How does tillage intensity affect soil organic carbon? A systematic review

BACKGROUND: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negati...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental evidence Vol. 6; no. 1; p. 30
Main Authors Haddaway, Neal R., Hedlund, Katarina, Jackson, Louise E., Kätterer, Thomas, Lugato, Emanuele, Thomsen, Ingrid K., Jørgensen, Helene B., Isberg, Per-Erik
Format Journal Article
LanguageEnglish
Published BioMed Central Ltd 18.12.2017
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? METHODS: We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. RESULTS: A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. CONCLUSIONS: The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
AbstractList Abstract Background The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? Methods We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. Results A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. Conclusions The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
Background: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? Methods: We systematically reviewed relevant research in boreoerate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. Results: A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0-15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0-15 cm). At lower depths, only IT SOC compared with HT at 15-30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. Conclusions: The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0-30 cm) around 4.6 Mg/ha (0.78-8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
Background:  The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common prac‑tice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT ) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta‑analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC?Methods:  We systematically reviewed relevant research in boreo‑temperate regions using, as a basis, evidence iden‑tified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta‑analyses were per‑formed to investigate the impact of reducing tillage [from high (HT ) to intermediate intensity (IT ), HT to NT, and from IT to NT ] for SOC concentration and SOC stock in the upper soil and at lower depths.Results:  A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg± 0.34 (SE)] and HT [2.09 g/kg± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermedi‑ate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha± 1.95 (SE)] or IT [3.85 Mg/ha± 1.64 (SE)]. No other comparisons were significant.Conclusions:  The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more produc‑tive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
BACKGROUND: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? METHODS: We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. RESULTS: A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. CONCLUSIONS: The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
ArticleNumber 30
Audience Academic
Author Jørgensen, Helene B.
Isberg, Per-Erik
Hedlund, Katarina
Haddaway, Neal R.
Kätterer, Thomas
Jackson, Louise E.
Lugato, Emanuele
Thomsen, Ingrid K.
Author_xml – sequence: 1
  givenname: Neal R.
  surname: Haddaway
  fullname: Haddaway, Neal R.
– sequence: 2
  givenname: Katarina
  surname: Hedlund
  fullname: Hedlund, Katarina
– sequence: 3
  givenname: Louise E.
  surname: Jackson
  fullname: Jackson, Louise E.
– sequence: 4
  givenname: Thomas
  surname: Kätterer
  fullname: Kätterer, Thomas
– sequence: 5
  givenname: Emanuele
  surname: Lugato
  fullname: Lugato, Emanuele
– sequence: 6
  givenname: Ingrid K.
  surname: Thomsen
  fullname: Thomsen, Ingrid K.
– sequence: 7
  givenname: Helene B.
  surname: Jørgensen
  fullname: Jørgensen, Helene B.
– sequence: 8
  givenname: Per-Erik
  surname: Isberg
  fullname: Isberg, Per-Erik
BackLink https://lup.lub.lu.se/record/13c93985-0c8e-4dec-9500-b4fde371daf5$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/13c93985-0c8e-4dec-9500-b4fde371daf5$$DView record from Swedish Publication Index
https://res.slu.se/id/publ/92928$$DView record from Swedish Publication Index
BookMark eNqNk12L1DAUhous4LruD_CuIIhedM1HO02vZFjUHRkQ_LgOp-nJTJZOMyap6_x7T7eL7IgrpoSUw_O-OTnJeZqdDH7ALHvO2QXnavEmcllXrGC8pslU0TzKTgUr60JIJU7u_T_JzmO8ZjRUpQRjp9nHK3-Tdx5jnlzfwwZzNyQcokuHHKxFk_LoXZ_7sIHBmdxAaP3wNl_m8RAT7iBRMOAPhzfPsscW-ojnd-tZ9u39u6-XV8X604fV5XJdmFqJVICS0EoBRjAl2gVWHCpsJV9AaSnP2gg0wIVqwXTNojaLsisrpYQ1relEi_IsW82-nYdrvQ9uB-GgPTh9G6BMNQRKq0dtKqskndZyspZCQVeSvbV116iyLCevYvaKN7gf2yO32I8thGnREXUjGqGIhwf5vQ8Jeh0wIgSz1bOOqN4ZKpMfoubSNLJRlWZGoS47NLqpGNNtaTuUNe_AVrTH-sE9-nFPs73z_k-7V7PdPvjvI8akdy4apMse0I9RC1FJwRpR1oS-mNENUPHcYH0KYCZcLytOFZCymaiLv1D0dbhzhl6mdRQ_Erw-EhCT8GfawBijXn35fMy-vMduEfq0jb4f5_odgXwGTfAxBrS_68SZnrpCz12hqSv01BW6IU39h8a4dHs1dALX_0P5C066Ej0
