RL-TweetGen: A Socio-Technical Framework for Engagement-Optimized Short Text Generation in Digital Commerce Using Large Language Models and Reinforcement Learning
In the rapidly evolving landscape of digital marketing and electronic commerce, short-form content—particularly on platforms like Twitter (now X)—has become pivotal for real-time branding, community engagement, and product promotion. The rise of Non-Fungible Tokens (NFTs) and Web3 ecosystems further...
Saved in:
Published in | Journal of theoretical and applied electronic commerce research Vol. 20; no. 3; p. 218 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
26.08.2025
|
Online Access | Get full text |
ISSN | 0718-1876 0718-1876 |
DOI | 10.3390/jtaer20030218 |
Cover
Abstract | In the rapidly evolving landscape of digital marketing and electronic commerce, short-form content—particularly on platforms like Twitter (now X)—has become pivotal for real-time branding, community engagement, and product promotion. The rise of Non-Fungible Tokens (NFTs) and Web3 ecosystems further underscores the need for domain-specific, engagement-oriented social media content. However, automating the generation of such content while balancing linguistic quality, semantic relevance, and audience engagement remains a substantial challenge. To address this, we propose RL-TweetGen, a socio-technical framework that integrates instruction-tuned large language models (LLMs) with reinforcement learning (RL) to generate concise, impactful, and engagement-optimized tweets. The framework incorporates a structured pipeline comprising domain-specific data curation, semantic classification, and intent-aware prompt engineering, and leverages Parameter-Efficient Fine-Tuning (PEFT) with LoRA for scalable model adaptation. We fine-tuned and evaluated three LLMs—LLaMA-3.1-8B, Mistral-7B Instruct, and DeepSeek 7B Chat—guided by a hybrid reward function that blends XGBoost-predicted engagement scores with expert-in-the-loop feedback. To enhance lexical diversity and contextual alignment, we implemented advanced decoding strategies, including Tailored Beam Search, Enhanced Top-p Sampling, and Contextual Temperature Scaling. A case study focused on NFT-related tweet generation demonstrated the practical effectiveness of RL-TweetGen. Experimental results showed that Mistral-7B achieved the highest lexical fluency (BLEU: 0.2285), LLaMA-3.1 exhibited superior semantic precision (BERT-F1: 0.8155), while DeepSeek 7B provided balanced performance. Overall, RL-TweetGen presents a scalable and adaptive solution for marketers, content strategists, and Web3 platforms seeking to automate and optimize social media engagement. The framework advances the role of generative AI in digital commerce by aligning content generation with platform dynamics, user preferences, and marketing goals. |
---|---|
AbstractList | In the rapidly evolving landscape of digital marketing and electronic commerce, short-form content—particularly on platforms like Twitter (now X)—has become pivotal for real-time branding, community engagement, and product promotion. The rise of Non-Fungible Tokens (NFTs) and Web3 ecosystems further underscores the need for domain-specific, engagement-oriented social media content. However, automating the generation of such content while balancing linguistic quality, semantic relevance, and audience engagement remains a substantial challenge. To address this, we propose RL-TweetGen, a socio-technical framework that integrates instruction-tuned large language models (LLMs) with reinforcement learning (RL) to generate concise, impactful, and engagement-optimized tweets. The framework incorporates a structured pipeline comprising domain-specific data curation, semantic classification, and intent-aware prompt engineering, and leverages Parameter-Efficient Fine-Tuning (PEFT) with LoRA for scalable model adaptation. We fine-tuned and evaluated three LLMs—LLaMA-3.1-8B, Mistral-7B Instruct, and DeepSeek 7B Chat—guided by a hybrid reward function that blends XGBoost-predicted engagement scores with expert-in-the-loop feedback. To enhance lexical diversity and