Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces

Interactions of influenza A virus (IAV) with sialic acid (SIA) receptors determine viral fitness and host tropism. Binding to mucus decoy receptors and receptors on epithelial host cells is determined by a receptor-binding hemagglutinin (HA), a receptor-destroying neuraminidase (NA) and a complex in...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 14; no. 8; p. e1007233
Main Authors Guo, Hongbo, Rabouw, Huib, Slomp, Anne, Dai, Meiling, van der Vegt, Floor, van Lent, Jan W. M., McBride, Ryan, Paulson, James C., de Groot, Raoul J., van Kuppeveld, Frank J. M., de Vries, Erik, de Haan, Cornelis A. M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.08.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interactions of influenza A virus (IAV) with sialic acid (SIA) receptors determine viral fitness and host tropism. Binding to mucus decoy receptors and receptors on epithelial host cells is determined by a receptor-binding hemagglutinin (HA), a receptor-destroying neuraminidase (NA) and a complex in vivo receptor-repertoire. The crucial but poorly understood dynamics of these multivalent virus-receptor interactions cannot be properly analyzed using equilibrium binding models and endpoint binding assays. In this study, the use of biolayer interferometric analysis revealed the virtually irreversible nature of IAV binding to surfaces coated with synthetic sialosides or engineered sialoglycoproteins in the absence of NA activity. In addition to HA, NA was shown to be able to contribute to the initial binding rate while catalytically active. Virus-receptor binding in turn contributed to receptor cleavage by NA. Multiple low-affinity HA-SIA interactions resulted in overall extremely high avidity but also permitted a dynamic binding mode, in which NA activity was driving rolling of virus particles over the receptor-surface. Virus dissociation only took place after receptor density of the complete receptor-surface was sufficiently decreased due to NA activity of rolling IAV particles. The results indicate that in vivo IAV particles, after landing on the mucus layer, reside continuously in a receptor-bound state while rolling through the mucus layer and over epithelial cell surfaces driven by the HA-NA-receptor balance. Quantitative BLI analysis enabled functional examination of this balance which governs this dynamic and motile interaction that is expected to be crucial for penetration of the mucus layer and subsequent infection of cells by IAV but likely also by other enveloped viruses carrying a receptor-destroying enzyme in addition to a receptor-binding protein.
AbstractList Interactions of influenza A virus (IAV) with sialic acid (SIA) receptors determine viral fitness and host tropism. Binding to mucus decoy receptors and receptors on epithelial host cells is determined by a receptor-binding hemagglutinin (HA), a receptor-destroying neuraminidase (NA) and a complex in vivo receptor-repertoire. The crucial but poorly understood dynamics of these multivalent virus-receptor interactions cannot be properly analyzed using equilibrium binding models and endpoint binding assays. In this study, the use of biolayer interferometric analysis revealed the virtually irreversible nature of IAV binding to surfaces coated with synthetic sialosides or engineered sialoglycoproteins in the absence of NA activity. In addition to HA, NA was shown to be able to contribute to the initial binding rate while catalytically active. Virus-receptor binding in turn contributed to receptor cleavage by NA. Multiple low-affinity HA-SIA interactions resulted in overall extremely high avidity but also permitted a dynamic binding mode, in which NA activity was driving rolling of virus particles over the receptor-surface. Virus dissociation only took place after receptor density of the complete receptor-surface was sufficiently decreased due to NA activity of rolling IAV particles. The results indicate that in vivo IAV particles, after landing on the mucus layer, reside continuously in a receptor-bound state while rolling through the mucus layer and over epithelial cell surfaces driven by the HA-NA-receptor balance. Quantitative BLI analysis enabled functional examination of this balance which governs this dynamic and motile interaction that is expected to be crucial for penetration of the mucus layer and subsequent infection of cells by IAV but likely also by other enveloped viruses carrying a receptor-destroying enzyme in addition to a receptor-binding protein.
Interactions of influenza A virus (IAV) with sialic acid (SIA) receptors determine viral fitness and host tropism. Binding to mucus decoy receptors and receptors on epithelial host cells is determined by a receptor-binding hemagglutinin (HA), a receptor-destroying neuraminidase (NA) and a complex in vivo receptor-repertoire. The crucial but poorly understood dynamics of these multivalent virus-receptor interactions cannot be properly analyzed using equilibrium binding models and endpoint binding assays. In this study, the use of biolayer interferometric analysis revealed the virtually irreversible nature of IAV binding to surfaces coated with synthetic sialosides or engineered sialoglycoproteins in the absence of NA activity. In addition to HA, NA was shown to be able to contribute to the initial binding rate while catalytically active. Virus-receptor binding in turn contributed to receptor cleavage by NA. Multiple low-affinity HA-SIA interactions resulted in overall extremely high avidity but also permitted a dynamic binding mode, in which NA activity was driving rolling of virus particles over the receptor-surface. Virus dissociation only took place after receptor density of the complete receptor-surface was sufficiently decreased due to NA activity of rolling IAV particles. The results indicate that in vivo IAV particles, after landing on the mucus layer, reside continuously in a receptor-bound state while rolling through the mucus layer and over epithelial cell surfaces driven by the HA-NA-receptor balance. Quantitative BLI analysis enabled functional examination of this balance which governs this dynamic and motile interaction that is expected to be crucial for penetration of the mucus layer and subsequent infection of cells by IAV but likely also by other enveloped viruses carrying a receptor-destroying enzyme in addition to a receptor-binding protein. Influenza A virus (IAV) tropism is largely determined by the interaction of virus particles with the sialic acid receptor repertoire of the host. IAVs encounter a diverse range of sialic acid receptors that can function as decoys (e.g. in the mucus that covers epithelial cells) or as entry receptors. We studied the dynamics of IAV-receptor interactions in real-time using biolayer interferometry (BLI) in combination with synthetic glycans and recombinant sialoglycoproteins mimicking in vivo receptors. Thereby we could show that IAVs do not continuously associate and dissociate with receptor-coated surfaces but actually were rolling over the surface with which they remained permanently associated until the receptors were sufficiently cleared. This required the concerted action of the receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA) on the receptor surface. We could quantify the precise HA-NA-receptor balance that determined the speed of rolling and eventual elution from the surface by BLI and propose a model in which IAV is permanently, but dynamically, associated with receptors on mucus or host cells in vivo .
Interactions of influenza A virus (IAV) with sialic acid (SIA) receptors determine viral fitness and host tropism. Binding to mucus decoy receptors and receptors on epithelial host cells is determined by a receptor-binding hemagglutinin (HA), a receptor-destroying neuraminidase (NA) and a complex in vivo receptor-repertoire. The crucial but poorly understood dynamics of these multivalent virus-receptor interactions cannot be properly analyzed using equilibrium binding models and endpoint binding assays. In this study, the use of biolayer interferometric analysis revealed the virtually irreversible nature of IAV binding to surfaces coated with synthetic sialosides or engineered sialoglycoproteins in the absence of NA activity. In addition to HA, NA was shown to be able to contribute to the initial binding rate while catalytically active. Virus-receptor binding in turn contributed to receptor cleavage by NA. Multiple low-affinity HA-SIA interactions resulted in overall extremely high avidity but also permitted a dynamic binding mode, in which NA activity was driving rolling of virus particles over the receptor-surface. Virus dissociation only took place after receptor density of the complete receptor-surface was sufficiently decreased due to NA activity of rolling IAV particles. The results indicate that in vivo IAV particles, after landing on the mucus layer, reside continuously in a receptor-bound state while rolling through the mucus layer and over epithelial cell surfaces driven by the HA-NA-receptor balance. Quantitative BLI analysis enabled functional examination of this balance which governs this dynamic and motile interaction that is expected to be crucial for penetration of the mucus layer and subsequent infection of cells by IAV but likely also by other enveloped viruses carrying a receptor-destroying enzyme in addition to a receptor-binding protein.Interactions of influenza A virus (IAV) with sialic acid (SIA) receptors determine viral fitness and host tropism. Binding to mucus decoy receptors and receptors on epithelial host cells is determined by a receptor-binding hemagglutinin (HA), a receptor-destroying neuraminidase (NA) and a complex in vivo receptor-repertoire. The crucial but poorly understood dynamics of these multivalent virus-receptor interactions cannot be properly analyzed using equilibrium binding models and endpoint binding assays. In this study, the use of biolayer interferometric analysis revealed the virtually irreversible nature of IAV binding to surfaces coated with synthetic sialosides or engineered sialoglycoproteins in the absence of NA activity. In addition to HA, NA was shown to be able to contribute to the initial binding rate while catalytically active. Virus-receptor binding in turn contributed to receptor cleavage by NA. Multiple low-affinity HA-SIA interactions resulted in overall extremely high avidity but also permitted a dynamic binding mode, in which NA activity was driving rolling of virus particles over the receptor-surface. Virus dissociation only took place after receptor density of the complete receptor-surface was sufficiently decreased due to NA activity of rolling IAV particles. The results indicate that in vivo IAV particles, after landing on the mucus layer, reside continuously in a receptor-bound state while rolling through the mucus layer and over epithelial cell surfaces driven by the HA-NA-receptor balance. Quantitative BLI analysis enabled functional examination of this balance which governs this dynamic and motile interaction that is expected to be crucial for penetration of the mucus layer and subsequent infection of cells by IAV but likely also by other enveloped viruses carrying a receptor-destroying enzyme in addition to a receptor-binding protein.
