeding rates but lower energetic efficiencies. Global Change Biology, 17, 1301-1310. – reference: Arim M, Bozinovic F, Marquet PA (2007) On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis. Oikos, 116, 1524-1530. – volume: 108 start-page: 10591 year: 2011 end-page: 10596 article-title: Systematic variation in the temperature dependence of physiological and ecological traits publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 57 start-page: 2465 year: 2012 end-page: 2474 article-title: Emerging aquatic insects as predators in terrestrial systems across a gradient of stream temperature in North and South America publication-title: Freshwater Biology – volume: 54 start-page: 2051 year: 2009 end-page: 2068 article-title: Relationships between structure and function in streams contrasting in temperature publication-title: Freshwater Biology – volume: 10 start-page: 168 year: 2001 end-page: 176 article-title: Ontogeny and dietary specialization in brown trout ( L.) from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen publication-title: Ecology of Freshwater Fish – volume: 48 start-page: 283 year: 2013 end-page: 340 article-title: Increased stream productivity with warming supports higher trophic levels publication-title: Advances in Ecological Research – volume: 10 start-page: 147 year: 1979 end-page: 172 article-title: Feeding ecology of stream invertebrates publication-title: Annual Review of Ecology and Systematics – volume: 19 start-page: 202 year: 2005 end-page: 213 article-title: Linking the global carbon cycle to individual metabolism publication-title: Functional Ecology – volume: 77 start-page: 395 year: 1996 end-page: 407 article-title: Response of stream invertebrates to a global‐warming thermal regime: an ecosystem‐level manipulation publication-title: Ecology – volume: 36 start-page: 104 year: 1996 end-page: 114 article-title: The energetic importance of terrestrial arthropod inputs to three warm‐water streams publication-title: Freshwater Biology – volume: 4 start-page: 133 year: 2013 end-page: 142 article-title: A general and simple method for obtaining R2 from generalized linear mixed‐effects models publication-title: Methods in Ecology and Evolution – volume: 64 start-page: 1297 year: 1983 end-page: 1304 article-title: The estimation and analysis of preference and its relatioship to foraging models publication-title: Ecology – volume: 80 start-page: 595 year: 2011 end-page: 602 article-title: Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R publication-title: Journal of Animal Ecology – volume: 25 start-page: 119 year: 2010 end-page: 128 article-title: Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas publication-title: Trends in Ecology and Evolution – volume: 56 start-page: 1328 year: 2011 end-page: 1341 article-title: Spatial population genetic structure reveals strong natal site fidelity in (Diptera: Chironomidae) in northeast Queensland, Australia publication-title: Freshwater Biology – year: 2014 – volume: 16 start-page: 599 year: 2002 end-page: 603 article-title: A molecular assessment of the extent of variation and dispersal between Australian populations of the genus Archaeochlus Brundin (Diptera: Chironomidae) publication-title: Invertebrate Systematics – volume: 85 start-page: 1771 year: 2004 end-page: 1789 article-title: Toward a metabolic theory of ecology publication-title: Ecology – volume: 123 start-page: 183 year: 2015 end-page: 201 article-title: Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade‐offs, and importance for carbon gain publication-title: Photosynthesis Research – volume: 106 start-page: 354 year: 1977 end-page: 361 article-title: Reproductive biology of rainbow and brown trout in a geothermally heated stream: the Firehole River