Evolutionary consequences of self-fertilization in plants

The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10–15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an ‘evolutionary dead end’. According to this hypothe...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 280; no. 1760; p. 20130133
Main Authors Wright, Stephen I., Kalisz, Susan, Slotte, Tanja
Format Journal Article
LanguageEnglish
Published England The Royal Society 07.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10–15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an ‘evolutionary dead end’. According to this hypothesis, transitions from outcrossing to selfing are irreversible, and selfing lineages suffer from an increased risk of extinction owing to a reduced potential for adaptation. Thus, although selfing can be advantageous in the short term, selfing lineages may be mostly short-lived owing to higher extinction rates. Here, we review recent results relevant to the ‘dead-end hypothesis’ of selfing and the maintenance of outcrossing over longer evolutionary time periods. In particular, we highlight recent results regarding diversification rates in self-incompatible and self-compatible taxa, and review evidence regarding the accumulation of deleterious mutations in selfing lineages. We conclude that while some aspects of the hypothesis of selfing as a dead end are supported by theory and empirical results, the evolutionary and ecological mechanisms remain unclear. We highlight the need for more studies on the effects of quantitative changes in outcrossing rates and on the potential for adaptation, particularly in selfing plants. In addition, there is growing evidence that transitions to selfing may themselves be drivers of speciation, and future studies of diversification and speciation should investigate this further.
AbstractList The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10-15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an 'evolutionary dead end'. According to this hypothesis, transitions from outcrossing to selfing are irreversible, and selfing lineages suffer from an increased risk of extinction owing to a reduced potential for adaptation. Thus, although selfing can be advantageous in the short term, selfing lineages may be mostly short-lived owing to higher extinction rates. Here, we review recent results relevant to the 'dead-end hypothesis' of selfing and the maintenance of outcrossing over longer evolutionary time periods. In particular, we highlight recent results regarding diversification rates in self-incompatible and self-compatible taxa, and review evidence regarding the accumulation of deleterious mutations in selfing lineages. We conclude that while some aspects of the hypothesis of selfing as a dead end are supported by theory and empirical results, the evolutionary and ecological mechanisms remain unclear. We highlight the need for more studies on the effects of quantitative changes in outcrossing rates and on the potential for adaptation, particularly in selfing plants. In addition, there is growing evidence that transitions to selfing may themselves be drivers of speciation, and future studies of diversification and speciation should investigate this further.The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10-15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an 'evolutionary dead end'. According to this hypothesis, transitions from outcrossing to selfing are irreversible, and selfing lineages suffer from an increased risk of extinction owing to a reduced potential for adaptation. Thus, although selfing can be advantageous in the short term, selfing lineages may be mostly short-lived owing to higher extinction rates. Here, we review recent results relevant to the 'dead-end hypothesis' of selfing and the maintenance of outcrossing over longer evolutionary time periods. In particular, we highlight recent results regarding diversification rates in self-incompatible and self-compatible taxa, and review evidence regarding the accumulation of deleterious mutations in selfing lineages. We conclude that while some aspects of the hypothesis of selfing as a dead end are supported by theory and empirical results, the evolutionary and ecological mechanisms remain unclear. We highlight the need for more studies on the effects of quantitative changes in outcrossing rates and on the potential for adaptation, particularly in selfing plants. In addition, there is growing evidence that transitions to selfing may themselves be drivers of speciation, and future studies of diversification and speciation should investigate this further.
The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10-15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an 'evolutionary dead end'. According to this hypothesis, transitions from outcrossing to selfing are irreversible, and selfing lineages suffer from an increased risk of extinction owing to a reduced potential for adaptation. Thus, although selfing can be advantageous in the short term, selfing lineages may be mostly short-lived owing to higher extinction rates. Here, we review recent results relevant to the 'dead-end hypothesis' of selfing and the maintenance of outcrossing over longer evolutionary time periods. In particular, we highlight recent results regarding diversification rates in self-incompatible and self-compatible taxa, and review evidence regarding the accumulation of deleterious mutations in selfing lineages. We conclude that while some aspects of the hypothesis of selfing as a dead end are supported by theory and empirical results, the evolutionary and ecological mechanisms remain unclear. We highlight the need for more studies on the effects of quantitative changes in outcrossing rates and on the potential for adaptation, particularly in selfing plants. In addition, there is growing evidence that transitions to selfing may themselves be drivers of speciation, and future studies of diversification and speciation should investigate this further.
Author Kalisz, Susan
Slotte, Tanja
Wright, Stephen I.
AuthorAffiliation 1 Department of Ecology and Evolutionary Biology , University of Toronto , Toronto , Canada
2 Department of Biological Sciences , University of Pittsburgh , Pittsburgh, PA , USA
4 Science for Life Laboratory , Uppsala University , Uppsala , Sweden
3 Department of Evolutionary Biology, Evolutionary Biology Centre (EBC) , Uppsala University , Uppsala , Sweden
AuthorAffiliation_xml – name: 1 Department of Ecology and Evolutionary Biology , University of Toronto , Toronto , Canada
– name: 2 Department of Biological Sciences , University of Pittsburgh , Pittsburgh, PA , USA
– name: 4 Science for Life Laboratory , Uppsala University , Uppsala , Sweden
– name: 3 Department of Evolutionary Biology, Evolutionary Biology Centre (EBC) , Uppsala University , Uppsala , Sweden
Author_xml – sequence: 1
  givenname: Stephen I.
  surname: Wright
  fullname: Wright, Stephen I.
