Evolutionary consequences of self-fertilization in plants
The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10–15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an ‘evolutionary dead end’. According to this hypothe...
Saved in:
Published in | Proceedings of the Royal Society. B, Biological sciences Vol. 280; no. 1760; p. 20130133 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
07.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10–15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an ‘evolutionary dead end’. According to this hypothesis, transitions from outcrossing to selfing are irreversible, and selfing lineages suffer from an increased risk of extinction owing to a reduced potential for adaptation. Thus, although selfing can be advantageous in the short term, selfing lineages may be mostly short-lived owing to higher extinction rates. Here, we review recent results relevant to the ‘dead-end hypothesis’ of selfing and the maintenance of outcrossing over longer evolutionary time periods. In particular, we highlight recent results regarding diversification rates in self-incompatible and self-compatible taxa, and review evidence regarding the accumulation of deleterious mutations in selfing lineages. We conclude that while some aspects of the hypothesis of selfing as a dead end are supported by theory and empirical results, the evolutionary and ecological mechanisms remain unclear. We highlight the need for more studies on the effects of quantitative changes in outcrossing rates and on the potential for adaptation, particularly in selfing plants. In addition, there is growing evidence that transitions to selfing may themselves be drivers of speciation, and future studies of diversification and speciation should investigate this further. |
---|---|
AbstractList | The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10-15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an 'evolutionary dead end'. According to this hypothesis, transitions from outcrossing to selfing are irreversible, and selfing lineages suffer from an increased risk of extinction owing to a reduced potential for adaptation. Thus, although selfing can be advantageous in the short term, selfing lineages may be mostly short-lived owing to higher extinction rates. Here, we review recent results relevant to the 'dead-end hypothesis' of selfing and the maintenance of outcrossing over longer evolutionary time periods. In particular, we highlight recent results regarding diversification rates in self-incompatible and self-compatible taxa, and review evidence regarding the accumulation of deleterious mutations in selfing lineages. We conclude that while some aspects of the hypothesis of selfing as a dead end are supported by theory and empirical results, the evolutionary and ecological mechanisms remain unclear. We highlight the need for more studies on the effects of quantitative changes in outcrossing rates and on the potential for adaptation, particularly in selfing plants. In addition, there is growing evidence that transitions to selfing may themselves be drivers of speciation, and future studies of diversification and speciation should investigate this further.The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10-15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an 'evolutionary dead end'. According to this hypothesis, transitions from outcrossing to selfing are irreversible, and selfing lineages suffer from an increased risk of extinction owing to a reduced potential for adaptation. Thus, although selfing can be advantageous in the short term, selfing lineages may be mostly short-lived owing to higher extinction rates. Here, we review recent results relevant to the 'dead-end hypothesis' of selfing and the maintenance of outcrossing over longer evolutionary time periods. In particular, we highlight recent results regarding diversification rates in self-incompatible and self-compatible taxa, and review evidence regarding the accumulation of deleterious mutations in selfing lineages. We conclude that while some aspects of the hypothesis of selfing as a dead end are supported by theory and empirical results, the evolutionary and ecological mechanisms remain unclear. We highlight the need for more studies on the effects of quantitative changes in outcrossing rates and on the potential for adaptation, particularly in selfing plants. In addition, there is growing evidence that transitions to selfing may themselves be drivers of