CitedBy_id crossref_primary_10_1016_j_soilbio_2021_108537
crossref_primary_10_5194_bg_21_473_2024
crossref_primary_10_1016_j_still_2024_106242
crossref_primary_10_1038_s41598_022_07623_4
crossref_primary_10_1177_1178622120939587
crossref_primary_10_1016_j_agsy_2024_104145
crossref_primary_10_1016_j_crope_2022_03_005
crossref_primary_10_1038_s41598_024_54652_2
crossref_primary_10_3390_su16093591
crossref_primary_10_1016_j_jclepro_2024_142973
crossref_primary_10_3390_app14219851
crossref_primary_10_1016_j_still_2023_105782
crossref_primary_10_3390_agronomy13020447
crossref_primary_10_1007_s42729_024_02142_9
crossref_primary_10_1016_j_scitotenv_2021_150106
crossref_primary_10_3390_agronomy10101596
crossref_primary_10_1111_gcb_15512
crossref_primary_10_1002_agj2_20094
crossref_primary_10_3390_su11174678
crossref_primary_10_1007_s10669_023_09923_0
crossref_primary_10_3897_soils4europe_e118635
crossref_primary_10_1016_j_geoderma_2021_115443
crossref_primary_10_5194_soil_10_533_2024
crossref_primary_10_1016_j_soilbio_2023_108994
crossref_primary_10_3390_environments11040073
crossref_primary_10_1016_j_jenvman_2021_112354
crossref_primary_10_35633_inmateh_61_30
crossref_primary_10_1016_j_jclepro_2022_135423
crossref_primary_10_1007_s00374_024_01871_4
crossref_primary_10_1016_j_soisec_2024_100127
crossref_primary_10_1007_s11027_020_09916_3
crossref_primary_10_1016_j_eja_2024_127115
crossref_primary_10_1186_s13750_018_0126_2
crossref_primary_10_1016_j_scitotenv_2020_138994
crossref_primary_10_3390_land12112078
crossref_primary_10_5194_soil_7_495_2021
crossref_primary_10_3390_agronomy9090495
crossref_primary_10_5194_soil_9_117_2023
crossref_primary_10_3390_su15032338
crossref_primary_10_1007_s42729_021_00664_0
crossref_primary_10_1016_j_geodrs_2024_e00768
crossref_primary_10_1590_0103_8478cr20220185
crossref_primary_10_3390_su151411128
crossref_primary_10_3390_app9245482
crossref_primary_10_3390_agronomy9090564
crossref_primary_10_1016_j_agee_2023_108619
crossref_primary_10_1111_ejss_12953
crossref_primary_10_1029_2022EF003142
crossref_primary_10_1016_j_still_2024_106213
crossref_primary_10_1016_j_geoderma_2021_115614
crossref_primary_10_51886_1999_740X_2024_2_5
crossref_primary_10_1080_01904167_2024_2405990
crossref_primary_10_1007_s11367_024_02398_4
crossref_primary_10_3390_agriculture14060818
crossref_primary_10_31545_intagr_188617
crossref_primary_10_3390_agriengineering4020023
crossref_primary_10_3389_frmbi_2023_1157681
crossref_primary_10_1016_j_agee_2024_108962
crossref_primary_10_1016_j_compag_2023_108509
crossref_primary_10_1016_j_still_2020_104912
crossref_primary_10_3390_soilsystems8030080
crossref_primary_10_3389_ffwsc_2023_1264427
crossref_primary_10_2478_ata_2020_0004
crossref_primary_10_1016_j_cesys_2024_100182
crossref_primary_10_1016_j_geoderma_2020_114230
crossref_primary_10_1016_j_indic_2020_100072
crossref_primary_10_3390_soilsystems7010011
crossref_primary_10_3390_agronomy14122979
crossref_primary_10_1038_s41558_022_01321_9
crossref_primary_10_1186_s12302_023_00784_7
crossref_primary_10_1016_j_geoderma_2022_115927
crossref_primary_10_3390_agronomy13041159
crossref_primary_10_1007_s10457_024_00990_z
crossref_primary_10_1186_s12302_023_00758_9
crossref_primary_10_1016_j_jenvman_2024_120772
crossref_primary_10_1007_s42979_024_02872_8
crossref_primary_10_1007_s43621_024_00328_w
crossref_primary_10_1016_j_still_2021_105043
crossref_primary_10_1007_s11270_023_06069_2
crossref_primary_10_2139_ssrn_4802656
crossref_primary_10_1038_s41598_023_41307_x
crossref_primary_10_1016_j_soilbio_2024_109672
crossref_primary_10_1016_j_agsy_2021_103306
crossref_primary_10_1111_ejss_13338
crossref_primary_10_1016_j_agee_2025_109513
crossref_primary_10_1139_cjss_2022_0012
crossref_primary_10_1007_s42452_020_2631_5
crossref_primary_10_37497_rev_artif_intell_educ_v5i00_32
crossref_primary_10_1016_j_scitotenv_2021_147216
crossref_primary_10_1016_j_jenvman_2023_119295
crossref_primary_10_7717_peerj_14542
crossref_primary_10_1016_j_geoderma_2023_116472
crossref_primary_10_15446_ing_investig_94777
crossref_primary_10_1016_j_geoderma_2020_114335
crossref_primary_10_1016_j_jafr_2021_100139
crossref_primary_10_1016_j_still_2023_105959
crossref_primary_10_3390_agronomy12071653
crossref_primary_10_1016_j_energy_2020_118453
crossref_primary_10_1186_s40068_023_00282_y
crossref_primary_10_3389_fenvs_2022_834055
crossref_primary_10_5194_bg_19_2145_2022
crossref_primary_10_3390_agriculture15050567
crossref_primary_10_1016_j_heliyon_2024_e26524
crossref_primary_10_1016_j_still_2022_105326
crossref_primary_10_3390_su13084515
crossref_primary_10_29133_yyutbd_1393784
crossref_primary_10_1016_j_jafr_2024_101615
crossref_primary_10_3390_agronomy11030584
crossref_primary_10_1080_00103624_2024_2402803