Audience Academic
Author Guo, Hongbo
de Vries, Erik
de Groot, Raoul J.
van Kuppeveld, Frank J. M.
Dai, Meiling
van der Vegt, Floor
van Lent, Jan W. M.
Rabouw, Huib
Paulson, James C.
Slomp, Anne
McBride, Ryan
de Haan, Cornelis A. M.
AuthorAffiliation 2 Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, PB Wageningen, the Netherlands
1 Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
3 Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, Scripps Research Institute, La Jolla, California, United States of America
Emory University School of Medicine, UNITED STATES
AuthorAffiliation_xml – name: Emory University School of Medicine, UNITED STATES
– name: 3 Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, Scripps Research Institute, La Jolla, California, United States of America
– name: 2 Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, PB Wageningen, the Netherlands
– name: 1 Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
Author_xml – sequence: 1
  givenname: Hongbo
  orcidid: 0000-0003-4593-2226
  surname: Guo
  fullname: Guo, Hongbo
– sequence: 2
  givenname: Huib
  surname: Rabouw
  fullname: Rabouw, Huib
– sequence: 3
  givenname: Anne
  surname: Slomp
  fullname: Slomp, Anne
– sequence: 4
  givenname: Meiling
  surname: Dai
  fullname: Dai, Meiling
– sequence: 5
  givenname: Floor
  surname: van der Vegt
  fullname: van der Vegt, Floor
– sequence: 6
  givenname: Jan W. M.
  surname: van Lent
  fullname: van Lent, Jan W. M.
– sequence: 7
  givenname: Ryan
  orcidid: 0000-0001-8616-1910
  surname: McBride
  fullname: McBride, Ryan
– sequence: 8
  givenname: James C.
  surname: Paulson
  fullname: Paulson, James C.
– sequence: 9
  givenname: Raoul J.
  orcidid: 0000-0002-2207-9472
  surname: de Groot
  fullname: de Groot, Raoul J.
– sequence: 10
  givenname: Frank J. M.
  surname: van Kuppeveld
  fullname: van Kuppeveld, Frank J. M.
– sequence: 11
  givenname: Erik
  orcidid: 0000-0003-0763-8202
  surname: de Vries
  fullname: de Vries, Erik
– sequence: 12
  givenname: Cornelis A. M.
  orcidid: 0000-0002-4459-9874
  surname: de Haan
  fullname: de Haan, Cornelis A. M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30102740$$D View this record in MEDLINE/PubMed
BookMark eNqVk81u1DAUhSNURH_gDRBEYgOLTO04cRIWSKMKaEVVJH7W1rVzM3XlsVM7mVLeh_fE6UxLB1VIKAtH9neOfY9995Md6ywmyXNKZpRV9PDCjd6CmfU9DDNKSJUz9ijZo2XJsopVxc69_91kP4QLQgrKKH-S7DJCSV4VZC_59UlbHLRKIXpdBx1S16XDOabadmZE-xPSebrSfgzp8fzwbJ5KMGAVph5XCCakytnBazkO2tlJG5HBrRWZR4X94HwqtW21XcRN2ghkLfZoW7RD6p0x00LU3sLZ5AjaTtNh9B0oDE-Tx13cDJ9txoPk-4f3346Os9PPH0-O5qeZqqp6yGpW1AxKwqQkXMmWSWCSsK4jpCRFQcumA1Jw3nSSl6oG4HlOcyAV5y1FCuwgebn27Y0LYpNwEHleUlIXvKaROFkTrYML0Xu9BH8tHGhxM-H8QoCPeRoUsqsbbPJOyrItVMuBs5g-gabLZd00efR6u_a6ggVO9aIVFrzS4cbQaOkn86vRC2umoR9lEGVBc9pE8bvNUUe5xFbFND2YrRNtr1h9LhZuJTiNT6Vh0eD1xsC7yxHDIJY6KDTxetGNsWhS15HjFY_oq7_Qh6PZUAuI1cf34-K-ajIV87Ks6qqpyVT07AEqfi0udbx67HSc3xK82RJMzwN_DAsYQxAnX7_8B3u2zb64H-Bdcre9EYFiDSjvQvDY3SGUiKkFb1MQUwuKTQv-udU7mdIDTO0RC9Xm3-LfIXU7IA
CitedBy_id crossref_primary_10_3389_fimmu_2021_786617
crossref_primary_10_1080_22221751_2019_1665971
crossref_primary_10_1515_chem_2024_0053
crossref_primary_10_1128_JVI_01567_19
crossref_primary_10_1016_j_coviro_2021_03_001
crossref_primary_10_1371_journal_pone_0239015
crossref_primary_10_1073_pnas_2006299117
crossref_primary_10_3389_fmicb_2020_00426
crossref_primary_10_1021_acsami_1c16446
crossref_primary_10_1016_j_antiviral_2023_105635
crossref_primary_10_1371_journal_ppat_1011273
crossref_primary_10_1111_tbed_14190
crossref_primary_10_1016_j_jconrel_2024_06_044
crossref_primary_10_1021_acsami_3c05299
crossref_primary_10_1128_jvi_00602_23
crossref_primary_10_1007_s11756_021_00723_y
crossref_primary_10_1016_j_mran_2020_100140
crossref_primary_10_7554_eLife_43764
crossref_primary_10_1371_journal_pone_0247429
crossref_primary_10_2217_fvl_2021_0237
crossref_primary_10_1080_08830185_2019_1685990
crossref_primary_10_1039_D3RA01029E
crossref_primary_10_3389_fimmu_2020_585361
crossref_primary_10_1002_rmv_2413
crossref_primary_10_1039_D3SM00371J
crossref_primary_10_1093_glycob_cwab074
crossref_primary_10_3390_v11050458
crossref_primary_10_1039_C9SC05149J
crossref_primary_10_1371_journal_ppat_1008816
crossref_primary_10_1038_s41586_023_06136_y
crossref_primary_10_1021_acs_nanolett_8b04969
crossref_primary_10_1038_s41467_021_24366_4
crossref_primary_10_1016_j_antiviral_2021_105060
crossref_primary_10_1007_s00216_021_03510_5
crossref_primary_10_1111_irv_70014
crossref_primary_10_1016_j_carres_2023_108918
crossref_primary_10_1371_journal_ppat_1011135
crossref_primary_10_1016_j_tim_2019_08_010
crossref_primary_10_1128_jvi_00732_22
crossref_primary_10_1038_s41594_019_0233_y
crossref_primary_10_1111_febs_15668
crossref_primary_10_1002_smll_202007214
crossref_primary_10_1128_mbio_01085_24
crossref_primary_10_1007_s11262_022_01935_3
crossref_primary_10_1016_j_str_2022_02_014
crossref_primary_10_1002_smll_202004635
crossref_primary_10_1080_21505594_2023_2235459
crossref_primary_10_1021_acs_jmedchem_9b00303
crossref_primary_10_1128_spectrum_01439_21
crossref_primary_10_1016_j_tim_2019_03_001
crossref_primary_10_1016_j_coviro_2023_101314
crossref_primary_10_1002_rmv_70012
crossref_primary_10_1128_jvi_01271_23
crossref_primary_10_1103_PhysRevLett_126_218101
crossref_primary_10_1101_cshperspect_a038455
crossref_primary_10_1073_pnas_2214936120
crossref_primary_10_3390_v14040717
crossref_primary_10_1146_annurev_virology_122019_070025