of Yellowstone National Park publication-title: Transactions of the American Fisheries Society – volume: 367 start-page: 3008 year: 2012 end-page: 3017 article-title: Warming shifts top‐down and bottom‐up control of pond food web structure and function publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 96 start-page: 603 year: 2015 end-page: 610 article-title: Does N2‐fixation amplify the temperature dependence of ecosystem metabolism? publication-title: Ecology – volume: 60 start-page: 78 year: 2015 end-page: 88 article-title: Climate change modifies the size structure of assemblages of emerging aquatic insects publication-title: Freshwater Biology – volume: 26 start-page: 32 year: 2001 end-page: 46 article-title: A new method for non‐parametric multivariate analysis of variance publication-title: Austral Ecology – volume: 16 start-page: 2145 year: 2010 end-page: 2157 article-title: Temperature, predator–prey interaction strength and population stability publication-title: Global Change Biology – volume: 367 start-page: 2979 year: 2012 end-page: 2989 article-title: Potential consequences of climate change for primary production and fish production in large marine ecosystems publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 333 start-page: 1024 year: 2011 end-page: 1026 article-title: Rapid range shifts of species associated with high levels of climate warming publication-title: Science – volume: 18 start-page: 504 year: 2012 end-page: 514 article-title: Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems publication-title: Global Change Biology – volume: 3 start-page: 1 year: 2001 end-page: 13 article-title: The good, the bad and the reified publication-title: Evolutionary Ecology Research – volume: 60 start-page: 585 year: 1979 end-page: 596 article-title: Bioenergetics of lotic filter‐feeding insects spp. (Diptera) and Hydropsyche occidentalis (Trichoptera) and their function in controlling organic transport in streams publication-title: Ecology – volume: 109 start-page: 19310 year: 2012 end-page: 19314 article-title: Warming‐induced reductions in body size are greater in aquatic than terrestrial species publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 161 year: 2000 end-page: 194 – volume: 17 start-page: 1301 year: 2011 end-page: 1310 article-title: Warming up the system: higher predator feeding rates but lower energetic efficiencies publication-title: Global Change Biology – volume: 51 start-page: 691 year: 2011 end-page: 702 article-title: Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure publication-title: Integrative and Comparative Biology – start-page: 67 year: 1981 end-page: 83 article-title: Cytological approaches to the study of black fly systematics and evolution publication-title: Application of Genetics and Cytology in Insect Systematics and Evolution, Forest, Wildlife, and Range Experiment Station – volume: 56 start-page: 1106 year: 2011 end-page: 1121 article-title: Temperature and the metabolic balance of streams publication-title: Freshwater Biology – volume: 17 start-page: 581 year: 2007 end-page: 613 article-title: Potential impacts of global climate change on freshwater fisheries publication-title: Reviews in Fish Biology and Fisheries – volume: 110 start-page: 441 year: 1988 end-page: 461 article-title: Temperature and algal growth publication-title: New Phytologist – volume: 374 start-page: 255 year: 1995 end-page: 257 article-title: Primary production required to sustain global fisheries publication-title: Nature – volume: 105 start-page: 228 year: 2008 end-page: 233 article-title: Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawai'i publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 12 start-page: 329 year: 1973 end-page: 347 article-title: The food of brown and rainbow trout ( and ) in relation to the abundance of drifting invertebrates in a mountain stream publication-title: Oecologia – year: 1992 – volume: 116 start-page: 1524 year: 2007 end-page: 1530 article-title: On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis publication-title: Oikos – volume: 402 start-page: 69 year: 1999 end-page: 72 article-title: Environmental warming alters food‐web structure and ecosystem function publication-title: Nature – volume: 103 start-page: 1342 year: 2006 end-page: 1346 article-title: Plant community responses to experimental warming across the tundra biome publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 1967 – volume: 92 start-page: 290 year: 1995 end-page: 298 article-title: A new, improved growth model for brown trout, publication-title: Functional Ecology – volume: 367 start-page: 1665 year: 2012 end-page: 1679 article-title: Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences – year: 2002 – volume: 10 start-page: 1 year: 2001 end-page: 10 article-title: Relationship between stream temperature, thermal refugia and rainbow trout abundance in arid‐land streams in the northwestern United States publication-title: Ecology of Freshwater Fish – volume: 20 start-page: 3291 year: 2014 end-page: 3299 article-title: Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia publication-title: Global Change Biology – start-page: 1 year: 1971 end-page: 98 – volume: 33 start-page: 245 year: 1969 end-page: 259 article-title: Hengill, a high temperature thermal area in Iceland publication-title: Bulletin of Volcanology – volume: 18 start-page: 437 year: 2003 end-page: 444 article-title: Seasonal changes and selectivity in the diet of brown trout in the River Nera (Central Italy) publication-title: Journal of Freshwater Ecology – volume: 80 start-page: 2435 year: 1999 end-page: 2441 article-title: Terrestrial‐aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web publication-title: Ecology – volume: 17 start-page: 1681 year: 2011 end-page: 1694 article-title: Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems publication-title: Global Change Biology – volume: 24 start-page: 517 year: 1970 end-page: 535 article-title: Calorie conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets publication-title: British Journal of Nutrition – volume: 365 start-page: 2019 year: 2010 end-page: 2024 article-title: Community and ecosystem responses to recent climate change publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – start-page: 1 year: 2005 end-page: 17 – volume: 41 start-page: 1102 year: 1996 end-page: 1108 article-title: Global warming impacts on lake trout in arctic lakes publication-title: Limnology and Oceanography – volume: 106 start-page: 12788 year: 2009 end-page: 12793 article-title: Global warming benefits the small in aquatic ecosystems publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 2013 – volume: 47 start-page: 81 year: 2012 end-page: 176 article-title: Impacts of warming on the structure and functioning of aquatic communities: individual‐ to ecosystem‐level responses publication-title: Advances in Ecological Research – volume: 213 start-page: 912 year: 2010 end-page: 920 article-title: The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’ publication-title: The Journal of Experimental Biology – volume: 322 start-page: 690 year: 2008 end-page: 692 article-title: Physiology and climate change publication-title: Science – volume: 25 start-page: 103 year: 1980 end-page: 132 article-title: Filter‐feeding ecology of aquatic insects publication-title: Annual Review of Entomology – volume: 24 start-page: 253 year: 2001 end-page: 259 article-title: Improved temperature response functions for models of Rubisco‐limited photosynthesis publication-title: Plant, Cell and Environment – volume: 39 start-page: 1 year: 2014 end-page: 7 article-title: The universality of enzymatic rate–temperature dependency publication-title: Trends in Biochemical Sciences – volume: 62 start-page: 580 year: 2003 end-page: 590 article-title: Thermal dependence of embryonic growth and development in brown trout publication-title: Journal of Fish Biology – year: 1994 – volume: 98 start-page: 166 year: 2001 end-page: 170 article-title: Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 117 start-page: 374 year: 1987 end-page: 385 article-title: Food and feeding preferences of rainbow and brown trout in southern Appalachian streams publication-title: American Midland Naturalist – volume: 26 start-page: 285 year: 2011 end-page: 291 article-title: Declining body size: a third universal response to warming? publication-title: Trends in Ecology and Evolution – volume: 25 start-page: 250 year: 2010 end-page: 260 article-title: Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea publication-title: Trends in Ecology and Evolution – volume: 50 start-page: 192 year: 1969 end-page: 200 article-title: Feeding by Paracoenia and Ephydra (Diptera> Ephydridae) on the microorganisms of hot springs publication-title: Ecology – volume: 601 start-page: 29 year: 2008 end-page: 40 article-title: Northern pike ( ) in a warming lake: changes in population size and individual condition in relation to prey abundance publication-title: Hydrobiologia – volume: 105 start-page: 20776 year: 2008 end-page: 20780 article-title: Synergistic effects of climate‐related variables suggest future physiological impairment in a top oceanic predator publication-title: Proceedings of the National Academy of Sciences – volume: 95 start-page: 278 year: 2011 end-page: 286 article-title: Effects of temperature regime on primary producers in Icelandic geothermal streams publication-title: Aquatic Botany – volume: 2 start-page: art62 year: 2011 article-title: Effects of short‐term warming on low and high latitude forest ant communities publication-title: Ecosphere – volume: 21 start-page: 1025 year: 2015 end-page: 1040 article-title: Interactions between temperature and nutrients across levels of ecological organization publication-title: Global Change Biology – volume: 46 start-page: 593 year: 1977 end-page: 605 article-title: Caloric variation in Crustacea and other animals publication-title: The Journal of Animal Ecology – year: 1951 – volume: 16 start-page: 1979 year: 2010 end-page: 1991 article-title: Sentinel systems on the razor's edge: effects of warming on Arctic geothermal stream ecosystems publication-title: Global Change Biology – volume: 77 start-page: 1072 year: 2008 end-page: 1078 article-title: Foraging theory predicts predator–prey energy fluxes publication-title: Journal of Animal Ecology – volume: 367 start-page: 493 year: 2012 end-page: 507 article-title: Algal evolution in relation to atmospheric CO2: carboxylases, carbon‐concentrating mechanisms and carbon oxidation cycles publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences – volume: 13 start-page: 585 year: 2000 end-page: 595 article-title: Do gravid black flies (Diptera: Simuliidae) oviposit at their natal site? publication-title: Journal of Insect Behavior – volume: 75 start-page: 2381 year: 2009 end-page: 2447 article-title: A review of the likely effects of climate change on anadromous Atlantic salmon and brown trout , with particular reference to water temperature and flow publication-title: Journal of Fish Biology – volume: 53 start-page: 267 year: 1996 end-page: 282 article-title: Winter habitat of selected stream fishes and potential impacts from land‐use activity publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 135 start-page: 283 year: 1996 end-page: 292 article-title: Summer use of coolwater tributaries of a geothermally heated stream by rainbow and brown trout, and publication-title: American Midland Naturalist – volume: 470 start-page: 479 year: 2011 end-page: 485 article-title: Climate change and evolutionary adaptation publication-title: Nature – year: 2000 – volume: 6 start-page: 971 year: 2003 end-page: 974 article-title: Abundance–body mass relationships in size‐structured food webs publication-title: Ecology Letters – volume: 83 start-page: 703 year: 2002 end-page: 718 article-title: Using stable isotopes to estimate trophic position: models, methods, and assumptions publication-title: Ecology – volume: 105 start-page: 4191 year: 2008 end-page: 4196 article-title: Size, foraging, and food web structure publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 367 start-page: 2962 year: 2012 end-page: 2970 article-title: Climate‐induced changes in bottom‐up and top‐down processes independently alter a marine ecosystem publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 77 start-page: 1793 year: 2010 end-page: 1817 article-title: Temperature requirements of Atlantic salmon , brown trout and Arctic charr : predicting the effects of climate change publication-title: Journal of Fish Biology – volume: 18 start-page: 1549 year: 2012 end-page: 1560 article-title: Global warming threatens the persistence of Mediterranean brown trout publication-title: Global Change Biology – volume: 19 start-page: 3540 year: 2013 end-page: 3552 article-title: Diatoms can be an important exception to temperature‐size rules at species and community levels of organization publication-title: Global Change Biology – volume: 74 start-page: 133 year: 2009 end-page: 149 article-title: Thermal growth performance of juvenile brown trout : no support for thermal adaptation hypotheses publication-title: Journal of Fish Biology – volume: 45 start-page: 231 year: 2011 end-page: 242 article-title: Stream ecosystem properties and processes along a temperature gradient publication-title: Aquatic Ecology – volume: 63 start-page: 417 year: 2002 end-page: 426 article-title: Body size, diet and growth of landlocked brown trout , in the subarctic River Laxá, north‐east Iceland publication-title: Environmental Biology of Fishes – volume: 22 start-page: 180 year: 2016 end-page: 189 article-title: Net effects of multiple stressors in freshwater ecosystems: a meta‐analysis publication-title: Global Change Biology – volume: 107 start-page: 432 year: 1978 end-page: 438 article-title: Growth and diets of trout from contrasting environments in a geothermally heated stream: the Firehole River of Yellowstone National Park publication-title: Transactions of the American Fisheries Society – year: 1974 – volume: 26 start-page: 165 year: 2001 end-page: 170 article-title: Thermal sensitivity of growth, food intake and activity of juvenile brown trout publication-title: Journal of Thermal Biology – volume: 330 start-page: 55 year: 2006 end-page: 80 article-title: On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero‐adjusted Bray‐Curtis coefficient for denuded assemblages publication-title: Journal of Experimental Marine Biology and Ecology – volume: 308 start-page: 1912 year: 2005 end-page: 1915 article-title: Climate change and distribution shifts in marine fishes publication-title: Science – volume: 38 start-page: 315 year: 1984 end-page: 327 article-title: The temperature dependence of embryonic development of grayling , Danube salmon , Arctic char and brown trout fario publication-title: Aquaculture – volume: 84 start-page: 701 year: 2003 end-page: 708 article-title: Terrestrial invertebrate inputs determine the local abundance of stream fishes in a forested stream publication-title: Ecology – start-page: 209 year: 1981 end-page: 245 – volume: 13 start-page: 2 year: 1988 end-page: 8 article-title: The role of groundwater in the impact of climate warming on stream salmonines publication-title: Fisheries – ident: e_1_2_7_98_1 doi: 10.1242/jeb.037473 – ident: e_1_2_7_26_1 doi: 10.1111/j.1365-2427.2010.02554.x – ident: e_1_2_7_87_1 – ident: e_1_2_7_23_1 doi: 10.1139/f95-275 – ident: e_1_2_7_77_1 doi: 10.1111/gcb.12602 – ident: e_1_2_7_44_1 doi: 10.1034/j.1600-0633.2001.100306.x – ident: e_1_2_7_80_1 doi: 10.1038/374255a0 – ident: e_1_2_7_53_1 doi: 10.1023/A:1007871820796 – ident: e_1_2_7_7_1 doi: 10.1111/j.0030-1299.2007.15768.x – ident: e_1_2_7_25_1 doi: 10.1073/pnas.1015178108 – ident: e_1_2_7_5_1 doi: 10.1111/j.1442-9993.2001.01070.pp.x – ident: e_1_2_7_75_1 doi: 10.1890/0012-9658(1999)080[2435:TALRAI]2.0.CO;2 – ident: e_1_2_7_57_1 doi: 10.1046/j.1461-0248.2003.00529.x – ident: e_1_2_7_33_1 doi: 10.2307/2390576 – ident: e_1_2_7_18_1 doi: 10.1016/j.jembe.2005.12.017 – ident: e_1_2_7_100_1 doi: 10.1023/A:1014976612970 – ident: e_1_2_7_76_1 doi: 10.1016/B978-0-12-398315-2.00002-8 – ident: e_1_2_7_51_1 doi: 10.1016/j.tree.2009.08.001 – ident: e_1_2_7_86_1 doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 – ident: e_1_2_7_70_1 doi: 10.4319/lo.1996.41.5.1102 – ident: e_1_2_7_17_1 doi: 10.2307/1937838 – volume-title: Calorific Equivalents for Studies in Ecological Energetics year: 1967 ident: e_1_2_7_21_1 – ident: e_1_2_7_106_1 doi: 10.1890/14-1667.1 – ident: e_1_2_7_28_1 doi: 10.1016/j.tibs.2013.11.001 – ident: e_1_2_7_16_1 doi: 10.1126/science.1206432 – ident: e_1_2_7_71_1 doi: 10.1577/1548-8446(1988)013<0002:TROGIT>2.0.CO;2 – ident: e_1_2_7_79_1 doi: 10.1016/S0306-4565(00)00038-3 – ident: e_1_2_7_96_1 doi: 10.1098/rstb.2012.0243 – ident: e_1_2_7_109_1 doi: 10.1007/s10750-007-9264-1 – ident: e_1_2_7_35_1 doi: 10.1080/02705060.2003.9663979 – ident: e_1_2_7_14_1 doi: 10.2307/2425980 – ident: e_1_2_7_52_1 doi: 10.1098/rstb.2012.0005 – ident: e_1_2_7_43_1 doi: 10.1111/j.1365-2486.2011.02540.x – ident: e_1_2_7_63_1 doi: 10.1577/1548-8659(1978)107<432:GADOTF>2.0.CO;2 – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-3040.2001.00668.x – volume: 48 start-page: 283 year: 2013 ident: e_1_2_7_47_1 article-title: Increased stream productivity with warming supports higher trophic levels publication-title: Advances in Ecological Research – ident: e_1_2_7_83_1 doi: 10.1038/47023 – ident: e_1_2_7_36_1 doi: 10.1111/j.1095-8649.2008.02119.x – ident: e_1_2_7_64_1 doi: 10.1890/0012-9658(2003)084[0701:TIIDTL]2.0.CO;2 – ident: e_1_2_7_32_1 doi: 10.1111/j.1095-8649.2010.02762.x – ident: e_1_2_7_102_1 doi: 10.1073/pnas.0503198103 – ident: e_1_2_7_101_1 doi: 10.1111/j.1365-2486.2010.02329.x – ident: e_1_2_7_24_1 doi: 10.1073/pnas.0902080106 – ident: e_1_2_7_37_1 doi: 10.1073/pnas.1210460109 – ident: e_1_2_7_85_1 doi: 10.1126/science.1163156 – ident: e_1_2_7_8_1 doi: 10.1007/BF02596720 – ident: e_1_2_7_67_1 doi: 10.1016/j.tree.2009.10.009 – ident: e_1_2_7_3_1 doi: 10.1111/j.1365-2435.2005.00952.x – ident: e_1_2_7_19_1 doi: 10.1046/j.1365-2427.1996.00080.x – ident: e_1_2_7_27_1 doi: 10.1034/j.1600-0633.2001.100101.x – ident: e_1_2_7_29_1 doi: 10.1007/BF00345047 – ident: e_1_2_7_56_1 doi: 10.1111/gcb.13028 – ident: e_1_2_7_42_1 – ident: e_1_2_7_72_1 doi: 10.4319/lo.1974.19.4.0591 – ident: e_1_2_7_13_1 doi: 10.1890/03-9000 – ident: e_1_2_7_10_1 doi: 10.1098/rstb.2012.0231 – ident: e_1_2_7_41_1 doi: 10.1016/j.tree.2011.03.005 – ident: e_1_2_7_68_1 doi: 10.1071/IT01040 – ident: e_1_2_7_50_1 doi: 10.2307/2265617 – ident: e_1_2_7_6_1 doi: 10.1073/pnas.0710214104 – volume: 3 start-page: 1 year: 2001 ident: e_1_2_7_97_1 article-title: The