crossref_primary_10_3390_agriculture13122188
crossref_primary_10_5194_soil_9_89_2023
crossref_primary_10_1016_j_agee_2024_109332
crossref_primary_10_3390_agronomy13071887
crossref_primary_10_3389_fenvs_2021_724702
crossref_primary_10_3390_su162310261
crossref_primary_10_3390_soilsystems8010022
crossref_primary_10_1002_agj2_70038
crossref_primary_10_1007_s40003_024_00734_6
crossref_primary_10_1186_s13021_023_00241_1
crossref_primary_10_3390_su162310389
crossref_primary_10_3390_agronomy11050882
crossref_primary_10_3390_agronomy10070925
crossref_primary_10_1093_ismeco_ycae116
crossref_primary_10_1073_pnas_2404329122
crossref_primary_10_1016_j_agee_2024_109329
crossref_primary_10_3390_agronomy14061327
crossref_primary_10_3390_su16030953
crossref_primary_10_1134_S1064229324602580
crossref_primary_10_1139_cjss_2023_0099
crossref_primary_10_1002_sae2_12094
crossref_primary_10_3390_agriculture14122288
crossref_primary_10_1016_j_still_2024_106310
crossref_primary_10_1111_gcb_15906
crossref_primary_10_1002_agj2_20948
crossref_primary_10_1016_j_soilbio_2022_108860
crossref_primary_10_1002_ldr_4512
crossref_primary_10_1029_2021EF002324
crossref_primary_10_3390_agronomy11071433
crossref_primary_10_1016_j_scitotenv_2023_167396
crossref_primary_10_3390_land10121362
crossref_primary_10_3168_jds_2024_25796
crossref_primary_10_1186_s12302_024_00912_x
crossref_primary_10_1007_s00374_024_01865_2
crossref_primary_10_1016_j_agee_2024_109316
crossref_primary_10_1002_sae2_70046
crossref_primary_10_1139_cjss_2023_0102
crossref_primary_10_1088_1748_9326_ac8609
crossref_primary_10_1111_ejss_13092
crossref_primary_10_3390_land11101731
crossref_primary_10_1139_cjss_2023_0105
crossref_primary_10_1016_j_catena_2022_106089
crossref_primary_10_70322_ecolciviliz_2025_10002
crossref_primary_10_1016_j_fcr_2022_108636
crossref_primary_10_1016_j_scitotenv_2023_165124
crossref_primary_10_1111_gcbb_12631
crossref_primary_10_1007_s11356_019_06247_y
crossref_primary_10_1111_gfs_12670
crossref_primary_10_1016_j_still_2019_02_008
crossref_primary_10_3390_agronomy10101566
crossref_primary_10_3390_plants11141855
crossref_primary_10_26178_AE_2024_43_87_006
crossref_primary_10_1007_s10668_023_03846_1
crossref_primary_10_1007_s13165_025_00495_8
crossref_primary_10_1016_j_heliyon_2024_e29839
crossref_primary_10_2139_ssrn_4155111
crossref_primary_10_1016_j_geodrs_2024_e00818
crossref_primary_10_3390_plants11131747
crossref_primary_10_3390_agronomy14020278
crossref_primary_10_1126_science_abe4943
crossref_primary_10_3390_land9040121
crossref_primary_10_3390_agriculture14122119
crossref_primary_10_1002_eap_2336
crossref_primary_10_1088_1755_1315_1018_1_012012
crossref_primary_10_1002_saj2_20244
crossref_primary_10_1016_j_still_2024_106061
crossref_primary_10_3389_fpls_2023_1145137
crossref_primary_10_1088_2976_601X_ad7bbe
crossref_primary_10_1007_s00374_024_01796_y
crossref_primary_10_1016_j_scitotenv_2022_154161
crossref_primary_10_3390_agronomy8040048
crossref_primary_10_3390_agronomy11112213
crossref_primary_10_1016_j_geosus_2025_100265
crossref_primary_10_1016_j_soilbio_2023_109088
crossref_primary_10_4236_ajcc_2024_132008
crossref_primary_10_1016_j_agee_2023_108498
crossref_primary_10_1016_j_still_2018_04_011
crossref_primary_10_1088_2515_7620_ad04f5
crossref_primary_10_1016_j_pedsph_2022_06_016
crossref_primary_10_1371_journal_pone_0212521
crossref_primary_10_3390_rs14164064
crossref_primary_10_1016_j_still_2022_105626
crossref_primary_10_1007_s10113_022_01892_5
crossref_primary_10_1186_s13021_024_00256_2
crossref_primary_10_3390_rs12091470
crossref_primary_10_5194_soil_8_621_2022
crossref_primary_10_3390_ani10030415
crossref_primary_10_1016_j_ecolmodel_2023_110596
Cites_doi 10.1016/j.earscirev.2015.12.005
10.1016/S0167-1987(01)00180-5
10.1016/j.iswcr.2015.05.002
10.1073/pnas.1305198110
10.1186/2047-2382-3-1
10.1016/j.still.2015.09.006
10.1016/S0167-1987(97)00038-X
10.4141/cjss90-042
10.1016/j.soilbio.2009.10.009
10.1186/s13750-015-0049-0
10.1016/j.agee.2006.05.014
10.1016/j.agee.2003.12.018
10.1080/07352680902776358
10.1007/s10533-011-9600-4
10.1126/science.282.5390.893
10.1111/1365-2745.12383
10.1037/h0026256
10.2136/sssaj2006.0174
10.1371/journal.pone.0138237
10.1002/jpln.201400080
10.5194/bg-12-1635-2015
10.1016/j.agee.2010.06.009
10.1038/28764
10.2489/jswc.69.6.471
10.1016/j.agee.2013.01.012
10.1002/jrsm.11
10.1016/j.eja.2010.05.008
10.1016/S0065-2113(08)00801-8
10.1016/j.agee.2006.06.017
10.2136/sssaj1993.03615995005700010036x
10.1016/j.still.2014.10.003
10.4141/CJSS07025
10.1111/gcb.12752
10.1186/2047-2382-4-1
10.1007/s00374-013-0786-6
10.1007/s10021-001-0007-2
10.2136/sssaj2002.1687
10.1126/science.1261071
10.1097/SS.0b013e3181fa2837
10.1016/j.geoderma.2015.08.038
10.1016/j.agee.2011.02.029
10.1016/j.agee.2009.07.006
10.2136/sssaspecpub57.2ed
10.1016/j.agee.2014.10.024
10.1016/j.ecolecon.2007.03.004
10.1038/nature13809
10.2489/jswc.69.6.517
10.2136/sssaj2002.1930
10.1186/s13750-016-0052-0
10.1007/978-0-387-87458-6_5
10.1051/agro:2002043
10.1186/2047-2382-3-2
10.1016/j.agwat.2015.03.004
10.2134/agronj14.0597
10.1038/nclimate2292
10.1071/SR9940285
10.1016/j.still.2015.09.015
10.2136/sssaj2008.0063
10.1079/SUM2005291
10.1111/j.1365-2389.2009.01157.x
10.18637/jss.v036.i03
10.1002/jpln.201000134
10.1111/j.1365-2486.2004.00854.x
10.1016/j.still.2006.11.004
10.1016/j.fcr.2015.07.020
10.1016/j.still.2014.07.017
10.1002/ece3.1722
10.1016/j.agee.2014.02.014
10.2307/3001666
10.1111/ejss.12002
10.1016/j.agrformet.2006.08.021
10.1023/A:1012617516477
10.5194/bg-13-3619-2016
10.1002/jpln.201500139
10.1080/713610854
10.1016/S0167-1987(96)01100-2
10.2489/jswc.66.4.276
10.2136/sssaj2007.0342
10.1016/j.still.2013.08.006
10.1016/j.still.2012.03.001
10.1111/ejss.12013
10.2136/sssaj2004.0347
10.1016/j.agee.2009.12.010
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
CorporateAuthor Lund University School of Economics and Management, LUSEM
Markgruppen
Statistiska institutionen
Forskargrupper vid Biologiska institutionen
Profile areas and other strong research environments
Lunds universitet
Naturvetenskapliga fakulteten
BECC: Biodiversity and Ecosystem services in a Changing Climate
Faculty of Science
Lund University
Strategiska forskningsområden (SFO)
Department of Biology
Biologiska institutionen
Department of Statistics
Soil Ecology
Strategic research areas (SRA)
Profilområden och andra starka forskningsmiljöer
Research groups at the Department of Biology
Ekonomihögskolan
Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Strategiska forskningsområden (SFO)
– name: Naturvetenskapliga fakulteten
– name: Lund University School of Economics and Management, LUSEM
– name: Markgruppen
– name: Department of Statistics
– name: Statistiska institutionen
– name: BECC: Biodiversity and Ecosystem services in a Changing Climate
– name: Forskargrupper vid Biologiska institutionen
– name: Strategic research areas (SRA)
– name: Lunds universitet
– name: Faculty of Science
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Biologiska institutionen
– name: Profile areas and other strong research environments
– name: Soil Ecology
– name: Department of Biology
– name: Research groups at the Department of Biology
– name: Ekonomihögskolan
– name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
ISR
7S9
L.6
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOA
DOI 10.1186/s13750-017-0108-9
DatabaseName CrossRef
Gale In Context: Science
AGRICOLA
AGRICOLA - Academic
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList



AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
Agriculture
EISSN 2047-2382
EndPage 30
ExternalDocumentID oai_doaj_org_article_c5f83000f1f04328ad4c2eff7d98444e
oai_slubar_slu_se_92928
oai_portal_research_lu_se_publications_13c93985_0c8e_4dec_9500_b4fde371daf5
oai_lup_lub_lu_se_13c93985_0c8e_4dec_9500_b4fde371daf5
A519293397
10_1186_s13750_017_0108_9
GroupedDBID 0R~
2XV
5VS
7XC
8FE
8FH
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ACGFS
ADBBV
ADUKV
AEGXH
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ATCPS
BAPOH
BCNDV
BENPR
BFQNJ
BHPHI
BMC
C6C
CCPQU
CITATION
EBLON
EBS
EDH
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEP
IHR
IHW
ISR
KQ8
M~E
OK1
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RBZ
RNS
ROL
RSV
SEV
SOJ
PMFND
7S9
L.6
PUEGO
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
2VQ
4.4
AHSBF
IPNFZ
RIG
RPM
ID FETCH-LOGICAL-c782t-a83ab32ac2082b6e51a5eb316a4f0477c2eca128bacd967c64d45882fcbcd2be3
IEDL.DBID DOA
ISSN 2047-2382
IngestDate Wed Aug 27 00:58:44 EDT 2025
Thu Aug 21 06:52:13 EDT 2025
Thu Aug 21 07:30:13 EDT 2025
Thu Jul 03 05:01:06 EDT 2025
Sun Aug 24 04:13:26 EDT 2025
Tue Jun 17 21:49:58 EDT 2025
Tue Jun 10 20:52:53 EDT 2025
Fri Jun 27 04:04:22 EDT 2025
Thu May 22 21:23:42 EDT 2025
Tue Jul 01 01:17:21 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c782t-a83ab32ac2082b6e51a5eb316a4f0477c2eca128bacd967c64d45882fcbcd2be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/c5f83000f1f04328ad4c2eff7d98444e
PQID 2253209247
PQPubID 24069
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c5f83000f1f04328ad4c2eff7d98444e
swepub_primary_oai_slubar_slu_se_92928
swepub_primary_oai_portal_research_lu_se_publications_13c93985_0c8e_4dec_9500_b4fde371daf5
swepub_primary_oai_lup_lub_lu_se_13c93985_0c8e_4dec_9500_b4fde371daf5
proquest_miscellaneous_2253209247
gale_infotracmisc_A519293397
gale_infotracacademiconefile_A519293397
gale_incontextgauss_ISR_A519293397
gale_healthsolutions_A519293397
crossref_primary_10_1186_s13750_017_0108_9
crossref_citationtrail_10_1186_s13750_017_0108_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-18