contextual alignment, we implemented advanced decoding strategies, including Tailored Beam Search, Enhanced Top-p Sampling, and Contextual Temperature Scaling. A case study focused on NFT-related tweet generation demonstrated the practical effectiveness of RL-TweetGen. Experimental results showed that Mistral-7B achieved the highest lexical fluency (BLEU: 0.2285), LLaMA-3.1 exhibited superior semantic precision (BERT-F1: 0.8155), while DeepSeek 7B provided balanced performance. Overall, RL-TweetGen presents a scalable and adaptive solution for marketers, content strategists, and Web3 platforms seeking to automate and optimize social media engagement. The framework advances the role of generative AI in digital commerce by aligning content generation with platform dynamics, user preferences, and marketing goals. |
Author | S, Pavithra S S, Chitrakala |
Author_xml | – sequence: 1 givenname: Chitrakala orcidid: 0000-0002-1871-6037 surname: S fullname: S, Chitrakala – sequence: 2 givenname: Pavithra S orcidid: 0009-0009-4426-0270 surname: S fullname: S, Pavithra S |
BookMark | eNpVkM1OwzAQhC0EEm3hyN0vYHCaxEm4VaUtSEGV2nCOtvYmdWnsyjEq8Dg8KebnAJfZ2cN8I82QnBprkJCriF_HccFvdh7QjTmP-TjKT8iAZ1HOojwTp3_8ORn2_Y5zkQvOB-RjVbLqiOgXaG7phK6t1JZVKLdGS9jTuYMOj9Y908Y6OjMttNih8Wx58LrT76joemudpxW-ehog6MBra6g29E632gfG1HYdOon0qdempSW4FoOa9iXA6KNVuO8pGEVXqE2okd8NtERwJgQuyFkD-x4vf--IVPNZNb1n5XLxMJ2UTGZZzkQcYarEWAgliwIaUUhIwp80qCRuikREqUwUJJu8kEplKUcQokhCDJqUQzwi7Acrne17h019cLoD91ZHvP7at_63b_wJ3Htz5w |
Cites_doi | 10.1145/3580305.3599921 10.1109/TASLP.2018.2819941 10.18653/v1/2020.acl-main.704 10.1016/j.neucom.2019.11.077 10.1002/cb.2482 10.1145/3487553.3524642 10.1016/j.ipm.2022.103098 10.3390/computers14050172 10.1109/TCSS.2023.3234183 10.1109/ICBK.2017.39 10.18653/v1/2023.emnlp-main.319 10.3390/info10040150 10.1007/s13042-022-01553-3 10.1145/764008.763957 10.18653/v1/2020.emnlp-demos.2 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.3390/jtaer20030218 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 0718-1876 |
ExternalDocumentID | 10_3390_jtaer20030218 |
GroupedDBID | .4S .DC 29L 2WC 635 7WY 8FE 8FG 8FL 8R4 8R5 AADQD AAYXX ABUWG ABXHO ADBBV AFKRA AFZYC AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS APOWU ARAPS ARCSS BAAKF BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION CLZPN DWQXO E3Z EBR EBU EDO EPL FRNLG GROUPED_DOAJ HCIFZ I-F IAO ICD ITC K60 K6~ KQ8 M0C MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PQQKQ PROAC PUEGO Q2X RSD RXW SCD TR2 TUS |
ID | FETCH-LOGICAL-c778-631e5d6266dc99af69ca4d624fedceb94615c4da4b89cdd750ea669431eaf50a3 |
ISSN | 0718-1876 |
IngestDate | Wed Aug 27 16:38:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c778-631e5d6266dc99af69ca4d624fedceb94615c4da4b89cdd750ea669431eaf50a3 |
ORCID | 0009-0009-4426-0270 0000-0002-1871-6037 |
OpenAccessLink | https://www.mdpi.com/0718-1876/20/3/218/pdf?version=1756205185 |
ParticipantIDs | crossref_primary_10_3390_jtaer20030218 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-26 |
PublicationDateYYYYMMDD | 2025-08-26 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Journal of theoretical and applied electronic commerce research |
PublicationYear | 2025 |
References | ref_12 ref_34 ref_33 ref_10 ref_32 Brown (ref_1) 2020; 33 Binns (ref_26) 2018; Volume 81 ref_19 ref_18 ref_17 ref_16 Brahmstaedt (ref_31) 2025; 24 Owoc (ref_14) 2024; Volume 717 ref_25 ref_24 ref_23 ref_22 Bayer (ref_15) 2023; 14 ref_21 Yu (ref_11) 2018; 26 Gao (ref_13) 2020; 383 ref_20 ref_3 ref_2 ref_28 ref_27 ref_9 ref_8 ref_5 Qian (ref_29) 2022; 59 ref_4 ref_7 ref_6 Chen (ref_30) 2024; 11 |