crossref_primary_10_1016_j_cell_2018_12_017
crossref_primary_10_3390_microorganisms8050778
crossref_primary_10_1128_JVI_01210_20
crossref_primary_10_1128_jvi_00205_22
crossref_primary_10_1021_acsnano_8b09410
crossref_primary_10_1128_mBio_00287_21
crossref_primary_10_3390_microbiolres16020037
crossref_primary_10_1038_s41467_022_31840_0
crossref_primary_10_3390_v14061307
crossref_primary_10_1002_iid3_984
crossref_primary_10_1016_j_bpj_2019_01_041
crossref_primary_10_1371_journal_pone_0262873
crossref_primary_10_3390_v14030469
crossref_primary_10_1128_JVI_01009_20
crossref_primary_10_1007_s00253_025_13423_3
crossref_primary_10_1016_j_tim_2021_03_014
crossref_primary_10_1039_C9NR07415E
crossref_primary_10_3390_molecules26040810
crossref_primary_10_1128_JVI_01357_19
crossref_primary_10_1080_22221751_2019_1581034
crossref_primary_10_3389_fimmu_2023_1158077
crossref_primary_10_1002_admi_202400322
crossref_primary_10_1007_s11262_020_01822_9
crossref_primary_10_1016_j_ejmech_2023_115723
crossref_primary_10_1021_acs_jmedchem_2c00319
crossref_primary_10_1021_acsnano_1c00166
crossref_primary_10_1128_JCM_01689_20
crossref_primary_10_1371_journal_ppat_1007860
crossref_primary_10_1016_j_ijbiomac_2024_133867
crossref_primary_10_1016_j_virusres_2024_199518
crossref_primary_10_1103_PhysRevE_105_054411
crossref_primary_10_1128_JVI_01818_19
crossref_primary_10_3389_fimmu_2024_1328453
crossref_primary_10_1038_s42003_022_03204_3
crossref_primary_10_1093_ve_veae046
crossref_primary_10_3389_fmicb_2019_00039
crossref_primary_10_1371_journal_ppat_1012371
crossref_primary_10_1111_febs_15731
crossref_primary_10_1021_acsmacrolett_4c00221
crossref_primary_10_1128_jvi_01478_24
crossref_primary_10_3390_v16060883
crossref_primary_10_1016_j_ejmech_2023_115578
Cites_doi 10.1128/AAC.42.4.801
10.1128/JVI.00458-10
10.1007/s40588-016-0041-7
10.1016/S0021-9258(18)68975-6
10.1007/BF01315033
10.1074/jbc.M600902200
10.1016/0042-6822(89)90249-3
10.1006/viro.1996.0139
10.1021/ja9073672
10.1128/JVI.78.22.12665-12667.2004
10.1073/pnas.1002123107
10.1099/vir.0.043059-0
10.1016/j.cbpa.2014.01.002
10.1103/PhysRevE.75.041116
10.1016/j.cbpa.2014.01.001
10.1002/rcm.1718
10.1128/JVI.72.8.6373-6380.1998
10.1016/0003-2697(78)90445-1
10.1016/j.vaccine.2012.09.082
10.1038/nature12144
10.1146/annurev.biochem.69.1.531
10.1038/289366a0
10.1074/jbc.M110.193557
10.1371/journal.ppat.1003413
10.1016/j.jcis.2015.12.017
10.1016/S0014-5793(99)01475-1
10.1128/JVI.73.8.6743-6751.1999
10.1128/JVI.74.14.6316-6323.2000
10.1006/viro.1997.8916
10.1128/JVI.73.11.9679-9682.1999
10.1073/pnas.1200987109
10.1007/BF00178490
10.1126/science.1244730
10.1111/j.1750-2659.2011.00304.x
10.1159/000072428
10.1099/jgv.0.000535
10.1128/AAC.40.1.40
10.1016/j.chom.2017.09.008
10.1016/j.virol.2010.03.047
10.1002/pmic.200300556
10.1126/science.1223012
10.1146/annurev.bi.56.070187.002053
10.1016/j.micinf.2005.12.008
10.1021/la901735d
10.1128/JVI.02537-14
10.1371/journal.pone.0112462
10.1021/ja049085k
10.1016/S0021-9258(19)51299-6
10.1128/JVI.01426-12
10.32607/20758251-2009-1-2-26-32
10.1038/303035a0
10.1126/science.1178258
10.1016/j.jsb.2008.01.009
10.1016/S0021-9258(19)41514-7
10.1128/JVI.00697-12
10.1016/S0168-1702(01)00272-6
10.3390/biom5032056
10.1128/JVI.01023-13
10.1007/BF01313781
10.1007/BF01718612
10.1126/science.1205669
10.1038/nsmb769
10.1006/viro.1994.1615
10.1023/A:1006963717646
10.1371/journal.pone.0110026
10.1186/1743-422X-10-321
10.1371/journal.pone.0071072
10.1128/JVI.71.9.6706-6713.1997
10.1016/j.chom.2016.11.004
10.1006/viro.1998.9119
10.1016/0042-6822(83)90150-2
10.1093/glycob/10.7.649
10.1073/pnas.0909696106
10.1016/0042-6822(91)90003-T
10.1083/jcb.53.2.466
10.1007/s00705-007-1024-z
10.1128/JVI.01346-16
10.1134/S000629791507007X
10.1128/JVI.74.13.6015-6020.2000
10.1128/JVI.03451-13
10.1126/science.2911722
10.1006/bbrc.1999.0550
10.1016/j.bpj.2015.10.045
10.1371/journal.ppat.1001329
10.1007/BF01314038
10.1126/science.1093373
10.1038/srep45043
10.1016/0042-6822(89)90248-1
10.1016/j.tim.2014.07.002
10.1073/pnas.0607614103
10.1021/bi00447a018
10.1074/jbc.M114.622308
10.1007/s00705-009-0393-x
10.1128/JVI.01889-13
10.1016/S0021-9258(18)81736-7
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Guo et al 2018 Guo et al
Wageningen University & Research
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Guo et al 2018 Guo et al
– notice: Wageningen University & Research
DBID AAYXX
CITATION
NPM
ISN
ISR
3V.
7QL
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
QVL
DOA
DOI 10.1371/journal.ppat.1007233
DatabaseName CrossRef
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
NARCIS:Publications
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


PubMed

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Veterinary Medicine
DocumentTitleAlternate NA-dependent influenza A virus rolling on receptor surfaces
EISSN 1553-7374
ExternalDocumentID 2251084681
oai_doaj_org_article_bf89e92fbb5d4cd6a633160a9f2b8992
oai_library_wur_nl_wurpubs_541219
PMC6107293
A557879802
30102740
10_1371_journal_ppat_1007233
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
Netherlands
La Jolla California
California
United States--US
GeographicLocations_xml – name: Netherlands
– name: United States
– name: La Jolla California
– name: California
– name: United States--US
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI114730
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
~8M
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
3V.