PublicationDateYYYYMMDD 2017-12-18
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-18
  day: 18
PublicationDecade 2010
PublicationTitle Environmental evidence
PublicationYear 2017
Publisher BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BMC
References M Sperow (108_CR54) 2016; 155
MV Brady (108_CR94) 2015; 107
KM Hati (108_CR12) 2007; 119
B Dimassi (108_CR29) 2014; 188
MA Tsiafouli (108_CR86) 2015; 21
J Kern (108_CR16) 1993; 57
TO West (108_CR17) 2002; 66
P Rochette (108_CR23) 2008; 88
MA Busari (108_CR53) 2015; 3
S Amini (108_CR25) 2015; 8
R Awale (108_CR74) 2013; 134
A Golchin (108_CR79) 1994; 32
NR Haddaway (108_CR92) 2014; 3
X Liu (108_CR57) 2015; 154
J Lee (108_CR65) 2009; 134
R Lal (108_CR9) 2011; 66
NR Haddaway (108_CR33) 2015; 4
E González-Sánchez (108_CR8) 2012; 122
B Söderström (108_CR36) 2014; 3
Team RC (108_CR44) 2016
M Sommer (108_CR71) 2016; 156
X Xu (108_CR59) 2016; 262
CM Pittelkow (108_CR20) 2015; 183
B Ellert (108_CR63) 2002; 66
K Abdalla (108_CR58) 2015; 13
NR Haddaway (108_CR37) 2016; 5
J Cohen (108_CR42) 1968; 70
D Angers (108_CR26) 2008; 72
D Mao (108_CR49) 2015; 12
JM Baker (108_CR31) 2007; 118
DB Davies (108_CR19) 2002
R Follett (108_CR1) 2001; 61
PE Rasmussen (108_CR60) 1998; 282
D Angers (108_CR80) 1997; 41
DS Powlson (108_CR30) 2014; 4
R Amundson (108_CR70) 2015; 348
NR Haddaway (108_CR39) 2015; 11
V Kainiemi (108_CR82) 2015; 178
CJ Kucharik (108_CR6) 2001; 4
NR Haddaway (108_CR93) 2015; 5
DL Antille (108_CR78) 2015; 58
S Doetterl (108_CR69) 2016; 154
H Minoshima (108_CR55) 2007; 71
R Lal (108_CR52) 2003; 22
AE Johnston (108_CR76) 2009; 101
D Sauerbeck (108_CR3) 2001; 60
NR Haddaway (108_CR35) 2015; 4
V Kainiemi (108_CR83) 2015; 179
M Necpálová (108_CR40) 2014; 69
WG Cochran (108_CR50) 1954; 10
C Bernes (108_CR91) 2015; 4
J Six (108_CR28) 2002; 22
108_CR96
W Schlesinger (108_CR4) 1991
108_CR97
AB McBratney (108_CR67) 2010; 136
108_CR95
M Carter (108_CR62) 1990; 70
R Lal (108_CR11) 2009
B Dimassi (108_CR77) 2013; 169
T Kätterer (108_CR99) 2012; 62
CM Pittelkow (108_CR72) 2015; 517
N Ladygina (108_CR84) 2010; 42
T Helgason (108_CR87) 1998; 394
108_CR43
D Reicosky (108_CR7) 2003
J Six (108_CR89) 2006; 70
R Lal (108_CR15) 2007; 93
A Van den Putte (108_CR21) 2010; 33
M Wiesmeier (108_CR48) 2015; 146
D Reeves (108_CR61) 1997; 43
B Ball (108_CR73) 2013; 64
S Amini (108_CR34) 2016; 8
AS Abdullah (108_CR75) 2014; 144
I Virto (108_CR32) 2012; 108
V Kainiemi (108_CR81) 2013; 49
W Viechtbauer (108_CR45) 2010; 36
J Holland (108_CR18) 2004; 103
FT De Vries (108_CR90) 2015; 103
X Yang (108_CR13) 2011; 174
RA Betts (108_CR5) 2007; 142
AF Zuur (108_CR46) 2009
P Smith (108_CR41) 2004; 10
R Alvarez (108_CR24) 2005; 21
J Wendt (108_CR66) 2013; 64
KR Olson (108_CR56) 2010; 175
SB Wuest (108_CR64) 2009; 73
E Goidts (108_CR68) 2009; 60
NR Haddaway (108_CR98) 2016; 5
E Barrios (108_CR14) 2007; 64
T Kätterer (108_CR85) 2011; 141
W Viechtbauer (108_CR51) 2010; 1
C Poeplau (108_CR47) 2015; 200
B Govaerts (108_CR27) 2009; 28
AD Basche (108_CR22) 2014; 69
NR Haddaway (108_CR38) 2015; 10
M Bolinder (108_CR10) 2010; 138
JM Kimble (108_CR2) 1998
FT de Vries (108_CR88) 2013; 110
References_xml – volume: 154
  start-page: 102
  year: 2016
  ident: 108_CR69
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2015.12.005
– volume: 61
  start-page: 77
  issue: 1
  year: 2001
  ident: 108_CR1
  publication-title: Soil Tillage Res
  doi: 10.1016/S0167-1987(01)00180-5
– volume: 3
  start-page: 119
  issue: 2
  year: 2015
  ident: 108_CR53
  publication-title: Int Soil Water Conserv Res
  doi: 10.1016/j.iswcr.2015.05.002
– volume: 110
  start-page: 14296
  issue: 35
  year: 2013
  ident: 108_CR88
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1305198110
– volume: 3
  start-page: 1
  issue: 1
  year: 2014
  ident: 108_CR92
  publication-title: Environ Evid
  doi: 10.1186/2047-2382-3-1
– volume: 155
  start-page: 390
  year: 2016
  ident: 108_CR54
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2015.09.006
– volume: 43
  start-page: 131
  issue: 1
  year: 1997
  ident: 108_CR61
  publication-title: Soil Tillage Res
  doi: 10.1016/S0167-1987(97)00038-X
– volume: 11
  start-page: 186
  issue: 3
  year: 2015
  ident: 108_CR39
  publication-title: Grey J
– volume: 70
  start-page: 425
  issue: 3
  year: 1990
  ident: 108_CR62
  publication-title: Can J Soil Sci
  doi: 10.4141/cjss90-042
– volume: 42
  start-page: 162
  issue: 2
  year: 2010
  ident: 108_CR84
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.10.009
– volume: 4
  start-page: 23
  issue: 1
  year: 2015
  ident: 108_CR35
  publication-title: Environ Evid
  doi: 10.1186/s13750-015-0049-0
– volume: 58
  start-page: 707
  issue: 3
  year: 2015
  ident: 108_CR78
  publication-title: Trans ASABE.
– volume: 118
  start-page: 1
  issue: 1
  year: 2007
  ident: 108_CR31
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2006.05.014
– volume: 103
  start-page: 1
  issue: 1
  year: 2004
  ident: 108_CR18
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2003.12.018
– volume: 28
  start-page: 97
  issue: 3
  year: 2009
  ident: 108_CR27
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/07352680902776358
– volume: 108
  start-page: 17
  issue: 1–3
  year: 2012
  ident: 108_CR32
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9600-4
– volume: 282
  start-page: 893
  issue: 5390
  year: 1998
  ident: 108_CR60
  publication-title: Science
  doi: 10.1126/science.282.5390.893
– volume: 103
  start-page: 629
  issue: 3
  year: 2015
  ident: 108_CR90
  publication-title: J Ecol
  doi: 10.1111/1365-2745.12383
– volume: 70
  start-page: 213
  issue: 4
  year: 1968
  ident: 108_CR42
  publication-title: Psychol Bull
  doi: 10.1037/h0026256
– volume: 71
  start-page: 952
  issue: 3
  year: 2007
  ident: 108_CR55
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2006.0174
– volume: 10
  start-page: e0138237
  issue: 9
  year: 2015
  ident: 108_CR38
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0138237
– volume: 178
  start-page: 189
  issue: 2
  year: 2015
  ident: 108_CR82
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201400080
– volume: 12
  start-page: 1635
  issue: 6
  year: 2015
  ident: 108_CR49
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-1635-2015
– volume: 138
  start-page: 335
  issue: 3
  year: 2010
  ident: 108_CR10
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2010.06.009
– start-page: 291
  volume-title: Tillage-induced CO2 emissions and carbon sequestration: effect of secondary tillage and compaction. Conservation agriculture
  year: 2003
  ident: 108_CR7
– volume: 394
  start-page: 431
  issue: 6692
  year: 1998
  ident: 108_CR87
  publication-title: Nature.
  doi: 10.1038/28764
– volume: 69
  start-page: 471
  issue: 6
  year: 2014
  ident: 108_CR22
  publication-title: J Soil Water Conserv
  doi: 10.2489/jswc.69.6.471
– volume-title: Reduced cultivations for cereals: research, development and advisory needs under changing economic circumstances
  year: 2002
  ident: 108_CR19
– volume-title: The potential of US cropland to sequester carbon and mitigate the greenhouse effect
  year: 1998
  ident: 108_CR2
– volume: 169
  start-page: 12
  year: 2013
  ident: 108_CR77
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2013.01.012
– volume: 1
  start-page: 112
  issue: 2
  year: 2010
  ident: 108_CR51
  publication-title: Res Synth Methods.
  doi: 10.1002/jrsm.11
– volume: 33
  start-page: 231
  issue: 3
  year: 2010
  ident: 108_CR21
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2010.05.008
– volume: 101
  start-page: 1
  year: 2009
  ident: 108_CR76
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(08)00801-8
– volume: 119
  start-page: 127
  issue: 1
  year: 2007
  ident: 108_CR12
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2006.06.017
– volume: 57
  start-page: 200
  issue: 1
  year: 1993
  ident: 108_CR16
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1993.03615995005700010036x
– volume: 146
  start-page: 296
  year: 2015
  ident: 108_CR48
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2014.10.003
– volume: 88
  start-page: 641
  issue: 5
  year: 2008
  ident: 108_CR23
  publication-title: Can J Soil Sci
  doi: 10.4141/CJSS07025
– volume: 21
  start-page: 973
  issue: 2
  year: 2015
  ident: 108_CR86
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.12752
– volume: 4
  start-page: 1
  issue: 1
  year: 2015
  ident: 108_CR91
  publication-title: Environ Evid
  doi: 10.1186/2047-2382-4-1
– volume: 49
  start-page: 495
  issue: 5
  year: 2013
  ident: 108_CR81
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-013-0786-6
– volume-title: Biogeochemistry: an analysis of global change
  year: 1991
  ident: 108_CR4
– ident: 108_CR95
– volume: 4
  start-page: 237
  issue: 3
  year: 2001
  ident: 108_CR6
  publication-title: Ecosystems
  doi: 10.1007/s10021-001-0007-2
– volume: 66
  start-page: 1687
  issue: 5
  year: 2002
  ident: 108_CR63
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2002.1687
– volume: 348
  start-page: 1261071
  issue: 6235
  year: 2015
  ident: 108_CR70
  publication-title: Science
  doi: 10.1126/science.1261071
– volume: 175
  start-page: 562
  issue: 11
  year: 2010
  ident: 108_CR56
  publication-title: Soil Sci
  doi: 10.1097/SS.0b013e3181fa2837
– volume: 8
  start-page: 25
  issue: 3
  year: 2016
  ident: 108_CR34
  publication-title: NY Sci J.
– volume: 262
  start-page: 235
  year: 2016
  ident: 108_CR59
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.08.038
– volume: 141
  start-page: 184
  issue: 1
  year: 2011
  ident: 108_CR85
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2011.02.029
– volume: 134
  start-page: 251
  issue: 3
  year: 2009
  ident: 108_CR65
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2009.07.006
– start-page: 57
  volume-title: Soils and climate change. Soil carbon sequestration and the greenhouse effect
  year: 2009
  ident: 108_CR11
  doi: 10.2136/sssaspecpub57.2ed
– volume: 200
  start-page: 33
  year: 2015
  ident: 108_CR47
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2014.10.024
– volume: 64
  start-page: 269
  issue: 2
  year: 2007
  ident: 108_CR14
  publication-title: Ecol Econ
  doi: 10.1016/j.ecolecon.2007.03.004
– volume: 517
  start-page: 365
  issue: 7534
  year: 2015
  ident: 108_CR72
  publication-title: Nature
  doi: 10.1038/nature13809
– volume: 69
  start-page: 517
  issue: 6
  year: 2014
  ident: 108_CR40
  publication-title: J Soil Water Conserv
  doi: 10.2489/jswc.69.6.517
– volume: 66
  start-page: 1930
  issue: 6
  year: 2002
  ident: 108_CR17
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2002.1930
– volume: 5
  start-page: 1
  issue: 1
  year: 2016
  ident: 108_CR98
  publication-title: Environ Evid.
  doi: 10.1186/s13750-016-0052-0
– start-page: 101
  volume-title: Mixed effects modelling for nested data. Mixed effects models and extensions in ecology with R
  year: 2009
  ident: 108_CR46
  doi: 10.1007/978-0-387-87458-6_5
– volume: 22
  start-page: 755
  issue: 7–8
  year: 2002
  ident: 108_CR28
  publication-title: Agronomie.
  doi: 10.1051/agro:2002043
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: 108_CR44
– volume: 3
  start-page: 1
  issue: 1
  year: 2014
  ident: 108_CR36
  publication-title: Environ Evid
  doi: 10.1186/2047-2382-3-2
– volume: 154
  start-page: 59
  year: 2015
  ident: 108_CR57
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2015.03.004
– volume: 107
  start-page: 1809
  issue: 5
  year: 2015
  ident: 108_CR94
  publication-title: Agron J
  doi: 10.2134/agronj14.0597
– volume: 4
  start-page: 678
  issue: 8
  year: 2014
  ident: 108_CR30
  publication-title: Nat Clim Change.
  doi: 10.1038/nclimate2292
– volume: 4
  start-page: 1
  issue: 1
  year: 2015
  ident: 108_CR33
  publication-title: Environ Evid.
  doi: 10.1186/s13750-015-0049-0
– volume: 32
  start-page: 285
  issue: 2
  year: 1994
  ident: 108_CR79
  publication-title: Soil Res
  doi: 10.1071/SR9940285
– volume: 156
  start-page: 182
  year: 2016
  ident: 108_CR71
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2015.09.015
– volume: 73
  start-page: 312
  issue: 1
  year: 2009
  ident: 108_CR64
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2008.0063
– ident: 108_CR97
– volume: 21
  start-page: 38
  issue: 1
  year: 2005
  ident: 108_CR24
  publication-title: Soil Use Manag
  doi: 10.1079/SUM2005291
– volume: 60
  start-page: 723
  issue: 5
  year: 2009
  ident: 108_CR68
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2009.01157.x
– volume: 5
  start-page: 1
  issue: 1
  year: 2016
  ident: 108_CR37
  publication-title: Environ Evid
  doi: 10.1186/s13750-016-0052-0
– volume: 8
  start-page: 25
  issue: 3
  year: 2015
  ident: 108_CR25
  publication-title: N Y Sci J
– volume: 36
  start-page: 1
  issue: 3
  year: 2010
  ident: 108_CR45
  publication-title: J Stat Softw
  doi: 10.18637/jss.v036.i03
– volume: 174
  start-page: 775
  issue: 5
  year: 2011
  ident: 108_CR13
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201000134
– volume: 10
  start-page: 1878
  issue: 11
  year: 2004
  ident: 108_CR41
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2004.00854.x
– volume: 93
  start-page: 1
  issue: 1
  year: 2007
  ident: 108_CR15
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2006.11.004
– volume: 183
  start-page: 156
  year: 2015
  ident: 108_CR20
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2015.07.020
– volume: 144
  start-page: 150
  year: 2014
  ident: 108_CR75
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2014.07.017
– volume: 5
  start-page: 4451
  issue: 19
  year: 2015
  ident: 108_CR93
  publication-title: Ecol Evol
  doi: 10.1002/ece3.1722
– ident: 108_CR96
– volume: 188
  start-page: 134
  year: 2014
  ident: 108_CR29
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2014.02.014
– volume: 10
  start-page: 101
  issue: 1
  year: 1954
  ident: 108_CR50
  publication-title: Biometrics
  doi: 10.2307/3001666
– volume: 64
  start-page: 58
  issue: 1
  year: 2013
  ident: 108_CR66
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12002
– volume: 142
  start-page: 216
  issue: 2
  year: 2007
  ident: 108_CR5
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2006.08.021
– volume: 60
  start-page: 253
  issue: 1–3
  year: 2001
  ident: 108_CR3
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1023/A:1012617516477
– volume: 13
  start-page: 3619
  year: 2015
  ident: 108_CR58
  publication-title: Biogeosci Discus
  doi: 10.5194/bg-13-3619-2016
– volume: 179
  start-page: 88
  issue: 1
  year: 2015
  ident: 108_CR83
  publication-title: J Plant Nutr Soil Sci.
