Parking Lot Vehicle Counting Using a Deep Convolutional Neural Network
This paper proposes a computer vision and deep learning-based technique for surveillance camera system for vehicle counting as one part of parking lot management system. We applied the You Only Look Once version 2 (YOLOv2) detector and come up with a deep convolutional neural network (CNN) based on...
Saved in:
Published in | The Journal of The Korea Institute of Intelligent Transport Systems Vol. 17; no. 5; pp. 173 - 187 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
한국ITS학회
30.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1738-0774 2384-1729 |
DOI | 10.12815/kits.2018.17.5.173 |
Cover
Abstract | This paper proposes a computer vision and deep learning-based technique for surveillance camera system for vehicle counting as one part of parking lot management system. We applied the You Only Look Once version 2 (YOLOv2) detector and come up with a deep convolutional neural network (CNN) based on YOLOv2 with a different architecture and two models. The effectiveness of the proposed architecture is illustrated using a publicly available Udacity’s self-driving-car datasets. After training and testing, our proposed architecture with new models is able to obtain 64.30% mean average precision which is a better performance compare to the original architecture (YOLOv2) that achieved only 47.89% mean average precision on the detection of car, truck, and pedestrian. KCI Citation Count: 0 |
---|---|
AbstractList | This paper proposes a computer vision and deep learning-based technique for surveillance camera system for vehicle counting as one part of parking lot management system. We applied the You Only Look Once version 2 (YOLOv2) detector and come up with a deep convolutional neural network (CNN) based on YOLOv2 with a different architecture and two models. The effectiveness of the proposed architecture is illustrated using a publicly available Udacity’s self-driving-car datasets. After training and testing, our proposed architecture with new models is able to obtain 64.30% mean average precision which is a better performance compare to the original architecture (YOLOv2) that achieved only 47.89% mean average precision on the detection of car, truck, and pedestrian. KCI Citation Count: 0 |
Author | Lim, Kuoy Suong Kwon, Jang woo |
Author_xml | – sequence: 1 givenname: Kuoy Suong surname: Lim fullname: Lim, Kuoy Suong – sequence: 2 givenname: Jang woo surname: Kwon fullname: Kwon, Jang woo |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002401020$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNotkE9LwzAchoNMcM59Ai-9emjNL0mT7jjmv8FQkek1pFkyQ2sykk7x29t2Xt4HHl7ew3uJJj54g9A14AJIBeVt47pUEAxVAaIo-6BnaEpoxXIQZDFB095UORaCXaB5Sq7GlBOxwJhM0cOrio3z-2wTuuzDfDrdmmwVjr4b5HsaUmV3xhx6679De-xc8KrNns0xjuh-Qmyu0LlVbTLzf87Q9uF-u3rKNy-P69Vyk2tR4ZwDMxUIvSOa6V1tqGAlqJJSbEzNMLecUE2ACwBbcs6IoHXJtFaWm9pyTGfo5jTro5WNdjIoN3IfZBPl8m27llSIBR279NTVMaQUjZWH6L5U_JWA5XicHI6Tw3EShCz7oPQPjEJi0Q |
ContentType | Journal Article |
CorporateAuthor | Dept. of Computer Eng., Univ. of Inha |
CorporateAuthor_xml | – name: Dept. of Computer Eng., Univ. of Inha |
DBID | AAYXX CITATION ACYCR |
DOI | 10.12815/kits.2018.17.5.173 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2384-1729 |
EndPage | 187 |
ExternalDocumentID | oai_kci_go_kr_ARTI_3779360 10_12815_kits_2018_17_5_173 |
GroupedDBID | .UV AAYXX CITATION ACYCR |
ID | FETCH-LOGICAL-c780-614e817cd2c4cdbe37451a5330eeb406f623c216711f5664273b54ccaf6ebf603 |
ISSN | 1738-0774 |
IngestDate | Sat Jul 13 03:11:41 EDT 2024 Tue Jul 01 04:13:45 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c780-614e817cd2c4cdbe37451a5330eeb406f623c216711f5664273b54ccaf6ebf603 |
Notes | http://journal.kits.or.kr/ |
PageCount | 15 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_3779360 crossref_primary_10_12815_kits_2018_17_5_173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-30 |
PublicationDateYYYYMMDD | 2018-10-30 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-30 day: 30 |
PublicationDecade | 2010 |
PublicationTitle | The Journal of The Korea Institute of Intelligent Transport Systems |
PublicationYear | 2018 |
Publisher | 한국ITS학회 |
Publisher_xml | – name: 한국ITS학회 |
SSID | ssib036279002 ssib053377138 ssib012146223 ssib023739049 ssib004698092 ssib008451679 ssib044738259 |
Score | 2.0467389 |
Snippet | This paper proposes a computer vision and deep learning-based technique for surveillance camera system for vehicle counting as one part of parking lot... |
SourceID | nrf crossref |
SourceType | Open Website Index Database |
StartPage | 173 |
SubjectTerms | 전자/정보통신공학 |
Title | Parking Lot Vehicle Counting Using a Deep Convolutional Neural Network |
URI | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002401020 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 한국ITS학회 논문지, 2018, 17(5), 79, pp.173-187 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25cIFgQBRWpCFuEGCHTtxfESoVR8qpwX1ZuXhQLXSplplQeXAb2fGdhOHIkS5JLterZN4JuPPnplvCHnNpC1hIsuSSrQ2kUK1SVk3LNFM5B3LNNMVLhTPPxbHn-TpRX6xWFxHUUvboU6bH3_MK_kfqUIbyBWzZO8g2bFTaIDPIF84goTh-E8yxpRll6XUD28-26_4s0syd6HMPhigAotirzCx71u4FZAJMnK4kwsBj_HplCnmMCp-PesBV86DCk5GHs9hYkefkZ9jiI-v03y27dE89WGGRNv-3Xv6TyvcB-77eOOBOxbY4EPxtlKBrWTKF9lJrWsDACATwER6ZmBVpEh5ZC25r2ISJl7uZ95bNj0rHf_F6nJAenVeplyleTr-N2bQ_m1mG-MNcaWD3RjsxGAnhiuTw0HskHuZUs7Df_7zMHL46pJFDucSCxpPDk2O9dAjZJUJJXTksARYoDSbmNWkhMGKVpoAsuGirs76OIyBEwvv893th53hpp31potg0PIheRB0g773yviILOz6MTkKikhBEWlQRHqjiNQpIq0oKiKdKSL1ikiDIj4hy6PD5YfjJBToSBpV4q4DvOhcNW3WyKatrVAwSBWGK1tbA1DsAFo3GQwb5x2sGiQg5TqXYDK6wtZdwcRTsrvu1_YZoVxVom5L3uSigCV0WdkOYBTXVucZwLhij7y9eXpz5WlYzF-EukdewQiZVXNpkD4dz196s9oYWCSeGOTYFAV7frc-98n96S04ILvDZmtfACAd6pdOdX4B8cd-jg |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parking+Lot+Vehicle+Counting+Using+a+Deep+Convolutional+Neural+Network&rft.jtitle=The+Journal+of+The+Korea+Institute+of+Intelligent+Transport+Systems&rft.au=Lim%2C+Kuoy+Suong&rft.au=Kwon%2C+Jang+woo&rft.date=2018-10-30&rft.issn=1738-0774&rft.eissn=2384-1729&rft.volume=17&rft.issue=5&rft.spage=173&rft.epage=187&rft_id=info:doi/10.12815%2Fkits.2018.17.5.173&rft.externalDBID=n%2Fa&rft.externalDocID=10_12815_kits_2018_17_5_173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-0774&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-0774&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-0774&client=summon |