7QL
7U9
7XB
8FK
AZQEC
C1K
COVID
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
LI0
M~E
O0-
QVL
PUEGO
ID FETCH-LOGICAL-c778t-83483a503bb06cbd3ba3b03ff005044159fa04669fb65c8aa62212a0766d1e1a3
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Fri Nov 26 17:12:40 EST 2021
Wed Aug 27 01:24:56 EDT 2025
Tue Jan 05 18:09:23 EST 2021
Thu Aug 21 18:11:45 EDT 2025
Fri Jul 11 06:54:49 EDT 2025
Fri Jul 25 12:27:45 EDT 2025
Tue Jun 17 21:25:05 EDT 2025
Tue Jun 10 20:28:44 EDT 2025
Fri Jun 27 03:34:38 EDT 2025
Fri Jun 27 03:37:19 EDT 2025
Mon Jul 21 05:58:29 EDT 2025
Tue Jul 01 03:50:30 EDT 2025
Thu Apr 24 22:56:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c778t-83483a503bb06cbd3ba3b03ff005044159fa04669fb65c8aa62212a0766d1e1a3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-2207-9472
0000-0001-8616-1910
0000-0003-4593-2226
0000-0002-4459-9874
0000-0003-0763-8202
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1007233
PMID 30102740
PQID 2251084681
PQPubID 1436335
ParticipantIDs plos_journals_2251084681
doaj_primary_oai_doaj_org_article_bf89e92fbb5d4cd6a633160a9f2b8992
wageningen_narcis_oai_library_wur_nl_wurpubs_541219
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6107293
proquest_miscellaneous_2088293676
proquest_journals_2251084681
gale_infotracmisc_A557879802
gale_infotracacademiconefile_A557879802
gale_incontextgauss_ISR_A557879802
gale_incontextgauss_ISN_A557879802
pubmed_primary_30102740
crossref_primary_10_1371_journal_ppat_1007233
crossref_citationtrail_10_1371_journal_ppat_1007233
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 20180813
PublicationDateYYYYMMDD 2018-08-13
PublicationDate_xml – month: 8
  year: 2018
  text: 20180813
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References MD Badham (ref66) 2016; 3
R Wagner (ref28) 2000; 74
E de Vries (ref78) 2011; 7
CC Wang (ref50) 2009; 106
O Wicht (ref84) 2014; 88
RP de Vries (ref82) 2010; 403
KB Westgeest (ref60) 2012; 93
GM Air (ref5) 2012; 6
SA Rosenberg (ref74) 1972; 53
YA Shtyrya (ref4) 2009; 1
M Yamaguchi (ref95) 2008; 162
D Rogers GN (ref17) 1989; 173
J Huskens (ref55) 2004; 126
JC Sung (ref59) 2010; 132
RW Ruigrok (ref96) 1989; 173
M Dai (ref16) 2016; 90
L Mochalova (ref23) 2007; 152
R Xu (ref10) 2012; 86
B Dadonaite (ref65) 2016; 97
R Lu (ref52) 2016; 466
IA Rudneva (ref9) 1996; 141
O Blixt (ref90) 2014; 18
X Zhu (ref51) 2012; 86
M Zanin (ref29) 2015; 89
CL Ren (ref93) 2009; 25
RJ Connor (ref18) 1994; 205
PC Weber (ref92) 1989; 243
SJ Stray (ref73) 2000; 10
S Vijayakrishnan (ref68) 2013; 9
Y Li (ref61) 2013; 87
E Fodor (ref76) 1999; 73
LJ Calder (ref63) 2010; 107
B Button (ref72) 2012; 337
R Erban (ref53) 2007; 75
JC Cox (ref39) 1980; 63
S Bantia (ref15) 1998; 42
D Kobasa (ref45) 1997; 71
X Yang (ref24) 2014; 9
SE Hensley (ref62) 2009; 326
C Gottlieb (ref85) 1975; 250
MN Matrosovich (ref27) 2004; 78
S Wasilewski (ref64) 2012; 30
X Xiong (ref38) 2013; 497
DG Sharp (ref42) 1945; 159
D Corti (ref80) 2011; 333
M Ohuchi (ref26) 2006; 8
A Smirnov Yu (ref41) 1991; 118
AS Gambaryan (ref30) 2015; 80
M Cohen (ref25) 2013; 10
M Dai (ref100) 2017; 91
NV Kaverin (ref13) 1998; 244
SC Inglis (ref99) 1976; 74
T Sakai (ref69) 2017; 7
A Rigter (ref83) 2013; 8
IA Rudneva (ref8) 1993; 133
H Xu (ref54) 2016; 110
R Raman (ref20) 2014; 22
M Takagi (ref56) 1994; 41
M Matrosovich (ref31) 1998; 72
W Peng (ref36) 2017; 21
SJ Baigent (ref11) 2001; 79
M Imai (ref37) 2017; 22
M Takeuchi (ref87) 1988; 263
AJ Link (ref79) 2011; 2011
R Michelle (ref71) 2016
GN Rogers (ref19) 1983; 127
J Seladi-Schulman (ref67) 2014; 9
DC Wiley (ref3) 1987; 56
E de Vries (ref33) 2012; 109
X Song (ref57) 2014; 18
JJ Thomas (ref34) 1978; 88
BF Koel (ref77) 2013; 342
KA Hooper (ref47) 2013; 87
RP de Vries (ref91) 2011; 286
PC Roberts (ref40) 1998; 240
TJ Pritchett (ref32) 1989; 264
C Bottcher (ref97) 1999; 463
NV Bovin (ref58) 1998; 15
DK Takemoto (ref49) 1996; 217
NK Sauter (ref48) 1989; 28
J Uhlendorff (ref44) 2009; 154
J Franca de Barros Jr. (ref22) 2003; 46
YP Lin (ref46) 2010; 84
LG Baum (ref12) 1991; 180
MJ Rust (ref75) 2004; 11
M Cohen (ref70) 2015; 5
Y Satomi (ref89) 2004; 18
LJ Mitnaul (ref7) 2000; 74
J Stevens (ref43) 2004; 303
JJ Skehel (ref1) 2000; 69
M Imai (ref94) 2006; 281
J Bunkenborg (ref88) 2004; 4
JN Varghese (ref6) 1983; 303
ER Job (ref81) 2018; 92
JL McKimm-Breschkin (ref14) 1996; 40
DJ Benton (ref35) 2015; 290
D Kobasa (ref21) 1999; 73
IA Wilson (ref2) 1981; 289
A Harris (ref98) 2006; 103
L Santell (ref86) 1999; 258
References_xml – volume: 42
  start-page: 801
  year: 1998
  ident: ref15
  article-title: Generation and characterization of a mutant of influenza A virus selected with the neuraminidase inhibitor BCX-140
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.42.4.801
– volume: 84
  start-page: 6769
  year: 2010
  ident: ref46
  article-title: Neuraminidase receptor binding variants of human influenza A(H3N2) viruses resulting from substitution of aspartic acid 151 in the catalytic site: a role in virus attachment?
