RL-TweetGen: A Socio-Technical Framework for Engagement-Optimized Short Text Generation in Digital Commerce Using Large Language Models and Reinforcement Learning

In the rapidly evolving landscape of digital marketing and electronic commerce, short-form content—particularly on platforms like Twitter (now X)—has become pivotal for real-time branding, community engagement, and product promotion. The rise of Non-Fungible Tokens (NFTs) and Web3 ecosystems further...

Full description

Saved in:
Bibliographic Details
Published inJournal of theoretical and applied electronic commerce research Vol. 20; no. 3; p. 218
Main Authors S, Chitrakala, S, Pavithra S
Format Journal Article
LanguageEnglish
Published 26.08.2025
Online AccessGet full text
ISSN0718-1876
0718-1876
DOI10.3390/jtaer20030218

Cover

Abstract In the rapidly evolving landscape of digital marketing and electronic commerce, short-form content—particularly on platforms like Twitter (now X)—has become pivotal for real-time branding, community engagement, and product promotion. The rise of Non-Fungible Tokens (NFTs) and Web3 ecosystems further underscores the need for domain-specific, engagement-oriented social media content. However, automating the generation of such content while balancing linguistic quality, semantic relevance, and audience engagement remains a substantial challenge. To address this, we propose RL-TweetGen, a socio-technical framework that integrates instruction-tuned large language models (LLMs) with reinforcement learning (RL) to generate concise, impactful, and engagement-optimized tweets. The framework incorporates a structured pipeline comprising domain-specific data curation, semantic classification, and intent-aware prompt engineering, and leverages Parameter-Efficient Fine-Tuning (PEFT) with LoRA for scalable model adaptation. We fine-tuned and evaluated three LLMs—LLaMA-3.1-8B, Mistral-7B Instruct, and DeepSeek 7B Chat—guided by a hybrid reward function that blends XGBoost-predicted engagement scores with expert-in-the-loop feedback. To enhance lexical diversity and contextual alignment, we implemented advanced decoding strategies, including Tailored Beam Search, Enhanced Top-p Sampling, and Contextual Temperature Scaling. A case study focused on NFT-related tweet generation demonstrated the practical effectiveness of RL-TweetGen. Experimental results showed that Mistral-7B achieved the highest lexical fluency (BLEU: 0.2285), LLaMA-3.1 exhibited superior semantic precision (BERT-F1: 0.8155), while DeepSeek 7B provided balanced performance. Overall, RL-TweetGen presents a scalable and adaptive solution for marketers, content strategists, and Web3 platforms seeking to automate and optimize social media engagement. The framework advances the role of generative AI in digital commerce by aligning content generation with platform dynamics, user preferences, and marketing goals.
AbstractList In the rapidly evolving landscape of digital marketing and electronic commerce, short-form content—particularly on platforms like Twitter (now X)—has become pivotal for real-time branding, community engagement, and product promotion. The rise of Non-Fungible Tokens (NFTs) and Web3 ecosystems further underscores the need for domain-specific, engagement-oriented social media content. However, automating the generation of such content while balancing linguistic quality, semantic relevance, and audience engagement remains a substantial challenge. To address this, we propose RL-TweetGen, a socio-technical framework that integrates instruction-tuned large language models (LLMs) with reinforcement learning (RL) to generate concise, impactful, and engagement-optimized tweets. The framework incorporates a structured pipeline comprising domain-specific data curation, semantic classification, and intent-aware prompt engineering, and leverages Parameter-Efficient Fine-Tuning (PEFT) with LoRA for scalable model adaptation. We fine-tuned and evaluated three LLMs—LLaMA-3.1-8B, Mistral-7B Instruct, and DeepSeek 7B Chat—guided by a hybrid reward function that blends XGBoost-predicted engagement scores with expert-in-the-loop