Parking Lot Vehicle Counting Using a Deep Convolutional Neural Network

This paper proposes a computer vision and deep learning-based technique for surveillance camera system for vehicle counting as one part of parking lot management system. We applied the You Only Look Once version 2 (YOLOv2) detector and come up with a deep convolutional neural network (CNN) based on...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of The Korea Institute of Intelligent Transport Systems Vol. 17; no. 5; pp. 173 - 187
Main Authors Lim, Kuoy Suong, Kwon, Jang woo
Format Journal Article
LanguageEnglish
Published 한국ITS학회 30.10.2018
Subjects
Online AccessGet full text
ISSN1738-0774
2384-1729
DOI10.12815/kits.2018.17.5.173

Cover

Abstract This paper proposes a computer vision and deep learning-based technique for surveillance camera system for vehicle counting as one part of parking lot management system. We applied the You Only Look Once version 2 (YOLOv2) detector and come up with a deep convolutional neural network (CNN) based on YOLOv2 with a different architecture and two models. The effectiveness of the proposed architecture is illustrated using a publicly available Udacity’s self-driving-car datasets. After training and testing, our proposed architecture with new models is able to obtain 64.30% mean average precision which is a better performance compare to the original architecture (YOLOv2) that achieved only 47.89% mean average precision on the detection of car, truck, and pedestrian. KCI Citation Count: 0
AbstractList This paper proposes a computer vision and deep learning-based technique for surveillance camera system for vehicle counting as one part of parking lot management system. We applied the You Only Look Once version 2 (YOLOv2) detector and come up with a deep convolutional neural network (CNN) based on YOLOv2 with a different architecture and two models. The effectiveness of the proposed architecture is illustrated using a publicly available Udacity’s self-driving-car datasets. After training and testing, our proposed architecture with new models is able to obtain 64.30% mean average precision which is a better performance compare to the original architecture (YOLOv2) that achieved only 47.89% mean average precision on the detection of car, truck, and pedestrian. KCI Citation Count: 0
Author Lim, Kuoy Suong
Kwon, Jang woo
Author_xml – sequence: 1
  givenname: Kuoy Suong
  surname: Lim
  fullname: Lim, Kuoy Suong
– sequence: 2
  givenname: Jang woo
  surname: Kwon
  fullname: Kwon, Jang woo
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002401020$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotkE9LwzAchoNMcM59Ai-9emjNL0mT7jjmv8FQkek1pFkyQ2sykk7x29t2Xt4HHl7ew3uJJj54g9A14AJIBeVt47pUEAxVAaIo-6BnaEpoxXIQZDFB095UORaCXaB5Sq7GlBOxwJhM0cOrio3z-2wTuuzDfDrdmmwVjr4b5HsaUmV3xhx6679De-xc8KrNns0xjuh-Qmyu0LlVbTLzf87Q9uF-u3rKNy-P69Vyk2tR4ZwDMxUIvSOa6V1tqGAlqJJSbEzNMLecUE2ACwBbcs6IoHXJtFaWm9pyTGfo5jTro5WNdjIoN3IfZBPl8m27llSIBR279NTVMaQUjZWH6L5U_JWA5XicHI6Tw3EShCz7oPQPjEJi0Q
ContentType Journal Article
CorporateAuthor Dept. of Computer Eng., Univ. of Inha
CorporateAuthor_xml – name: Dept. of Computer Eng., Univ. of Inha
DBID AAYXX
CITATION
ACYCR
DOI 10.12815/kits.2018.17.5.173
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2384-1729
EndPage 187
ExternalDocumentID oai_kci_go_kr_ARTI_3779360
10_12815_kits_2018_17_5_173
GroupedDBID .UV
AAYXX
CITATION
ACYCR
ID FETCH-LOGICAL-c780-614e817cd2c4cdbe37451a5330eeb406f623c216711f5664273b54ccaf6ebf603
ISSN 1738-0774
IngestDate Sat Jul 13 03:11:41 EDT 2024
Tue Jul 01 04:13:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c780-614e817cd2c4cdbe37451a5330eeb406f623c216711f5664273b54ccaf6ebf603
Notes http://journal.kits.or.kr/
PageCount 15
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_3779360
crossref_primary_10_12815_kits_2018_17_5_173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-30
PublicationDateYYYYMMDD 2018-10-30
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-30
  day: 30
PublicationDecade 2010
PublicationTitle The Journal of The Korea Institute of Intelligent Transport Systems
PublicationYear 2018
Publisher 한국ITS학회
Publisher_xml – name: 한국ITS학회
SSID ssib036279002
ssib053377138
ssib012146223
ssib023739049
ssib004698092
ssib008451679
ssib044738259
Score 2.0467389
Snippet This paper proposes a computer vision and deep learning-based technique for surveillance camera system for vehicle counting as one part of parking lot...
SourceID nrf
crossref
SourceType Open Website
Index Database
StartPage 173
SubjectTerms 전자/정보통신공학
Title Parking Lot Vehicle Counting Using a Deep Convolutional Neural Network
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002401020
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국ITS학회 논문지, 2018, 17(5), 79, pp.173-187
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25cIFgQBRWpCFuEGCHTtxfESoVR8qpwX1ZuXhQLXSplplQeXAb2fGdhOHIkS5JLterZN4JuPPnplvCHnNpC1hIsuSSrQ2kUK1SVk3LNFM5B3LNNMVLhTPPxbHn-TpRX6xWFxHUUvboU6bH3_MK_kfqUIbyBWzZO8g2bFTaIDPIF84goTh-E8yxpRll6XUD28-26_4s0syd6HMPhigAotirzCx71u4FZAJMnK4kwsBj_HplCnmMCp-PesBV86DCk5GHs9hYkefkZ9jiI-v03y27dE89WGGRNv-3Xv6TyvcB-77eOOBOxbY4EPxtlKBrWTKF9lJrWsDACATwER6ZmBVpEh5ZC25r2ISJl7uZ95bNj0rHf_F6nJAenVeplyleTr-N2bQ_m1mG-MNcaWD3RjsxGAnhiuTw0HskHuZUs7Df_7zMHL46pJFDucSCxpPDk2O9dAjZJUJJXTksARYoDSbmNWkhMGKVpoAsuGirs76OIyBEwvv893th53hpp31potg0PIheRB0g773yviILOz6MTkKikhBEWlQRHqjiNQpIq0oKiKdKSL1ikiDIj4hy6PD5YfjJBToSBpV4q4DvOhcNW3WyKatrVAwSBWGK1tbA1DsAFo3GQwb5x2sGiQg5TqXYDK6wtZdwcRTsrvu1_YZoVxVom5L3uSigCV0WdkOYBTXVucZwLhij7y9eXpz5WlYzF-EukdewQiZVXNpkD4dz196s9oYWCSeGOTYFAV7frc-98n96S04ILvDZmtfACAd6pdOdX4B8cd-jg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parking+Lot+Vehicle+Counting+Using+a+Deep+Convolutional+Neural+Network&rft.jtitle=The+Journal+of+The+Korea+Institute+of+Intelligent+Transport+Systems&rft.au=Lim%2C+Kuoy+Suong&rft.au=Kwon%2C+Jang+woo&rft.date=2018-10-30&rft.issn=1738-0774&rft.eissn=2384-1729&rft.volume=17&rft.issue=5&rft.spage=173&rft.epage=187&rft_id=info:doi/10.12815%2Fkits.2018.17.5.173&rft.externalDBID=n%2Fa&rft.externalDocID=10_12815_kits_2018_17_5_173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-0774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-0774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-0774&client=summon