  publication-title: J Virol
  doi: 10.1128/JVI.00458-10
– volume: 91
  year: 2017
  ident: ref100
  article-title: Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus
  publication-title: J Virol
– volume: 3
  start-page: 155
  year: 2016
  ident: ref66
  article-title: Filamentous Influenza Viruses
  publication-title: Curr Clin Microbiol Rep
  doi: 10.1007/s40588-016-0041-7
– volume: 263
  start-page: 3657
  year: 1988
  ident: ref87
  article-title: Comparative-Study of the Asparagine-Linked Sugar Chains of Human Erythropoietins Purified from Urine and the Culture-Medium of Recombinant Chinese-Hamster Ovary Cells
  publication-title: Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(18)68975-6
– volume: 63
  start-page: 275
  year: 1980
  ident: ref39
  article-title: An immunofluorescence study of influenza virus filament formation
  publication-title: Arch Virol
  doi: 10.1007/BF01315033
– volume: 281
  start-page: 12729
  year: 2006
  ident: ref94
  article-title: Membrane fusion by single influenza hemagglutinin trimers. Kinetic evidence from image analysis of hemagglutinin-reconstituted vesicles
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M600902200
– volume: 173
  start-page: 317
  year: 1989
  ident: ref17
  article-title: Receptor binding properties of human and animal H1 influenza virus isolates
  publication-title: Virology
  doi: 10.1016/0042-6822(89)90249-3
– volume: 217
  start-page: 452
  year: 1996
  ident: ref49
  article-title: A surface plasmon resonance assay for the binding of influenza virus hemagglutinin to its sialic acid receptor
  publication-title: Virology
  doi: 10.1006/viro.1996.0139
– volume: 132
  start-page: 2883
  year: 2010
  ident: ref59
  article-title: Role of secondary sialic acid binding sites in influenza N1 neuraminidase
  publication-title: J Am Chem Soc
  doi: 10.1021/ja9073672
– volume: 78
  start-page: 12665
  year: 2004
  ident: ref27
  article-title: Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium
  publication-title: J Virol
  doi: 10.1128/JVI.78.22.12665-12667.2004
– volume: 107
  start-page: 10685
  year: 2010
  ident: ref63
  article-title: Structural organization of a filamentous influenza A virus
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1002123107
– volume: 93
  start-page: 1996
  year: 2012
  ident: ref60
  article-title: Genetic evolution of the neuraminidase of influenza A (H3N2) viruses from 1968 to 2009 and its correspondence to haemagglutinin evolution
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.043059-0
– volume: 18
  start-page: 62
  year: 2014
  ident: ref90
  article-title: Arraying the post-translational glycoproteome (PTG)
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2014.01.002
– volume: 75
  start-page: 041116
  year: 2007
  ident: ref53
  article-title: Time scale of random sequential adsorption
  publication-title: Phys Rev E Stat Nonlin Soft Matter Phys
  doi: 10.1103/PhysRevE.75.041116
– volume: 18
  start-page: 70
  year: 2014
  ident: ref57
  article-title: Chemistry of natural glycan microarrays
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2014.01.001
– volume: 18
  start-page: 2983
  year: 2004
  ident: ref89
  article-title: Site-specific carbohydrate profiling of human transferrin by nano-flow liquid chromatography/electrospray ionization mass spectrometry
  publication-title: Rapid Commun Mass Spectrom
  doi: 10.1002/rcm.1718
– volume: 92
  year: 2018
  ident: ref81
  article-title: Antibodies Directed toward Neuraminidase N1 Control Disease in a Mouse Model of Influenza
  publication-title: J Virol
– volume: 72
  start-page: 6373
  year: 1998
  ident: ref31
  article-title: Molecular mechanisms of serum resistance of human influenza H3N2 virus and their involvement in virus adaptation in a new host
  publication-title: J Virol
  doi: 10.1128/JVI.72.8.6373-6380.1998
– volume: 88
  start-page: 461
  year: 1978
  ident: ref34
  article-title: Km values of influenza virus neuraminidases for a new fluorogenic substrate, 4-methylumbelliferone N-acetyl neuraminic acid ketoside
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(78)90445-1
– volume: 30
  start-page: 7368
  year: 2012
  ident: ref64
  article-title: Distribution of surface glycoproteins on influenza A virus determined by electron cryotomography
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2012.09.082
– volume: 497
  start-page: 392
  year: 2013
  ident: ref38
  article-title: Receptor binding by a ferret-transmissible H5 avian influenza virus
  publication-title: Nature
  doi: 10.1038/nature12144
– volume: 69
  start-page: 531
  year: 2000
  ident: ref1
  article-title: Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.69.1.531
– volume: 289
  start-page: 366
  year: 1981
  ident: ref2
  article-title: Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution
  publication-title: Nature
  doi: 10.1038/289366a0
– volume: 286
  start-page: 5868
  year: 2011
  ident: ref91
  article-title: Only two residues are responsible for the dramatic difference in receptor binding between swine and new pandemic H1 hemagglutinin
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.193557
– volume: 9
  start-page: e1003413
  year: 2013
  ident: ref68
  article-title: Cryotomography of budding influenza A virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003413
– volume: 466
  start-page: 120
  year: 2016
  ident: ref52
  article-title: Random sequential adsorption of human adenovirus 2 onto polyvinylidene fluoride surface influenced by extracellular polymeric substances
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2015.12.017
– volume: 463
  start-page: 255
  year: 1999
  ident: ref97
  article-title: Structure of influenza haemagglutinin at neutral and at fusogenic pH by electron cryo-microscopy
  publication-title: Febs Letters
  doi: 10.1016/S0014-5793(99)01475-1
– volume: 73
  start-page: 6743
  year: 1999
  ident: ref21
  article-title: Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase
  publication-title: J Virol
  doi: 10.1128/JVI.73.8.6743-6751.1999
– volume: 74
  start-page: 6316
  year: 2000
  ident: ref28
  article-title: Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics
  publication-title: J Virol
  doi: 10.1128/JVI.74.14.6316-6323.2000
– volume: 240
  start-page: 127
  year: 1998
  ident: ref40
  article-title: The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle formation
  publication-title: Virology
  doi: 10.1006/viro.1997.8916
– volume: 73
  start-page: 9679
  year: 1999
  ident: ref76
  article-title: Rescue of influenza A virus from recombinant DNA
  publication-title: J Virol
  doi: 10.1128/JVI.73.11.9679-9682.1999
– volume: 109
  start-page: 7457
  year: 2012
  ident: ref33
  article-title: Influenza A virus entry into cells lacking sialylated N-glycans
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1200987109
– volume: 41
  start-page: 565
  year: 1994
  ident: ref56
  article-title: Comparison of the optimal culture conditions for cell growth and tissue plasminogen activator production by human embryo lung cells on microcarriers
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/BF00178490
– volume: 342
  start-page: 976
  year: 2013
  ident: ref77
  article-title: Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution
  publication-title: Science
  doi: 10.1126/science.1244730
– volume: 6
  start-page: 245
  year: 2012
  ident: ref5
  article-title: Influenza neuraminidase
  publication-title: Influenza Other Respir Viruses
  doi: 10.1111/j.1750-2659.2011.00304.x
– volume: 46
  start-page: 199
  year: 2003
  ident: ref22
  article-title: Characterization of sialidase from an influenza A (H3N2) virus strain: kinetic parameters and substrate specificity
  publication-title: Intervirology
  doi: 10.1159/000072428
– volume: 97
  start-page: 1755
  year: 2016
  ident: ref65
  article-title: Filamentous influenza viruses
  publication-title: J Gen Virol
  doi: 10.1099/jgv.0.000535
– volume: 40
  start-page: 40
  year: 1996
  ident: ref14
  article-title: Generation and characterization of variants of NWS/G70C influenza virus after in vitro passage in 4-amino-Neu5Ac2en and 4-guanidino-Neu5Ac2en
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.40.1.40
– volume: 22
  start-page: 615
  year: 2017
  ident: ref37
  article-title: A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.09.008
– volume: 2011
  start-page: 993
  year: 2011
  ident: ref79
  article-title: Trichloroacetic acid (TCA) precipitation of proteins
  publication-title: Cold Spring Harb Protoc
– volume: 403
  start-page: 17
  year: 2010
  ident: ref82
  article-title: The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity
  publication-title: Virology
  doi: 10.1016/j.virol.2010.03.047
– volume: 4
  start-page: 454
  year: 2004
  ident: ref88
  article-title: Screening for N-glycosylated proteins by liquid chromatography mass spectrometry