  email: stephen.wright@utoronto.ca
  organization: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
– sequence: 2
  givenname: Susan
  surname: Kalisz
  fullname: Kalisz, Susan
  organization: Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 3
  givenname: Tanja
  surname: Slotte
  fullname: Slotte, Tanja
  email: tanja.slotte@ebc.uu.se
  organization: Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23595268$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-200847$$DView record from Swedish Publication Index
BookMark eNp9Uctu1DAUtVARnRa2LNEsWZDBj_iRDVIZWgapAsSjsLvKOE5xm7GDnUyZfj1OM60YUFlYluXzuPecA7TnvDMIPSV4RnChXobYLmcUEzZLhz1AE5JLktEi53toggtBM5Vzuo8OYrzAGBdc8UdonzJecCrUBBXHa9_0nfWuDJup9i6an71x2sSpr6fRNHVWm9DZxl6XA2pq3bRtStfFx-hhXTbRPNneh-jryfGX-SI7_fD23fzoNNNSqi5TS2GMUiXWjLBKcMlLijGTFa2IYjWmVcW1oqwQaSKDa6x4URNTi5wzKoRih-jFqBuvTNsvoQ12lWYFX1p4Y8-OwIdz6HtIqiqXCf5qhCfsylTauC6UzQ5r98fZH3Du18AEpznnSeD5ViD4FEXsYGWjNk1a2vg-QoqZpCElGaDP_vS6M7mNNwHyEaCDjzGYGrTtbnJM1rYBgmFoEYYWYWgRhhYTbfYX7Vb5XsLlSAh-k7rw2ppuAxe-Dy494dPnj6_XVGFLpMCAVVpA5ClduLbtVkphsDH2Bm4gu_L_urH_ud07YzaybOzMr7uNynAJQjLJ4UzlMP9G3i_UgsN39hubVOKq
CitedBy_id crossref_primary_10_1111_mec_16207
crossref_primary_10_3732_ajb_1500147
crossref_primary_10_1101_cshperspect_a041426
crossref_primary_10_18006_2021_9_4__417_431
crossref_primary_10_1007_s00606_018_1520_5
crossref_primary_10_1016_j_tig_2016_01_004
crossref_primary_10_1073_pnas_2203228120
crossref_primary_10_3732_ajb_1700038
crossref_primary_10_3120_0024_9637_65_1_22
crossref_primary_10_1086_713669
crossref_primary_10_1093_aob_mcy167
crossref_primary_10_1111_mec_15593
crossref_primary_10_1016_j_ympev_2019_106554
crossref_primary_10_1093_aob_mcx197
crossref_primary_10_1038_s41598_024_57655_1
crossref_primary_10_1093_botlinnean_boab051
crossref_primary_10_1038_s41437_019_0254_7
crossref_primary_10_1093_aob_mcab007
crossref_primary_10_1093_pcp_pcae110
crossref_primary_10_1093_evolut_qpad016
crossref_primary_10_1002_ajb2_1107
crossref_primary_10_7717_peerj_10698
crossref_primary_10_1111_jeb_12460
crossref_primary_10_1093_jeb_voaf009
crossref_primary_10_1086_705020
crossref_primary_10_1038_s41437_018_0081_2
crossref_primary_10_1111_jeb_12343
crossref_primary_10_3389_fmars_2022_950795
crossref_primary_10_29121_granthaalayah_v9_i8_2021_4122
crossref_primary_10_1038_s41437_021_00489_8
crossref_primary_10_1016_j_pbi_2014_01_001
crossref_primary_10_1098_rsos_191720
crossref_primary_10_1111_tpj_17064
crossref_primary_10_3390_horticulturae9040440
crossref_primary_10_1098_rspb_2024_0586
crossref_primary_10_1111_mec_14484
crossref_primary_10_1186_s12870_024_05970_0
crossref_primary_10_1007_s12229_023_09295_9
crossref_primary_10_1093_beheco_ary131
crossref_primary_10_3389_fpls_2022_794171
crossref_primary_10_1093_aob_mcw203
crossref_primary_10_1007_s00606_015_1210_5
crossref_primary_10_1111_evo_14304
crossref_primary_10_1016_j_cub_2016_11_030
crossref_primary_10_1093_aob_mcx098
crossref_primary_10_3390_plants12091761
crossref_primary_10_1093_molbev_msac193
crossref_primary_10_3389_fmars_2022_1051838
crossref_primary_10_1111_evo_12937
crossref_primary_10_1093_evolut_qpac029
crossref_primary_10_1002_ece3_2482
crossref_primary_10_1016_j_jnc_2021_126120
crossref_primary_10_1038_hdy_2016_1
crossref_primary_10_1371_journal_pgen_1004410
crossref_primary_10_3389_fpls_2020_00251
crossref_primary_10_1093_gbe_evu099
crossref_primary_10_1038_s41437_021_00465_2
crossref_primary_10_1111_evo_13222
crossref_primary_10_1038_s41437_018_0065_2
crossref_primary_10_1038_s41437_021_00442_9
crossref_primary_10_1111_evo_13587
crossref_primary_10_1093_molbev_msw044
crossref_primary_10_1111_nph_13636
crossref_primary_10_1111_jpy_13457
crossref_primary_10_1093_plcell_koab200
crossref_primary_10_1111_nph_18477
crossref_primary_10_1007_s12224_015_9207_y
crossref_primary_10_1002_ece3_2134
crossref_primary_10_1111_mec_16646
crossref_primary_10_3732_ajb_1500108
crossref_primary_10_1007_s00265_020_2816_3
crossref_primary_10_1111_evo_14042
crossref_primary_10_1111_evo_12660
crossref_primary_10_1098_rstb_2020_0510
crossref_primary_10_1111_evo_12780
crossref_primary_10_1111_jeb_13901
crossref_primary_10_1038_s41598_024_62065_4
crossref_primary_10_1002_ece3_10538
crossref_primary_10_1016_j_molp_2016_04_016
crossref_primary_10_1093_sysbio_syv062
crossref_primary_10_1111_jeb_12380
crossref_primary_10_1111_jeb_12384
crossref_primary_10_1016_j_pbi_2016_02_006