feedback. To enhance lexical diversity and contextual alignment, we implemented advanced decoding strategies, including Tailored Beam Search, Enhanced Top-p Sampling, and Contextual Temperature Scaling. A case study focused on NFT-related tweet generation demonstrated the practical effectiveness of RL-TweetGen. Experimental results showed that Mistral-7B achieved the highest lexical fluency (BLEU: 0.2285), LLaMA-3.1 exhibited superior semantic precision (BERT-F1: 0.8155), while DeepSeek 7B provided balanced performance. Overall, RL-TweetGen presents a scalable and adaptive solution for marketers, content strategists, and Web3 platforms seeking to automate and optimize social media engagement. The framework advances the role of generative AI in digital commerce by aligning content generation with platform dynamics, user preferences, and marketing goals.
Author S, Pavithra S
S, Chitrakala
Author_xml – sequence: 1
  givenname: Chitrakala
  orcidid: 0000-0002-1871-6037
  surname: S
  fullname: S, Chitrakala
– sequence: 2
  givenname: Pavithra S
  orcidid: 0009-0009-4426-0270
  surname: S
  fullname: S, Pavithra S
BookMark eNpVkM1OwzAQhC0EEm3hyN0vYHCaxEm4VaUtSEGV2nCOtvYmdWnsyjEq8Dg8KebnAJfZ2cN8I82QnBprkJCriF_HccFvdh7QjTmP-TjKT8iAZ1HOojwTp3_8ORn2_Y5zkQvOB-RjVbLqiOgXaG7phK6t1JZVKLdGS9jTuYMOj9Y908Y6OjMttNih8Wx58LrT76joemudpxW-ehog6MBra6g29E632gfG1HYdOon0qdempSW4FoOa9iXA6KNVuO8pGEVXqE2okd8NtERwJgQuyFkD-x4vf--IVPNZNb1n5XLxMJ2UTGZZzkQcYarEWAgliwIaUUhIwp80qCRuikREqUwUJJu8kEplKUcQokhCDJqUQzwi7Acrne17h019cLoD91ZHvP7at_63b_wJ3Htz5w
Cites_doi 10.1145/3580305.3599921
10.1109/TASLP.2018.2819941
10.18653/v1/2020.acl-main.704
10.1016/j.neucom.2019.11.077
10.1002/cb.2482
10.1145/3487553.3524642
10.1016/j.ipm.2022.103098
10.3390/computers14050172
10.1109/TCSS.2023.3234183
10.1109/ICBK.2017.39
10.18653/v1/2023.emnlp-main.319
10.3390/info10040150
10.1007/s13042-022-01553-3
10.1145/764008.763957
10.18653/v1/2020.emnlp-demos.2
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.3390/jtaer20030218
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 0718-1876
ExternalDocumentID 10_3390_jtaer20030218
GroupedDBID .4S
.DC
29L
2WC
635
7WY
8FE
8FG
8FL
8R4
8R5
AADQD
AAYXX
ABUWG
ABXHO
ADBBV
AFKRA
AFZYC
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
APOWU
ARAPS
ARCSS
BAAKF
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
CLZPN
DWQXO
E3Z
EBR
EBU
EDO
EPL
FRNLG
GROUPED_DOAJ
HCIFZ
I-F
IAO
ICD
ITC
K60
K6~
KQ8
M0C
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PUEGO
Q2X
RSD
RXW
SCD
TR2
TUS
ID FETCH-LOGICAL-c778-631e5d6266dc99af69ca4d624fedceb94615c4da4b89cdd750ea669431eaf50a3
ISSN 0718-1876
IngestDate Wed Aug 27 16:38:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c778-631e5d6266dc99af69ca4d624fedceb94615c4da4b89cdd750ea669431eaf50a3
ORCID 0009-0009-4426-0270
0000-0002-1871-6037
OpenAccessLink https://www.mdpi.com/0718-1876/20/3/218/pdf?version=1756205185
ParticipantIDs crossref_primary_10_3390_jtaer20030218
PublicationCentury 2000
PublicationDate 2025-08-26
PublicationDateYYYYMMDD 2025-08-26
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-26
  day: 26
PublicationDecade 2020
PublicationTitle Journal of theoretical and applied electronic commerce research
PublicationYear 2025
References ref_12
ref_34
ref_33
ref_10
ref_32
Brown (ref_1) 2020; 33
Binns (ref_26) 2018; Volume 81
ref_19
ref_18
ref_17
ref_16
Brahmstaedt (ref_31) 2025; 24
Owoc (ref_14) 2024; Volume 717
ref_25
ref_24
ref_23
ref_22
Bayer (ref_15) 2023; 14
ref_21
Yu (ref_11) 2018; 26
Gao (ref_13) 2020; 383
ref_20
ref_3
ref_2
ref_28
ref_27
ref_9
ref_8
ref_5
Qian (ref_29) 2022; 59
ref_4
ref_7
ref_6
Chen (ref_30) 2024; 11
References_xml – ident: ref_8
  doi: 10.1145/3580305.3599921
– ident: ref_9
– volume: 26
  start-page: 1359
  year: 2018
  ident: ref_11
  article-title: Rich short text conversation using semantic-key-controlled sequence generation
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2018.2819941
– ident: ref_5
– ident: ref_32
– ident: ref_3
– ident: ref_34
– ident: ref_16
– ident: ref_24
  doi: 10.18653/v1/2020.acl-main.704
– volume: Volume 81
  start-page: 149
  year: 2018
  ident: ref_26
  article-title: Fairness in Machine Learning: Lessons from Political Philosophy
  publication-title: Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT 2018)
– volume: 383
  start-page: 282
  year: 2020
  ident: ref_13
  article-title: Generation of topic evolution graphs from short text streams
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.077
– ident: ref_18
– ident: ref_23
– ident: ref_21
– volume: 24
  start-page: 1630
  year: 2025
  ident: ref_31
  article-title: Community and Consumer Dynamics in NFTs: Understanding Digital Asset Value through Social Engagement
  publication-title: J. Consum. Behav.
  doi: 10.1002/cb.2482
– volume: Volume 717
  start-page: 125
  year: 2024
  ident: ref_14
  article-title: Neuro-Evolution-Based Language Model for Text Generation
  publication-title: Computational Intelligence in Data Science. ICCIDS 2024
– ident: ref_6
– ident: ref_28
  doi: 10.1145/3487553.3524642
– ident: ref_4
– volume: 33
  start-page: 1877
  year: 2020
  ident: ref_1
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 59
  start-page: 103098
  year: 2022
  ident: ref_29
  article-title: Understanding public opinions on social media for financial sentiment analysis using AI-based techniques
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2022.103098
– ident: ref_27
– ident: ref_2
– ident: ref_10
– ident: ref_17
  doi: 10.3390/computers14050172
– volume: 11
  start-page: 5038
  year: 2024
  ident: ref_30
  article-title: How Information Manipulation on Social Media Influences the NFT Investors’ Behavior: A Case Study of Goblintown.Wtf
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2023.3234183
– ident: ref_12
  doi: 10.1109/ICBK.2017.39
– ident: ref_19
  doi: 10.18653/v1/2023.emnlp-main.319
– ident: ref_22
– ident: ref_33
  doi: 10.3390/info10040150
– ident: ref_20
– volume: 14
  start-page: 135
  year: 2023
  ident: ref_15
  article-title: Data augmentation in natural language processing: A novel text generation approach for long and short text classifiers
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-022-01553-3
– ident: ref_25
  doi: 10.1145/764008.763957
– ident: ref_7
  doi: 10.18653/v1/2020.emnlp-demos.2
SSID ssj0068600
Score 2.3422627
Snippet In the rapidly evolving landscape of digital marketing and electronic commerce, short-form content—particularly on platforms like Twitter (now X)—has become...
SourceID crossref
SourceType Index Database
StartPage 218
Title RL-TweetGen: A Socio-Technical Framework for Engagement-Optimized Short Text Generation in Digital Commerce Using Large Language Models and Reinforcement Learning
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWWIiFeEFdRLtU8IF4qw-7GcWLeKui2QuUiCFLfVr7tNtAGtKQg9XP4CL6P8W2bVEEqvFiJFcdR5mh8PDozJuSJkqVWwihqbM4prtAZlcwyahRbTCRuELSvePPmLd__xF4f5oej0e-Oaum0Vc_02WBeyf9YFfvQri5L9h8su34pduA12hdbtDC2l7LxhwNa_bS23bNNyDD36SfUh8v9z58l6ZVXE-42yyh1oe_QU5zUZ45tHiEB367QR8cS1En9-KpeugNFnMc4ceqX7aAuOHDScWxDmNOfpXb8PaY5-iqs2s-QCrcu_8J-uwmUvl5sZMOdY3l0mjgWJFoHrj8GnUDdruQXeSx73e_lj7o9WskY0o3xjGnuArQhaT66PVwt6aQsYoHsgb7ot6fjDj6znhMuhxaHLBNOTfm5lXblJHnj-Fy_CPeFxXEtWcTNknvBvDf8Crk6LQovDyhne4kB8JKH1Kf01aG2qxv-vDe8w4U6pKa6SW5Ee8BOgNYtMrLNbXItJUPcIb86CHsBO3ABX7DGF6DhYQhf4PEFDl9wji-oG4j4goQv8PgCjy9I-IKAL0CIQA9fkPB1l1Sz3erlPo2nelBdFCXl2cTmBrfR3Ggh5IILLRnes4XTIyvBkGJrZiRTpdDGIKG1knOBPNfKRT6W2T2y0Xxt7H0CjGeFnmaGFxpJvTBSOJmAERO8ECVXm-Rp-r3zb6F2y3zQjA8u--BDcv0cso_IRrs6tY-RlLZqyyNgy4d0_gBP7pWi
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RL-TweetGen%3A+A+Socio-Technical+Framework+for+Engagement-Optimized+Short+Text+Generation+in+Digital+Commerce+Using+Large+Language+Models+and+Reinforcement+Learning&rft.jtitle=Journal+of+theoretical+and+applied+electronic+commerce+research&rft.au=S%2C+Chitrakala&rft.au=S%2C+Pavithra+S&rft.date=2025-08-26&rft.issn=0718-1876&rft.eissn=0718-1876&rft.volume=20&rft.issue=3&rft.spage=218&rft_id=info:doi/10.3390%2Fjtaer20030218&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jtaer20030218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0718-1876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0718-1876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0718-1876&client=summon