  publication-title: Proteomics
  doi: 10.1002/pmic.200300556
– volume: 337
  start-page: 937
  year: 2012
  ident: ref72
  article-title: A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia
  publication-title: Science
  doi: 10.1126/science.1223012
– volume: 56
  start-page: 365
  year: 1987
  ident: ref3
  article-title: The structure and function of the hemagglutinin membrane glycoprotein of influenza virus
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.56.070187.002053
– volume: 8
  start-page: 1287
  year: 2006
  ident: ref26
  article-title: Roles of neuraminidase in the initial stage of influenza virus infection
  publication-title: Microbes Infect
  doi: 10.1016/j.micinf.2005.12.008
– volume: 25
  start-page: 12283
  year: 2009
  ident: ref93
  article-title: Streptavidin-biotin binding in the presence of a polymer spacer. A theoretical description
  publication-title: Langmuir
  doi: 10.1021/la901735d
– volume: 89
  start-page: 5935
  year: 2015
  ident: ref29
  article-title: Pandemic Swine H1N1 Influenza Viruses with Almost Undetectable Neuraminidase Activity Are Not Transmitted via Aerosols in Ferrets and Are Inhibited by Human Mucus but Not Swine Mucus
  publication-title: J Virol
  doi: 10.1128/JVI.02537-14
– volume: 9
  start-page: e112462
  year: 2014
  ident: ref67
  article-title: Filament-producing mutants of influenza A/Puerto Rico/8/1934 (H1N1) virus have higher neuraminidase activities than the spherical wild-type
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0112462
– volume: 126
  start-page: 6784
  year: 2004
  ident: ref55
  article-title: A model for describing the thermodynamics of multivalent host-guest interactions at interfaces
  publication-title: J Am Chem Soc
  doi: 10.1021/ja049085k
– volume: 159
  start-page: 29
  year: 1945
  ident: ref42
  article-title: Densities and Sizes of the Influenza Virus-a (Pr8 Strain) and Virus-B (Lee Strain) and the Swine Influenza Virus
  publication-title: Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(19)51299-6
– volume: 86
  start-page: 13371
  year: 2012
  ident: ref51
  article-title: Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic Acid receptors
  publication-title: J Virol
  doi: 10.1128/JVI.01426-12
– volume: 1
  start-page: 26
  year: 2009
  ident: ref4
  article-title: Influenza virus neuraminidase: structure and function
  publication-title: Acta Naturae
  doi: 10.32607/20758251-2009-1-2-26-32
– volume: 303
  start-page: 35
  year: 1983
  ident: ref6
  article-title: Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution
  publication-title: Nature
  doi: 10.1038/303035a0
– volume: 326
  start-page: 734
  year: 2009
  ident: ref62
  article-title: Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift
  publication-title: Science
  doi: 10.1126/science.1178258
– volume: 74
  start-page: 489
  year: 1976
  ident: ref99
  article-title: Polypeptides specified by the influenza virus genome I. Evidence for eight distinct gene products specified by fowl plague virus
  publication-title: Virology
– volume: 162
  start-page: 271
  year: 2008
  ident: ref95
  article-title: Zernike phase contrast electron microscopy of ice-embedded influenza A virus
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2008.01.009
– volume: 250
  start-page: 3303
  year: 1975
  ident: ref85
  article-title: Deficient Uridine Diphosphate-N-Acetylglucosamine—Glycoprotein N-Acetylglucosaminyltransferase Activity in a Clone of Chinese-Hamster Ovary Cells with Altered Surface Glycoproteins
  publication-title: Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(19)41514-7
– volume: 86
  start-page: 9221
  year: 2012
  ident: ref10
  article-title: Functional balance of the hemagglutinin and neuraminidase activities accompanies the emergence of the 2009 H1N1 influenza pandemic
  publication-title: J Virol
  doi: 10.1128/JVI.00697-12
– volume: 79
  start-page: 177
  year: 2001
  ident: ref11
  article-title: Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture
  publication-title: Virus Res
  doi: 10.1016/S0168-1702(01)00272-6
– volume: 5
  start-page: 2056
  year: 2015
  ident: ref70
  article-title: Notable Aspects of Glycan-Protein Interactions
  publication-title: Biomolecules
  doi: 10.3390/biom5032056
– volume: 87
  start-page: 9904
  year: 2013
  ident: ref61
  article-title: Single hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clustering
  publication-title: J Virol
  doi: 10.1128/JVI.01023-13
– volume: 133
  start-page: 437
  year: 1993
  ident: ref8
  article-title: Influenza A virus reassortants with surface glycoprotein genes of the avian parent viruses: effects of HA and NA gene combinations on virus aggregation
  publication-title: Arch Virol
  doi: 10.1007/BF01313781
– volume: 141
  start-page: 1091
  year: 1996
  ident: ref9
  article-title: Phenotypic expression of HA-NA combinations in human-avian influenza A virus reassortants
  publication-title: Arch Virol
  doi: 10.1007/BF01718612
– volume: 333
  start-page: 850
  year: 2011
  ident: ref80
  article-title: A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins
  publication-title: Science
  doi: 10.1126/science.1205669
– volume: 11
  start-page: 567
  year: 2004
  ident: ref75
  article-title: Assembly of endocytic machinery around individual influenza viruses during viral entry
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb769
– volume: 205
  start-page: 17
  year: 1994
  ident: ref18
  article-title: Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates
  publication-title: Virology
  doi: 10.1006/viro.1994.1615
– volume: 15
  start-page: 431
  year: 1998
  ident: ref58
  article-title: Polyacrylamide-based glycoconjugates as tools in glycobiology
  publication-title: Glycoconj J
  doi: 10.1023/A:1006963717646
– volume: 9
  start-page: e110026
  year: 2014
  ident: ref24
  article-title: A beneficiary role for neuraminidase in influenza virus penetration through the respiratory mucus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0110026
– volume: 10
  start-page: 321
  year: 2013
  ident: ref25
  article-title: Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase
  publication-title: Virol J
  doi: 10.1186/1743-422X-10-321
– volume: 8
  start-page: e71072
  year: 2013
  ident: ref83
  article-title: A protective and safe intranasal RSV vaccine based on a recombinant prefusion-like form of the F protein bound to bacterium-like particles
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0071072
– volume: 71
  start-page: 6706
  year: 1997
  ident: ref45
  article-title: Neuraminidase hemadsorption activity, conserved in avian influenza A viruses, does not influence viral replication in ducks
  publication-title: J Virol
  doi: 10.1128/JVI.71.9.6706-6713.1997
– volume: 21
  start-page: 23
  year: 2017
  ident: ref36
  article-title: Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.11.004
– volume: 244
  start-page: 315
  year: 1998
  ident: ref13
  article-title: Postreassortment changes in influenza A virus hemagglutinin restoring HA-NA functional match
  publication-title: Virology
  doi: 10.1006/viro.1998.9119
– volume: 127
  start-page: 361
  year: 1983
  ident: ref19
  article-title: Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin
  publication-title: Virology
  doi: 10.1016/0042-6822(83)90150-2
– volume: 10
  start-page: 649
  year: 2000
  ident: ref73
  article-title: Influenza virus infection of desialylated cells
  publication-title: Glycobiology
  doi: 10.1093/glycob/10.7.649
– volume: 106
  start-page: 18137
  year: 2009
  ident: ref50
  article-title: Glycans on influenza hemagglutinin affect receptor binding and immune response
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0909696106
– volume: 180
  start-page: 10
  year: 1991
  ident: ref12
  article-title: The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity
  publication-title: Virology
  doi: 10.1016/0042-6822(91)90003-T
– volume: 53
  start-page: 466
  year: 1972
  ident: ref74
  article-title: Sialic acids on the plasma membrane of cultured human lymphoid cells. Chemical aspects and biosynthesis
  publication-title: J Cell Biol
  doi: 10.1083/jcb.53.2.466
– volume: 152
  start-page: 2047
  year: 2007
  ident: ref23
  article-title: Oligosaccharide specificity of influenza H1N1 virus neuraminidases
  publication-title: Arch Virol
  doi: 10.1007/s00705-007-1024-z
– volume: 90
  start-page: 9457
  year: 2016
  ident: ref16
  article-title: Identification of Residues That Affect Oligomerization and/or Enzymatic Activity of Influenza Virus H5N1 Neuraminidase Proteins
  publication-title: J Virol
  doi: 10.1128/JVI.01346-16
– volume: 80
  start-page: 872
  year: 2015
  ident: ref30
  article-title: What adaptive changes in hemagglutinin and neuraminidase are necessary for emergence of pandemic influenza virus from its avian precursor?
