A Reconfigurable Spiking Neural Network Computing-in-memory Processor using 1T1C eDRAM for Enhanced System-level Efficiency

Spiking Neural Network (SNN) Computing-In-Memory (CIM) achieves high macro-level energy efficiency but struggles with system-level efficiency due to excessive external memory access (EMA) caused by intermediate activation memory demands. To address this, a high-capacity SNN-CIM capable of managing l...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductor technology and science Vol. 25; no. 4; pp. 355 - 362
Main Authors Lee, Sangmyoung, Kim, Seryeong, Kim, Soyeon, Um, Soyeon, Kim, Sangjin, Kim, Sanyeob, Jo, Wooyoung
Format Journal Article
LanguageEnglish
Published 대한전자공학회 31.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spiking Neural Network (SNN) Computing-In-Memory (CIM) achieves high macro-level energy efficiency but struggles with system-level efficiency due to excessive external memory access (EMA) caused by intermediate activation memory demands. To address this, a high-capacity SNN-CIM capable of managing large weight loads is essential. This paper introduces a high-density 1T1C eDRAM-based SNN-CIM processor that significantly enhances system-level energy efficiency through two key features: a high-density, low-power Reconfigurable Neuro-Cell Array (ReNCA) that reuses the 1T1C cell array and employs a charge pump, achieving a 41% area and 90% power reduction and a reconfigurable CIM architecture with dual-mode ReNCA and Dynamic Adjustable Neuron Link (DAN Link) to optimize EMA for activations and weights. These innovations collectively improve system-level energy efficiency by 10×, setting a new benchmark for performance. KCI Citation Count: 0
AbstractList Spiking Neural Network (SNN) Computing-In-Memory (CIM) achieves high macro-level energy efficiency but struggles with system-level efficiency due to excessive external memory access (EMA) caused by intermediate activation memory demands. To address this, a high-capacity SNN-CIM capable of managing large weight loads is essential. This paper introduces a high-density 1T1C eDRAM-based SNN-CIM processor that significantly enhances system-level energy efficiency through two key features: a high-density, low-power Reconfigurable Neuro-Cell Array (ReNCA) that reuses the 1T1C cell array and employs a charge pump, achieving a 41% area and 90% power reduction and a reconfigurable CIM architecture with dual-mode ReNCA and Dynamic Adjustable Neuron Link (DAN Link) to optimize EMA for activations and weights. These innovations collectively improve system-level energy efficiency by 10×, setting a new benchmark for performance. KCI Citation Count: 0
Author Lee, Sangmyoung
Um, Soyeon
Kim, Sanyeob
Kim, Sangjin
Kim, Seryeong
Jo, Wooyoung
Kim, Soyeon
Author_xml – sequence: 1
  givenname: Sangmyoung
  surname: Lee
  fullname: Lee, Sangmyoung
– sequence: 2
  givenname: Seryeong
  surname: Kim
  fullname: Kim, Seryeong
– sequence: 3
  givenname: Soyeon
  surname: Kim
  fullname: Kim, Soyeon
– sequence: 4
  givenname: Soyeon
  surname: Um
  fullname: Um, Soyeon
– sequence: 5
  givenname: Sangjin
  surname: Kim
  fullname: Kim, Sangjin
– sequence: 6
  givenname: Sanyeob
  surname: Kim
  fullname: Kim, Sanyeob
– sequence: 7
  givenname: Wooyoung
  surname: Jo
  fullname: Jo, Wooyoung
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003232499$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotkE1PAjEYhBuDiYj-AU89myz2Y9vdPRJExeBHYO9Nt9tiZbclLWiIf94iJpNMMjPve3guwcB5pwG4wWjMWEHvnlf1akwQYeMkNqaMnYEhIZRmecn5AAwxq8oMc1ZcgMsYPxHiZVEVQ_AzgUutvDN2vQ-y6TRcbe3GujV81Snoku2-fdjAqe-3-10qMuuyXvc-HOB78ErH6APcx-MJrvEU6vvl5AWaFM7ch3RKt3B1iDvdZ53-0h2cGWOV1U4drsC5kV3U1_8-AvXDrJ4-ZYu3x_l0sshUUfLMaF1IaRRuOc4RblBFWdsYzJqcMtkSkxOJS06qFuWykTRnsilaRhhCTUVbSUfg9vTWBSM2ygov7Z-vvdgEMVnWc4FRkeeI8zQmp7EKPsagjdgG28twSBNxRC2OqMURtUhiIqGmv5G1dMY
ContentType Journal Article
DBID AAYXX
CITATION
ACYCR
DOI 10.5573/JSTS.2025.25.5.355
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-4866
EndPage 362
ExternalDocumentID oai_kci_go_kr_ARTI_10744066
10_5573_JSTS_2025_25_5_355
GroupedDBID 9ZL
AAYXX
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
CITATION
DBRKI
FRP
GW5
HH5
JDI
OK1
TDB
TR2
ACYCR
C1A
KVFHK
MZR
ZZE
ID FETCH-LOGICAL-c786-fee7aafc1d61401b0935dbf15b435ad2f42a18629d04aba345ab7d52500b93da3
ISSN 1598-1657
IngestDate Sun Aug 24 03:18:58 EDT 2025
Wed Aug 27 16:38:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c786-fee7aafc1d61401b0935dbf15b435ad2f42a18629d04aba345ab7d52500b93da3
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10744066
crossref_primary_10_5573_JSTS_2025_25_5_355
PublicationCentury 2000
PublicationDate 2025-08-31
PublicationDateYYYYMMDD 2025-08-31
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-31
  day: 31
PublicationDecade 2020
PublicationTitle Journal of semiconductor technology and science
PublicationYear 2025
Publisher 대한전자공학회
Publisher_xml – name: 대한전자공학회
SSID ssj0068797
Score 2.3289073
Snippet Spiking Neural Network (SNN) Computing-In-Memory (CIM) achieves high macro-level energy efficiency but struggles with system-level efficiency due to excessive...