speciation, and future studies of diversification and speciation should investigate this further. The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10-15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an 'evolutionary dead end'. According to this hypothesis, transitions from outcrossing to selfing are irreversible, and selfing lineages suffer from an increased risk of extinction owing to a reduced potential for adaptation. Thus, although selfing can be advantageous in the short term, selfing lineages may be mostly short-lived owing to higher extinction rates. Here, we review recent results relevant to the 'dead-end hypothesis' of selfing and the maintenance of outcrossing over longer evolutionary time periods. In particular, we highlight recent results regarding diversification rates in self-incompatible and self-compatible taxa, and review evidence regarding the accumulation of deleterious mutations in selfing lineages. We conclude that while some aspects of the hypothesis of selfing as a dead end are supported by theory and empirical results, the evolutionary and ecological mechanisms remain unclear. We highlight the need for more studies on the effects of quantitative changes in outcrossing rates and on the potential for adaptation, particularly in selfing plants. In addition, there is growing evidence that transitions to selfing may themselves be drivers of speciation, and future studies of diversification and speciation should investigate this further. |
Author | Kalisz, Susan Slotte, Tanja Wright, Stephen I. |
AuthorAffiliation | 1 Department of Ecology and Evolutionary Biology , University of Toronto , Toronto , Canada 2 Department of Biological Sciences , University of Pittsburgh , Pittsburgh, PA , USA 4 Science for Life Laboratory , Uppsala University , Uppsala , Sweden 3 Department of Evolutionary Biology, Evolutionary Biology Centre (EBC) , Uppsala University , Uppsala , Sweden |
AuthorAffiliation_xml | – name: 1 Department of Ecology and Evolutionary Biology , University of Toronto , Toronto , Canada – name: 2 Department of Biological Sciences , University of Pittsburgh , Pittsburgh, PA , USA – name: 4 Science for Life Laboratory , Uppsala University , Uppsala , Sweden – name: 3 Department of Evolutionary Biology, Evolutionary Biology Centre (EBC) , Uppsala University , Uppsala , Sweden |
Author_xml | – sequence: 1 givenname: Stephen I. surname: Wright fullname: Wright, Stephen I. email: stephen.wright@utoronto.ca organization: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada – sequence: 2 givenname: Susan surname: Kalisz fullname: Kalisz, Susan organization: Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 3 givenname: Tanja surname: Slotte fullname: Slotte, Tanja email: tanja.slotte@ebc.uu.se organization: Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23595268$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-200847$$DView record from Swedish Publication Index |
BookMark | eNp9Uctu1DAUtVARnRa2LNEsWZDBj_iRDVIZWgapAsSjsLvKOE5xm7GDnUyZfj1OM60YUFlYluXzuPecA7TnvDMIPSV4RnChXobYLmcUEzZLhz1AE5JLktEi53toggtBM5Vzuo8OYrzAGBdc8UdonzJecCrUBBXHa9_0nfWuDJup9i6an71x2sSpr6fRNHVWm9DZxl6XA2pq3bRtStfFx-hhXTbRPNneh-jryfGX-SI7_fD23fzoNNNSqi5TS2GMUiXWjLBKcMlLijGTFa2IYjWmVcW1oqwQaSKDa6x4URNTi5wzKoRih-jFqBuvTNsvoQ12lWYFX1p4Y8-OwIdz6HtIqiqXCf5qhCfsylTauC6UzQ5r98fZH3Du18AEpznnSeD5ViD4FEXsYGWjNk1a2vg-QoqZpCElGaDP_vS6M7mNNwHyEaCDjzGYGrTtbnJM1rYBgmFoEYYWYWgRhhYTbfYX7Vb5XsLlSAh-k7rw2ppuAxe-Dy494dPnj6_XVGFLpMCAVVpA5ClduLbtVkphsDH2Bm4gu_L_urH_ud07YzaybOzMr7uNynAJQjLJ4UzlMP9G3i_UgsN39hubVOKq |
CitedBy_id | crossref_primary_10_1111_mec_16207 crossref_primary_10_3732_ajb_1500147 crossref_primary_10_1101_cshperspect_a041426 crossref_primary_10_18006_2021_9_4__417_431 crossref_primary_10_1007_s00606_018_1520_5 crossref_primary_10_1016_j_tig_2016_01_004 crossref_primary_10_1073_pnas_2203228120 crossref_primary_10_3732_ajb_1700038 crossref_primary_10_3120_0024_9637_65_1_22 crossref_primary_10_1086_713669 crossref_primary_10_1093_aob_mcy167 crossref_primary_10_1111_mec_15593 crossref_primary_10_1016_j_ympev_2019_106554 crossref_primary_10_1093_aob_mcx197 crossref_primary_10_1038_s41598_024_57655_1 crossref_primary_10_1093_botlinnean_boab051 crossref_primary_10_1038_s41437_019_0254_7 crossref_primary_10_1093_aob_mcab007 crossref_primary_10_1093_pcp_pcae110 crossref_primary_10_1093_evolut_qpad016 crossref_primary_10_1002_ajb2_1107 crossref_primary_10_7717_peerj_10698 crossref_primary_10_1111_jeb_12460 crossref_primary_10_1093_jeb_voaf009 crossref_primary_10_1086_705020 crossref_primary_10_1038_s41437_018_0081_2 crossref_primary_10_1111_jeb_12343 crossref_primary_10_3389_fmars_2022_950795 crossref_primary_10_29121_granthaalayah_v9_i8_2021_4122 crossref_primary_10_1038_s41437_021_00489_8 crossref_primary_10_1016_j_pbi_2014_01_001 crossref_primary_10_1098_rsos_191720 crossref_primary_10_1111_tpj_17064 crossref_primary_10_3390_horticulturae9040440 crossref_primary_10_1098_rspb_2024_0586 crossref_primary_10_1111_mec_14484 crossref_primary_10_1186_s12870_024_05970_0 crossref_primary_10_1007_s12229_023_09295_9 crossref_primary_10_1093_beheco_ary131 crossref_primary_10_3389_fpls_2022_794171 crossref_primary_10_1093_aob_mcw203 crossref_primary_10_1007_s00606_015_1210_5 crossref_primary_10_1111_evo_14304 crossref_primary_10_1016_j_cub_2016_11_030 crossref_primary_10_1093_aob_mcx098 crossref_primary_10_3390_plants12091761 crossref_primary_10_1093_molbev_msac193 crossref_primary_10_3389_fmars_2022_1051838 crossref_primary_10_1111_evo_12937 crossref_primary_10_1093_evolut_qpac029 crossref_primary_10_1002_ece3_2482 crossref_primary_10_1016_j_jnc_2021_126120 crossref_primary_10_1038_hdy_2016_1 crossref_primary_10_1371_journal_pgen_1004410 crossref_primary_10_3389_fpls_2020_00251 crossref_primary_10_1093_gbe_evu099 crossref_primary_10_1038_s41437_021_00465_2 crossref_primary_10_1111_evo_13222 crossref_primary_10_1038_s41437_018_0065_2 crossref_primary_10_1038_s41437_021_00442_9 crossref_primary_10_1111_evo_13587 crossref_primary_10_1093_molbev_msw044 crossref_primary_10_1111_nph_13636 crossref_primary_10_1111_jpy_13457 crossref_primary_10_1093_plcell_koab200 crossref_primary_10_1111_nph_18477 crossref_primary_10_1007_s12224_015_9207_y crossref_primary_10_1002_ece3_2134 crossref_primary_10_1111_mec_16646 crossref_primary_10_3732_ajb_1500108 crossref_primary_10_1007_s00265_020_2816_3 crossref_primary_10_1111_evo_14042 crossref_primary_10_1111_evo_12660 crossref_primary_10_1098_rstb_2020_0510 crossref_primary_10_1111_evo_12780 crossref_primary_10_1111_jeb_13901 crossref_primary_10_1038_s41598_024_62065_4 crossref_primary_10_1002_ece3_10538 crossref_primary_10_1016_j_molp_2016_04_016 crossref_primary_10_1093_sysbio_syv062 crossref_primary_10_1111_jeb_12380 crossref_primary_10_1111_jeb_12384 crossref_primary_10_1016_j_pbi_2016_02_006 crossref_primary_10_1371_journal_pgen_1010353 crossref_primary_10_1111_plb_13049 crossref_primary_10_1111_mec_12708 crossref_primary_10_1111_dgd_12578 crossref_primary_10_1111_nph_13212 crossref_primary_10_1016_j_devcel_2017_11_022 crossref_primary_10_1093_aob_mcac142 crossref_primary_10_3732_ajb_1600079 crossref_primary_10_1894_0038_4909_65_2_116 crossref_primary_10_1086_690009 crossref_primary_10_1111_nph_16396 crossref_primary_10_1111_nph_16035 crossref_primary_10_1111_mec_16623 crossref_primary_10_1111_jeb_12356 crossref_primary_10_1371_journal_pgen_1009477 crossref_primary_10_3390_plants14030476 crossref_primary_10_1007_s10592_016_0883_9 crossref_primary_10_1016_j_xplc_2023_100571 crossref_primary_10_1371_journal_pgen_1011312 crossref_primary_10_1111_evo_14620 crossref_primary_10_1186_s12862_014_0243_7 crossref_primary_10_1016_j_cub_2019_06_015 crossref_primary_10_1111_evo_13308 crossref_primary_10_1186_s13007_019_0433_9 crossref_primary_10_1002_ece3_2280 crossref_primary_10_1111_mec_13221 crossref_primary_10_1186_s12870_018_1498_8 crossref_primary_10_1093_plphys_kiae375 crossref_primary_10_1038_ncomms8960 crossref_primary_10_1111_evo_14194 crossref_primary_10_1002_ajb2_16150 crossref_primary_10_1111_evo_13420 crossref_primary_10_1002_tax_12791 crossref_primary_10_2179_0008_7475_86_1_1 crossref_primary_10_1093_aob_mcac044 crossref_primary_10_1093_bfgp_elu009 crossref_primary_10_1111_evo_13663 crossref_primary_10_1093_emph_eow030 crossref_primary_10_1111_evo_13789 crossref_primary_10_1007_s00497_024_00517_7 crossref_primary_10_1007_s13595_019_0797_z crossref_primary_10_1038_s41437_023_00649_y crossref_primary_10_1111_mec_14426 crossref_primary_10_1590_2175_7860201667201 crossref_primary_10_1016_j_tree_2014_01_002 crossref_primary_10_1111_jeb_13381 crossref_primary_10_1016_j_ympev_2018_02_025 crossref_primary_10_1017_S0960258517000058 crossref_primary_10_1111_evo_13394 crossref_primary_10_1111_evo_14480 crossref_primary_10_1111_jeb_12734 crossref_primary_10_1093_aobpla_plv122 crossref_primary_10_1016_j_cell_2019_07_038 crossref_primary_10_1093_molbev_msv121 crossref_primary_10_1093_aobpla_ply060 crossref_primary_10_1098_rspb_2013_0913 crossref_primary_10_1111_eva_13547 crossref_primary_10_1007_s11295_019_1336_7 crossref_primary_10_1086_696856 crossref_primary_10_1111_1755_0998_12284 crossref_primary_10_26786_1920_7603_2018_three crossref_primary_10_1111_jeb_14122 crossref_primary_10_1007_s10265_018_1076_z crossref_primary_10_1111_1365_2745_12524 crossref_primary_10_1002_ajb2_1861 crossref_primary_10_1007_s12225_020_9870_x crossref_primary_10_3159_TORREY_D_16_00064_1 crossref_primary_10_1111_1365_2745_14269 crossref_primary_10_1093_aob_mcv186 crossref_primary_10_1111_mec_16270 crossref_primary_10_1086_729299 crossref_primary_10_1111_1442_1984_12265 crossref_primary_10_1111_evo_13288 crossref_primary_10_1007_s10592_021_01409_3 crossref_primary_10_1098_rspb_2019_2109 crossref_primary_10_1007_s00497_022_00446_3 crossref_primary_10_1016_j_jtbi_2017_04_011 crossref_primary_10_1111_nph_16406 crossref_primary_10_3389_fpls_2021_640135 crossref_primary_10_1111_nph_16075 crossref_primary_10_1038_s41437_019_0268_1 crossref_primary_10_1093_aobpla_ply051 crossref_primary_10_1111_nph_18495 crossref_primary_10_3390_ijms25042265 crossref_primary_10_1016_j_flora_2017_08_007 crossref_primary_10_1111_mec_16706 crossref_primary_10_1111_nph_14453 crossref_primary_10_1111_1365_2435_13262 crossref_primary_10_1093_aobpla_plab038 crossref_primary_10_1016_j_ympev_2015_04_019 crossref_primary_10_1007_s00606_019_01573_7 crossref_primary_10_1016_j_jtbi_2018_10_032 crossref_primary_10_1111_jeb_13248 crossref_primary_10_1186_s12862_015_0471_5 crossref_primary_10_1093_pcp_pcae090 crossref_primary_10_1111_pce_14377 crossref_primary_10_1016_j_tree_2017_07_001 crossref_primary_10_1111_1442_1984_12474 crossref_primary_10_1111_mec_17353 crossref_primary_10_1146_annurev_ecolsys_012120_091002 crossref_primary_10_3390_plants9101377 crossref_primary_10_1093_aob_mcv191 crossref_primary_10_1038_nrg_2016_58 crossref_primary_10_3389_fcosc_2021_723376 crossref_primary_10_1111_nph_16186 crossref_primary_10_1016_j_jtbi_2021_110849 crossref_primary_10_1016_j_ppees_2023_125760 crossref_primary_10_1086_728893 crossref_primary_10_1111_nph_16180 crossref_primary_10_1139_cjb_2016_0014 crossref_primary_10_1371_journal_pone_0126618 crossref_primary_10_1007_s10441_016_9293_0 crossref_primary_10_1002_ajb2_1650 crossref_primary_10_1007_s13127_016_0316_0 crossref_primary_10_3389_fpls_2021_624442 crossref_primary_10_3389_fpls_2021_730258 crossref_primary_10_1093_evolut_qpae168 crossref_primary_10_1002_ajb2_16075 crossref_primary_10_1111_mec_14196 crossref_primary_10_1111_mec_16809 crossref_primary_10_1093_molbev_msae087 crossref_primary_10_1007_s10682_015_9786_3 crossref_primary_10_1093_evolut_qpad076 crossref_primary_10_1086_698211 crossref_primary_10_1038_s41467_023_38802_0 crossref_primary_10_1111_nph_20036 crossref_primary_10_1111_nph_17541 crossref_primary_10_1093_jxb_ery442 crossref_primary_10_1007_s00606_018_1549_5 crossref_primary_10_17660_ActaHortic_2022_1350_10 crossref_primary_10_1111_mec_15035 crossref_primary_10_1016_j_tpb_2016_08_002 crossref_primary_10_1111_jeb_12770 crossref_primary_10_1111_evo_12264 crossref_primary_10_1098_rsos_211862 crossref_primary_10_1186_s12870_022_03563_3 crossref_primary_10_3389_fgene_2021_780793 crossref_primary_10_1007_s00497_023_00478_3 crossref_primary_10_1093_aob_mcae057 crossref_primary_10_1111_nph_13985 crossref_primary_10_1111_brv_12367 crossref_primary_10_1515_bot_2017_0058 crossref_primary_10_3390_ijms20122990 crossref_primary_10_1038_s41477_019_0508_7 crossref_primary_10_1111_mec_13087 crossref_primary_10_1002_ppp3_10281 crossref_primary_10_1101_gr_187237_114 crossref_primary_10_1177_0748730418764525 crossref_primary_10_1093_aob_mcy014 crossref_primary_10_1098_rstb_2013_0344 crossref_primary_10_1080_14614103_2021_1966259 crossref_primary_10_1093_aob_mcz103 crossref_primary_10_1111_jeb_12424 crossref_primary_10_1111_jeb_12787 crossref_primary_10_1038_s41598_020_62818_x crossref_primary_10_1098_rstb_2013_0341 crossref_primary_10_1111_evo_14572 crossref_primary_10_1146_annurev_ecolsys_112414_054249 crossref_primary_10_3389_fpls_2022_997762 crossref_primary_10_1146_annurev_ecolsys_110316_023021 crossref_primary_10_1086_688919 crossref_primary_10_1111_mec_13753 crossref_primary_10_1002_ece3_10940 crossref_primary_10_1111_nph_14130 crossref_primary_10_3732_ajb_1400513 crossref_primary_10_1111_ele_12449 crossref_primary_10_1111_nph_17400 crossref_primary_10_1002_ajb2_16449 crossref_primary_10_1111_nph_15905 crossref_primary_10_1002_ajb2_1063 crossref_primary_10_1111_jeb_13169 crossref_primary_10_1111_evo_13258 crossref_primary_10_1111_evo_14469 crossref_primary_10_1146_annurev_ecolsys_112414_054215 crossref_primary_10_1098_rsos_150684 crossref_primary_10_1111_jeb_13968 crossref_primary_10_1093_aobpla_plab067 crossref_primary_10_1071_SB18027 crossref_primary_10_1002_bies_201500053 crossref_primary_10_1007_s10722_016_0437_5 crossref_primary_10_1002_ece3_9515 crossref_primary_10_1093_evlett_qrae039 crossref_primary_10_1016_j_ympev_2018_06_035 crossref_primary_10_1007_s10530_024_03267_9 crossref_primary_10_1111_j_1601_5223_2013_02272_x crossref_primary_10_1111_boj_12168 crossref_primary_10_1534_genetics_114_172809 crossref_primary_10_1098_rsbl_2020_0402 crossref_primary_10_1086_733646 crossref_primary_10_1007_s00606_014_1169_7 crossref_primary_10_1111_btp_12905 crossref_primary_10_3390_horticulturae10091002 |
Cites_doi | 10.1093/genetics/123.4.887 10.1046/j.1420-9101.1993.6040591.x 10.1146/annurev.ecolsys.36.091704.175539 10.1016/j.ympev.2011.07.007 10.1111/j.1558-5646.2009.00926.x 10.1111/j.0014-3820.2006.tb01186.x 10.1038/hdy.1968.30 10.2307/2640435 10.1098/rspb.2012.1343 10.1038/hdy.2010.59 10.3732/ajb.1000346 10.1371/journal.pgen.1002164 10.2307/2405656 10.1073/pnas.0808012106 10.1073/pnas.1104032108 10.1017/S0016672399003900 10.1155/2012/508458 10.1038/ng2115 10.1093/molbev/msq352 10.1093/gbe/evr085 10.1111/j.1558-5646.2012.01778.x 10.1098/rstb.1996.0112 10.1098/rspb.1998.0410 10.1111/j.0014-3820.2002.tb00162.x 10.1016/j.cub.2006.07.068 10.1007/BF00222665 10.1093/molbev/msn079 10.2307/2408514 10.1111/j.1469-1809.1941.tb02272.x 10.1111/j.1558-5646.2008.00505.x 10.1073/pnas.0510270103 10.1038/hdy.2011.9 10.1093/aob/mcr237 10.1038/hdy.1958.26 10.1038/nature08496 10.1126/science.1198063 10.1093/molbev/msq062 10.1371/journal.pbio.0050236 10.1111/j.1558-5646.2011.01225.x 10.1093/genetics/155.2.929 10.1086/666649 10.1111/j.1469-8137.2006.01905.x 10.1073/pnas.0506283103 10.1086/281999 10.1086/285406 10.1111/j.0014-3820.2003.tb01494.x 10.1086/599085 10.1086/593705 10.2307/2410432 10.1371/journal.pbio.0030196 10.1111/j.0014-3820.2006.tb01216.x 10.1073/pnas.0807679106 10.1111/j.0014-3820.2004.tb01646.x 10.1111/j.0014-3820.2005.tb00947.x 10.2307/3558325 10.1111/j.1558-5646.2011.01306.x 10.1086/523366 10.1038/352522a0 10.1111/j.1558-5646.2007.00006.x 10.1534/genetics.107.073601 10.1186/1471-2164-13-611 10.1086/523362 10.1101/SQB.1959.024.01.019 10.1017/S0016672300031086 10.2307/2411261 10.1093/oso/9780198570851.003.0010 10.1093/sysbio/syp067 10.1016/S0959-437X(00)00254-9 10.1093/genetics/154.2.923 10.1093/aob/mcs124 10.4159/harvard.9780674864856 10.2307/2410413 10.1093/aob/mcr023 10.1007/s006060200043 10.1098/rspb.2006.3657 10.1111/j.1558-5646.2012.01730.x 10.2307/2441378 10.1111/j.1558-5646.2009.00700.x 10.1093/genetics/117.2.353 10.1111/j.1469-8137.2009.02946.x 10.1093/oxfordjournals.molbev.a004204 10.1093/genetics/165.4.2307 10.1111/j.0014-3820.2004.tb00886.x 10.1017/CBO9780511623486 10.1126/science.1206360 10.2307/1218538 10.1126/science.1194513 10.1017/S0016672307009032 10.1086/283365 10.1080/10635150701607033 10.1086/285580 10.1038/nrg776 10.1111/j.1558-5646.2008.00418.x 10.1086/283012 10.1086/599303 10.7312/gran92318 10.3732/ajb.0900224 10.1093/molbev/msp119 10.1016/0022-5193(76)90138-7 10.1086/432036 10.1554/0014-3820(2001)055[0869:PATEOS]2.0.CO;2 10.1093/aob/mcr127 10.1111/j.1558-5646.2011.01462.x 10.1534/genetics.107.072371 |
ContentType | Journal Article |
Copyright | 2013 The Author(s) Published by the Royal Society. All rights reserved. 2013 The Author(s) Published by the Royal Society. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 The Author(s) Published by the Royal Society. All rights reserved. – notice: 2013 The Author(s) Published by the Royal Society. All rights reserved. 2013 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTPV AOWAS DF2 |
DOI | 10.1098/rspb.2013.0133 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
DocumentTitleAlternate | Evolutionary consequences of selfing |
EISSN | 1471-2945 1471-2954 |
ExternalDocumentID | oai_DiVA_org_uu_200847 PMC3652455 23595268 10_1098_rspb_2013_0133 ark_67375_V84_CW1NH8H5_X |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 0VX 29P 2WC 36Y 4.4 5RE 85S AACGO AANCE ABBHK ABPLY ABTLG ABXSQ ACIWK ACNCT ACPRK ACQIA ADACV ADBBV ADIYS ADULT AEUPB AEXZC AFRAH AJZGM ALMA_UNASSIGNED_HOLDINGS ALMYZ AOIJS AQVQM BAWUL BGBPD BSCLL BTFSW CS3 DCCCD DIK DOOOF E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST K-O KQ8 MRS O9- OK1 OP1 RHF RPM RRY SA0 TR2 V1E W8F ~02 ABPTK ADZLD DNJUQ DWIUU AAYXX ACHIC ACRPL ADNMO ADQXQ AGPVY AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM .55 .GJ 3O- 53G 8WZ A6W AANZV ABEFU ABIEJ ACMKX ADTPV AOWAS AS~ CAG COF DF2 HGD HQ3 HTVGU MVM ROL WOQ X7M ZXP |