  publication-title: Biochemistry (Mosc)
  doi: 10.1134/S000629791507007X
– volume: 74
  start-page: 6015
  year: 2000
  ident: ref7
  article-title: Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus
  publication-title: J Virol
  doi: 10.1128/JVI.74.13.6015-6020.2000
– volume: 88
  start-page: 4943
  year: 2014
  ident: ref84
  article-title: Identification and characterization of a proteolytically primed form of the murine coronavirus spike proteins after fusion with the target cell
  publication-title: J Virol
  doi: 10.1128/JVI.03451-13
– volume: 243
  start-page: 85
  year: 1989
  ident: ref92
  article-title: Structural origins of high-affinity biotin binding to streptavidin
  publication-title: Science
  doi: 10.1126/science.2911722
– volume: 258
  start-page: 132
  year: 1999
  ident: ref86
  article-title: Aberrant metabolic sialylation of recombinant proteins expressed in Chinese hamster ovary cells in high productivity cultures
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1006/bbrc.1999.0550
– volume: 110
  start-page: 218
  year: 2016
  ident: ref54
  article-title: A Simple Model of Multivalent Adhesion and Its Application to Influenza Infection
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2015.10.045
– volume: 7
  start-page: e1001329
  year: 2011
  ident: ref78
  article-title: Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1001329
– volume: 118
  start-page: 279
  year: 1991
  ident: ref41
  article-title: The genetic aspects of influenza virus filamentous particle formation
  publication-title: Arch Virol
  doi: 10.1007/BF01314038
– volume: 303
  start-page: 1866
  year: 2004
  ident: ref43
  article-title: Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus
  publication-title: Science
  doi: 10.1126/science.1093373
– year: 2016
  ident: ref71
  article-title: Drug Delivery Across Physiological Barriers
– volume: 7
  start-page: 45043
  year: 2017
  ident: ref69
  article-title: Influenza A virus hemagglutinin and neuraminidase act as novel motile machinery
  publication-title: Sci Rep
  doi: 10.1038/srep45043
– volume: 173
  start-page: 311
  year: 1989
  ident: ref96
  article-title: Electron microscopy of the influenza virus submembranal structure
  publication-title: Virology
  doi: 10.1016/0042-6822(89)90248-1
– volume: 22
  start-page: 632
  year: 2014
  ident: ref20
  article-title: Glycan receptor specificity as a useful tool for characterization and surveillance of influenza A virus
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2014.07.002
– volume: 103
  start-page: 19123
  year: 2006
  ident: ref98
  article-title: Influenza virus pleiomorphy characterized by cryoelectron tomography
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0607614103
– volume: 28
  start-page: 8388
  year: 1989
  ident: ref48
  article-title: Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study
  publication-title: Biochemistry
  doi: 10.1021/bi00447a018
– volume: 290
  start-page: 6516
  year: 2015
  ident: ref35
  article-title: Biophysical measurement of the balance of influenza a hemagglutinin and neuraminidase activities
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.622308
– volume: 154
  start-page: 945
  year: 2009
  ident: ref44
  article-title: Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses
  publication-title: Arch Virol
  doi: 10.1007/s00705-009-0393-x
– volume: 87
  start-page: 12531
  year: 2013
  ident: ref47
  article-title: A mutant influenza virus that uses an N1 neuraminidase as the receptor-binding protein
  publication-title: J Virol
  doi: 10.1128/JVI.01889-13
– volume: 264
  start-page: 9850
  year: 1989
  ident: ref32
  article-title: Basis for the potent inhibition of influenza virus infection by equine and guinea pig alpha 2-macroglobulin
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)81736-7
SSID ssj0041316
Score 2.5550997
Snippet Interactions of influenza A virus (IAV) with sialic acid (SIA) receptors determine viral fitness and host tropism. Binding to mucus decoy receptors and...
SourceID plos
doaj
wageningen
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1007233
SubjectTerms Avidity
Binding proteins
Binding sites
Biology and life sciences
Cell receptors
Chromatography
Computer and Information Sciences
Epithelial cells
EPS
Exo-a-sialidase
Extreme values
Fitness
Genetic aspects
Glycoproteins
Hemagglutinins
Immunology
Infectious diseases
Influenza
Influenza A
Influenza viruses
Laboratorium voor Virologie
Laboratory of Virology
Mass spectrometry
Medicine and health sciences
Microscopy
Molecular biology
Mucus
Mutation
Pandemics
Physiological aspects
Physiology
Proteins
Receptor density
Receptors
Research and Analysis Methods
Scientific imaging
Sialoglycoproteins
Social Sciences
Tropism
Veterinary medicine
Virology
Viruses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQJaS9IL63sCCDkDiZxnXixMeCWBUQPQAr7c2ykxgqVUnVpKzg__A_mbGdshGL9sKpUj3jyp7JeCYdv0fIC6dcWTqVslRxwVJpODPcWmaSytWKp5VI8XLyx5VcnqXvz7PzS1Rf2BMW4IHDxs2sK1St5s7arErLShopBJeJUW5uoVbw0RfOvKGYCjEYIrMnPUVSHJYLKeOlOZHzWbTRq-3W9L5HYC7E6FDy2P2HCD3ZbtruqvTz7y7KowsIAY2_E3XpjDq9TW7F5JIuwqLukBt1c5fcDHSTP-6RXx8gpYQhaiISCW0dhQSQrgNTyU9DF_T7erfv6HIxWy2oxb7HsqYI8wRuSn1feyTIQl0Q6dugwSBy1lso4Kld-4sy8CMVCLCBZbenu4D_TUF3EGY4Y-CooN1-57A_7D45O3375c2SRZoGVuZ50bNCpIUwWSKsTWRpK2GNsIlwDrFlsFxTzkAVLpWzMisLY-QczkuT5FJWvOZGPCCTpm3qY0KRN8lVTlYFd2kqhIKplRGiTBJTwWxTIgY76TJimCOVxkb7P-ZyqGXCTmu0ro7WnRJ20NoGDI9r5F-jCxxkEYHbfwF-qaNf6uv8ckqeowNpxNhosInnq9l3nX73eaUXGYZJVST_Fvo0EnoZhVwLiy1NvDgBW4bYXSPJk5EkRIpyNHyMzjysudMQy3kCCWjBQXNw8KuHnx2GcVJszGvqdg8yWKIphP2bkofheTjsm0C8wjwFq-WjJ2W0seORZv3NQ5xDUg9VH1hC_HmmdIPsWp3Xiq849cV-p5sNfsA8nc5SDifwo_9hv8fkCHJjRG9nXJyQSb_b108g_-ztUx9qfgPyGoat