SourceID nrf
crossref
SourceType Open Website
Index Database
StartPage 355
SubjectTerms 전기공학
Title A Reconfigurable Spiking Neural Network Computing-in-memory Processor using 1T1C eDRAM for Enhanced System-level Efficiency
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003232499
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2025, 25(4), 124, pp.355-362
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db5swELea7mV7mPapdV-ytPGEyBIwYB5JytRtWh_WVOobso3Joq5QZclDtj9s_97ubKCkraZunYSQBdgyd_zsu-PnMyFvpYqULgPtxeD9eGzMpSdHEXgpfqIUE0HJlWFbHEYHx-zjSXiyM_jVYy2tV3Kofly7ruRftArXQK-4SvYvNNs1ChegDPqFM2gYzjfSMXLZwJ8tF_P10iyBOjpfYOjbxZQbIPtDy_F27dYNcMNbVN4Zcms37QqBeumuTbhgPBtPXb3_Jf1smIdZ9dVyA2xKc-8bkotwH-aFGQy2fgb3jNrvyLWvK0wii_TFLm5v_lE0s20X1BHV_GyDo41r6ED8Uw0WrJu2rIQtHkM7BmE7V38HwIi30bhrktkc-jYN1djO_2rm-BatNJEYP2xDyw12nGzi8CkSVLJ9JwmdZOpkUycdOZxhIcmcBG6lziRwJmH7TGIKKVTsT0IJePaRTdw91OYaWHGBx3jUn2wCm-C4sVsCO6tdnhLDMMbUHDDMHw2x00M4wmFXtZ9__JJdsJWB_FQt8nmdny5z8LM-5EjjBVMwGpA7PvhnvpkRO78z4rHd1ah9EbtaDbvy7mpHtizCQbUsewbe7AG533zENLUwe0h2dPWI3Ovl63xMfqZ0G3C0ARy1gKMN4Og1gKMd4KgBHEXAUQM4CoCjLeBoH3D0AnBPyOx9NpseeM3uJZ6KeeSVWsdClGpcRBjDkEg4KGQ5DiU4KKLwS-aLMYchsRgxIUXAQiHjAkkGI5kEhQiekt2qrvQzQjkLtS7jUSESziQTQiUBkwXUUJrLRO0RtxVgfm5z1ICCchR3juLOUdw5HGEO4t4jb0DGRqF_UOzzGz31gty9AMJLsrtarvUrMNJX8rX5IH4DD13q2Q
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Reconfigurable+Spiking+Neural+Network+Computing-in-memory+Processor+using+1T1C+eDRAM+for+Enhanced+System-level+Efficiency&rft.jtitle=Journal+of+semiconductor+technology+and+science&rft.au=Sangmyoung+Lee%28Korea+Advanced+Institute+of+Science+and+Technology&rft.au=Seryeong+Kim%28Korea+Advanced+Institute+of+Science+and+Technology&rft.au=Soyeon+Kim%28Korea+Advanced+Institute+of+Science+and+Technology&rft.au=Soyeon+Um%28Korea+Advanced+Institute+of+Science+and+Technology&rft.date=2025-08-31&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1598-1657&rft.eissn=2233-4866&rft.spage=355&rft.epage=362&rft_id=info:doi/10.5573%2FJSTS.2025.25.5.355&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10744066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-1657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-1657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-1657&client=summon