crossref_primary_10_1371_journal_pgen_1010353
crossref_primary_10_1111_plb_13049
crossref_primary_10_1111_mec_12708
crossref_primary_10_1111_dgd_12578
crossref_primary_10_1111_nph_13212
crossref_primary_10_1016_j_devcel_2017_11_022
crossref_primary_10_1093_aob_mcac142
crossref_primary_10_3732_ajb_1600079
crossref_primary_10_1894_0038_4909_65_2_116
crossref_primary_10_1086_690009
crossref_primary_10_1111_nph_16396
crossref_primary_10_1111_nph_16035
crossref_primary_10_1111_mec_16623
crossref_primary_10_1111_jeb_12356
crossref_primary_10_1371_journal_pgen_1009477
crossref_primary_10_3390_plants14030476
crossref_primary_10_1007_s10592_016_0883_9
crossref_primary_10_1016_j_xplc_2023_100571
crossref_primary_10_1371_journal_pgen_1011312
crossref_primary_10_1111_evo_14620
crossref_primary_10_1186_s12862_014_0243_7
crossref_primary_10_1016_j_cub_2019_06_015
crossref_primary_10_1111_evo_13308
crossref_primary_10_1186_s13007_019_0433_9
crossref_primary_10_1002_ece3_2280
crossref_primary_10_1111_mec_13221
crossref_primary_10_1186_s12870_018_1498_8
crossref_primary_10_1093_plphys_kiae375
crossref_primary_10_1038_ncomms8960
crossref_primary_10_1111_evo_14194
crossref_primary_10_1002_ajb2_16150
crossref_primary_10_1111_evo_13420
crossref_primary_10_1002_tax_12791
crossref_primary_10_2179_0008_7475_86_1_1
crossref_primary_10_1093_aob_mcac044
crossref_primary_10_1093_bfgp_elu009
crossref_primary_10_1111_evo_13663
crossref_primary_10_1093_emph_eow030
crossref_primary_10_1111_evo_13789
crossref_primary_10_1007_s00497_024_00517_7
crossref_primary_10_1007_s13595_019_0797_z
crossref_primary_10_1038_s41437_023_00649_y
crossref_primary_10_1111_mec_14426
crossref_primary_10_1590_2175_7860201667201
crossref_primary_10_1016_j_tree_2014_01_002
crossref_primary_10_1111_jeb_13381
crossref_primary_10_1016_j_ympev_2018_02_025
crossref_primary_10_1017_S0960258517000058
crossref_primary_10_1111_evo_13394
crossref_primary_10_1111_evo_14480
crossref_primary_10_1111_jeb_12734
crossref_primary_10_1093_aobpla_plv122
crossref_primary_10_1016_j_cell_2019_07_038
crossref_primary_10_1093_molbev_msv121
crossref_primary_10_1093_aobpla_ply060
crossref_primary_10_1098_rspb_2013_0913
crossref_primary_10_1111_eva_13547
crossref_primary_10_1007_s11295_019_1336_7
crossref_primary_10_1086_696856
crossref_primary_10_1111_1755_0998_12284
crossref_primary_10_26786_1920_7603_2018_three
crossref_primary_10_1111_jeb_14122
crossref_primary_10_1007_s10265_018_1076_z
crossref_primary_10_1111_1365_2745_12524
crossref_primary_10_1002_ajb2_1861
crossref_primary_10_1007_s12225_020_9870_x
crossref_primary_10_3159_TORREY_D_16_00064_1
crossref_primary_10_1111_1365_2745_14269
crossref_primary_10_1093_aob_mcv186
crossref_primary_10_1111_mec_16270
crossref_primary_10_1086_729299
crossref_primary_10_1111_1442_1984_12265
crossref_primary_10_1111_evo_13288
crossref_primary_10_1007_s10592_021_01409_3
crossref_primary_10_1098_rspb_2019_2109
crossref_primary_10_1007_s00497_022_00446_3
crossref_primary_10_1016_j_jtbi_2017_04_011
crossref_primary_10_1111_nph_16406
crossref_primary_10_3389_fpls_2021_640135
crossref_primary_10_1111_nph_16075
crossref_primary_10_1038_s41437_019_0268_1
crossref_primary_10_1093_aobpla_ply051
crossref_primary_10_1111_nph_18495
crossref_primary_10_3390_ijms25042265
crossref_primary_10_1016_j_flora_2017_08_007
crossref_primary_10_1111_mec_16706
crossref_primary_10_1111_nph_14453
crossref_primary_10_1111_1365_2435_13262
crossref_primary_10_1093_aobpla_plab038
crossref_primary_10_1016_j_ympev_2015_04_019
crossref_primary_10_1007_s00606_019_01573_7
crossref_primary_10_1016_j_jtbi_2018_10_032
crossref_primary_10_1111_jeb_13248
crossref_primary_10_1186_s12862_015_0471_5
crossref_primary_10_1093_pcp_pcae090
crossref_primary_10_1111_pce_14377
crossref_primary_10_1016_j_tree_2017_07_001
crossref_primary_10_1111_1442_1984_12474
crossref_primary_10_1111_mec_17353
crossref_primary_10_1146_annurev_ecolsys_012120_091002
crossref_primary_10_3390_plants9101377
crossref_primary_10_1093_aob_mcv191
crossref_primary_10_1038_nrg_2016_58
crossref_primary_10_3389_fcosc_2021_723376
crossref_primary_10_1111_nph_16186
crossref_primary_10_1016_j_jtbi_2021_110849
crossref_primary_10_1016_j_ppees_2023_125760
crossref_primary_10_1086_728893
crossref_primary_10_1111_nph_16180
crossref_primary_10_1139_cjb_2016_0014
crossref_primary_10_1371_journal_pone_0126618
crossref_primary_10_1007_s10441_016_9293_0
crossref_primary_10_1002_ajb2_1650
crossref_primary_10_1007_s13127_016_0316_0
crossref_primary_10_3389_fpls_2021_624442
crossref_primary_10_3389_fpls_2021_730258
crossref_primary_10_1093_evolut_qpae168
crossref_primary_10_1002_ajb2_16075
crossref_primary_10_1111_mec_14196
crossref_primary_10_1111_mec_16809
crossref_primary_10_1093_molbev_msae087
crossref_primary_10_1007_s10682_015_9786_3
crossref_primary_10_1093_evolut_qpad076
crossref_primary_10_1086_698211
crossref_primary_10_1038_s41467_023_38802_0
crossref_primary_10_1111_nph_20036
crossref_primary_10_1111_nph_17541
crossref_primary_10_1093_jxb_ery442
crossref_primary_10_1007_s00606_018_1549_5
crossref_primary_10_17660_ActaHortic_2022_1350_10
crossref_primary_10_1111_mec_15035
crossref_primary_10_1016_j_tpb_2016_08_002
crossref_primary_10_1111_jeb_12770
crossref_primary_10_1111_evo_12264
crossref_primary_10_1098_rsos_211862
crossref_primary_10_1186_s12870_022_03563_3
crossref_primary_10_3389_fgene_2021_780793
crossref_primary_10_1007_s00497_023_00478_3
crossref_primary_10_1093_aob_mcae057
crossref_primary_10_1111_nph_13985
crossref_primary_10_1111_brv_12367
crossref_primary_10_1515_bot_2017_0058
crossref_primary_10_3390_ijms20122990
crossref_primary_10_1038_s41477_019_0508_7
crossref_primary_10_1111_mec_13087
crossref_primary_10_1002_ppp3_10281
crossref_primary_10_1101_gr_187237_114
crossref_primary_10_1177_0748730418764525
crossref_primary_10_1093_aob_mcy014
crossref_primary_10_1098_rstb_2013_0344
crossref_primary_10_1080_14614103_2021_1966259
crossref_primary_10_1093_aob_mcz103
crossref_primary_10_1111_jeb_12424
crossref_primary_10_1111_jeb_12787
crossref_primary_10_1038_s41598_020_62818_x
crossref_primary_10_1098_rstb_2013_0341
crossref_primary_10_1111_evo_14572
crossref_primary_10_1146_annurev_ecolsys_112414_054249
crossref_primary_10_3389_fpls_2022_997762
crossref_primary_10_1146_annurev_ecolsys_110316_023021
crossref_primary_10_1086_688919
crossref_primary_10_1111_mec_13753
crossref_primary_10_1002_ece3_10940
crossref_primary_10_1111_nph_14130
crossref_primary_10_3732_ajb_1400513
crossref_primary_10_1111_ele_12449
crossref_primary_10_1111_nph_17400
crossref_primary_10_1002_ajb2_16449
crossref_primary_10_1111_nph_15905
crossref_primary_10_1002_ajb2_1063
crossref_primary_10_1111_jeb_13169
crossref_primary_10_1111_evo_13258
crossref_primary_10_1111_evo_14469
crossref_primary_10_1146_annurev_ecolsys_112414_054215
crossref_primary_10_1098_rsos_150684
crossref_primary_10_1111_jeb_13968
crossref_primary_10_1093_aobpla_plab067
crossref_primary_10_1071_SB18027
crossref_primary_10_1002_bies_201500053
crossref_primary_10_1007_s10722_016_0437_5
crossref_primary_10_1002_ece3_9515
crossref_primary_10_1093_evlett_qrae039
crossref_primary_10_1016_j_ympev_2018_06_035
crossref_primary_10_1007_s10530_024_03267_9
crossref_primary_10_1111_j_1601_5223_2013_02272_x
crossref_primary_10_1111_boj_12168
crossref_primary_10_1534_genetics_114_172809
crossref_primary_10_1098_rsbl_2020_0402
crossref_primary_10_1086_733646
crossref_primary_10_1007_s00606_014_1169_7
crossref_primary_10_1111_btp_12905
crossref_primary_10_3390_horticulturae10091002
Cites_doi 10.1093/genetics/123.4.887
10.1046/j.1420-9101.1993.6040591.x
10.1146/annurev.ecolsys.36.091704.175539
10.1016/j.ympev.2011.07.007
10.1111/j.1558-5646.2009.00926.x
10.1111/j.0014-3820.2006.tb01186.x
10.1038/hdy.1968.30
10.2307/2640435
10.1098/rspb.2012.1343
10.1038/hdy.2010.59
10.3732/ajb.1000346
10.1371/journal.pgen.1002164
10.2307/2405656
10.1073/pnas.0808012106
10.1073/pnas.1104032108
10.1017/S0016672399003900
10.1155/2012/508458
10.1038/ng2115
10.1093/molbev/msq352
10.1093/gbe/evr085
10.1111/j.1558-5646.2012.01778.x
10.1098/rstb.1996.0112
10.1098/rspb.1998.0410
10.1111/j.0014-3820.2002.tb00162.x
10.1016/j.cub.2006.07.068
10.1007/BF00222665
10.1093/molbev/msn079
10.2307/2408514
10.1111/j.1469-1809.1941.tb02272.x
10.1111/j.1558-5646.2008.00505.x
10.1073/pnas.0510270103
10.1038/hdy.2011.9
10.1093/aob/mcr237
10.1038/hdy.1958.26
10.1038/nature08496
10.1126/science.1198063
10.1093/molbev/msq062
10.1371/journal.pbio.0050236
10.1111/j.1558-5646.2011.01225.x
10.1093/genetics/155.2.929
10.1086/666649
10.1111/j.1469-8137.2006.01905.x
10.1073/pnas.0506283103
10.1086/281999
10.1086/285406
10.1111/j.0014-3820.2003.tb01494.x
10.1086/599085
10.1086/593705
10.2307/2410432
10.1371/journal.pbio.0030196
10.1111/j.0014-3820.2006.tb01216.x
10.1073/pnas.0807679106
10.1111/j.0014-3820.2004.tb01646.x
10.1111/j.0014-3820.2005.tb00947.x
10.2307/3558325
10.1111/j.1558-5646.2011.01306.x
10.1086/523366
10.1038/352522a0
10.1111/j.1558-5646.2007.00006.x
10.1534/genetics.107.073601
10.1186/1471-2164-13-611
10.1086/523362
10.1101/SQB.1959.024.01.019
10.1017/S0016672300031086
10.2307/2411261
10.1093/oso/9780198570851.003.0010
10.1093/sysbio/syp067
10.1016/S0959-437X(00)00254-9
10.1093/genetics/154.2.923
10.1093/aob/mcs124
10.4159/harvard.9780674864856
10.2307/2410413
10.1093/aob/mcr023
10.1007/s006060200043
10.1098/rspb.2006.3657
10.1111/j.1558-5646.2012.01730.x
10.2307/2441378
10.1111/j.1558-5646.2009.00700.x
10.1093/genetics/117.2.353
10.1111/j.1469-8137.2009.02946.x
10.1093/oxfordjournals.molbev.a004204
10.1093/genetics/165.4.2307
10.1111/j.0014-3820.2004.tb00886.x
10.1017/CBO9780511623486
10.1126/science.1206360
10.2307/1218538
10.1126/science.1194513
10.1017/S0016672307009032
10.1086/283365
10.1080/10635150701607033
10.1086/285580
10.1038/nrg776
10.1111/j.1558-5646.2008.00418.x
10.1086/283012
10.1086/599303
10.7312/gran92318
10.3732/ajb.0900224
10.1093/molbev/msp119
10.1016/0022-5193(76)90138-7
10.1086/432036
10.1554/0014-3820(2001)055[0869:PATEOS]2.0.CO;2
10.1093/aob/mcr127
10.1111/j.1558-5646.2011.01462.x
10.1534/genetics.107.072371
ContentType Journal Article
Copyright 2013 The Author(s) Published by the Royal Society. All rights reserved.
2013 The Author(s) Published by the Royal Society. All rights reserved. 2013
Copyright_xml – notice: 2013 The Author(s) Published by the Royal Society. All rights reserved.
– notice: 2013 The Author(s) Published by the Royal Society. All rights reserved. 2013
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AOWAS
DF2
DOI 10.1098/rspb.2013.0133
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
DocumentTitleAlternate Evolutionary consequences of selfing
EISSN 1471-2945
1471-2954
ExternalDocumentID oai_DiVA_org_uu_200847
PMC3652455
23595268
10_1098_rspb_2013_0133
ark_67375_V84_CW1NH8H5_X
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
0VX
29P
2WC
36Y
4.4
5RE
85S
AACGO
AANCE
ABBHK
ABPLY
ABTLG
ABXSQ
ACIWK
ACNCT
ACPRK
ACQIA
ADACV
ADBBV
ADIYS
ADULT
AEUPB
AEXZC
AFRAH
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
AQVQM
BAWUL
BGBPD
BSCLL
BTFSW
CS3
DCCCD
DIK
DOOOF
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K-O
KQ8
MRS
O9-
OK1
OP1
RHF
RPM
RRY
SA0
TR2
V1E
W8F
~02
ABPTK
ADZLD
DNJUQ
DWIUU
AAYXX
ACHIC
ACRPL
ADNMO
ADQXQ
AGPVY
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
.55
.GJ
3O-
53G
8WZ
A6W
AANZV
ABEFU
ABIEJ
ACMKX
ADTPV
AOWAS
AS~
CAG
COF
DF2
HGD
HQ3
HTVGU
MVM
ROL
WOQ
X7M
ZXP
ID FETCH-LOGICAL-c778t-8b6ee88a0c313d6575a20037d2d183f02dd5c82396952e0f0859f1ef645326683
ISSN 0962-8452
1471-2954
IngestDate Thu Aug 21 06:43:44 EDT 2025
Thu Aug 21 13:58:17 EDT 2025
Fri Jul 11 14:37:32 EDT 2025
Mon Jul 21 06:03:47 EDT 2025
Tue Jul 01 02:06:52 EDT 2025
Thu Apr 24 23:05:28 EDT 2025
Wed Jan 17 02:37:16 EST 2024
Tue May 24 16:17:59 EDT 2022
Wed Oct 30 09:58:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1760
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c778t-8b6ee88a0c313d6575a20037d2d183f02dd5c82396952e0f0859f1ef645326683
Notes href:rspb20130133.pdf
ArticleID:rspb20130133
ark:/67375/V84-CW1NH8H5-X
istex:70AA44C36FB7814EC1578C10B959873F9C3BA2B2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2013.0133
PMID 23595268
PQID 1331085715
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1331085715
royalsociety_journals_10_1098_rspb_2013_0133
royalsociety_journals_RSPBv280i1760_0831064326_zip_rspb_280_issue_1760_rspb_2013_0133_rspb_2013_0133
crossref_primary_10_1098_rspb_2013_0133
pubmed_primary_23595268
istex_primary_ark_67375_V84_CW1NH8H5_X
swepub_primary_oai_DiVA_org_uu_200847
crossref_citationtrail_10_1098_rspb_2013_0133
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3652455
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-07
PublicationDateYYYYMMDD 2013-06-07
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Proceedings of the Royal Society. B, Biological sciences
PublicationTitleAbbrev Proc. R. Soc. B
PublicationTitleAlternate Proc. R. Soc. B
PublicationYear 2013
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_2_28_2
Darwin C (e_1_3_2_8_2) 1867
e_1_3_2_20_2
Cutter AD (e_1_3_2_40_2) 2008; 178
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_81_2
Coyne JA (e_1_3_2_44_2) 2004
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_54_2
Escobar JS (e_1_3_2_92_2) 2010; 64
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_112_2
e_1_3_2_50_2
Charlesworth D (e_1_3_2_49_2) 2001
e_1_3_2_116_2
e_1_3_2_48_2
Nordborg M (e_1_3_2_79_2) 2000; 154
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
Chantha S-C (e_1_3_2_29_2)
Kaplan NL (e_1_3_2_80_2) 1989; 123
e_1_3_2_93_2
Slotte T (e_1_3_2_97_2)
e_1_3_2_115_2
e_1_3_2_70_2
e_1_3_2_111_2
e_1_3_2_26_2
Heller J (e_1_3_2_86_2) 1979; 8
Charlesworth B (e_1_3_2_100_2) 2010
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
Innan H (e_1_3_2_104_2) 2003; 165
Pollak E (e_1_3_2_78_2) 1987; 117
Lloyd DG (e_1_3_2_114_2) 1980
e_1_3_2_60_2
e_1_3_2_102_2
e_1_3_2_106_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_94_2
Hazzouri KM (e_1_3_2_39_2)
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_101_2
e_1_3_2_109_2
e_1_3_2_105_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
Eckert C (e_1_3_2_10_2) 2006
e_1_3_2_91_2
e_1_3_2_113_2
e_1_3_2_72_2
McVean GA (e_1_3_2_83_2) 2000; 155
e_1_3_2_117_2
References_xml – volume: 123
  start-page: 887
  year: 1989
  ident: e_1_3_2_80_2
  article-title: The ‘hitchhiking effect’ revisited
  publication-title: Genet. J.
  doi: 10.1093/genetics/123.4.887
– start-page: 73
  volume-title: Integrating ecology and evolution in a spatial context
  year: 2001
  ident: e_1_3_2_49_2
– ident: e_1_3_2_51_2
  doi: 10.1046/j.1420-9101.1993.6040591.x
– ident: e_1_3_2_19_2
  doi: 10.1146/annurev.ecolsys.36.091704.175539
– ident: e_1_3_2_41_2
  doi: 10.1016/j.ympev.2011.07.007
– ident: e_1_3_2_26_2
  doi: 10.1111/j.1558-5646.2009.00926.x
– ident: e_1_3_2_33_2
  doi: 10.1111/j.0014-3820.2006.tb01186.x
– ident: e_1_3_2_59_2
  doi: 10.1038/hdy.1968.30
– ident: e_1_3_2_60_2
  doi: 10.2307/2640435
– ident: e_1_3_2_55_2
  doi: 10.1098/rspb.2012.1343
– ident: e_1_3_2_90_2
  doi: 10.1038/hdy.2010.59
– ident: e_1_3_2_38_2
  doi: 10.3732/ajb.1000346
– ident: e_1_3_2_70_2
  doi: 10.1371/journal.pgen.1002164
– ident: e_1_3_2_11_2
  doi: 10.2307/2405656
– ident: e_1_3_2_53_2
  doi: 10.1073/pnas.0808012106
– ident: e_1_3_2_102_2
  doi: 10.1073/pnas.1104032108
– ident: e_1_3_2_106_2
  doi: 10.1017/S0016672399003900
– ident: e_1_3_2_57_2
  doi: 10.1155/2012/508458
– ident: e_1_3_2_101_2
  doi: 10.1038/ng2115
– ident: e_1_3_2_54_2
  doi: 10.1093/molbev/msq352
– ident: e_1_3_2_95_2
  doi: 10.1093/gbe/evr085
– ident: e_1_3_2_105_2
  doi: 10.1111/j.1558-5646.2012.01778.x
– ident: e_1_3_2_48_2
  doi: 10.1098/rstb.1996.0112
– ident: e_1_3_2_22_2
  doi: 10.1098/rspb.1998.0410
– ident: e_1_3_2_47_2
  doi: 10.1111/j.0014-3820.2002.tb00162.x
– ident: e_1_3_2_14_2
  doi: 10.1016/j.cub.2006.07.068
– ident: e_1_3_2_64_2
  doi: 10.1007/BF00222665
– ident: e_1_3_2_93_2
  doi: 10.1093/molbev/msn079
– ident: e_1_3_2_15_2
  doi: 10.2307/2408514
– ident: e_1_3_2_5_2
  doi: 10.1111/j.1469-1809.1941.tb02272.x
– ident: e_1_3_2_24_2
  doi: 10.1111/j.1558-5646.2008.00505.x
– ident: e_1_3_2_68_2
  doi: 10.1073/pnas.0510270103
– ident: e_1_3_2_75_2
  doi: 10.1038/hdy.2011.9
– ident: e_1_3_2_36_2
  doi: 10.1093/aob/mcr237
– ident: e_1_3_2_63_2
  doi: 10.1038/hdy.1958.26
– ident: e_1_3_2_111_2
  doi: 10.1038/nature08496
– ident: e_1_3_2_30_2
  doi: 10.1126/science.1198063
– ident: e_1_3_2_96_2
  doi: 10.1093/molbev/msq062
– ident: e_1_3_2_69_2
  doi: 10.1371/journal.pbio.0050236
– ident: e_1_3_2_13_2
  doi: 10.1111/j.1558-5646.2011.01225.x
– volume: 155
  start-page: 929
  year: 2000
  ident: e_1_3_2_83_2
  article-title: The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation
  publication-title: Genetics
  doi: 10.1093/genetics/155.2.929
– ident: e_1_3_2_77_2
  doi: 10.1086/666649
– ident: e_1_3_2_23_2
  doi: 10.1111/j.1469-8137.2006.01905.x
– ident: e_1_3_2_18_2
  doi: 10.1073/pnas.0506283103
– ident: e_1_3_2_20_2
  doi: 10.1086/281999
– ident: e_1_3_2_66_2
  doi: 10.1086/285406
– ident: e_1_3_2_74_2
  doi: 10.1111/j.0014-3820.2003.tb01494.x
– ident: e_1_3_2_108_2
  doi: 10.1086/599085
– ident: e_1_3_2_34_2
  doi: 10.1086/593705
– ident: e_1_3_2_87_2
  doi: 10.2307/2410432
– ident: e_1_3_2_103_2
  doi: 10.1371/journal.pbio.0030196
– volume: 178
  start-page: 2093
  year: 2008
  ident: e_1_3_2_40_2
  article-title: Patterns of molecular evolution in Caenorhabditis preclude ancient origins of selfing
  publication-title: Genome Res.
– ident: e_1_3_2_72_2
  doi: 10.1111/j.0014-3820.2006.tb01216.x
– ident: e_1_3_2_52_2
  doi: 10.1073/pnas.0807679106
– ident: e_1_3_2_65_2
  doi: 10.1111/j.0014-3820.2004.tb01646.x
– ident: e_1_3_2_17_2
  doi: 10.1111/j.0014-3820.2005.tb00947.x
– ident: e_1_3_2_97_2
  article-title: The Capsella rubella genome and the genomic consequences of rapid mating system evolution
  publication-title: Nat. Genet.
– ident: e_1_3_2_21_2
  doi: 10.2307/3558325
– volume: 64
  start-page: 2855
  year: 2010
  ident: e_1_3_2_92_2
  article-title: An integrative test of the dead-end hypothesis of selfing evolution in Triticeae (Poaceae)
  publication-title: Evolution
– ident: e_1_3_2_62_2
  doi: 10.1111/j.1558-5646.2011.01306.x
– ident: e_1_3_2_71_2
  doi: 10.1086/523366
– ident: e_1_3_2_16_2
  doi: 10.1038/352522a0
– start-page: 67
  volume-title: Demography and evolution in plant populations
  year: 1980
  ident: e_1_3_2_114_2
– ident: e_1_3_2_45_2
  doi: 10.1111/j.1558-5646.2007.00006.x
– ident: e_1_3_2_88_2
  doi: 10.1534/genetics.107.073601
– ident: e_1_3_2_98_2
  doi: 10.1186/1471-2164-13-611
– ident: e_1_3_2_37_2
  doi: 10.1086/523362
– ident: e_1_3_2_58_2
  doi: 10.1101/SQB.1959.024.01.019
– ident: e_1_3_2_81_2
  doi: 10.1017/S0016672300031086
– ident: e_1_3_2_9_2
  doi: 10.2307/2411261
– start-page: 183
  volume-title: Ecology and evolution of flowers
  year: 2006
  ident: e_1_3_2_10_2
  doi: 10.1093/oso/9780198570851.003.0010
– volume: 8
  start-page: 269
  year: 1979
  ident: e_1_3_2_86_2
  article-title: Does Muller's Ratchet work with selfing?
  publication-title: Genet. Res.
– ident: e_1_3_2_31_2
  doi: 10.1093/sysbio/syp067
– ident: e_1_3_2_39_2
  article-title: Comparative population genomics in Collinsia sister species reveals evidence for reduced effective population size, relaxed selection and evolution of biased gene conversion with an ongoing mating system shift
  publication-title: Evolution
– ident: e_1_3_2_84_2
  doi: 10.1016/S0959-437X(00)00254-9
– volume: 154
  start-page: 923
  year: 2000
  ident: e_1_3_2_79_2
  article-title: Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization
  publication-title: Genetics
  doi: 10.1093/genetics/154.2.923
– ident: e_1_3_2_28_2
  doi: 10.1093/aob/mcs124
– ident: e_1_3_2_2_2
  doi: 10.4159/harvard.9780674864856
– ident: e_1_3_2_82_2
  doi: 10.2307/2410413
– ident: e_1_3_2_46_2
  doi: 10.1093/aob/mcr023
– ident: e_1_3_2_43_2
  doi: 10.1007/s006060200043
– ident: e_1_3_2_89_2
  doi: 10.1098/rspb.2006.3657
– ident: e_1_3_2_76_2
  doi: 10.1111/j.1558-5646.2012.01730.x
– ident: e_1_3_2_50_2
  doi: 10.2307/2441378
– ident: e_1_3_2_56_2
  doi: 10.1111/j.1558-5646.2009.00700.x
– volume: 117
  start-page: 353
  year: 1987
  ident: e_1_3_2_78_2
  article-title: On the theory of partially inbreeding finite populations. I. Partial selfing
  publication-title: Genetics
  doi: 10.1093/genetics/117.2.353
– ident: e_1_3_2_116_2
  doi: 10.1111/j.1469-8137.2009.02946.x
– ident: e_1_3_2_94_2
  doi: 10.1093/oxfordjournals.molbev.a004204
– volume: 165
  start-page: 2307
  year: 2003
  ident: e_1_3_2_104_2
  article-title: Distinguishing the hitchhiking and background selection models
  publication-title: Genetics
  doi: 10.1093/genetics/165.4.2307
– volume-title: Elements of Evolutionary Genetics
  year: 2010
  ident: e_1_3_2_100_2
– ident: e_1_3_2_110_2
  doi: 10.1111/j.0014-3820.2004.tb00886.x
– volume-title: The effects of cross and self-fertilization in the vegetable kingdom
  year: 1867
  ident: e_1_3_2_8_2
– ident: e_1_3_2_85_2
  doi: 10.1017/CBO9780511623486
– ident: e_1_3_2_112_2
  doi: 10.1126/science.1206360
– ident: e_1_3_2_42_2
  doi: 10.2307/1218538
– ident: e_1_3_2_27_2
  doi: 10.1126/science.1194513
– ident: e_1_3_2_91_2
  doi: 10.1017/S0016672307009032
– ident: e_1_3_2_7_2
  doi: 10.1086/283365
– ident: e_1_3_2_25_2
  doi: 10.1080/10635150701607033
– ident: e_1_3_2_115_2
  doi: 10.1086/285580
– ident: e_1_3_2_4_2
  doi: 10.1038/nrg776
– ident: e_1_3_2_67_2
  doi: 10.1111/j.1558-5646.2008.00418.x
– ident: e_1_3_2_109_2
  doi: 10.1086/283012
– ident: e_1_3_2_61_2
– ident: e_1_3_2_12_2
  doi: 10.1086/599303
– ident: e_1_3_2_29_2
  article-title: Secondary evolution of self-incompatibility in the mustard genus Leavenworthia
  publication-title: PLoS Biol.
– ident: e_1_3_2_3_2
  doi: 10.7312/gran92318
– ident: e_1_3_2_113_2
  doi: 10.3732/ajb.0900224
– ident: e_1_3_2_99_2
  doi: 10.1093/molbev/msp119
– ident: e_1_3_2_6_2
  doi: 10.1016/0022-5193(76)90138-7
– ident: e_1_3_2_73_2
  doi: 10.1086/432036
– ident: e_1_3_2_107_2
  doi: 10.1554/0014-3820(2001)055[0869:PATEOS]2.0.CO;2
– ident: e_1_3_2_117_2
  doi: 10.1093/aob/mcr127
– ident: e_1_3_2_35_2
  doi: 10.1111/j.1558-5646.2011.01462.x
– volume-title: Speciation
  year: 2004
  ident: e_1_3_2_44_2
– ident: e_1_3_2_32_2
  doi: 10.1534/genetics.107.072371
SSID ssj0009585
Score 2.5660949
SecondaryResourceType review_article
Snippet The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10–15% of flowering plants are...
The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10-15% of flowering plants are...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
royalsociety
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20130133
SubjectTerms Adaptation
Adaptation, Biological - genetics
Biological Evolution
Dead-End Hypothesis
Extinction, Biological
Likelihood Functions
Magnoliopsida - genetics
Magnoliopsida - physiology
Mating System Transition
Models, Biological
Mutation - genetics
Review
Review Articles
Self-Fertilization - physiology
Species Specificity
Title Evolutionary consequences of self-fertilization in plants
URI https://api.istex.fr/ark:/67375/V84-CW1NH8H5-X/fulltext.pdf
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2013.0133
https://www.ncbi.nlm.nih.gov/pubmed/23595268
https://www.proquest.com/docview/1331085715
https://pubmed.ncbi.nlm.nih.gov/PMC3652455
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-200847
Volume 280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgExJfEBuv8lKQeGqkJM7L-biNQUFimli39ZvlvLZAlU5NO0H_eu5sx0toJw2-RFV6uiS-8_nO_t0dIS89J_FjkSc29T0fAhQns-OURnYsUpHFrBB-hhv63_bDwZH_dRSMmhb3OrtklvTTxcq8kv-RKtwDuWKW7D9I1jCFG_Ab5AtXkDBcryXjvQvNHqFvaQsXjS5gnY8Lu0DY9FjnWkrE-Fjo4k2NS3pglrC6AQyoPQUN6Oxv7UglKI2Z1Kum8cYvI3yNGdv60jeGHAssLpbwP4fjyUw15huK6odo7z3IPhC2alKrzSUsbTaeFLbtKVWtmRrFiVS_gMZA4kmpq2pfLFlvJ8aMBIjnE8Tcef2GcEVF7I_l8TafTE_5fC47afrRTbJOIVTALhafR26r8LJsywqRGlh-X3ZgMm9tiniyD92HdpyUdZxvv1ZFICuAtFMUUK3k81f1WemxDO-SOzrUsLaV3myQG3m1SW4pOf7eJBvarNfWW117_N09ErdVymqrlDUprGWVssrKUip1nxx92hvuDmzdXcNOo4jNbJaEec6YcFLP9TI8fxMIVIwymoGZLxyaZUHKqBeHcUBzp8BKeIWbF6EfgMsfMu8BWasmVf6IWGGcZokowNlMme8VmQCfNI_COGEpi90i6BG7GU6e6tLz2AFlzBUEgnEcfo7Dz3H4e-SNoT9XRVeupHwtpWPIxPQnQhWjgB8zn--euPsDNgj4qEdeNOLjYEDxVExU-WRec-CCGTiRC6_5UInTcKOYtk5D1iNRR9CGAFWx-09Vnski7V4YUD8Anu_bKsG19aiv_J5sNfn3w4OdC5hZJc4nLtsDQixBQ74ozzUP5nA55bgk6fJdeswrpZmdD1meU4-vSfeE3L40D0_J2mw6z5-Bsz5LnsvZ-AeEHumQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+consequences+of+self-fertilization+in+plants&rft.jtitle=Proceedings+of+the+Royal+Society.+B%2C+Biological+sciences&rft.au=Wright%2C+Stephen+I.&rft.au=Kalisz%2C+Susan&rft.au=Slotte%2C+Tanja&rft.date=2013-06-07&rft.issn=1471-2954&rft.volume=280&rft.issue=1760&rft.spage=20130133&rft_id=info:doi/10.1098%2Frspb.2013.0133&rft.externalDocID=oai_DiVA_org_uu_200847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8452&client=summon