How does tillage intensity affect soil organic carbon? A systematic review
BACKGROUND: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negati...
Saved in:
Published in | Environmental evidence Vol. 6; no. 1; p. 30 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
BioMed Central Ltd
18.12.2017
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? METHODS: We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. RESULTS: A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. CONCLUSIONS: The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils. |
---|---|
AbstractList | Abstract Background The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? Methods We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. Results A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. Conclusions The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils. Background: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? Methods: We systematically reviewed relevant research in boreoerate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. Results: A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0-15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0-15 cm). At lower depths, only IT SOC compared with HT at 15-30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. Conclusions: The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0-30 cm) around 4.6 Mg/ha (0.78-8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils. Background: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common prac‑tice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT ) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta‑analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC?Methods: We systematically reviewed relevant research in boreo‑temperate regions using, as a basis, evidence iden‑tified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta‑analyses were per‑formed to investigate the impact of reducing tillage [from high (HT ) to intermediate intensity (IT ), HT to NT, and from IT to NT ] for SOC concentration and SOC stock in the upper soil and at lower depths.Results: A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg± 0.34 (SE)] and HT [2.09 g/kg± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermedi‑ate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha± 1.95 (SE)] or IT [3.85 Mg/ha± 1.64 (SE)]. No other comparisons were significant.Conclusions: The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more produc‑tive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils. BACKGROUND: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? METHODS: We systematically reviewed relevant research in boreo-temperate regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta-analyses were performed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. RESULTS: A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermediate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. CONCLUSIONS: The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more productive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils. |
ArticleNumber | 30 |
Audience | Academic |
Author | Jørgensen, Helene B. Isberg, Per-Erik Hedlund, Katarina Haddaway, Neal R. Kätterer, Thomas Jackson, Louise E. Lugato, Emanuele Thomsen, Ingrid K. |
Author_xml | – sequence: 1 givenname: Neal R. surname: Haddaway fullname: Haddaway, Neal R. – sequence: 2 givenname: Katarina surname: Hedlund fullname: Hedlund, Katarina – sequence: 3 givenname: Louise E. surname: Jackson fullname: Jackson, Louise E. – sequence: 4 givenname: Thomas surname: Kätterer fullname: Kätterer, Thomas – sequence: 5 givenname: Emanuele surname: Lugato fullname: Lugato, Emanuele – sequence: 6 givenname: Ingrid K. surname: Thomsen fullname: Thomsen, Ingrid K. – sequence: 7 givenname: Helene B. surname: Jørgensen fullname: Jørgensen, Helene B. – sequence: 8 givenname: Per-Erik surname: Isberg fullname: Isberg, Per-Erik |
BackLink | https://lup.lub.lu.se/record/13c93985-0c8e-4dec-9500-b4fde371daf5$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/13c93985-0c8e-4dec-9500-b4fde371daf5$$DView record from Swedish Publication Index https://res.slu.se/id/publ/92928$$DView record from Swedish Publication Index |
BookMark | eNqNk12L1DAUhous4LruD_CuIIhedM1HO02vZFjUHRkQ_LgOp-nJTJZOMyap6_x7T7eL7IgrpoSUw_O-OTnJeZqdDH7ALHvO2QXnavEmcllXrGC8pslU0TzKTgUr60JIJU7u_T_JzmO8ZjRUpQRjp9nHK3-Tdx5jnlzfwwZzNyQcokuHHKxFk_LoXZ_7sIHBmdxAaP3wNl_m8RAT7iBRMOAPhzfPsscW-ojnd-tZ9u39u6-XV8X604fV5XJdmFqJVICS0EoBRjAl2gVWHCpsJV9AaSnP2gg0wIVqwXTNojaLsisrpYQ1relEi_IsW82-nYdrvQ9uB-GgPTh9G6BMNQRKq0dtKqskndZyspZCQVeSvbV116iyLCevYvaKN7gf2yO32I8thGnREXUjGqGIhwf5vQ8Jeh0wIgSz1bOOqN4ZKpMfoubSNLJRlWZGoS47NLqpGNNtaTuUNe_AVrTH-sE9-nFPs73z_k-7V7PdPvjvI8akdy4apMse0I9RC1FJwRpR1oS-mNENUPHcYH0KYCZcLytOFZCymaiLv1D0dbhzhl6mdRQ_Erw-EhCT8GfawBijXn35fMy-vMduEfq0jb4f5_odgXwGTfAxBrS_68SZnrpCz12hqSv01BW6IU39h8a4dHs1dALX_0P5C066Ej0 |