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nj9MwELWgCGkvCMrHFhZkEBIn06ROnfiECmJVQNsDsKg3y07i3UpVUpqEFfwf_iczjpMlYoFTpHrGle3x2GOP3yPkuZU2Ta2MWCRDziKhQ6ZDY5gOMpvLMMp4hI-TT1ZieRq9X8_X_sCt8mmVnU90jjorUzwjn4LdhQEslkn4aveVIWsU3q56Co3r5AZCl6FVx-s-4AL_7KhPkRqHxVwI_3SOx-HUj9TL3U7XLlNgxvlgaXII_r2fHu22ZXXVJvTPXMqDC3AEhXsZ9dtKdXyb3PJbTLpobeIOuZYXY3KzJZ38PibjL5gB457h0hN_s36X_PwAH1Cg2qOU0NJS2BzSTcti8kPTBf222TcVXS6mqwU1mBOZ5hQhoMCEqct59-RZqAsiddlqMPCq-Q6Ce2o27hEN_EkGAqxj4K3pvsUGp6DbCTOsseWvoFWzt5g7do-cHr_9_GbJPIUDS-M4qVnCo4TrecCNCURqMm40NwG3FnFnMJSTVkOELqQ1Yp4mWosZrKU6iIXIwjzU_D4ZFWWRHxKKnEo2syJLQhtFnEuoWmrO0yDQGdQ2IbwbPZV6fHOk2dgqd2kXQ5zT9r_CMVd-zCeE9Vq7Ft_jP_Kv0TB6WUTndj-U-zPlJ7syNpG5nFlj5lmUZkILDpYYaGlnBuLb2YQ8Q7NSiL9RYILPmW6qSr37tFKLObpQmQR_F_o4EHrhhWwJjU21f1QBXYa4XgPJo4EkeJF0UHyIJt61uVKX8w00O7O_uvhpX4yVYtJekZcNyGD4JhEScEIetLOk7zeOWIZxBKMWD-bPoGOHJcXm3MGfw4YfIkIYCX4501SBzFuV0_LHn-qi2atiix-op1LzKITV-eG_G_OIHMCOGDHbWciPyKjeN_lj2HXW5olzLb8AyZKFHg
  priority: 102
  providerName: ProQuest
Title Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces
URI https://www.ncbi.nlm.nih.gov/pubmed/30102740
https://www.proquest.com/docview/2251084681
https://www.proquest.com/docview/2088293676
https://pubmed.ncbi.nlm.nih.gov/PMC6107293
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F541219
https://doaj.org/article/bf89e92fbb5d4cd6a633160a9f2b8992
http://dx.doi.org/10.1371/journal.ppat.1007233
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2Tkh7QXyvMCqDkHjySGrnww8IdWhTAa1Cg0p7s-wkHpWqpCQtY_w__J_cOR8Q0QnxVCm-cxXf-XwX278fIS-stElipWBC-pyJUPtM-8Yw7aU2k75IucDLyWezcDoX7y-Cix3ScrY2A1htLe2QT2peLo--f71-AxP-tWNtiPxW6Wi10mu36z_mfJfswdoUIafBmej2FSBiOzJUJMthEY9Ec5nupl56i5XD9O8i92C1LKptaenfpyv3ryA05O6u1B9r1-kdcrtJOumk9pK7ZCfL75FbNQ3l9X3y8wOkmtBEdYNQQgtLITGki5rB5IemE_ptUW4qOp28mk2owfOQSUYR_gmGkbrz7g1xFuqCyLqoNRhE1GwFhT01C3eBBv4kBQHWsu-uaVnjglPQbYUZ9lhzV9BqU1o8N_aAzE9PPr-dsoa-gSVRFK9ZzEXMdeBxY7wwMSk3mhuPW4uYM1jGSauhOg-lNWGQxFqHY1hHtReFYepnvuYPySAv8uyAUORTsqkN09i3QnAuoWupOU88T6fQ25Dw1k4qabDNkWJjqdyGXQQ1Tj3SCq2rGusOCeu0VjW2xz_kj9EFOllE5nYPivJSNRNdGRvLTI6tMUEqkjTUIQef87S0YwO17XhInqMDKcTeyPFwz6XeVJV692mmJgGGTxl7Nwud94ReNkK2gJdNdHOhAoYMMb16koc9SYggSa_5AJ25fedKQYz3PUhMYx80Wwff3vysa8ZO8cBenhUbkMHSTSIc4JA8qudDN24ccQwjAVaLejOlN7D9lnzxxUGfQ7IP1SBYgv-eUypH1q3KaTWfPtXVplT5En-gn0oFwoeV-fF_2vsJ2Yf0GAHcmc8PyWBdbrKnkIKuzYjsRhfRiOwdn8w-no_ch5yRizS_ANXXjRQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIXBOXRhQIGgTi5TeJsEh8QWh7VlrZ7gBbtzdhJXFaqkiXJUpX_w5XfyIzjbIkocOop0npmVvaMx55kZj5Cnhlh0tSIkIXC5yyMlM-UrzVTXmZy4YcZD7E4-WASjY_C99PhdIX87GphMK2y84nWUWdliu_It8HufA8Oy8R_Nf_KEDUKv652EBqtWezlZ6cQstUvd9-Cfp8Hwc67wzdj5lAFWBrHScMSHiZcDT2utRelOuNace1xY7AVCkYXwigIGiNhdDRME6WiANy7gng_yvzcVxzkXiFX4eD1MNiLp8sAD84DC7WKUDws5lHkSvV47G87y9iaz1VjMxMCzntHoUUMWJ4Lq_OTsr7o0vtn7ubaKTiewlZi_XYy7twkN9yVlo5aG7xFVvJinVxrQS7P1sn6J8y4sWW_9MB9yb9NfuzBAxiocl1RaGkoXEbprEVN-a7oiH6bVYuajkfbkxHVmIOZ5hRbTsGWoTbH3oF1IS-QNGXLwcCL5_OmrKie2aId-JMMCFiH-NvQqu1FToG3I2YoscXLoPWiMpirdoccXYpy75LVoizyDUIRw8lkJsoS34Qh5wJEC8V56nkqA2kDwjvtydT1U0dYjxNpPxLGEFe16y9R59LpfEDYkmve9hP5D_1rNIwlLXYDtz-U1bF0zkVqk4hcBEbrYRamWaQiDpboKWECDfF0MCBP0awk9vsoMKHoWC3qWu5-nMjREF22SLy_E33oEb1wRKaEyabKFXHAkmEfsR7lZo8SvFbaG95AE-_mXMvz_Q2cndlfPPxkOYxCMUmwyMsF0GC4KLAF4YDca3fJct049k6MQ9Ba3Ns_vYXtjxSzL7bdOgQYEIGCJvj5TpMFIn3Vlsu9bpWni0oWJ_gAObUchj7cBu7_ezKPyfXx4cG-3N-d7D0ga3Abx37xzOebZLWpFvlDuPE2-pF1M5R8vmy_9gvHA8C5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJ9BeEIw_KwwwCMSTaRKnSfyAUMdWbZRV02Bob8ZO4lFpSkqSMo3vw5fg03GXOB0RA572FKm-c2XfH_uSu_sR8twIE8dG-MwXLmd-oFymXK2ZchKTCtdPuI_FyfvTYPfIf3c8PF4hP9taGEyrbH1i7aiTPMZ35APQO9eBwzJyB8amRRxsj9_MvzJEkMIvrS2cRqMik_T8DMK38vXeNsj6heeNdz6-3WUWYYDFYRhVLOJ-xNXQ4Vo7QawTrhXXDjcG26JgpCGMggAyEEYHwzhSKvDA1SuI_YPETV3FYd5rZDXEqKhHVrd2pgeH7TkAp0MNvIrAPCzkQWAL93joDqyevJrPVVXnKXicdw7GGj9geUr05qd5edkV-M9MzrUzcENZXZf12zk5vkVu2gsuHTUaeZuspNk6ud5AXp6vk_VPmH9TFwHTfftd_w75MYEHMFBle6TQ3FC4mtJZg6HyXdER_TYrFiXdHQ2mI6oxIzNOKTagAgOidca9he5CXiCp8oaDgU9P51VeUD2rS3jgTxIgYC3-b0WLpjM5Bd6WmOGMDXoGLReFwcy1u-ToSsR7j_SyPEs3CEVEJ5OYIIlc4_ucC5haKM5jx1EJzNYnvJWejG13dQT5OJX1J8MQoqxm_yXKXFqZ9wlbcs2b7iL_od9CxVjSYm_w-oe8OJHW1UhtIpEKz2g9TPw4CVTAQRMdJYynIbr2-uQZqpXE7h8Z2tGJWpSl3PswlaMhOnAROX8nOuwQvbREJofFxsqWdMCWYVexDuVmhxJ8WNwZ3kAVb9dcygtrB85W7S8ffrocxkkxZTBL8wXQYPAosCFhn9xvrGS5bxw7KYLV9knYsZ_OxnZHstmXuvk6hBsQj4Ik-IWlyQxxv8qay758lWeLQman-IB5Sjn0XbgbPPj3Yp6QG-DT5Pu96eQhWYOrOTaPZy7fJL2qWKSP4Ppb6cfWz1Dy-apd2y9l2MZU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+analysis+of+the+influenza+A+virus+HA%2FNA+balance+reveals+contribution+of+NA+to+virus-receptor+binding+and+NA-dependent+rolling+on+receptor-containing+surfaces&rft.jtitle=PLoS+pathogens&rft.au=Guo%2C+Hongbo&rft.au=Rabouw%2C+Huib&rft.au=Slomp%2C+Anne&rft.au=Dai%2C+Meiling&rft.date=2018-08-13&rft.issn=1553-7374&rft.eissn=1553-7374&rft.volume=14&rft.issue=8&rft.spage=e1007233&rft_id=info:doi/10.1371%2Fjournal.ppat.1007233&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_ppat_1007233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon