Uniqueness in an inverse problem for a system of coupled Schrödinger equations with Dirichlet-Neumann boundary Conditions
When modeling a phenomenon using partial differential equations, the physical/ mechanical/ biological parameters involved are not necessarily well known. However, the resolution of these equations, which is the subject of the direct problem, can only be done if all the data of the system are identif...
Saved in:
Published in | STUDIES IN ENGINEERING AND EXACT SCIENCES Vol. 5; no. 2; p. e11620 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
05.12.2024
|
Online Access | Get full text |
ISSN | 2764-0981 2764-0981 |
DOI | 10.54021/seesv5n2-639 |
Cover
Loading…
Abstract | When modeling a phenomenon using partial differential equations, the physical/ mechanical/ biological parameters involved are not necessarily well known. However, the resolution of these equations, which is the subject of the direct problem, can only be done if all the data of the system are identified (initial and boundary conditions, coefficients involved in the equations, spatial domain, etc.). If this is not the case, additional information, via experimental measurements for example, is then necessary to determine them. The mathematical notion of an inverse problem consists of the possibility of finding the value of a parameter from partial measurements (localized, for a given time, possibly repeated) on the solution of the system considered. This article concerns the inverse problem of the recovery of two unknown potential coeffcients for a coupled system of two Schrödinger equations, in a bounded domain of with Dirichlet-Neumann boundary conditions from a Neumann-Dirichlet boundary measurement. We prove uniqueness for this inverse problem under certain convexity hypothesis on the geometry of the interior domain and under weak regularity requirements on the data. Our proof relies on sharp Carleman estimates in (LASIECKA et al., 2004) for Schrödinger equations. |
---|---|
AbstractList | When modeling a phenomenon using partial differential equations, the physical/ mechanical/ biological parameters involved are not necessarily well known. However, the resolution of these equations, which is the subject of the direct problem, can only be done if all the data of the system are identified (initial and boundary conditions, coefficients involved in the equations, spatial domain, etc.). If this is not the case, additional information, via experimental measurements for example, is then necessary to determine them. The mathematical notion of an inverse problem consists of the possibility of finding the value of a parameter from partial measurements (localized, for a given time, possibly repeated) on the solution of the system considered. This article concerns the inverse problem of the recovery of two unknown potential coeffcients for a coupled system of two Schrödinger equations, in a bounded domain of with Dirichlet-Neumann boundary conditions from a Neumann-Dirichlet boundary measurement. We prove uniqueness for this inverse problem under certain convexity hypothesis on the geometry of the interior domain and under weak regularity requirements on the data. Our proof relies on sharp Carleman estimates in (LASIECKA et al., 2004) for Schrödinger equations. |
Author | Atef, Saci |
Author_xml | – sequence: 1 givenname: Saci surname: Atef fullname: Atef, Saci |
BookMark | eNpNkMtKAzEUhoMoWGuX7vMC0cxkJpkspV6h6MK6HnI5sYFp0iYzlfpgvoAv5lAV3PwX-DkcvjN0HGIAhC4KellXtCyuMkDe1aEknMkjNCkFrwiVTXH8L5-iWc5e05oKJimtJ-jjNfjtAAFyxj5gFUbdQcqANynqDtbYxYQVzvvcjyU6bOKw6cDiF7NKX5_WhzdIGLaD6n0MGb_7foVvfPJm1UFPnmBYqxCwjkOwKu3xPAbrD9NzdOJUl2H261O0vLtdzh_I4vn-cX69IEYISXTDOQVdVoI55YrKWSlKwx3jwJlpKHCg1NqGl1oL7iQDIx04p2ihtaQ1myLyc9akmHMC126SX4-vtAVtD-jaP3TtiI59A3LMaV0 |
