Uniqueness in an inverse problem for a system of coupled Schrödinger equations with Dirichlet-Neumann boundary Conditions

When modeling a phenomenon using partial differential equations, the physical/ mechanical/ biological parameters involved are not necessarily well known. However, the resolution of these equations, which is the subject of the direct problem, can only be done if all the data of the system are identif...

Full description

Saved in:
Bibliographic Details
Published inSTUDIES IN ENGINEERING AND EXACT SCIENCES Vol. 5; no. 2; p. e11620
Main Author Atef, Saci
Format Journal Article
LanguageEnglish
Published 05.12.2024
Online AccessGet full text
ISSN2764-0981
2764-0981
DOI10.54021/seesv5n2-639

Cover

Loading…
Abstract When modeling a phenomenon using partial differential equations, the physical/ mechanical/ biological parameters involved are not necessarily well known. However, the resolution of these equations, which is the subject of the direct problem, can only be done if all the data of the system are identified (initial and boundary conditions, coefficients involved in the equations, spatial domain, etc.). If this is not the case, additional information, via experimental measurements for example, is then necessary to determine them. The mathematical notion of an inverse problem consists of the possibility of finding the value of a parameter from partial measurements (localized, for a given time, possibly repeated) on the solution of the system considered. This article concerns the inverse problem of the recovery of two unknown potential coeffcients for a coupled system of two Schrödinger equations, in a bounded domain of  with Dirichlet-Neumann boundary conditions from a Neumann-Dirichlet boundary measurement. We prove uniqueness for this inverse problem under certain convexity hypothesis on the geometry of the interior domain and under weak regularity requirements on the data. Our proof relies on sharp Carleman estimates in (LASIECKA et al., 2004) for Schrödinger equations.
AbstractList When modeling a phenomenon using partial differential equations, the physical/ mechanical/ biological parameters involved are not necessarily well known. However, the resolution of these equations, which is the subject of the direct problem, can only be done if all the data of the system are identified (initial and boundary conditions, coefficients involved in the equations, spatial domain, etc.). If this is not the case, additional information, via experimental measurements for example, is then necessary to determine them. The mathematical notion of an inverse problem consists of the possibility of finding the value of a parameter from partial measurements (localized, for a given time, possibly repeated) on the solution of the system considered. This article concerns the inverse problem of the recovery of two unknown potential coeffcients for a coupled system of two Schrödinger equations, in a bounded domain of  with Dirichlet-Neumann boundary conditions from a Neumann-Dirichlet boundary measurement. We prove uniqueness for this inverse problem under certain convexity hypothesis on the geometry of the interior domain and under weak regularity requirements on the data. Our proof relies on sharp Carleman estimates in (LASIECKA et al., 2004) for Schrödinger equations.
Author Atef, Saci
Author_xml – sequence: 1
  givenname: Saci
  surname: Atef
  fullname: Atef, Saci
BookMark eNpNkMtKAzEUhoMoWGuX7vMC0cxkJpkspV6h6MK6HnI5sYFp0iYzlfpgvoAv5lAV3PwX-DkcvjN0HGIAhC4KellXtCyuMkDe1aEknMkjNCkFrwiVTXH8L5-iWc5e05oKJimtJ-jjNfjtAAFyxj5gFUbdQcqANynqDtbYxYQVzvvcjyU6bOKw6cDiF7NKX5_WhzdIGLaD6n0MGb_7foVvfPJm1UFPnmBYqxCwjkOwKu3xPAbrD9NzdOJUl2H261O0vLtdzh_I4vn-cX69IEYISXTDOQVdVoI55YrKWSlKwx3jwJlpKHCg1NqGl1oL7iQDIx04p2ihtaQ1myLyc9akmHMC126SX4-vtAVtD-jaP3TtiI59A3LMaV0
Cites_doi 10.1016/j.jfa.2009.06.010
10.1088/0266-5611/8/4/009
10.1515/9783110745481
10.1088/0266-5611/28/9/095009
10.1515/156939404773972761
10.1088/0266-5611/24/1/015017
10.1088/1361-6420/ab0b6a
10.1007/978-4-431-56600-7