CitedBy_id | crossref_primary_10_1016_j_soilbio_2021_108537 crossref_primary_10_5194_bg_21_473_2024 crossref_primary_10_1016_j_still_2024_106242 crossref_primary_10_1038_s41598_022_07623_4 crossref_primary_10_1177_1178622120939587 crossref_primary_10_1016_j_agsy_2024_104145 crossref_primary_10_1016_j_crope_2022_03_005 crossref_primary_10_1038_s41598_024_54652_2 crossref_primary_10_3390_su16093591 crossref_primary_10_1016_j_jclepro_2024_142973 crossref_primary_10_3390_app14219851 crossref_primary_10_1016_j_still_2023_105782 crossref_primary_10_3390_agronomy13020447 crossref_primary_10_1007_s42729_024_02142_9 crossref_primary_10_1016_j_scitotenv_2021_150106 crossref_primary_10_3390_agronomy10101596 crossref_primary_10_1111_gcb_15512 crossref_primary_10_1002_agj2_20094 crossref_primary_10_3390_su11174678 crossref_primary_10_1007_s10669_023_09923_0 crossref_primary_10_3897_soils4europe_e118635 crossref_primary_10_1016_j_geoderma_2021_115443 crossref_primary_10_5194_soil_10_533_2024 crossref_primary_10_1016_j_soilbio_2023_108994 crossref_primary_10_3390_environments11040073 crossref_primary_10_1016_j_jenvman_2021_112354 crossref_primary_10_35633_inmateh_61_30 crossref_primary_10_1016_j_jclepro_2022_135423 crossref_primary_10_1007_s00374_024_01871_4 crossref_primary_10_1016_j_soisec_2024_100127 crossref_primary_10_1007_s11027_020_09916_3 crossref_primary_10_1016_j_eja_2024_127115 crossref_primary_10_1186_s13750_018_0126_2 crossref_primary_10_1016_j_scitotenv_2020_138994 crossref_primary_10_3390_land12112078 crossref_primary_10_5194_soil_7_495_2021 crossref_primary_10_3390_agronomy9090495 crossref_primary_10_5194_soil_9_117_2023 crossref_primary_10_3390_su15032338 crossref_primary_10_1007_s42729_021_00664_0 crossref_primary_10_1016_j_geodrs_2024_e00768 crossref_primary_10_1590_0103_8478cr20220185 crossref_primary_10_3390_su151411128 crossref_primary_10_3390_app9245482 crossref_primary_10_3390_agronomy9090564 crossref_primary_10_1016_j_agee_2023_108619 crossref_primary_10_1111_ejss_12953 crossref_primary_10_1029_2022EF003142 crossref_primary_10_1016_j_still_2024_106213 crossref_primary_10_1016_j_geoderma_2021_115614 crossref_primary_10_51886_1999_740X_2024_2_5 crossref_primary_10_1080_01904167_2024_2405990 crossref_primary_10_1007_s11367_024_02398_4 crossref_primary_10_3390_agriculture14060818 crossref_primary_10_31545_intagr_188617 crossref_primary_10_3390_agriengineering4020023 crossref_primary_10_3389_frmbi_2023_1157681 crossref_primary_10_1016_j_agee_2024_108962 crossref_primary_10_1016_j_compag_2023_108509 crossref_primary_10_1016_j_still_2020_104912 crossref_primary_10_3390_soilsystems8030080 crossref_primary_10_3389_ffwsc_2023_1264427 crossref_primary_10_2478_ata_2020_0004 crossref_primary_10_1016_j_cesys_2024_100182 crossref_primary_10_1016_j_geoderma_2020_114230 crossref_primary_10_1016_j_indic_2020_100072 crossref_primary_10_3390_soilsystems7010011 crossref_primary_10_3390_agronomy14122979 crossref_primary_10_1038_s41558_022_01321_9 crossref_primary_10_1186_s12302_023_00784_7 crossref_primary_10_1016_j_geoderma_2022_115927 crossref_primary_10_3390_agronomy13041159 crossref_primary_10_1007_s10457_024_00990_z crossref_primary_10_1186_s12302_023_00758_9 crossref_primary_10_1016_j_jenvman_2024_120772 crossref_primary_10_1007_s42979_024_02872_8 crossref_primary_10_1007_s43621_024_00328_w crossref_primary_10_1016_j_still_2021_105043 crossref_primary_10_1007_s11270_023_06069_2 crossref_primary_10_2139_ssrn_4802656 crossref_primary_10_1038_s41598_023_41307_x crossref_primary_10_1016_j_soilbio_2024_109672 crossref_primary_10_1016_j_agsy_2021_103306 crossref_primary_10_1111_ejss_13338 crossref_primary_10_1016_j_agee_2025_109513 crossref_primary_10_1139_cjss_2022_0012 crossref_primary_10_1007_s42452_020_2631_5 crossref_primary_10_37497_rev_artif_intell_educ_v5i00_32 crossref_primary_10_1016_j_scitotenv_2021_147216 crossref_primary_10_1016_j_jenvman_2023_119295 crossref_primary_10_7717_peerj_14542 crossref_primary_10_1016_j_geoderma_2023_116472 crossref_primary_10_15446_ing_investig_94777 crossref_primary_10_1016_j_geoderma_2020_114335 crossref_primary_10_1016_j_jafr_2021_100139 crossref_primary_10_1016_j_still_2023_105959 crossref_primary_10_3390_agronomy12071653 crossref_primary_10_1016_j_energy_2020_118453 crossref_primary_10_1186_s40068_023_00282_y crossref_primary_10_3389_fenvs_2022_834055 crossref_primary_10_5194_bg_19_2145_2022 crossref_primary_10_3390_agriculture15050567 crossref_primary_10_1016_j_heliyon_2024_e26524 crossref_primary_10_1016_j_still_2022_105326 crossref_primary_10_3390_su13084515 