A Reconfigurable Spiking Neural Network Computing-in-memory Processor using 1T1C eDRAM for Enhanced System-level Efficiency
Spiking Neural Network (SNN) Computing-In-Memory (CIM) achieves high macro-level energy efficiency but struggles with system-level efficiency due to excessive external memory access (EMA) caused by intermediate activation memory demands. To address this, a high-capacity SNN-CIM capable of managing l...
Saved in:
Published in | Journal of semiconductor technology and science Vol. 25; no. 4; pp. 355 - 362 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
대한전자공학회
31.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spiking Neural Network (SNN) Computing-In-Memory (CIM) achieves high macro-level energy efficiency but struggles with system-level efficiency due to excessive external memory access (EMA) caused by intermediate activation memory demands. To address this, a high-capacity SNN-CIM capable of managing large weight loads is essential. This paper introduces a high-density 1T1C eDRAM-based SNN-CIM processor that significantly enhances system-level energy efficiency through two key features: a high-density, low-power Reconfigurable Neuro-Cell Array (ReNCA) that reuses the 1T1C cell array and employs a charge pump, achieving a 41% area and 90% power reduction and a reconfigurable CIM architecture with dual-mode ReNCA and Dynamic Adjustable Neuron Link (DAN Link) to optimize EMA for activations and weights. These innovations collectively improve system-level energy efficiency by 10×, setting a new benchmark for performance. KCI Citation Count: 0 |
---|---|
AbstractList | Spiking Neural Network (SNN) Computing-In-Memory (CIM) achieves high macro-level energy efficiency but struggles with system-level efficiency due to excessive external memory access (EMA) caused by intermediate activation memory demands. To address this, a high-capacity SNN-CIM capable of managing large weight loads is essential. This paper introduces a high-density 1T1C eDRAM-based SNN-CIM processor that significantly enhances system-level energy efficiency through two key features: a high-density, low-power Reconfigurable Neuro-Cell Array (ReNCA) that reuses the 1T1C cell array and employs a charge pump, achieving a 41% area and 90% power reduction and a reconfigurable CIM architecture with dual-mode ReNCA and Dynamic Adjustable Neuron Link (DAN Link) to optimize EMA for activations and weights. These innovations collectively improve system-level energy efficiency by 10×, setting a new benchmark for performance. KCI Citation Count: 0 |
Author | Lee, Sangmyoung Um, Soyeon Kim, Sanyeob Kim, Sangjin Kim, Seryeong Jo, Wooyoung Kim, Soyeon |
Author_xml | – sequence: 1 givenname: Sangmyoung surname: Lee fullname: Lee, Sangmyoung – sequence: 2 givenname: Seryeong surname: Kim fullname: Kim, Seryeong – sequence: 3 givenname: Soyeon surname: Kim fullname: Kim, Soyeon – sequence: 4 givenname: Soyeon surname: Um fullname: Um, Soyeon – sequence: 5 givenname: Sangjin surname: Kim fullname: Kim, Sangjin – sequence: 6 givenname: Sanyeob surname: Kim fullname: Kim, Sanyeob – sequence: 7 givenname: Wooyoung surname: Jo fullname: Jo, Wooyoung |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003232499$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNotkE1PAjEYhBuDiYj-AU89myz2Y9vdPRJExeBHYO9Nt9tiZbclLWiIf94iJpNMMjPve3guwcB5pwG4wWjMWEHvnlf1akwQYeMkNqaMnYEhIZRmecn5AAwxq8oMc1ZcgMsYPxHiZVEVQ_AzgUutvDN2vQ-y6TRcbe3GujV81Snoku2-fdjAqe-3-10qMuuyXvc-HOB78ErH6APcx-MJrvEU6vvl5AWaFM7ch3RKt3B1iDvdZ53-0h2cGWOV1U4drsC5kV3U1_8-AvXDrJ4-ZYu3x_l0sshUUfLMaF1IaRRuOc4RblBFWdsYzJqcMtkSkxOJS06qFuWykTRnsilaRhhCTUVbSUfg9vTWBSM2ygov7Z-vvdgEMVnWc4FRkeeI8zQmp7EKPsagjdgG28twSBNxRC2OqMURtUhiIqGmv5G1dMY |
ContentType | Journal Article |
DBID | AAYXX CITATION ACYCR |
DOI | 10.5573/JSTS.2025.25.5.355 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2233-4866 |
EndPage | 362 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10744066 10_5573_JSTS_2025_25_5_355 |
GroupedDBID | 9ZL AAYXX ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS CITATION DBRKI FRP GW5 HH5 JDI OK1 TDB TR2 ACYCR C1A KVFHK MZR ZZE |
ID | FETCH-LOGICAL-c786-fee7aafc1d61401b0935dbf15b435ad2f42a18629d04aba345ab7d52500b93da3 |
ISSN | 1598-1657 |
IngestDate | Sun Aug 24 03:18:58 EDT 2025 Wed Aug 27 16:38:43 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c786-fee7aafc1d61401b0935dbf15b435ad2f42a18629d04aba345ab7d52500b93da3 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10744066 crossref_primary_10_5573_JSTS_2025_25_5_355 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-31 |
PublicationDateYYYYMMDD | 2025-08-31 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Journal of semiconductor technology and science |
PublicationYear | 2025 |
Publisher | 대한전자공학회 |
Publisher_xml | – name: 대한전자공학회 |
SSID | ssj0068797 |
Score | 2.3289073 |
Snippet | Spiking Neural Network (SNN) Computing-In-Memory (CIM) achieves high macro-level energy efficiency but struggles with system-level efficiency due to excessive... |
SourceID | nrf crossref |
SourceType | Open Website Index Database |
StartPage | 355 |
SubjectTerms | 전기공학 |
Title | A Reconfigurable Spiking Neural Network Computing-in-memory Processor using 1T1C eDRAM for Enhanced System-level Efficiency |
URI | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003232499 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2025, 25(4), 124, pp.355-362 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db5swELea7mV7mPapdV-ytPGEyBIwYB5JytRtWh_WVOobso3Joq5QZclDtj9s_97ubKCkraZunYSQBdgyd_zsu-PnMyFvpYqULgPtxeD9eGzMpSdHEXgpfqIUE0HJlWFbHEYHx-zjSXiyM_jVYy2tV3Kofly7ruRftArXQK-4SvYvNNs1ChegDPqFM2gYzjfSMXLZwJ8tF_P10iyBOjpfYOjbxZQbIPtDy_F27dYNcMNbVN4Zcms37QqBeumuTbhgPBtPXb3_Jf1smIdZ9dVyA2xKc-8bkotwH-aFGQy2fgb3jNrvyLWvK0wii_TFLm5v_lE0s20X1BHV_GyDo41r6ED8Uw0WrJu2rIQtHkM7BmE7V38HwIi30bhrktkc-jYN1djO_2rm-BatNJEYP2xDyw12nGzi8CkSVLJ9JwmdZOpkUycdOZxhIcmcBG6lziRwJmH7TGIKKVTsT0IJePaRTdw91OYaWHGBx3jUn2wCm-C4sVsCO6tdnhLDMMbUHDDMHw2x00M4wmFXtZ9__JJdsJWB_FQt8nmdny5z8LM-5EjjBVMwGpA7PvhnvpkRO78z4rHd1ah9EbtaDbvy7mpHtizCQbUsewbe7AG533zENLUwe0h2dPWI3Ovl63xMfqZ0G3C0ARy1gKMN4Og1gKMd4KgBHEXAUQM4CoCjLeBoH3D0AnBPyOx9NpseeM3uJZ6KeeSVWsdClGpcRBjDkEg4KGQ5DiU4KKLwS-aLMYchsRgxIUXAQiHjAkkGI5kEhQiekt2qrvQzQjkLtS7jUSESziQTQiUBkwXUUJrLRO0RtxVgfm5z1ICCchR3juLOUdw5HGEO4t4jb0DGRqF_UOzzGz31gty9AMJLsrtarvUrMNJX8rX5IH4DD13q2Q |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Reconfigurable+Spiking+Neural+Network+Computing-in-memory+Processor+using+1T1C+eDRAM+for+Enhanced+System-level+Efficiency&rft.jtitle=Journal+of+semiconductor+technology+and+science&rft.au=Sangmyoung+Lee%28Korea+Advanced+Institute+of+Science+and+Technology&rft.au=Seryeong+Kim%28Korea+Advanced+Institute+of+Science+and+Technology&rft.au=Soyeon+Kim%28Korea+Advanced+Institute+of+Science+and+Technology&rft.au=Soyeon+Um%28Korea+Advanced+Institute+of+Science+and+Technology&rft.date=2025-08-31&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1598-1657&rft.eissn=2233-4866&rft.spage=355&rft.epage=362&rft_id=info:doi/10.5573%2FJSTS.2025.25.5.355&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10744066 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-1657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-1657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-1657&client=summon |