  doi: 10.1002/jpln.201500139
– volume: 22
  start-page: 151
  issue: 2
  year: 2003
  ident: 108_CR52
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/713610854
– volume: 41
  start-page: 191
  issue: 3
  year: 1997
  ident: 108_CR80
  publication-title: Soil Tillage Res
  doi: 10.1016/S0167-1987(96)01100-2
– volume: 66
  start-page: 276
  issue: 4
  year: 2011
  ident: 108_CR9
  publication-title: J Soil Water Conserv
  doi: 10.2489/jswc.66.4.276
– volume: 72
  start-page: 1370
  issue: 5
  year: 2008
  ident: 108_CR26
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2007.0342
– volume: 134
  start-page: 213
  year: 2013
  ident: 108_CR74
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2013.08.006
– volume: 62
  start-page: 181
  issue: 4
  year: 2012
  ident: 108_CR99
  publication-title: Acta Agric Scandinavica A-Anim Sci
– volume: 122
  start-page: 52
  year: 2012
  ident: 108_CR8
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2012.03.001
– volume: 64
  start-page: 357
  issue: 3
  year: 2013
  ident: 108_CR73
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12013
– ident: 108_CR43
– volume: 70
  start-page: 555
  issue: 2
  year: 2006
  ident: 108_CR89
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2004.0347
– volume: 136
  start-page: 185
  issue: 1
  year: 2010
  ident: 108_CR67
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2009.12.010
SSID ssj0000858200
Score 2.5883884
SecondaryResourceType review_article
Snippet BACKGROUND: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to...
Background: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to...
Background:  The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common prac‑tice providing a number of benefits to...
Abstract Background The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits...
SourceID doaj
swepub
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 30
SubjectTerms Agricultural and Veterinary sciences
Agricultural Sciences
Agriculture
Analysis
Annan lantbruksvetenskap
bioactive properties
Carbon content
Carbon sequestration
Climate change
Climate Research
Climate Science
Conservation
Conservation tillage
conventional tillage
disturbed soils
Earth and Related Environmental Sciences
Environmental Sciences and Nature Conservation (including Biodiversity)
Environmental Sciences related to Agriculture and Land-use
Farming
Geovetenskap och miljövetenskap
Geovetenskap och relaterad miljövetenskap
Global temperature changes
Klimatforskning
Klimatvetenskap
Land management
Land use change
Lantbruksvetenskap och veterinärmedicin
Markvetenskap
meta-analysis
Miljö- och naturvårdsvetenskap
Miljö- och naturvårdsvetenskap (Här ingår: Biodiversitet)
Natural Sciences
Naturvetenskap
Other Agricultural Sciences
Plough
reduced tillage
soil organic carbon
soil profiles
soil quality
Soil Science
Soil structure
Soils
systematic review
Till
topsoil
weather
Title How does tillage intensity affect soil organic carbon? A systematic review
URI https://www.proquest.com/docview/2253209247
https://lup.lub.lu.se/record/13c93985-0c8e-4dec-9500-b4fde371daf5
oai:portal.research.lu.se:publications/13c93985-0c8e-4dec-9500-b4fde371daf5
https://res.slu.se/id/publ/92928
https://doaj.org/article/c5f83000f1f04328ad4c2eff7d98444e
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kvuiDaLV4WusqoiCEZrObZPOYypXzwCKtheLLsl-5Vo7Lcbmj9L93Jpu7XrSoDz6EQDJZsrMzOzPJzG8IeceZ5wL82ghsmY9AKNLIeCejzDqmHefMtD_av5xko3Mxvkgvtlp9YU5YgAcOjDu0aSU56G3FKkSPk9oJm_iqyl0hhRAed1-weVvB1I-QfQWmbf0bk8nssGEcjGOEmzKEIKDkPUPU4vX_viv_gh_a2pzjx-RR5yzSMrzkE3LPz3bJw3Ky6AAz_C7ZG95WqgFpp6rNUzIe1dfU1b6hS2wsNPH0KmSrL2-obpM4aFNfTWlo62Sp1QsDrjct6S24Mw2FLc_I-fHw26dR1DVOiCwY_GWkJdeGJ4i-KBOT-ZTpFIJmlmkBTMxzYKDVYJiMtq7IcpsJhwWrSWWNdYnxfI_szOqZf04oszzXqNoewtcqdTqPDRMmyzmzuRXxgMRrLirboYpjc4upaqMLmanAeAWMV8h4VQzIx80j8wCp8SfiI1yaDSGiYbcXgDuqkxH1NxkZkNe4sCqUlm50WpXgvoK7Ay7ZgLxtKRARY4YpNxO9ahr1-ey0R_ShI6pqmKPVXQUDcApBtHqU-z1KUFnbu_1mLWEKb2Ge28zXq0bB7spBnBMBNMMger2pT1dzOAwcqvGKcVvwQqYqttIr4bxVRRrHyojKeZ4zp6t0QL7fMU6I7VQHKHXZjTff-lL8j4O_v2PwBt5QL_CEg8KcE_nifyzjS_IgQf1lScTkPtlZLlb-FbiES3NA7pfl-GwM56PhydfTg3Y3-Am6BWJG
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+does+tillage+intensity+affect+soil+organic+carbon%3F+A+systematic+review&rft.jtitle=Environmental+evidence&rft.au=Neal+R.+Haddaway&rft.au=Katarina+Hedlund&rft.au=Louise+E.+Jackson&rft.au=Thomas+K%C3%A4tterer&rft.date=2017-12-18&rft.pub=BMC&rft.eissn=2047-2382&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=48&rft_id=info:doi/10.1186%2Fs13750-017-0108-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c5f83000f1f04328ad4c2eff7d98444e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-2382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-2382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-2382&client=summon