crossref_primary_10_29133_yyutbd_1393784 crossref_primary_10_1016_j_jafr_2024_101615 crossref_primary_10_3390_agronomy11030584 crossref_primary_10_1080_00103624_2024_2402803 crossref_primary_10_3390_agriculture13122188 crossref_primary_10_5194_soil_9_89_2023 crossref_primary_10_1016_j_agee_2024_109332 crossref_primary_10_3390_agronomy13071887 crossref_primary_10_3389_fenvs_2021_724702 crossref_primary_10_3390_su162310261 crossref_primary_10_3390_soilsystems8010022 crossref_primary_10_1002_agj2_70038 crossref_primary_10_1007_s40003_024_00734_6 crossref_primary_10_1186_s13021_023_00241_1 crossref_primary_10_3390_su162310389 crossref_primary_10_3390_agronomy11050882 crossref_primary_10_3390_agronomy10070925 crossref_primary_10_1093_ismeco_ycae116 crossref_primary_10_1073_pnas_2404329122 crossref_primary_10_1016_j_agee_2024_109329 crossref_primary_10_3390_agronomy14061327 crossref_primary_10_3390_su16030953 crossref_primary_10_1134_S1064229324602580 crossref_primary_10_1139_cjss_2023_0099 crossref_primary_10_1002_sae2_12094 crossref_primary_10_3390_agriculture14122288 crossref_primary_10_1016_j_still_2024_106310 crossref_primary_10_1111_gcb_15906 crossref_primary_10_1002_agj2_20948 crossref_primary_10_1016_j_soilbio_2022_108860 crossref_primary_10_1002_ldr_4512 crossref_primary_10_1029_2021EF002324 crossref_primary_10_3390_agronomy11071433 crossref_primary_10_1016_j_scitotenv_2023_167396 crossref_primary_10_3390_land10121362 crossref_primary_10_3168_jds_2024_25796 crossref_primary_10_1186_s12302_024_00912_x crossref_primary_10_1007_s00374_024_01865_2 crossref_primary_10_1016_j_agee_2024_109316 crossref_primary_10_1002_sae2_70046 crossref_primary_10_1139_cjss_2023_0102 crossref_primary_10_1088_1748_9326_ac8609 crossref_primary_10_1111_ejss_13092 crossref_primary_10_3390_land11101731 crossref_primary_10_1139_cjss_2023_0105 crossref_primary_10_1016_j_catena_2022_106089 crossref_primary_10_70322_ecolciviliz_2025_10002 crossref_primary_10_1016_j_fcr_2022_108636 crossref_primary_10_1016_j_scitotenv_2023_165124 crossref_primary_10_1111_gcbb_12631 crossref_primary_10_1007_s11356_019_06247_y crossref_primary_10_1111_gfs_12670 crossref_primary_10_1016_j_still_2019_02_008 crossref_primary_10_3390_agronomy10101566 crossref_primary_10_3390_plants11141855 crossref_primary_10_26178_AE_2024_43_87_006 crossref_primary_10_1007_s10668_023_03846_1 crossref_primary_10_1007_s13165_025_00495_8 crossref_primary_10_1016_j_heliyon_2024_e29839 crossref_primary_10_2139_ssrn_4155111 crossref_primary_10_1016_j_geodrs_2024_e00818 crossref_primary_10_3390_plants11131747 crossref_primary_10_3390_agronomy14020278 crossref_primary_10_1126_science_abe4943 crossref_primary_10_3390_land9040121 crossref_primary_10_3390_agriculture14122119 crossref_primary_10_1002_eap_2336 crossref_primary_10_1088_1755_1315_1018_1_012012 crossref_primary_10_1002_saj2_20244 crossref_primary_10_1016_j_still_2024_106061 crossref_primary_10_3389_fpls_2023_1145137 crossref_primary_10_1088_2976_601X_ad7bbe crossref_primary_10_1007_s00374_024_01796_y crossref_primary_10_1016_j_scitotenv_2022_154161 crossref_primary_10_3390_agronomy8040048 crossref_primary_10_3390_agronomy11112213 crossref_primary_10_1016_j_geosus_2025_100265 crossref_primary_10_1016_j_soilbio_2023_109088 crossref_primary_10_4236_ajcc_2024_132008 crossref_primary_10_1016_j_agee_2023_108498 crossref_primary_10_1016_j_still_2018_04_011 crossref_primary_10_1088_2515_7620_ad04f5 crossref_primary_10_1016_j_pedsph_2022_06_016 crossref_primary_10_1371_journal_pone_0212521 crossref_primary_10_3390_rs14164064 crossref_primary_10_1016_j_still_2022_105626 crossref_primary_10_1007_s10113_022_01892_5 crossref_primary_10_1186_s13021_024_00256_2 crossref_primary_10_3390_rs12091470 crossref_primary_10_5194_soil_8_621_2022 crossref_primary_10_3390_ani10030415 crossref_primary_10_1016_j_ecolmodel_2023_110596 |
Cites_doi | 10.1016/j.earscirev.2015.12.005 10.1016/S0167-1987(01)00180-5 10.1016/j.iswcr.2015.05.002 10.1073/pnas.1305198110 10.1186/2047-2382-3-1 10.1016/j.still.2015.09.006 10.1016/S0167-1987(97)00038-X 10.4141/cjss90-042 10.1016/j.soilbio.2009.10.009 10.1186/s13750-015-0049-0 10.1016/j.agee.2006.05.014 10.1016/j.agee.2003.12.018 10.1080/07352680902776358 10.1007/s10533-011-9600-4 10.1126/science.282.5390.893 10.1111/1365-2745.12383 10.1037/h0026256 10.2136/sssaj2006.0174 10.1371/journal.pone.0138237 10.1002/jpln.201400080 10.5194/bg-12-1635-2015 10.1016/j.agee.2010.06.009 10.1038/28764 10.2489/jswc.69.6.471 10.1016/j.agee.2013.01.012 10.1002/jrsm.11 10.1016/j.eja.2010.05.008 10.1016/S0065-2113(08)00801-8 10.1016/j.agee.2006.06.017 10.2136/sssaj1993.03615995005700010036x 10.1016/j.still.2014.10.003 10.4141/CJSS07025 10.1111/gcb.12752 10.1186/2047-2382-4-1 10.1007/s00374-013-0786-6 10.1007/s10021-001-0007-2 10.2136/sssaj2002.1687 10.1126/science.1261071 10.1097/SS.0b013e3181fa2837 10.1016/j.geoderma.2015.08.038 10.1016/j.agee.2011.02.029 10.1016/j.agee.2009.07.006 10.2136/sssaspecpub57.2ed 10.1016/j.agee.2014.10.024 10.1016/j.ecolecon.2007.03.004 10.1038/nature13809 10.2489/jswc.69.6.517 10.2136/sssaj2002.1930 10.1186/s13750-016-0052-0 10.1007/978-0-387-87458-6_5 10.1051/agro:2002043 10.1186/2047-2382-3-2 10.1016/j.agwat.2015.03.004 10.2134/agronj14.0597 10.1038/nclimate2292 10.1071/SR9940285 10.1016/j.still.2015.09.015 10.2136/sssaj2008.0063 10.1079/SUM2005291 10.1111/j.1365-2389.2009.01157.x 10.18637/jss.v036.i03 10.1002/jpln.201000134 10.1111/j.1365-2486.2004.00854.x 10.1016/j.still.2006.11.004 10.1016/j.fcr.2015.07.020 10.1016/j.still.2014.07.017 10.1002/ece3.1722 10.1016/j.agee.2014.02.014 10.2307/3001666 10.1111/ejss.12002 10.1016/j.agrformet.2006.08.021 10.1023/A:1012617516477 10.5194/bg-13-3619-2016 10.1002/jpln.201500139 10.1080/713610854 10.1016/S0167-1987(96)01100-2 10.2489/jswc.66.4.276 10.2136/sssaj2007.0342 10.1016/j.still.2013.08.006 10.1016/j.still.2012.03.001 10.1111/ejss.12013 10.2136/sssaj2004.0347 10.1016/j.agee.2009.12.010 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2017 BioMed Central Ltd. |
CorporateAuthor | Lund University School of Economics and Management, LUSEM Markgruppen Statistiska institutionen Forskargrupper vid Biologiska institutionen Profile areas and other strong research environments Lunds universitet Naturvetenskapliga fakulteten BECC: Biodiversity and Ecosystem services in a Changing Climate Faculty of Science Lund University Strategiska forskningsområden (SFO) Department of Biology Biologiska institutionen Department of Statistics Soil Ecology Strategic research areas (SRA) Profilområden och andra starka forskningsmiljöer Research groups at the Department of Biology Ekonomihögskolan Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Strategiska forskningsområden (SFO) – name: Naturvetenskapliga fakulteten – name: Lund University School of Economics and Management, LUSEM – name: Markgruppen – name: Department of Statistics – name: Statistiska institutionen – name: BECC: Biodiversity and Ecosystem services in a Changing Climate – name: Forskargrupper vid Biologiska institutionen – name: Strategic research areas (SRA) – name: Lunds universitet – name: Faculty of Science – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Biologiska institutionen – name: Profile areas and other strong research environments – name: Soil Ecology – name: Department of Biology – name: Research groups at the Department of Biology – name: Ekonomihögskolan – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION ISR 7S9 L.6 ADTPV AGCHP AOWAS D8T D95 ZZAVC DOA |
DOI | 10.1186/s13750-017-0108-9 |
DatabaseName | CrossRef Gale In Context: Science AGRICOLA AGRICOLA - Academic SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences Agriculture |
EISSN | 2047-2382 |
EndPage | 30 |
ExternalDocumentID | oai_doaj_org_article_c5f83000f1f04328ad4c2eff7d98444e oai_slubar_slu_se_92928 oai_portal_research_lu_se_publications_13c93985_0c8e_4dec_9500_b4fde371daf5 oai_lup_lub_lu_se_13c93985_0c8e_4dec_9500_b4fde371daf5 A519293397 10_1186_s13750_017_0108_9 |
GroupedDBID | 0R~ 2XV 5VS 7XC 8FE 8FH AAFWJ AAHBH AAJSJ AASML AAYXX ACGFS ADBBV ADUKV AEGXH AEUYN AFKRA AFPKN AFRAH AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ATCPS BAPOH BCNDV BENPR BFQNJ BHPHI BMC C6C CCPQU CITATION EBLON EBS EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEP IHR IHW ISR KQ8 M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RBZ RNS ROL RSV SEV SOJ PMFND 7S9 L.6 PUEGO ADTPV AGCHP AOWAS D8T D95 ZZAVC 2VQ 4.4 AHSBF IPNFZ RIG RPM |
ID | FETCH-LOGICAL-c782t-a83ab32ac2082b6e51a5eb316a4f0477c2eca128bacd967c64d45882fcbcd2be3 |
IEDL.DBID | DOA |
ISSN | 2047-2382 |
IngestDate | Wed Aug 27 00:58:44 EDT 2025 Thu Aug 21 06:52:13 EDT 2025 Thu Aug 21 07:30:13 EDT 2025 Thu Jul 03 05:01:06 EDT 2025 Sun Aug 24 04:13:26 EDT 2025 Tue Jun 17 21:49:58 EDT 2025 Tue Jun 10 20:52:53 EDT 2025 Fri Jun 27 04:04:22 EDT 2025 Thu May 22 21:23:42 EDT 2025 Tue Jul 01 01:17:21 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c782t-a83ab32ac2082b6e51a5eb316a4f0477c2eca128bacd967c64d45882fcbcd2be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/c5f83000f1f04328ad4c2eff7d98444e |
PQID | 2253209247 |
PQPubID | 24069 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c5f83000f1f04328ad4c2eff7d98444e swepub_primary_oai_slubar_slu_se_92928 swepub_primary_oai_portal_research_lu_se_publications_13c93985_0c8e_4dec_9500_b4fde371daf5 swepub_primary_oai_lup_lub_lu_se_13c93985_0c8e_4dec_9500_b4fde371daf5 proquest_miscellaneous_2253209247 gale_infotracmisc_A519293397 gale_infotracacademiconefile_A519293397 gale_incontextgauss_ISR_A519293397 gale_healthsolutions_A519293397 crossref_primary_10_1186_s13750_017_0108_9 crossref_citationtrail_10_1186_s13750_017_0108_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-18 |
PublicationDateYYYYMMDD | 2017-12-18 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-18 day: 18 |
PublicationDecade | 2010 |
PublicationTitle | Environmental evidence |
PublicationYear | 2017 |
Publisher | BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BMC |
References | M Sperow (108_CR54) 2016; 155 MV Brady (108_CR94) 2015; 107 KM Hati (108_CR12) 2007; 119 B Dimassi (108_CR29) 2014; 188 MA Tsiafouli (108_CR86) 2015; 21 J Kern (108_CR16) 1993; 57 TO West (108_CR17) 2002; 66 P Rochette (108_CR23) 2008; 88 MA Busari (108_CR53) 2015; 3 S Amini (108_CR25) 2015; 8 R Awale (108_CR74) 2013; 134 A Golchin (108_CR79) 1994; 32 NR Haddaway (108_CR92) 2014; 3 X Liu (108_CR57) 2015; 154 J Lee (108_CR65) 2009; 134 R Lal (108_CR9) 2011; 66 NR Haddaway (108_CR33) 2015; 4 E González-Sánchez (108_CR8) 2012; 122 B Söderström (108_CR36) 2014; 3 Team RC (108_CR44) 2016 M Sommer (108_CR71) 2016; 156 X Xu (108_CR59) 2016; 262 CM Pittelkow (108_CR20) 2015; 183 B Ellert (108_CR63) 2002; 66 K Abdalla (108_CR58) 2015; 13 NR Haddaway (108_CR37) 2016; 5 J Cohen (108_CR42) 1968; 70 D Angers (108_CR26) 2008; 72 D Mao (108_CR49) 2015; 12 JM Baker (108_CR31) 2007; 118 DB Davies (108_CR19) 2002 R Follett (108_CR1) 2001; 61 PE Rasmussen (108_CR60) 1998; 282 D Angers (108_CR80) 1997; 41 DS Powlson (108_CR30) 2014; 4 R Amundson (108_CR70) 2015; 348 NR Haddaway (108_CR39) 2015; 11 V Kainiemi (108_CR82) 2015; 178 CJ Kucharik (108_CR6) 2001; 4 NR Haddaway (108_CR93) 2015; 5 DL Antille (108_CR78) 2015; 58 S Doetterl (108_CR69) 2016; 154 H Minoshima (108_CR55) 2007; 71 R Lal (108_CR52) 2003; 22 AE Johnston (108_CR76) 2009; 101 D Sauerbeck (108_CR3) 2001; 60 NR Haddaway (108_CR35) 2015; 4 V Kainiemi (108_CR83) 2015; 179 M Necpálová (108_CR40) 2014; 69 WG Cochran (108_CR50) 1954; 10 C Bernes (108_CR91) 2015; 4 J Six (108_CR28) 2002; 22 108_CR96 W Schlesinger (108_CR4) 1991 108_CR97 AB McBratney (108_CR67) 2010; 136 108_CR95 M Carter (108_CR62) 1990; 70 R Lal (108_CR11) 2009 B Dimassi (108_CR77) 2013; 169 T Kätterer (108_CR99) 2012; 62 CM Pittelkow (108_CR72) 2015; 517 N Ladygina (108_CR84) 2010; 42 T Helgason (108_CR87) 1998; 394 108_CR43 D Reicosky (108_CR7) 2003 J Six (108_CR89) 2006; 70 R Lal (108_CR15) 2007; 93 A Van den Putte (108_CR21) 2010; 33 M Wiesmeier (108_CR48) 2015; 146 D Reeves (108_CR61) 1997; 43 B Ball (108_CR73) 2013; 64 S Amini (108_CR34) 2016; 8 AS Abdullah (108_CR75) 2014; 144 I Virto (108_CR32) 2012; 108 V Kainiemi (108_CR81) 2013; 49 W Viechtbauer (108_CR45) 2010; 36 J Holland (108_CR18) 2004; 103 FT De Vries (108_CR90) 2015; 103 X Yang (108_CR13) 2011; 174 RA Betts (108_CR5) 2007; 142 AF Zuur (108_CR46) 2009 P Smith (108_CR41) 2004; 10 R Alvarez (108_CR24) 2005; 21 J Wendt (108_CR66) 2013; 64 KR Olson (108_CR56) 2010; 175 SB Wuest (108_CR64) 2009; 73 E Goidts (108_CR68) 2009; 60 NR Haddaway (108_CR98) 2016; 5 E Barrios (108_CR14) 2007; 64 T Kätterer (108_CR85) 2011; 141 W Viechtbauer (108_CR51) 2010; 1 C Poeplau (108_CR47) 2015; 200 B Govaerts (108_CR27) 2009; 28 AD Basche (108_CR22) 2014; 69 NR Haddaway (108_CR38) 2015; 10 M Bolinder (108_CR10) 2010; 138 JM Kimble (108_CR2) 1998 FT de Vries (108_CR88) 2013; 110 |
References_xml | – volume: 154 start-page: 102 year: 2016 ident: 108_CR69 publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2015.12.005 – volume: 61 start-page: 77 issue: 1 year: 2001 ident: 108_CR1 publication-title: Soil Tillage Res doi: 10.1016/S0167-1987(01)00180-5 – volume: 3 start-page: 119 issue: 2 year: 2015 ident: 108_CR53 publication-title: Int Soil Water Conserv Res doi: 10.1016/j.iswcr.2015.05.002 – volume: 110 start-page: 14296 issue: 35 year: 2013 ident: 108_CR88 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1305198110 – volume: 3 start-page: 1 issue: 1 year: 2014 ident: 108_CR92 publication-title: Environ Evid doi: 10.1186/2047-2382-3-1 – volume: 155 start-page: 390 year: 2016 ident: 108_CR54 publication-title: Soil Tillage Res doi: 10.1016/j.still.2015.09.006 – volume: 43 start-page: 131 issue: 1 year: 1997 ident: 108_CR61 publication-title: Soil Tillage Res doi: 10.1016/S0167-1987(97)00038-X – volume: 11 start-page: 186 issue: 3 year: 2015 ident: 108_CR39 publication-title: Grey J – volume: 70 start-page: 425 issue: 3 year: 1990 ident: 108_CR62 publication-title: Can J Soil Sci doi: 10.4141/cjss90-042 – volume: 42 start-page: 162 issue: 2 year: 2010 ident: 108_CR84 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.10.009 – volume: 4 start-page: 23 issue: 1 year: 2015 ident: 108_CR35 