References_xml | – ident: ref_8 doi: 10.1145/3580305.3599921 – ident: ref_9 – volume: 26 start-page: 1359 year: 2018 ident: ref_11 article-title: Rich short text conversation using semantic-key-controlled sequence generation publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2018.2819941 – ident: ref_5 – ident: ref_32 – ident: ref_3 – ident: ref_34 – ident: ref_16 – ident: ref_24 doi: 10.18653/v1/2020.acl-main.704 – volume: Volume 81 start-page: 149 year: 2018 ident: ref_26 article-title: Fairness in Machine Learning: Lessons from Political Philosophy publication-title: Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT 2018) – volume: 383 start-page: 282 year: 2020 ident: ref_13 article-title: Generation of topic evolution graphs from short text streams publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.077 – ident: ref_18 – ident: ref_23 – ident: ref_21 – volume: 24 start-page: 1630 year: 2025 ident: ref_31 article-title: Community and Consumer Dynamics in NFTs: Understanding Digital Asset Value through Social Engagement publication-title: J. Consum. Behav. doi: 10.1002/cb.2482 – volume: Volume 717 start-page: 125 year: 2024 ident: ref_14 article-title: Neuro-Evolution-Based Language Model for Text Generation publication-title: Computational Intelligence in Data Science. ICCIDS 2024 – ident: ref_6 – ident: ref_28 doi: 10.1145/3487553.3524642 – ident: ref_4 – volume: 33 start-page: 1877 year: 2020 ident: ref_1 article-title: Language models are few-shot learners publication-title: Adv. Neural Inf. Process. Syst. – volume: 59 start-page: 103098 year: 2022 ident: ref_29 article-title: Understanding public opinions on social media for financial sentiment analysis using AI-based techniques publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2022.103098 – ident: ref_27 – ident: ref_2 – ident: ref_10 – ident: ref_17 doi: 10.3390/computers14050172 – volume: 11 start-page: 5038 year: 2024 ident: ref_30 article-title: How Information Manipulation on Social Media Influences the NFT Investors’ Behavior: A Case Study of Goblintown.Wtf publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2023.3234183 – ident: ref_12 doi: 10.1109/ICBK.2017.39 – ident: ref_19 doi: 10.18653/v1/2023.emnlp-main.319 – ident: ref_22 – ident: ref_33 doi: 10.3390/info10040150 – ident: ref_20 – volume: 14 start-page: 135 year: 2023 ident: ref_15 article-title: Data augmentation in natural language processing: A novel text generation approach for long and short text classifiers publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-022-01553-3 – ident: ref_25 doi: 10.1145/764008.763957 – ident: ref_7 doi: 10.18653/v1/2020.emnlp-demos.2 |
SSID | ssj0068600 |
Score | 2.3422627 |
Snippet | In the rapidly evolving landscape of digital marketing and electronic commerce, short-form content—particularly on platforms like Twitter (now X)—has become... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 218 |
Title | RL-TweetGen: A Socio-Technical Framework for Engagement-Optimized Short Text Generation in Digital Commerce Using Large Language Models and Reinforcement Learning |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWWIiFeEFdRLtU8IF4qw-7GcWLeKui2QuUiCFLfVr7tNtAGtKQg9XP4CL6P8W2bVEEqvFiJFcdR5mh8PDozJuSJkqVWwihqbM4prtAZlcwyahRbTCRuELSvePPmLd__xF4f5oej0e-Oaum0Vc_02WBeyf9YFfvQri5L9h8su34pduA12hdbtDC2l7LxhwNa_bS23bNNyDD36SfUh8v9z58l6ZVXE-42yyh1oe_QU5zUZ45tHiEB367QR8cS1En9-KpeugNFnMc4ceqX7aAuOHDScWxDmNOfpXb8PaY5-iqs2s-QCrcu_8J-uwmUvl5sZMOdY3l0mjgWJFoHrj8GnUDdruQXeSx73e_lj7o9WskY0o3xjGnuArQhaT66PVwt6aQsYoHsgb7ot6fjDj6znhMuhxaHLBNOTfm5lXblJHnj-Fy_CPeFxXEtWcTNknvBvDf8Crk6LQovDyhne4kB8JKH1Kf01aG2qxv-vDe8w4U6pKa6SW5Ee8BOgNYtMrLNbXItJUPcIb86CHsBO3ABX7DGF6DhYQhf4PEFDl9wji-oG4j4goQv8PgCjy9I-IKAL0CIQA9fkPB1l1Sz3erlPo2nelBdFCXl2cTmBrfR3Ggh5IILLRnes4XTIyvBkGJrZiRTpdDGIKG1knOBPNfKRT6W2T2y0Xxt7H0CjGeFnmaGFxpJvTBSOJmAERO8ECVXm-Rp-r3zb6F2y3zQjA8u--BDcv0cso_IRrs6tY-RlLZqyyNgy4d0_gBP7pWi |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RL-TweetGen%3A+A+Socio-Technical+Framework+for+Engagement-Optimized+Short+Text+Generation+in+Digital+Commerce+Using+Large+Language+Models+and+Reinforcement+Learning&rft.jtitle=Journal+of+theoretical+and+applied+electronic+commerce+research&rft.au=S%2C+Chitrakala&rft.au=S%2C+Pavithra+S&rft.date=2025-08-26&rft.issn=0718-1876&rft.eissn=0718-1876&rft.volume=20&rft.issue=3&rft.spage=218&rft_id=info:doi/10.3390%2Fjtaer20030218&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jtaer20030218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0718-1876&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0718-1876&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0718-1876&client=summon |