ID | FETCH-LOGICAL-c778t-8b6ee88a0c313d6575a20037d2d183f02dd5c82396952e0f0859f1ef645326683 |
ISSN | 0962-8452 1471-2954 |
IngestDate | Thu Aug 21 06:43:44 EDT 2025 Thu Aug 21 13:58:17 EDT 2025 Fri Jul 11 14:37:32 EDT 2025 Mon Jul 21 06:03:47 EDT 2025 Tue Jul 01 02:06:52 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 Wed Jan 17 02:37:16 EST 2024 Tue May 24 16:17:59 EDT 2022 Wed Oct 30 09:58:12 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1760 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c778t-8b6ee88a0c313d6575a20037d2d183f02dd5c82396952e0f0859f1ef645326683 |
Notes | href:rspb20130133.pdf ArticleID:rspb20130133 ark:/67375/V84-CW1NH8H5-X istex:70AA44C36FB7814EC1578C10B959873F9C3BA2B2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2013.0133 |
PMID | 23595268 |
PQID | 1331085715 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1331085715 royalsociety_journals_10_1098_rspb_2013_0133 royalsociety_journals_RSPBv280i1760_0831064326_zip_rspb_280_issue_1760_rspb_2013_0133_rspb_2013_0133 crossref_primary_10_1098_rspb_2013_0133 pubmed_primary_23595268 istex_primary_ark_67375_V84_CW1NH8H5_X swepub_primary_oai_DiVA_org_uu_200847 crossref_citationtrail_10_1098_rspb_2013_0133 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3652455 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-07 |
PublicationDateYYYYMMDD | 2013-06-07 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Proceedings of the Royal Society. B, Biological sciences |
PublicationTitleAbbrev | Proc. R. Soc. B |
PublicationTitleAlternate | Proc. R. Soc. B |
PublicationYear | 2013 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_2_28_2 Darwin C (e_1_3_2_8_2) 1867 e_1_3_2_20_2 Cutter AD (e_1_3_2_40_2) 2008; 178 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_81_2 Coyne JA (e_1_3_2_44_2) 2004 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_54_2 Escobar JS (e_1_3_2_92_2) 2010; 64 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_112_2 e_1_3_2_50_2 Charlesworth D (e_1_3_2_49_2) 2001 e_1_3_2_116_2 e_1_3_2_48_2 Nordborg M (e_1_3_2_79_2) 2000; 154 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 Chantha S-C (e_1_3_2_29_2) Kaplan NL (e_1_3_2_80_2) 1989; 123 e_1_3_2_93_2 Slotte T (e_1_3_2_97_2) e_1_3_2_115_2 e_1_3_2_70_2 e_1_3_2_111_2 e_1_3_2_26_2 Heller J (e_1_3_2_86_2) 1979; 8 Charlesworth B (e_1_3_2_100_2) 2010 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 Innan H (e_1_3_2_104_2) 2003; 165 Pollak E (e_1_3_2_78_2) 1987; 117 Lloyd DG (e_1_3_2_114_2) 1980 e_1_3_2_60_2 e_1_3_2_102_2 e_1_3_2_106_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_94_2 Hazzouri KM (e_1_3_2_39_2) e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_101_2 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 Eckert C (e_1_3_2_10_2) 2006 e_1_3_2_91_2 e_1_3_2_113_2 e_1_3_2_72_2 McVean GA (e_1_3_2_83_2) 2000; 155 e_1_3_2_117_2 |
References_xml | – volume: 123 start-page: 887 year: 1989 ident: e_1_3_2_80_2 article-title: The ‘hitchhiking effect’ revisited publication-title: Genet. J. doi: 10.1093/genetics/123.4.887 – start-page: 73 volume-title: Integrating ecology and evolution in a spatial context year: 2001 ident: e_1_3_2_49_2 – ident: e_1_3_2_51_2 doi: 10.1046/j.1420-9101.1993.6040591.x – ident: e_1_3_2_19_2 doi: 10.1146/annurev.ecolsys.36.091704.175539 – ident: e_1_3_2_41_2 doi: 10.1016/j.ympev.2011.07.007 – ident: e_1_3_2_26_2 doi: 10.1111/j.1558-5646.2009.00926.x – ident: e_1_3_2_33_2 doi: 10.1111/j.0014-3820.2006.tb01186.x – ident: e_1_3_2_59_2 doi: 10.1038/hdy.1968.30 – ident: e_1_3_2_60_2 doi: 10.2307/2640435 – ident: e_1_3_2_55_2 doi: 10.1098/rspb.2012.1343 – ident: e_1_3_2_90_2 doi: 10.1038/hdy.2010.59 – ident: e_1_3_2_38_2 doi: 10.3732/ajb.1000346 – ident: e_1_3_2_70_2 doi: 10.1371/journal.pgen.1002164 – ident: e_1_3_2_11_2 doi: 10.2307/2405656 – ident: e_1_3_2_53_2 doi: 10.1073/pnas.0808012106 – ident: e_1_3_2_102_2 doi: 10.1073/pnas.1104032108 – ident: e_1_3_2_106_2 doi: 10.1017/S0016672399003900 – ident: e_1_3_2_57_2 doi: 10.1155/2012/508458 – ident: e_1_3_2_101_2 doi: 10.1038/ng2115 – ident: e_1_3_2_54_2 doi: 10.1093/molbev/msq352 – ident: e_1_3_2_95_2 doi: 10.1093/gbe/evr085 – ident: e_1_3_2_105_2 doi: 10.1111/j.1558-5646.2012.01778.x – ident: e_1_3_2_48_2 doi: 