publication-title: Environ Evid doi: 10.1186/s13750-015-0049-0 – volume: 58 start-page: 707 issue: 3 year: 2015 ident: 108_CR78 publication-title: Trans ASABE. – volume: 118 start-page: 1 issue: 1 year: 2007 ident: 108_CR31 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2006.05.014 – volume: 103 start-page: 1 issue: 1 year: 2004 ident: 108_CR18 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2003.12.018 – volume: 28 start-page: 97 issue: 3 year: 2009 ident: 108_CR27 publication-title: Crit Rev Plant Sci doi: 10.1080/07352680902776358 – volume: 108 start-page: 17 issue: 1–3 year: 2012 ident: 108_CR32 publication-title: Biogeochemistry doi: 10.1007/s10533-011-9600-4 – volume: 282 start-page: 893 issue: 5390 year: 1998 ident: 108_CR60 publication-title: Science doi: 10.1126/science.282.5390.893 – volume: 103 start-page: 629 issue: 3 year: 2015 ident: 108_CR90 publication-title: J Ecol doi: 10.1111/1365-2745.12383 – volume: 70 start-page: 213 issue: 4 year: 1968 ident: 108_CR42 publication-title: Psychol Bull doi: 10.1037/h0026256 – volume: 71 start-page: 952 issue: 3 year: 2007 ident: 108_CR55 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2006.0174 – volume: 10 start-page: e0138237 issue: 9 year: 2015 ident: 108_CR38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0138237 – volume: 178 start-page: 189 issue: 2 year: 2015 ident: 108_CR82 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201400080 – volume: 12 start-page: 1635 issue: 6 year: 2015 ident: 108_CR49 publication-title: Biogeosciences doi: 10.5194/bg-12-1635-2015 – volume: 138 start-page: 335 issue: 3 year: 2010 ident: 108_CR10 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2010.06.009 – start-page: 291 volume-title: Tillage-induced CO2 emissions and carbon sequestration: effect of secondary tillage and compaction. Conservation agriculture year: 2003 ident: 108_CR7 – volume: 394 start-page: 431 issue: 6692 year: 1998 ident: 108_CR87 publication-title: Nature. doi: 10.1038/28764 – volume: 69 start-page: 471 issue: 6 year: 2014 ident: 108_CR22 publication-title: J Soil Water Conserv doi: 10.2489/jswc.69.6.471 – volume-title: Reduced cultivations for cereals: research, development and advisory needs under changing economic circumstances year: 2002 ident: 108_CR19 – volume-title: The potential of US cropland to sequester carbon and mitigate the greenhouse effect year: 1998 ident: 108_CR2 – volume: 169 start-page: 12 year: 2013 ident: 108_CR77 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2013.01.012 – volume: 1 start-page: 112 issue: 2 year: 2010 ident: 108_CR51 publication-title: Res Synth Methods. doi: 10.1002/jrsm.11 – volume: 33 start-page: 231 issue: 3 year: 2010 ident: 108_CR21 publication-title: Eur J Agron doi: 10.1016/j.eja.2010.05.008 – volume: 101 start-page: 1 year: 2009 ident: 108_CR76 publication-title: Adv Agron doi: 10.1016/S0065-2113(08)00801-8 – volume: 119 start-page: 127 issue: 1 year: 2007 ident: 108_CR12 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2006.06.017 – volume: 57 start-page: 200 issue: 1 year: 1993 ident: 108_CR16 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1993.03615995005700010036x – volume: 146 start-page: 296 year: 2015 ident: 108_CR48 publication-title: Soil Tillage Res doi: 10.1016/j.still.2014.10.003 – volume: 88 start-page: 641 issue: 5 year: 2008 ident: 108_CR23 publication-title: Can J Soil Sci doi: 10.4141/CJSS07025 – volume: 21 start-page: 973 issue: 2 year: 2015 ident: 108_CR86 publication-title: Glob Change Biol doi: 10.1111/gcb.12752 – volume: 4 start-page: 1 issue: 1 year: 2015 ident: 108_CR91 publication-title: Environ Evid doi: 10.1186/2047-2382-4-1 – volume: 49 start-page: 495 issue: 5 year: 2013 ident: 108_CR81 publication-title: Biol Fertil Soils doi: 10.1007/s00374-013-0786-6 – volume-title: Biogeochemistry: an analysis of global change year: 1991 ident: 108_CR4 – ident: 108_CR95 – volume: 4 start-page: 237 issue: 3 year: 2001 ident: 108_CR6 publication-title: Ecosystems doi: 10.1007/s10021-001-0007-2 – volume: 66 start-page: 1687 issue: 5 year: 2002 ident: 108_CR63 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2002.1687 – volume: 348 start-page: 1261071 issue: 6235 year: 2015 ident: 108_CR70 publication-title: Science doi: 10.1126/science.1261071 – volume: 175 start-page: 562 issue: 11 year: 2010 ident: 108_CR56 publication-title: Soil Sci doi: 10.1097/SS.0b013e3181fa2837 – volume: 8 start-page: 25 issue: 3 year: 2016 ident: 108_CR34 publication-title: NY Sci J. – volume: 262 start-page: 235 year: 2016 ident: 108_CR59 publication-title: Geoderma doi: 10.1016/j.geoderma.2015.08.038 – volume: 141 start-page: 184 issue: 1 year: 2011 ident: 108_CR85 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2011.02.029 – volume: 134 start-page: 251 issue: 3 year: 2009 ident: 108_CR65 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2009.07.006 – start-page: 57 volume-title: Soils and climate change. Soil carbon sequestration and the greenhouse effect year: 2009 ident: 108_CR11 doi: 10.2136/sssaspecpub57.2ed – volume: 200 start-page: 33 year: 2015 ident: 108_CR47 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2014.10.024 – volume: 64 start-page: 269 issue: 2 year: 2007 ident: 108_CR14 publication-title: Ecol Econ doi: 10.1016/j.ecolecon.2007.03.004 – volume: 517 start-page: 365 issue: 7534 year: 2015 ident: 108_CR72 publication-title: Nature doi: 10.1038/nature13809 – volume: 69 start-page: 517 issue: 6 year: 2014 ident: 108_CR40 publication-title: J Soil Water Conserv doi: 10.2489/jswc.69.6.517 – volume: 66 start-page: 1930 issue: 6 year: 2002 ident: 108_CR17 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2002.1930 – volume: 5 start-page: 1 issue: 1 year: 2016 ident: 108_CR98 publication-title: Environ Evid. doi: 10.1186/s13750-016-0052-0 – start-page: 101 volume-title: Mixed effects modelling for nested data. Mixed effects models and extensions in ecology with R year: 2009 ident: 108_CR46 doi: 10.1007/978-0-387-87458-6_5 – volume: 22 start-page: 755 issue: 7–8 year: 2002 ident: 108_CR28 publication-title: Agronomie. doi: 10.1051/agro:2002043 – volume-title: R: A language and environment for statistical computing year: 2016 ident: 108_CR44 – volume: 3 start-page: 1 issue: 1 year: 2014 ident: 108_CR36 publication-title: Environ Evid doi: 10.1186/2047-2382-3-2 – volume: 154 start-page: 59 year: 2015 ident: 108_CR57 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2015.03.004 – volume: 107 start-page: 1809 issue: 5 year: 2015 ident: 108_CR94 publication-title: Agron J doi: 10.2134/agronj14.0597 – volume: 4 start-page: 678 issue: 8 year: 2014 ident: 108_CR30 publication-title: Nat Clim Change. doi: 10.1038/nclimate2292 – volume: 4 start-page: 1 issue: 1 year: 2015 ident: 108_CR33 publication-title: Environ Evid. doi: 10.1186/s13750-015-0049-0 – volume: 32 start-page: 285 issue: 2 year: 1994 ident: 108_CR79 publication-title: Soil Res doi: 10.1071/SR9940285 – volume: 156 start-page: 182 year: 2016 ident: 108_CR71 publication-title: Soil Tillage Res doi: 10.1016/j.still.2015.09.015 – volume: 73 start-page: 312 issue: 1 year: 2009 ident: 108_CR64 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2008.0063 – ident: 108_CR97 – volume: 21 start-page: 38 issue: 1 year: 2005 ident: 108_CR24 publication-title: Soil Use Manag doi: 10.1079/SUM2005291 – volume: 60 start-page: 723 issue: 5 year: 2009 ident: 108_CR68 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2009.01157.x – volume: 5 start-page: 1 issue: 1 year: 2016 ident: 108_CR37 publication-title: Environ Evid doi: 10.1186/s13750-016-0052-0 – volume: 8 start-page: 25 issue: 3 year: 2015 ident: 108_CR25 publication-title: N Y Sci J – volume: 36 start-page: 1 issue: 3 year: 2010 ident: 108_CR45 publication-title: J Stat Softw doi: 10.18637/jss.v036.i03 – volume: 174 start-page: 775 issue: 5 year: 2011 ident: 108_CR13 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201000134 – volume: 10 start-page: 1878 issue: 11 year: 2004 ident: 108_CR41 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2004.00854.x – volume: 93 start-page: 1 issue: 1 year: 2007 ident: 108_CR15 publication-title: Soil Tillage Res doi: 10.1016/j.still.2006.11.004 – volume: 183 start-page: 156 year: 2015 ident: 108_CR20 publication-title: Field Crops Res doi: 10.1016/j.fcr.2015.07.020 – volume: 144 start-page: 150 year: 2014 ident: 108_CR75 publication-title: Soil Tillage Res doi: 10.1016/j.still.2014.07.017 – volume: 5 start-page: 4451 issue: 19 year: 2015 ident: 108_CR93 publication-title: Ecol Evol doi: 10.1002/ece3.1722 – ident: 108_CR96 – volume: 188 start-page: 134 year: 2014 ident: 108_CR29 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2014.02.014 – volume: 10 start-page: 101 issue: 1 year: 1954 ident: 108_CR50 publication-title: Biometrics doi: 10.2307/3001666 – volume: 64 start-page: 58 issue: 1 year: 2013 ident: 108_CR66 publication-title: Eur J Soil Sci doi: 10.1111/ejss.12002 – volume: 142 start-page: 216 issue: 2 year: 2007 ident: 108_CR5 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2006.08.021 – volume: 60 start-page: 253 issue: 1–3 year: 2001 ident: 108_CR3 publication-title: Nutr Cycl Agroecosyst doi: 10.1023/A:1012617516477 – volume: 13 start-page: 3619 year: 2015 ident: 108_CR58 publication-title: Biogeosci Discus doi: 10.5194/bg-13-3619-2016 – volume: 179 start-page: 88 issue: 1 year: 2015 ident: 108_CR83 publication-title: J Plant Nutr Soil Sci. doi: 10.1002/jpln.201500139 – volume: 22 start-page: 