10.1090/conm/268/04315
10.1515/jiip-2014-0003
10.1088/0266-5611/18/6/307
10.1515/jiip.2011.030
10.1007/BF01460996
10.1088/0266-5611/12/6/013
10.21494/ISTE.OP.2023.0906
10.1088/0266-5611/17/4/310
10.1007/s11401-011-0672-1
10.1201/9781482273618-15
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.54021/seesv5n2-639
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2764-0981
ExternalDocumentID 10_54021_seesv5n2_639
GroupedDBID AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c779-b8660eb2473faf14fd972c6f36e63c80e6e00dd862bb76f93ec9feffa01bb9053
ISSN 2764-0981
IngestDate Tue Jul 01 04:32:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c779-b8660eb2473faf14fd972c6f36e63c80e6e00dd862bb76f93ec9feffa01bb9053
OpenAccessLink https://doi.org/10.54021/seesv5n2-639
ParticipantIDs crossref_primary_10_54021_seesv5n2_639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-05
PublicationDateYYYYMMDD 2024-12-05
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-05
  day: 05
PublicationDecade 2020
PublicationTitle STUDIES IN ENGINEERING AND EXACT SCIENCES
PublicationYear 2024
References 193280
193267
193278
193268
193279
193269
193270
193281
193260
193271
193282
193261
193272
193262
193273
193263
193274
193264
193275
193265
193276
193266
193277
References_xml – ident: 193261
  doi: 10.1016/j.jfa.2009.06.010
– ident: 193270
  doi: 10.1088/0266-5611/8/4/009
– ident: 193271
  doi: 10.1515/9783110745481
– ident: 193262
  doi: 10.1088/0266-5611/28/9/095009
– ident: 193274
  doi: 10.1515/156939404773972761
– ident: 193277
  doi: 10.1088/0266-5611/24/1/015017
– ident: 193266
  doi: 10.1088/1361-6420/ab0b6a
– ident: 193265
– ident: 193263
  doi: 10.1007/978-4-431-56600-7
– ident: 193273
  doi: 10.1090/conm/268/04315
– ident: 193282
  doi: 10.1515/jiip-2014-0003
– ident: 193260
  doi: 10.1088/0266-5611/18/6/307
– ident: 193275
  doi: 10.1515/jiip.2011.030
– ident: 193278
  doi: 10.1007/BF01460996
– ident: 193269
– ident: 193279
  doi: 10.1088/0266-5611/12/6/013
– ident: 193280
  doi: 10.21494/ISTE.OP.2023.0906
– ident: 193268
– ident: 193281
– ident: 193264
– ident: 193267
  doi: 10.1088/0266-5611/17/4/310
– ident: 193276
  doi: 10.1007/s11401-011-0672-1
– ident: 193272
  doi: 10.1201/9781482273618-15
SSID ssib050739005
Score 1.8940775
Snippet When modeling a phenomenon using partial differential equations, the physical/ mechanical/ biological parameters involved are not necessarily well known....
SourceID crossref
SourceType Index Database
StartPage e11620
Title Uniqueness in an inverse problem for a system of coupled Schrödinger equations with Dirichlet-Neumann boundary Conditions
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LThsxFLVauummKipV3_KiYoOGejwz9swyRUG0EqyClF3kx7WI1A4UEhYs-Cx-gB_r9WMeLVnQbqzIylijnKOT6-t7jwn5rG3FLFInK7RTWWlww6pqaREQ7c3Tc8UL3zt8fCKOTsvv82o-FGSG7pKV3jc3G_tK_gdVnENcfZfsPyDbL4oT-BnxxRERxvFRGJ8G99UgVktfVIyjr7LwvU_hmphYIpncmmMB-frihw8xzVk4Iv8qbDQihF_rVBMXErMohEtzhpB6846fqm33dLh-6dILiD_k7rN8Ka5NgeXet5OxVVXwrprOJwezLpnVh56TFbiYkTbLceaBB39DVg0CxaUoM9bEK1f2YcNcUthqRCQ-UkvIcxFa4R4IOcaR3Cv5FcDVddXyTETLoz8Ns__6I-vLC3FjExZYdI8v8PGn5BmXMhzlH99OO82p_EklC5Wu_atHK9awwpfxC4xCl1EMMntJXqTNA51EJmyTJ9C-IjcDC-iypaqliQU0sYAiC6iikQX03NHEAupZcH8XGUB7BlDPAPqAAbRjAB0YsENmh9PZwVGWbtTIjJRNpmshGGheysIpl5fONpIb4QoBojA1AwGMWYubXK2lcE0BpnHgnGK51g3K9Wuy1Z638IZQ630mlRaqFr65Om-g4LauNVPgCmb4W7Lb_VaLi-ibstgIy7vHfvE9eT6Q8APZWl2u4SMGhCv9KSD6G6x9Zic
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniqueness+in+an+inverse+problem+for+a+system+of+coupled+Schr%C3%B6dinger+equations+with+Dirichlet-Neumann+boundary+Conditions&rft.jtitle=STUDIES+IN+ENGINEERING+AND+EXACT+SCIENCES&rft.au=Atef%2C+Saci&rft.date=2024-12-05&rft.issn=2764-0981&rft.eissn=2764-0981&rft.volume=5&rft.issue=2&rft.spage=e11620&rft_id=info:doi/10.54021%2Fseesv5n2-639&rft.externalDBID=n%2Fa&rft.externalDocID=10_54021_seesv5n2_639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2764-0981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2764-0981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2764-0981&client=summon