10.1098/rstb.1996.0112 – ident: e_1_3_2_22_2 doi: 10.1098/rspb.1998.0410 – ident: e_1_3_2_47_2 doi: 10.1111/j.0014-3820.2002.tb00162.x – ident: e_1_3_2_14_2 doi: 10.1016/j.cub.2006.07.068 – ident: e_1_3_2_64_2 doi: 10.1007/BF00222665 – ident: e_1_3_2_93_2 doi: 10.1093/molbev/msn079 – ident: e_1_3_2_15_2 doi: 10.2307/2408514 – ident: e_1_3_2_5_2 doi: 10.1111/j.1469-1809.1941.tb02272.x – ident: e_1_3_2_24_2 doi: 10.1111/j.1558-5646.2008.00505.x – ident: e_1_3_2_68_2 doi: 10.1073/pnas.0510270103 – ident: e_1_3_2_75_2 doi: 10.1038/hdy.2011.9 – ident: e_1_3_2_36_2 doi: 10.1093/aob/mcr237 – ident: e_1_3_2_63_2 doi: 10.1038/hdy.1958.26 – ident: e_1_3_2_111_2 doi: 10.1038/nature08496 – ident: e_1_3_2_30_2 doi: 10.1126/science.1198063 – ident: e_1_3_2_96_2 doi: 10.1093/molbev/msq062 – ident: e_1_3_2_69_2 doi: 10.1371/journal.pbio.0050236 – ident: e_1_3_2_13_2 doi: 10.1111/j.1558-5646.2011.01225.x – volume: 155 start-page: 929 year: 2000 ident: e_1_3_2_83_2 article-title: The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation publication-title: Genetics doi: 10.1093/genetics/155.2.929 – ident: e_1_3_2_77_2 doi: 10.1086/666649 – ident: e_1_3_2_23_2 doi: 10.1111/j.1469-8137.2006.01905.x – ident: e_1_3_2_18_2 doi: 10.1073/pnas.0506283103 – ident: e_1_3_2_20_2 doi: 10.1086/281999 – ident: e_1_3_2_66_2 doi: 10.1086/285406 – ident: e_1_3_2_74_2 doi: 10.1111/j.0014-3820.2003.tb01494.x – ident: e_1_3_2_108_2 doi: 10.1086/599085 – ident: e_1_3_2_34_2 doi: 10.1086/593705 – ident: e_1_3_2_87_2 doi: 10.2307/2410432 – ident: e_1_3_2_103_2 doi: 10.1371/journal.pbio.0030196 – volume: 178 start-page: 2093 year: 2008 ident: e_1_3_2_40_2 article-title: Patterns of molecular evolution in Caenorhabditis preclude ancient origins of selfing publication-title: Genome Res. – ident: e_1_3_2_72_2 doi: 10.1111/j.0014-3820.2006.tb01216.x – ident: e_1_3_2_52_2 doi: 10.1073/pnas.0807679106 – ident: e_1_3_2_65_2 doi: 10.1111/j.0014-3820.2004.tb01646.x – ident: e_1_3_2_17_2 doi: 10.1111/j.0014-3820.2005.tb00947.x – ident: e_1_3_2_97_2 article-title: The Capsella rubella genome and the genomic consequences of rapid mating system evolution publication-title: Nat. Genet. – ident: e_1_3_2_21_2 doi: 10.2307/3558325 – volume: 64 start-page: 2855 year: 2010 ident: e_1_3_2_92_2 article-title: An integrative test of the dead-end hypothesis of selfing evolution in Triticeae (Poaceae) publication-title: Evolution – ident: e_1_3_2_62_2 doi: 10.1111/j.1558-5646.2011.01306.x – ident: e_1_3_2_71_2 doi: 10.1086/523366 – ident: e_1_3_2_16_2 doi: 10.1038/352522a0 – start-page: 67 volume-title: Demography and evolution in plant populations year: 1980 ident: e_1_3_2_114_2 – ident: e_1_3_2_45_2 doi: 10.1111/j.1558-5646.2007.00006.x – ident: e_1_3_2_88_2 doi: 10.1534/genetics.107.073601 – ident: e_1_3_2_98_2 doi: 10.1186/1471-2164-13-611 – ident: e_1_3_2_37_2 doi: 10.1086/523362 – ident: e_1_3_2_58_2 doi: 10.1101/SQB.1959.024.01.019 – ident: e_1_3_2_81_2 doi: 10.1017/S0016672300031086 – ident: e_1_3_2_9_2 doi: 10.2307/2411261 – start-page: 183 volume-title: Ecology and evolution of flowers year: 2006 ident: e_1_3_2_10_2 doi: 10.1093/oso/9780198570851.003.0010 – volume: 8 start-page: 269 year: 1979 ident: e_1_3_2_86_2 article-title: Does Muller's Ratchet work with selfing? publication-title: Genet. Res. – ident: e_1_3_2_31_2 doi: 10.1093/sysbio/syp067 – ident: e_1_3_2_39_2 article-title: Comparative population genomics in Collinsia sister species reveals evidence for reduced effective population size, relaxed selection and evolution of biased gene conversion with an ongoing mating system shift publication-title: Evolution – ident: e_1_3_2_84_2 doi: 10.1016/S0959-437X(00)00254-9 – volume: 154 start-page: 923 year: 2000 ident: e_1_3_2_79_2 article-title: Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization publication-title: Genetics doi: 10.1093/genetics/154.2.923 – ident: e_1_3_2_28_2 doi: 10.1093/aob/mcs124 – ident: e_1_3_2_2_2 doi: 10.4159/harvard.9780674864856 – ident: e_1_3_2_82_2 doi: 10.2307/2410413 – ident: e_1_3_2_46_2 doi: 10.1093/aob/mcr023 – ident: e_1_3_2_43_2 doi: 10.1007/s006060200043 – ident: e_1_3_2_89_2 doi: 10.1098/rspb.2006.3657 – ident: e_1_3_2_76_2 doi: 10.1111/j.1558-5646.2012.01730.x – ident: e_1_3_2_50_2 doi: 10.2307/2441378 – ident: e_1_3_2_56_2 doi: 10.1111/j.1558-5646.2009.00700.x – volume: 117 start-page: 353 year: 1987 ident: e_1_3_2_78_2 article-title: On the theory of partially inbreeding finite populations. I. Partial selfing publication-title: Genetics