151 issue: 2 year: 2003 ident: 108_CR52 publication-title: Crit Rev Plant Sci doi: 10.1080/713610854 – volume: 41 start-page: 191 issue: 3 year: 1997 ident: 108_CR80 publication-title: Soil Tillage Res doi: 10.1016/S0167-1987(96)01100-2 – volume: 66 start-page: 276 issue: 4 year: 2011 ident: 108_CR9 publication-title: J Soil Water Conserv doi: 10.2489/jswc.66.4.276 – volume: 72 start-page: 1370 issue: 5 year: 2008 ident: 108_CR26 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2007.0342 – volume: 134 start-page: 213 year: 2013 ident: 108_CR74 publication-title: Soil Tillage Res doi: 10.1016/j.still.2013.08.006 – volume: 62 start-page: 181 issue: 4 year: 2012 ident: 108_CR99 publication-title: Acta Agric Scandinavica A-Anim Sci – volume: 122 start-page: 52 year: 2012 ident: 108_CR8 publication-title: Soil Tillage Res doi: 10.1016/j.still.2012.03.001 – volume: 64 start-page: 357 issue: 3 year: 2013 ident: 108_CR73 publication-title: Eur J Soil Sci doi: 10.1111/ejss.12013 – ident: 108_CR43 – volume: 70 start-page: 555 issue: 2 year: 2006 ident: 108_CR89 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2004.0347 – volume: 136 start-page: 185 issue: 1 year: 2010 ident: 108_CR67 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2009.12.010 |
SSID | ssj0000858200 |
Score | 2.5883884 |
SecondaryResourceType | review_article |
Snippet | BACKGROUND: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to... Background: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits to... Background: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common prac‑tice providing a number of benefits to... Abstract Background The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common practice providing a number of benefits... |
SourceID | doaj swepub proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 30 |
SubjectTerms | Agricultural and Veterinary sciences Agricultural Sciences Agriculture Analysis Annan lantbruksvetenskap bioactive properties Carbon content Carbon sequestration Climate change Climate Research Climate Science Conservation Conservation tillage conventional tillage disturbed soils Earth and Related Environmental Sciences Environmental Sciences and Nature Conservation (including Biodiversity) Environmental Sciences related to Agriculture and Land-use Farming Geovetenskap och miljövetenskap Geovetenskap och relaterad miljövetenskap Global temperature changes Klimatforskning Klimatvetenskap Land management Land use change Lantbruksvetenskap och veterinärmedicin Markvetenskap meta-analysis Miljö- och naturvårdsvetenskap Miljö- och naturvårdsvetenskap (Här ingår: Biodiversitet) Natural Sciences Naturvetenskap Other Agricultural Sciences Plough reduced tillage soil organic carbon soil profiles soil quality Soil Science Soil structure Soils systematic review Till topsoil weather |
Title | How does tillage intensity affect soil organic carbon? A systematic review |
URI | https://www.proquest.com/docview/2253209247 https://lup.lub.lu.se/record/13c93985-0c8e-4dec-9500-b4fde371daf5 oai:portal.research.lu.se:publications/13c93985-0c8e-4dec-9500-b4fde371daf5 https://res.slu.se/id/publ/92928 https://doaj.org/article/c5f83000f1f04328ad4c2eff7d98444e |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kvuiDaLV4WusqoiCEZrObZPOYypXzwCKtheLLsl-5Vo7Lcbmj9L93Jpu7XrSoDz6EQDJZsrMzOzPJzG8IeceZ5wL82ghsmY9AKNLIeCejzDqmHefMtD_av5xko3Mxvkgvtlp9YU5YgAcOjDu0aSU56G3FKkSPk9oJm_iqyl0hhRAed1-weVvB1I-QfQWmbf0bk8nssGEcjGOEmzKEIKDkPUPU4vX_viv_gh_a2pzjx-RR5yzSMrzkE3LPz3bJw3Ky6AAz_C7ZG95WqgFpp6rNUzIe1dfU1b6hS2wsNPH0KmSrL2-obpM4aFNfTWlo62Sp1QsDrjct6S24Mw2FLc_I-fHw26dR1DVOiCwY_GWkJdeGJ4i-KBOT-ZTpFIJmlmkBTMxzYKDVYJiMtq7IcpsJhwWrSWWNdYnxfI_szOqZf04oszzXqNoewtcqdTqPDRMmyzmzuRXxgMRrLirboYpjc4upaqMLmanAeAWMV8h4VQzIx80j8wCp8SfiI1yaDSGiYbcXgDuqkxH1NxkZkNe4sCqUlm50WpXgvoK7Ay7ZgLxtKRARY4YpNxO9ahr1-ey0R_ShI6pqmKPVXQUDcApBtHqU-z1KUFnbu_1mLWEKb2Ge28zXq0bB7spBnBMBNMMger2pT1dzOAwcqvGKcVvwQqYqttIr4bxVRRrHyojKeZ4zp6t0QL7fMU6I7VQHKHXZjTff-lL8j4O_v2PwBt5QL_CEg8KcE_nifyzjS_IgQf1lScTkPtlZLlb-FbiES3NA7pfl-GwM56PhydfTg3Y3-Am6BWJG |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+does+tillage+intensity+affect+soil+organic+carbon%3F+A+systematic+review&rft.jtitle=Environmental+evidence&rft.au=Neal+R.+Haddaway&rft.au=Katarina+Hedlund&rft.au=Louise+E.+Jackson&rft.au=Thomas+K%C3%A4tterer&rft.date=2017-12-18&rft.pub=BMC&rft.eissn=2047-2382&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=48&rft_id=info:doi/10.1186%2Fs13750-017-0108-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c5f83000f1f04328ad4c2eff7d98444e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-2382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-2382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-2382&client=summon |