good, the bad and the reified publication-title: Evolutionary Ecology Research – ident: e_1_2_7_107_1 doi: 10.1111/fwb.12013 – volume-title: Some Properties of the Hypergeometric Distribution with Applications to Zoological Sample Censuses year: 1951 ident: e_1_2_7_15_1 – ident: e_1_2_7_45_1 doi: 10.2307/3832 – ident: e_1_2_7_66_1 doi: 10.1111/j.1365-2427.2010.02571.x – ident: e_1_2_7_65_1 doi: 10.1577/1548-8659(1977)106<354:RBORAB>2.0.CO;2 – start-page: 209 volume-title: Stress and Fish year: 1981 ident: e_1_2_7_30_1 – ident: e_1_2_7_12_1 doi: 10.1111/j.1365-2656.2008.01408.x – ident: e_1_2_7_59_1 doi: 10.1111/j.1095-8649.2009.02380.x – ident: e_1_2_7_94_1 doi: 10.1093/icb/icr097 – ident: e_1_2_7_92_1 doi: 10.1073/pnas.0806886105 – ident: e_1_2_7_46_1 doi: 10.1016/j.aquabot.2011.08.003 – volume-title: Working Group I Contribution to the IPCC Fifth Assessment Report. Climate Change 2013: The Physical Sciences Basis year: 2013 ident: e_1_2_7_54_1 – ident: e_1_2_7_108_1 doi: 10.1093/acprof:oso/9780198527084.003.0001 – ident: e_1_2_7_89_1 doi: 10.1007/s10452-010-9349-1 – start-page: 67 year: 1981 ident: e_1_2_7_93_1 article-title: Cytological approaches to the study of black fly systematics and evolution publication-title: Application of Genetics and Cytology in Insect Systematics and Evolution, Forest, Wildlife, and Range Experiment Station – ident: e_1_2_7_95_1 – ident: e_1_2_7_104_1 doi: 10.1098/rstb.2010.0021 – ident: e_1_2_7_22_1 doi: 10.1146/annurev.es.10.110179.001051 – ident: e_1_2_7_91_1 doi: 10.1098/rstb.2011.0212 – ident: e_1_2_7_60_1 doi: 10.1111/fwb.12468 – ident: e_1_2_7_103_1 doi: 10.1146/annurev.en.25.010180.000535 – ident: e_1_2_7_38_1 doi: 10.1111/j.1365-2427.2009.02234.x – ident: e_1_2_7_82_1 doi: 10.1126/science.1111322 – ident: e_1_2_7_88_1 doi: 10.1111/j.1365-2486.2009.02124.x – ident: e_1_2_7_90_1 doi: 10.1111/j.1469-8137.1988.tb00282.x – ident: e_1_2_7_78_1 doi: 10.1046/j.1095-8649.2003.00049.x – ident: e_1_2_7_2_1 doi: 10.1111/gcb.12285 – ident: e_1_2_7_20_1 doi: 10.1111/gcb.12809 – ident: e_1_2_7_62_1 doi: 10.2307/2426711 – ident: e_1_2_7_99_1 doi: 10.1079/BJN19700050 – volume-title: Chemoecology of Insect Eggs and Egg Deposition year: 2002 ident: e_1_2_7_48_1 – ident: e_1_2_7_39_1 doi: 10.1016/S1546-5098(08)60146-6 – ident: e_1_2_7_73_1 doi: 10.1111/j.2041-210x.2012.00261.x – ident: e_1_2_7_40_1 doi: 10.1007/s11120-014-0067-8 – ident: e_1_2_7_81_1 doi: 10.1890/ES11-00097.1 – ident: e_1_2_7_74_1 doi: 10.1073/pnas.98.1.166 – ident: e_1_2_7_34_1 doi: 10.1007/s11160-007-9059-5 – ident: e_1_2_7_61_1 doi: 10.1016/0044-8486(84)90336-3 – ident: e_1_2_7_69_1 doi: 10.2307/1936079 – ident: e_1_2_7_84_1 doi: 10.1073/pnas.0710672105 – ident: e_1_2_7_110_1 doi: 10.1111/j.1365-2486.2009.02052.x – ident: e_1_2_7_111_1 doi: 10.1111/j.1365-2486.2010.02321.x – ident: e_1_2_7_49_1 doi: 10.1038/nature09670 – ident: e_1_2_7_55_1 doi: 10.1111/j.1365-2656.2011.01806.x – ident: e_1_2_7_4_1 doi: 10.1111/j.1365-2486.2011.02608.x – start-page: 161 volume-title: Fisheries Oceanography and Integrative Approach to Fisheries Ecology and Management year: 2000 ident: e_1_2_7_105_1 – ident: e_1_2_7_11_1 doi: 10.2307/1934846 – ident: e_1_2_7_58_1 doi: 10.1098/rstb.2012.0237 – volume-title: Quantitative Ecology and the Brown Trout year: 1994 ident: e_1_2_7_31_1 doi: 10.1093/oso/9780198546788.001.0001 |
SSID | ssj0003206 |
Score | 2.5201628 |
Snippet | Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3206 |
SubjectTerms | Animals Aquatic ecosystems Arctic biomass production Climate change Diet Ecological function Ecosystem ecosystem services ecosystems fish production Food Chain Food chains freshwater Geographical distribution Global warming Hengill Iceland Life Sciences mark-recapture mark-recapture studies natural experiment PIT tag Predation Predators prediction Primary Primary s Resource availability Salmo trutta Salmo trutta fario streams subsidies Temperature Temperature effects Temperature gradients Trophic levels Trout water temperature |