doi: 10.1093/genetics/117.2.353 – ident: e_1_3_2_116_2 doi: 10.1111/j.1469-8137.2009.02946.x – ident: e_1_3_2_94_2 doi: 10.1093/oxfordjournals.molbev.a004204 – volume: 165 start-page: 2307 year: 2003 ident: e_1_3_2_104_2 article-title: Distinguishing the hitchhiking and background selection models publication-title: Genetics doi: 10.1093/genetics/165.4.2307 – volume-title: Elements of Evolutionary Genetics year: 2010 ident: e_1_3_2_100_2 – ident: e_1_3_2_110_2 doi: 10.1111/j.0014-3820.2004.tb00886.x – volume-title: The effects of cross and self-fertilization in the vegetable kingdom year: 1867 ident: e_1_3_2_8_2 – ident: e_1_3_2_85_2 doi: 10.1017/CBO9780511623486 – ident: e_1_3_2_112_2 doi: 10.1126/science.1206360 – ident: e_1_3_2_42_2 doi: 10.2307/1218538 – ident: e_1_3_2_27_2 doi: 10.1126/science.1194513 – ident: e_1_3_2_91_2 doi: 10.1017/S0016672307009032 – ident: e_1_3_2_7_2 doi: 10.1086/283365 – ident: e_1_3_2_25_2 doi: 10.1080/10635150701607033 – ident: e_1_3_2_115_2 doi: 10.1086/285580 – ident: e_1_3_2_4_2 doi: 10.1038/nrg776 – ident: e_1_3_2_67_2 doi: 10.1111/j.1558-5646.2008.00418.x – ident: e_1_3_2_109_2 doi: 10.1086/283012 – ident: e_1_3_2_61_2 – ident: e_1_3_2_12_2 doi: 10.1086/599303 – ident: e_1_3_2_29_2 article-title: Secondary evolution of self-incompatibility in the mustard genus Leavenworthia publication-title: PLoS Biol. – ident: e_1_3_2_3_2 doi: 10.7312/gran92318 – ident: e_1_3_2_113_2 doi: 10.3732/ajb.0900224 – ident: e_1_3_2_99_2 doi: 10.1093/molbev/msp119 – ident: e_1_3_2_6_2 doi: 10.1016/0022-5193(76)90138-7 – ident: e_1_3_2_73_2 doi: 10.1086/432036 – ident: e_1_3_2_107_2 doi: 10.1554/0014-3820(2001)055[0869:PATEOS]2.0.CO;2 – ident: e_1_3_2_117_2 doi: 10.1093/aob/mcr127 – ident: e_1_3_2_35_2 doi: 10.1111/j.1558-5646.2011.01462.x – volume-title: Speciation year: 2004 ident: e_1_3_2_44_2 – ident: e_1_3_2_32_2 doi: 10.1534/genetics.107.072371 |
SSID | ssj0009585 |
Score | 2.5660949 |
SecondaryResourceType | review_article |
Snippet | The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10–15% of flowering plants are... The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10-15% of flowering plants are... |
SourceID | swepub pubmedcentral proquest pubmed crossref royalsociety istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20130133 |
SubjectTerms | Adaptation Adaptation, Biological - genetics Biological Evolution Dead-End Hypothesis Extinction, Biological Likelihood Functions Magnoliopsida - genetics Magnoliopsida - physiology Mating System Transition Models, Biological Mutation - genetics Review Review Articles Self-Fertilization - physiology Species Specificity |
Title | Evolutionary consequences of self-fertilization in plants |
URI | https://api.istex.fr/ark:/67375/V84-CW1NH8H5-X/fulltext.pdf https://royalsocietypublishing.org/doi/full/10.1098/rspb.2013.0133 https://www.ncbi.nlm.nih.gov/pubmed/23595268 https://www.proquest.com/docview/1331085715 https://pubmed.ncbi.nlm.nih.gov/PMC3652455 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-200847 |
Volume | 280 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgExJfEBuv8lKQeGqkJM7L-biNQUFimli39ZvlvLZAlU5NO0H_eu5sx0toJw2-RFV6uiS-8_nO_t0dIS89J_FjkSc29T0fAhQns-OURnYsUpHFrBB-hhv63_bDwZH_dRSMmhb3OrtklvTTxcq8kv-RKtwDuWKW7D9I1jCFG_Ab5AtXkDBcryXjvQvNHqFvaQsXjS5gnY8Lu0DY9FjnWkrE-Fjo4k2NS3pglrC6AQyoPQUN6Oxv7UglKI2Z1Kum8cYvI3yNGdv60jeGHAssLpbwP4fjyUw15huK6odo7z3IPhC2alKrzSUsbTaeFLbtKVWtmRrFiVS_gMZA4kmpq2pfLFlvJ8aMBIjnE8Tcef2GcEVF7I_l8TafTE_5fC47afrRTbJOIVTALhafR26r8LJsywqRGlh-X3ZgMm9tiniyD92HdpyUdZxvv1ZFICuAtFMUUK3k81f1WemxDO-SOzrUsLaV3myQG3m1SW4pOf7eJBvarNfWW117_N09ErdVymqrlDUprGWVssrKUip1nxx92hvuDmzdXcNOo4jNbJaEec6YcFLP9TI8fxMIVIwymoGZLxyaZUHKqBeHcUBzp8BKeIWbF6EfgMsfMu8BWasmVf6IWGGcZokowNlMme8VmQCfNI_COGEpi90i6BG7GU6e6tLz2AFlzBUEgnEcfo7Dz3H4e-SNoT9XRVeupHwtpWPIxPQnQhWjgB8zn--euPsDNgj4qEdeNOLjYEDxVExU-WRec-CCGTiRC6_5UInTcKOYtk5D1iNRR9CGAFWx-09Vnski7V4YUD8Anu_bKsG19aiv_J5sNfn3w4OdC5hZJc4nLtsDQixBQ74ozzUP5nA55bgk6fJdeswrpZmdD1meU4-vSfeE3L40D0_J2mw6z5-Bsz5LnsvZ-AeEHumQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+consequences+of+self-fertilization+in+plants&rft.jtitle=Proceedings+of+the+Royal+Society.+B%2C+Biological+sciences&rft.au=Wright%2C+Stephen+I.&rft.au=Kalisz%2C+Susan&rft.au=Slotte%2C+Tanja&rft.date=2013-06-07&rft.issn=1471-2954&rft.volume=280&rft.issue=1760&rft.spage=20130133&rft_id=info:doi/10.1098%2Frspb.2013.0133&rft.externalDocID=oai_DiVA_org_uu_200847 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8452&client=summon |