Cites_doi | 10.1016/j.jfa.2009.06.010 10.1088/0266-5611/8/4/009 10.1515/9783110745481 10.1088/0266-5611/28/9/095009 10.1515/156939404773972761 10.1088/0266-5611/24/1/015017 10.1088/1361-6420/ab0b6a 10.1007/978-4-431-56600-7 10.1090/conm/268/04315 10.1515/jiip-2014-0003 10.1088/0266-5611/18/6/307 10.1515/jiip.2011.030 10.1007/BF01460996 10.1088/0266-5611/12/6/013 10.21494/ISTE.OP.2023.0906 10.1088/0266-5611/17/4/310 10.1007/s11401-011-0672-1 10.1201/9781482273618-15 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.54021/seesv5n2-639 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2764-0981 |
ExternalDocumentID | 10_54021_seesv5n2_639 |
GroupedDBID | AAYXX CITATION M~E |
ID | FETCH-LOGICAL-c779-b8660eb2473faf14fd972c6f36e63c80e6e00dd862bb76f93ec9feffa01bb9053 |
ISSN | 2764-0981 |
IngestDate | Tue Jul 01 04:32:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c779-b8660eb2473faf14fd972c6f36e63c80e6e00dd862bb76f93ec9feffa01bb9053 |
OpenAccessLink | https://doi.org/10.54021/seesv5n2-639 |
ParticipantIDs | crossref_primary_10_54021_seesv5n2_639 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-05 |
PublicationDateYYYYMMDD | 2024-12-05 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | STUDIES IN ENGINEERING AND EXACT SCIENCES |
PublicationYear | 2024 |
References | 193280 193267 193278 193268 193279 193269 193270 193281 193260 193271 193282 193261 193272 193262 193273 193263 193274 193264 193275 193265 193276 193266 193277 |
References_xml | – ident: 193261 doi: 10.1016/j.jfa.2009.06.010 – ident: 193270 doi: 10.1088/0266-5611/8/4/009 – ident: 193271 doi: 10.1515/9783110745481 – ident: 193262 doi: 10.1088/0266-5611/28/9/095009 – ident: 193274 doi: 10.1515/156939404773972761 – ident: 193277 doi: 10.1088/0266-5611/24/1/015017 – ident: 193266 doi: 10.1088/1361-6420/ab0b6a – ident: 193265 – ident: 193263 doi: 10.1007/978-4-431-56600-7 – ident: 193273 doi: 10.1090/conm/268/04315 – ident: 193282 doi: 10.1515/jiip-2014-0003 – ident: 193260 doi: 10.1088/0266-5611/18/6/307 – ident: 193275 doi: 10.1515/jiip.2011.030 – ident: 193278 doi: 10.1007/BF01460996 – ident: 193269 – ident: 193279 doi: 10.1088/0266-5611/12/6/013 – ident: 193280 doi: 10.21494/ISTE.OP.2023.0906 – ident: 193268 – ident: 193281 – ident: 193264 – ident: 193267 doi: 10.1088/0266-5611/17/4/310 – ident: 193276 doi: 10.1007/s11401-011-0672-1 – ident: 193272 doi: 10.1201/9781482273618-15 |
SSID | ssib050739005 |
Score | 1.8940775 |
Snippet | When modeling a phenomenon using partial differential equations, the physical/ mechanical/ biological parameters involved are not necessarily well known.... |
SourceID | crossref |
SourceType | Index Database |
StartPage | e11620 |
Title | Uniqueness in an inverse problem for a system of coupled Schrödinger equations with Dirichlet-Neumann boundary Conditions |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LThsxFLVauummKipV3_KiYoOGejwz9swyRUG0EqyClF3kx7WI1A4UEhYs-Cx-gB_r9WMeLVnQbqzIylijnKOT6-t7jwn5rG3FLFInK7RTWWlww6pqaREQ7c3Tc8UL3zt8fCKOTsvv82o-FGSG7pKV3jc3G_tK_gdVnENcfZfsPyDbL4oT-BnxxRERxvFRGJ8G99UgVktfVIyjr7LwvU_hmphYIpncmmMB-frihw8xzVk4Iv8qbDQihF_rVBMXErMohEtzhpB6846fqm33dLh-6dILiD_k7rN8Ka5NgeXet5OxVVXwrprOJwezLpnVh56TFbiYkTbLceaBB39DVg0CxaUoM9bEK1f2YcNcUthqRCQ-UkvIcxFa4R4IOcaR3Cv5FcDVddXyTETLoz8Ns__6I-vLC3FjExZYdI8v8PGn5BmXMhzlH99OO82p_EklC5Wu_atHK9awwpfxC4xCl1EMMntJXqTNA51EJmyTJ9C-IjcDC-iypaqliQU0sYAiC6iikQX03NHEAupZcH8XGUB7BlDPAPqAAbRjAB0YsENmh9PZwVGWbtTIjJRNpmshGGheysIpl5fONpIb4QoBojA1AwGMWYubXK2lcE0BpnHgnGK51g3K9Wuy1Z638IZQ630mlRaqFr65Om-g4LauNVPgCmb4W7Lb_VaLi-ibstgIy7vHfvE9eT6Q8APZWl2u4SMGhCv9KSD6G6x9Zic |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniqueness+in+an+inverse+problem+for+a+system+of+coupled+Schr%C3%B6dinger+equations+with+Dirichlet-Neumann+boundary+Conditions&rft.jtitle=STUDIES+IN+ENGINEERING+AND+EXACT+SCIENCES&rft.au=Atef%2C+Saci&rft.date=2024-12-05&rft.issn=2764-0981&rft.eissn=2764-0981&rft.volume=5&rft.issue=2&rft.spage=e11620&rft_id=info:doi/10.54021%2Fseesv5n2-639&rft.externalDBID=n%2Fa&rft.externalDocID=10_54021_seesv5n2_639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2764-0981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2764-0981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2764-0981&client=summon |