Title | Temperature effects on fish production across a natural thermal gradient |
URI | https://api.istex.fr/ark:/67375/WNG-G7N3NC8K-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13233 https://www.ncbi.nlm.nih.gov/pubmed/26936833 https://www.proquest.com/docview/1807662503 https://www.proquest.com/docview/1807884901 https://www.proquest.com/docview/1811894127 https://www.proquest.com/docview/2000152650 https://hal.science/hal-01604316 https://pubmed.ncbi.nlm.nih.gov/PMC4991275 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ0i8wChsBMZkEJp4aZU4jpOIp63aWvFRIbSJPSBFjuOs1UY69QMBfz13dpKtsCHEU9v4-uHrz5ffJeffAbxKCiS1RquuNFJ2RYAwTpThiOUij7QpKR-jaouRHJ6It6fR6Rq8afbCOH2I9oIbrQwbr2mBq3x-bZGf6byHqVRISp9Uq0WE6NOVdFTIbV_NIIwEhpogrFWFqIqnfefKuWh9TJWQd8i532-im39WTV5ns_Z0dPQAvjQTcVUo573lIu_pn79pPP7nTDfhfk1T2b7D1UNYM1UH7rrGlT86sHV4tT8OzeoAMe-A9wFJ-HRmzdge619MkBHbV49geGyQozsNZ1bXkbBpxcrJfMwunfIsooQp6y2mmBUdxY8njvoVH89mtj5t8RhOjg6P-8Nu3cihqzEehF2pkGelZczzxEQ6CoXGrFzGwgRlKpISj5EGTWlSxEYeqpynyCwKv4wj7ivOdbgFG9W0Mk-A-TpVeZoWhQhKodJERSKXJiqFMTE3AffgdfOXZrpWOadmGxdZk-2gNzPrTQ9etqaXTtrjRiPERTtOYtzD_fcZHSNtPhIS-BZ4sGdh05qp2TkVzMVR9nk0yAbxKBz1k3fZwIOdBldZHSvmWZD4scQ01Mcve9EO4yqnWzeqMtOls0kSgeTtbzaYLKYi4PHtNtzunedIyz3YdnBufzSXaSgTmnK8AvSVya-OVJOxVSTHtJkaBaDzLY5vd2c26B_YJ0__3fQZ3EOWKl1h3w5sLGZL8xyZ4CLfhXUuPu7ahf8LU75ZPQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN7pYxi48AiUGgoIBjpcnIllWbYPHEraxiWpD0w69CZkR24ybZ1OHkD5TfwV_hMr-dEGWoZLD5wcWzu2Hrur_Zz1twCvgwEGtSqVNlec28xBNQ6koqjLg8RLVabxmM62iHl0wD4ceodL8KP6Fqbgh6hfuGnLMP5aG7h-IX3Jyo_SpIlYyq1KV3fV-VcEbNN3e9u4um8o3d3ptyO7rClgp6iars0lbvlh5tMkUF7quSxFgMh9ppwsZEGG1zQdSqZC7GbiyoSGuMkNWpnv0ZakNHXxvsuwqiuIa6b-7Y8XZFUuNZU8Hddj6Nwct-Qx0nlDdVcXdr_loc69XNXL-e2qAPfPPM3L8bPZAHfvwc9q6oq8l-PmfJY00--_sUr-L3N7H-6WkTjZKkznASypvAG3itqc5w1Y27n4BBDFSh84bYC1jzhjPDFiZJO0T0YY9JuzhxD1FcKQgqaalKkyZJyTbDQdkrOCXBcNgUizPEQSw6uKt9dh-CkejyYmBW_2CA5uZOxrsJKPc7UOpJWGMgnDwYA5GZNhID2WcOVlTCmfKoda8LbSIZGWRO66nsiJqAAdrp4wq2fBq1r0rGAvuVIIFbFu13zj0VZP6GuaflBzJXxxLNg0elqLycmxzgn0PfEp7oiOH7txO-iKjgUblSKL0h1OhRO0fI5Iu4UPe1k3oyPT_07JXI3nhUwQMIxP_yaDeDhkDvWvl6GGHoAi8rDgcWE_dacpD10e6CH7C5a1MPjFlnw0NKTrDIEU9T2cfGM410-n6LTfmx9P_l30BdyO-vs90duLu0_hDgblvMhj3ICV2WSunmHgO0ueG39D4PNNG-EviNO0wg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwEN7pY2C4MBAouBQQDHS4mLFlWbYOHEraJCXF00M79CZkW24ytE4mSYH-Jv4kK_lBM7QMl56SWDu2pF2tvo1X3wK8iXMEtTpTLtecu8xHM46VpmjLeRpmujDxmMm2SPjgmH06CU9W4FdzFqbih2j_cDMrw_prs8CneXFlkZ9m6XsMpYKmcvVQX_7AeG3-YX8XlfuW0t7eUXfg1iUF3AwtM3C5wh1fFBFNYx1mYcAyjA95xLRfCBYXeM2woRRaYC_TQKVU4B6Xe0UUUk9RmgV431VYNy8XTf4YZYet2w-oLeTpByFD3-YHNY2RSRtqu7q0-a2OTOrlutHmz-vw7d9pmlfhs93_eg_gfg1cyU5laQ9hRZcduFOVsrzswMbenxNzKFa7jHkHnM8IyyczK0a2SfdsjBjZ_noEgyONqL1idSZ1ZgmZlKQYz0dkWnHRot0QZYdDFLE0pHh7g1rP8fN0ZjPWFo_h-Fb0sAFr5aTUT4F4mVCpEHnO_IIpEauQpVyHBdM6otqnDrxr5lxmNe-5Kb9xJpv4B9UjrXoceN2KTiuyj2uFUHFtu6HnHuwcSHPNsPUZaoHvvgPbVq-tmJp9Myl0USi_JH3Zj5Ig6cZD2Xdgq1G8rL3HXPqxF3EMTD182Ku2Gde9eZmjSj25qGTimCGc-5cMho-C-TS6WYba0_QUgboDTyp7aztNuQh4bIYcLVni0uCXW8rxyHKUYyBtSgfg5FubvXk6Zb_70X7Z_H_Rl3D3cLcnD_aT4TO4hxCWV1l_W7C2mF3o5wgTF-kLuzwJfL1tf_AbE0pz2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+effects+on+fish+production+across+a+natural+thermal+gradient&rft.jtitle=Global+change+biology&rft.au=O%27Gorman%2C+Eoin+J&rft.au=%C3%93lafsson%2C+%C3%93lafur+P&rft.au=Demars%2C+B+O+L&rft.au=Friberg%2C+Nikolai&rft.date=2016-09-01&rft.issn=1354-1013&rft.volume=22&rft.issue=9+p.3206-3220&rft.spage=3206&rft.epage=3220&rft_id=info:doi/10.1111%2Fgcb.13233&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |