Stimuli-Directing Self-Organized 3D Liquid-Crystalline Nanostructures: From Materials Design to Photonic Applications
3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions because of the ability to control or confine electromagnetic waves in all three dimensions. Although substantial progress has been made in fabricat...
Saved in:
Published in | Advanced functional materials Vol. 26; no. 1; pp. 10 - 28 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
06.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.201502071 |
Cover
Loading…
Abstract | 3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions because of the ability to control or confine electromagnetic waves in all three dimensions. Although substantial progress has been made in fabricating 3D nanostructures by means of lithography and nanotechnology, various bottlenecks still need to be overcome, and developing soft 3D stimuli‐directed nanostructures with tailored properties remains a challenging but exciting work. In this context, soft nanotechnology—i.e., exploiting self‐organized soft materials in nanotechnology—is emerging as a vibrant and burgeoning field of research in the bottom‐up nanofabrication of intelligent stimuli‐driven 3D photonic materials and devices. Liquid‐crystalline materials undoubtedly represent such a marvelous dynamic system that combines the liquid‐like fluidity and crystal‐like ordering from molecular to macroscopic material levels. Importantly, being “soft” makes the materials responsive to various stimuli such as temperature, light, mechanical force, and electric and magnetic fields as well as chemical and electrochemical reactions, resulting in a fascinating tunability of dynamic photonic bandgaps in the 3D nanostructure that provides numerous opportunities in all‐optical integrated circuits and next‐generation communication systems. Here, the development of 3D photonic nanostructures is reviewed, culminating with perspectives for the future scope and challenges of these emerging soft 3D photonic nanostructures towards device applications.
Soft nanotechnology—i.e., exploiting self‐organized soft materials in nanotechnology—is emerging as an attractive paradigm in the bottom‐up nanofabrication of intelligent stimuli‐driven 3D photonic materials and devices. Liquid‐crystalline materials undoubtedly represent such an elegant dynamic system that combines the liquid‐like fluidity and crystal‐like ordering from molecular to macroscopic levels. This review provides a glimpse of the advancements in design, fabrication and applications of stimuli‐directing self‐organized 3D liquid‐crystalline photonic nanostructures. |
---|---|
AbstractList | 3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions because of the ability to control or confine electromagnetic waves in all three dimensions. Although substantial progress has been made in fabricating 3D nanostructures by means of lithography and nanotechnology, various bottlenecks still need to be overcome, and developing soft 3D stimuli‐directed nanostructures with tailored properties remains a challenging but exciting work. In this context, soft nanotechnology—i.e., exploiting self‐organized soft materials in nanotechnology—is emerging as a vibrant and burgeoning field of research in the bottom‐up nanofabrication of intelligent stimuli‐driven 3D photonic materials and devices. Liquid‐crystalline materials undoubtedly represent such a marvelous dynamic system that combines the liquid‐like fluidity and crystal‐like ordering from molecular to macroscopic material levels. Importantly, being “soft” makes the materials responsive to various stimuli such as temperature, light, mechanical force, and electric and magnetic fields as well as chemical and electrochemical reactions, resulting in a fascinating tunability of dynamic photonic bandgaps in the 3D nanostructure that provides numerous opportunities in all‐optical integrated circuits and next‐generation communication systems. Here, the development of 3D photonic nanostructures is reviewed, culminating with perspectives for the future scope and challenges of these emerging soft 3D photonic nanostructures towards device applications. 3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions because of the ability to control or confine electromagnetic waves in all three dimensions. Although substantial progress has been made in fabricating 3D nanostructures by means of lithography and nanotechnology, various bottlenecks still need to be overcome, and developing soft 3D stimuli-directed nanostructures with tailored properties remains a challenging but exciting work. In this context, soft nanotechnology-i.e., exploiting self-organized soft materials in nanotechnology-is emerging as a vibrant and burgeoning field of research in the bottom-up nanofabrication of intelligent stimuli-driven 3D photonic materials and devices. Liquid-crystalline materials undoubtedly represent such a marvelous dynamic system that combines the liquid-like fluidity and crystal-like ordering from molecular to macroscopic material levels. Importantly, being "soft" makes the materials responsive to various stimuli such as temperature, light, mechanical force, and electric and magnetic fields as well as chemical and electrochemical reactions, resulting in a fascinating tunability of dynamic photonic bandgaps in the 3D nanostructure that provides numerous opportunities in all-optical integrated circuits and next-generation communication systems. Here, the development of 3D photonic nanostructures is reviewed, culminating with perspectives for the future scope and challenges of these emerging soft 3D photonic nanostructures towards device applications. Soft nanotechnology-i.e., exploiting self-organized soft materials in nanotechnology-is emerging as an attractive paradigm in the bottom-up nanofabrication of intelligent stimuli-driven 3D photonic materials and devices. Liquid-crystalline materials undoubtedly represent such an elegant dynamic system that combines the liquid-like fluidity and crystal-like ordering from molecular to macroscopic levels. This review provides a glimpse of the advancements in design, fabrication and applications of stimuli-directing self-organized 3D liquid-crystalline photonic nanostructures. 3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions because of the ability to control or confine electromagnetic waves in all three dimensions. Although substantial progress has been made in fabricating 3D nanostructures by means of lithography and nanotechnology, various bottlenecks still need to be overcome, and developing soft 3D stimuli‐directed nanostructures with tailored properties remains a challenging but exciting work. In this context, soft nanotechnology—i.e., exploiting self‐organized soft materials in nanotechnology—is emerging as a vibrant and burgeoning field of research in the bottom‐up nanofabrication of intelligent stimuli‐driven 3D photonic materials and devices. Liquid‐crystalline materials undoubtedly represent such a marvelous dynamic system that combines the liquid‐like fluidity and crystal‐like ordering from molecular to macroscopic material levels. Importantly, being “soft” makes the materials responsive to various stimuli such as temperature, light, mechanical force, and electric and magnetic fields as well as chemical and electrochemical reactions, resulting in a fascinating tunability of dynamic photonic bandgaps in the 3D nanostructure that provides numerous opportunities in all‐optical integrated circuits and next‐generation communication systems. Here, the development of 3D photonic nanostructures is reviewed, culminating with perspectives for the future scope and challenges of these emerging soft 3D photonic nanostructures towards device applications. Soft nanotechnology—i.e., exploiting self‐organized soft materials in nanotechnology—is emerging as an attractive paradigm in the bottom‐up nanofabrication of intelligent stimuli‐driven 3D photonic materials and devices. Liquid‐crystalline materials undoubtedly represent such an elegant dynamic system that combines the liquid‐like fluidity and crystal‐like ordering from molecular to macroscopic levels. This review provides a glimpse of the advancements in design, fabrication and applications of stimuli‐directing self‐organized 3D liquid‐crystalline photonic nanostructures. |
Author | Li, Quan Wang, Ling |
Author_xml | – sequence: 1 givenname: Ling surname: Wang fullname: Wang, Ling organization: Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Ohio, 44242, Kent, United States – sequence: 2 givenname: Quan surname: Li fullname: Li, Quan email: qli1@kent.edu organization: Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Ohio, 44242, Kent, United States |
BookMark | eNqFkEFv0zAUgC00JLbBlbOPXNLZSRq73KqWDli3IRUE2sVy7JfywLE72xGUX09GUYWQEPLh-fB9T0_fGTnxwQMhzzmbcMbKC227flIyPmUlE_wROeUNb4qKlfLk-OefnpCzlL4wxoWo6lMybDL2g8NiiRFMRr-lG3BdcRu32uMPsLRa0jXeD2iLRdynrJ1DD_RG-5ByHEweIqSXdBVDT691hojaJbqEhFtPc6DvPoccPBo63-0cGp0x-PSUPO5GDJ79nufkw-rV-8XrYn17-WYxXxdGiIYXIFsrZ6WpbdsxpoUBJkth26bmdcemnZW15byqdctB2_E1rOyAM6mnsuU1r87Ji8PeXQz3A6SsekwGnNMewpDUGEGOfWalHNH6gJoYUorQKYP517U5anSKM_VQWT1UVsfKozb5S9tF7HXc_1uYHYRv6GD_H1rNl6vrP93i4GLK8P3o6vhVNaISU_Xx5lK9vSqv7jZ3M7WufgJQbKN_ |
CitedBy_id | crossref_primary_10_1039_C9LC00655A crossref_primary_10_1002_adfm_202424655 crossref_primary_10_1002_adom_201700923 crossref_primary_10_1016_j_molliq_2020_115172 crossref_primary_10_1021_acsami_1c11711 crossref_primary_10_1021_acs_chemrev_6b00415 crossref_primary_10_1002_ange_201606895 crossref_primary_10_1016_j_mattod_2025_02_016 crossref_primary_10_1021_acsami_8b14223 crossref_primary_10_1016_j_molliq_2021_115328 crossref_primary_10_1002_adom_201800409 crossref_primary_10_1039_D2NR07084G crossref_primary_10_1038_s41467_023_41884_5 crossref_primary_10_1002_cptc_202100124 crossref_primary_10_1016_j_apmt_2020_100749 crossref_primary_10_3390_coatings9100669 crossref_primary_10_1073_pnas_1906511116 crossref_primary_10_1007_s10118_017_1981_y crossref_primary_10_1016_j_polymer_2018_11_022 crossref_primary_10_1021_acs_jpcb_1c07422 crossref_primary_10_1063_5_0245343 crossref_primary_10_1002_ange_202213915 crossref_primary_10_1002_lpor_202400366 crossref_primary_10_1002_adfm_202104991 crossref_primary_10_1021_acs_chemmater_4c00471 crossref_primary_10_1016_j_actbio_2020_12_008 crossref_primary_10_1016_j_compscitech_2019_04_028 crossref_primary_10_1002_adom_201900156 crossref_primary_10_1002_chem_202102226 crossref_primary_10_1002_adom_201900393 crossref_primary_10_1002_adom_201901363 crossref_primary_10_1002_adfm_202421280 crossref_primary_10_1007_s40094_019_0318_3 crossref_primary_10_1016_j_ccr_2016_06_009 crossref_primary_10_1002_ange_201802881 crossref_primary_10_3390_ma13061475 crossref_primary_10_1016_j_molliq_2019_02_054 crossref_primary_10_1021_acsomega_8b00554 crossref_primary_10_1016_j_actbio_2016_11_033 crossref_primary_10_1002_slct_202200490 crossref_primary_10_1016_j_mattod_2017_04_028 crossref_primary_10_1002_adom_201800515 crossref_primary_10_1002_rpm_20230005 crossref_primary_10_1002_tcr_201800010 crossref_primary_10_3390_nano7070169 crossref_primary_10_1002_adma_201700676 crossref_primary_10_1039_C8TC06428H crossref_primary_10_1039_D3MA00931A crossref_primary_10_1002_adom_202000155 crossref_primary_10_1016_j_cplett_2018_08_056 crossref_primary_10_1021_acs_jpclett_0c03438 crossref_primary_10_1039_D2TC01333A crossref_primary_10_1002_adfm_201504534 crossref_primary_10_1002_admi_202001977 crossref_primary_10_1002_ange_202405615 crossref_primary_10_1002_asia_201800225 crossref_primary_10_1016_j_cclet_2024_110374 crossref_primary_10_1021_acsami_7b12292 crossref_primary_10_1021_acsapm_9b00841 crossref_primary_10_3390_app14114682 crossref_primary_10_1002_adom_201800070 crossref_primary_10_1002_smo_20230025 crossref_primary_10_1002_adma_201600043 crossref_primary_10_1080_02678292_2020_1769754 crossref_primary_10_1038_srep26840 crossref_primary_10_1002_adfm_201702261 crossref_primary_10_1002_rpm_20230016 crossref_primary_10_1002_ange_202211030 crossref_primary_10_1002_chem_201701167 crossref_primary_10_1080_02678292_2019_1640905 crossref_primary_10_1039_D1TC01801A crossref_primary_10_1117_1_JBO_22_8_080901 crossref_primary_10_1021_acsnano_8b02832 crossref_primary_10_1002_adma_201701903 crossref_primary_10_1002_adma_201806172 crossref_primary_10_1002_cptc_202100256 crossref_primary_10_1016_j_nanoen_2016_06_021 crossref_primary_10_1021_acs_langmuir_1c00256 crossref_primary_10_1039_C9CE01551E crossref_primary_10_1002_adfm_202007957 crossref_primary_10_1021_acsami_2c03420 crossref_primary_10_3390_mi10110761 crossref_primary_10_1039_D1MA00863C crossref_primary_10_3390_sym13091584 crossref_primary_10_1002_admt_201600102 crossref_primary_10_1021_acs_biomac_3c00503 crossref_primary_10_1080_02678292_2019_1655808 crossref_primary_10_1039_C7TC00534B crossref_primary_10_1021_acsapm_0c00856 crossref_primary_10_1021_jacs_8b09622 crossref_primary_10_1016_j_optmat_2021_111670 crossref_primary_10_1021_acsami_0c12479 crossref_primary_10_1002_adfm_201702905 crossref_primary_10_1039_C6CC01442A crossref_primary_10_1039_D0ME00070A crossref_primary_10_1039_C6SC00758A crossref_primary_10_1080_02678292_2016_1196506 crossref_primary_10_1080_02678292_2021_1881834 crossref_primary_10_1002_anie_201802881 crossref_primary_10_1063_1_5081766 crossref_primary_10_1002_asia_201600918 crossref_primary_10_1039_C7PY00471K crossref_primary_10_1002_rpm_20230030 crossref_primary_10_1080_15980316_2017_1410500 crossref_primary_10_1002_ange_201705138 crossref_primary_10_1039_D2TC05370E crossref_primary_10_1080_02678292_2020_1811411 crossref_primary_10_1038_s43246_021_00146_x crossref_primary_10_1021_acsnano_3c04199 crossref_primary_10_1039_C7CC01920C crossref_primary_10_3390_cryst6100129 crossref_primary_10_3390_polym10080884 crossref_primary_10_1039_C5CC06146F crossref_primary_10_3390_cryst11060576 crossref_primary_10_1016_j_pmatsci_2020_100702 crossref_primary_10_1038_s41467_020_16059_1 crossref_primary_10_1016_j_polymer_2022_124641 crossref_primary_10_1038_s41377_024_01479_1 crossref_primary_10_1021_acs_chemmater_9b01767 crossref_primary_10_3390_ma16010194 crossref_primary_10_1039_D0RA03465G crossref_primary_10_1080_1358314X_2017_1398307 crossref_primary_10_3390_colloids2040047 crossref_primary_10_1021_acs_macromol_0c01820 crossref_primary_10_1080_21680396_2016_1193065 crossref_primary_10_1002_anie_201800366 crossref_primary_10_1016_j_progpolymsci_2021_101365 crossref_primary_10_1021_acsami_6b08628 crossref_primary_10_1038_s41377_022_00937_y crossref_primary_10_1039_D3TC00861D crossref_primary_10_1021_acsami_6b10809 crossref_primary_10_1080_02678292_2023_2182925 crossref_primary_10_1021_jacs_8b06323 crossref_primary_10_1016_j_mtphys_2022_100892 crossref_primary_10_1039_C6CC09120B crossref_primary_10_1007_s12274_017_1694_0 crossref_primary_10_1021_acs_jpcb_8b07653 crossref_primary_10_1021_acsapm_2c00173 crossref_primary_10_1021_acsomega_2c06718 crossref_primary_10_1126_sciadv_aba6728 crossref_primary_10_1039_C5NR08406G crossref_primary_10_1002_adom_202102475 crossref_primary_10_1002_ange_201800366 crossref_primary_10_1016_j_molliq_2022_118889 crossref_primary_10_1038_s41377_022_00913_6 crossref_primary_10_1039_C9TC04380B crossref_primary_10_1039_C8CE00286J crossref_primary_10_1021_acs_chemrev_1c00761 crossref_primary_10_1016_j_jpcs_2020_109418 crossref_primary_10_1002_adma_201606671 crossref_primary_10_1021_acsami_0c14614 crossref_primary_10_1515_aot_2019_0012 crossref_primary_10_1021_acsami_9b08827 crossref_primary_10_1002_adfm_202009626 crossref_primary_10_1039_C6TA01647B crossref_primary_10_1002_adfm_202000252 crossref_primary_10_1002_adfm_202004610 crossref_primary_10_1002_anie_202211030 crossref_primary_10_1039_D0MH01406K crossref_primary_10_1039_D2MH00232A crossref_primary_10_1002_adma_202312915 crossref_primary_10_1021_acsami_0c20628 crossref_primary_10_1021_acs_nanolett_4c06047 crossref_primary_10_1002_chem_201600095 crossref_primary_10_1039_D3NR03366J crossref_primary_10_1002_adts_201900229 crossref_primary_10_1039_C9TA00993K crossref_primary_10_1021_acsami_9b01523 crossref_primary_10_1016_j_molliq_2017_12_147 crossref_primary_10_1021_acsapm_8b00276 crossref_primary_10_1002_anie_201705138 crossref_primary_10_1002_adfm_201909537 crossref_primary_10_1039_C7CS00630F crossref_primary_10_1039_C9QM00415G crossref_primary_10_1002_adfm_201703522 crossref_primary_10_1016_j_molliq_2018_11_088 crossref_primary_10_1055_s_0042_1757971 crossref_primary_10_1016_j_molliq_2018_11_058 crossref_primary_10_1039_C6SM02142E crossref_primary_10_1002_ange_201807372 crossref_primary_10_1016_j_jiec_2017_09_022 crossref_primary_10_1039_C6SM01772J crossref_primary_10_1002_adom_201500533 crossref_primary_10_1039_D0TC02059A crossref_primary_10_1080_02678292_2021_1945694 crossref_primary_10_1039_C9TC02938A crossref_primary_10_1039_C9TC06130D crossref_primary_10_1039_C8SM01426D crossref_primary_10_1021_acsami_6b02789 crossref_primary_10_1002_adma_201801335 crossref_primary_10_1002_lpor_202401635 crossref_primary_10_1038_s41428_023_00805_5 crossref_primary_10_1002_smll_202304590 crossref_primary_10_1002_adma_201800237 crossref_primary_10_1002_adma_201706512 crossref_primary_10_3390_ijms19092715 crossref_primary_10_1039_C9TC05052C crossref_primary_10_1246_bcsj_20200304 crossref_primary_10_1002_asia_202401211 crossref_primary_10_1002_adfm_201802500 crossref_primary_10_1002_anie_202405615 crossref_primary_10_1038_ncomms13981 crossref_primary_10_1039_C6CC04721A crossref_primary_10_1080_02678292_2022_2037769 crossref_primary_10_3390_s18092973 crossref_primary_10_1016_j_micron_2021_103136 crossref_primary_10_1016_j_molliq_2019_111417 crossref_primary_10_1039_C8TC05879B crossref_primary_10_1039_C6TC02557A crossref_primary_10_1002_smsc_202100007 crossref_primary_10_1039_C6TC05267C crossref_primary_10_1002_adom_201800335 crossref_primary_10_1039_C6MH00101G crossref_primary_10_1002_adom_201800458 crossref_primary_10_1002_open_201700121 crossref_primary_10_1002_anie_201807372 crossref_primary_10_1021_acsnano_2c09203 crossref_primary_10_1039_C7MH00644F crossref_primary_10_1016_j_mtchem_2016_11_001 crossref_primary_10_1002_adom_202000692 crossref_primary_10_1016_j_pmatsci_2019_03_005 crossref_primary_10_1002_adom_201600281 crossref_primary_10_1002_adma_201600258 crossref_primary_10_1002_adma_202109800 crossref_primary_10_3390_polym16081152 crossref_primary_10_1002_anie_201606895 crossref_primary_10_1002_chem_201802927 crossref_primary_10_1002_adma_201905318 crossref_primary_10_1002_cphc_201900585 crossref_primary_10_1002_sstr_202100038 crossref_primary_10_1039_C6PY02096H crossref_primary_10_1016_j_cej_2020_126539 crossref_primary_10_1021_acs_macromol_6b00640 crossref_primary_10_1039_C8TC04947E crossref_primary_10_3390_app8122544 crossref_primary_10_3390_e19120669 crossref_primary_10_1002_advs_202002132 crossref_primary_10_1002_adfm_202213162 crossref_primary_10_1002_adfm_202107275 crossref_primary_10_1002_mame_202100594 crossref_primary_10_1002_adom_202101526 crossref_primary_10_1039_C8TC02200C crossref_primary_10_1039_C9SM01265F crossref_primary_10_3390_polym14122455 crossref_primary_10_1002_adma_201703713 crossref_primary_10_1039_C6TC01103A crossref_primary_10_1021_acsami_7b10198 crossref_primary_10_1002_anie_202213915 crossref_primary_10_1038_s41378_024_00806_1 crossref_primary_10_1002_adma_201603751 crossref_primary_10_1002_adom_202401934 crossref_primary_10_1002_smll_202201597 crossref_primary_10_1021_acs_macromol_3c02295 crossref_primary_10_1016_j_porgcoat_2020_105904 crossref_primary_10_1002_adma_201703165 crossref_primary_10_1002_smll_201900019 crossref_primary_10_1002_adom_202001572 crossref_primary_10_1016_j_jpowsour_2017_01_123 crossref_primary_10_1080_02678292_2021_1921866 crossref_primary_10_1039_C5TC04163E crossref_primary_10_1021_acsami_4c14574 crossref_primary_10_1080_02678292_2017_1330430 crossref_primary_10_1016_j_molliq_2020_115059 |
Cites_doi | 10.1038/nmat712 10.1039/c1jm10711a 10.1002/ange.201305514 10.1002/adma.201200241 10.1007/430_2007_075 10.1103/PhysRevA.50.2701 10.1126/science.1195639 10.1364/JOSAB.10.000644 10.1063/1.3127523 10.1002/adom.201500153 10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6 10.1002/adfm.201402875 10.1002/adom.201400166 10.1002/adma.201204591 10.1002/9781118680469 10.1002/9781118259993 10.1364/OL.29.000424 10.1039/c1sm05098b 10.1038/nmat3330 10.1103/PhysRevLett.64.1907 10.1021/ma052167o 10.1103/RevModPhys.61.385 10.1073/pnas.1317922110 10.1021/cr900080v 10.1039/C5TC00420A 10.1038/nature05024 10.1038/nature11084 10.1364/OE.20.005775 10.1021/ar500317s 10.1364/OL.35.000562 10.1039/C2CS35353A 10.1039/C3TC32055C 10.1002/smll.201401600 10.1039/c3tc30919c 10.1080/026782997208587 10.1007/978-3-319-18293-3_6 10.1063/1.96577 10.1039/c2cc16934g 10.1002/anie.200907091 10.1038/ncomms4954 10.1038/nphoton.2009.170 10.1021/ar500249k 10.1080/15421400490501158 10.1038/nature03932 10.1002/adma.200500167 10.1073/pnas.1214708109 10.1155/2008/684349 10.1039/c3cc46117c 10.1038/nature01939 10.1002/adma.201103791 10.1088/2058-7058/17/2/34 10.1016/S0375-9601(02)00618-7 10.1038/nmat2029 10.1002/adma.200903728 10.1038/nphoton.2013.255 10.1142/2337 10.1002/1521-4095(200103)13:6<421::AID-ADMA421>3.0.CO;2-# 10.1002/anie.201306396 10.1103/PhysRevE.75.041919 10.1002/anie.201410788 10.1103/PhysRevE.56.6853 10.1364/OE.18.026995 10.3390/ma2020499 10.1080/00268948308072031 10.1002/adma.201102828 10.1073/pnas.0909616107 10.1364/OE.20.023978 10.1073/pnas.1015831108 10.1021/ja211837f 10.1080/02678292.2012.669501 10.1021/ja500933h 10.1039/C4TC01297F 10.1002/1521-4095(200103)13:6<409::AID-ADMA409>3.0.CO;2-C 10.1103/PhysRevLett.38.1351 10.1007/0-387-21642-1_7 10.1002/0471238961.1209172103151212.a01.pub3 10.1038/35090573 10.1021/nl060608r 10.1007/978-3-319-04867-3_2 10.1002/anie.200804500 10.1002/adma.200602550 10.1002/adma.201300776 10.1002/adma.200401462 10.1021/ja301845n 10.1103/PhysRevLett.67.1169 10.1002/anie.200200546 10.1103/PhysRevLett.104.157801 10.1021/cm4025028 10.1002/adma.200801258 10.1038/426786a 10.1038/nphoton.2010.184 10.1002/adma.200502651 10.1038/nature12083 10.1021/nl501302s 10.1126/science.1109164 10.1021/ma052046o 10.1021/nl080444 10.1002/adma.200800141 10.1126/science.1079204 10.1364/OL.28.000522 10.1038/nmat3993 10.1126/science.1123053 10.1039/C5CC02127H 10.1021/ja4022182 10.1021/cm202632m 10.1039/c3tc31253d 10.1039/c2cs15267c 10.1002/adma.200501447 10.1016/0375-9601(81)90912-9 10.1080/02678292.2012.749306 10.1039/C4CS00181H 10.1002/adma.201300798 10.1002/adfm.201200362 10.1002/anie.201303786 10.1002/adfm.200901135 10.1103/PhysRevE.62.1435 10.1002/smll.201200052 10.1002/adma.200500042 10.1002/adma.201405690 10.1080/09500349414550291 10.1038/nature01941 10.1103/PhysRevE.71.051705 10.1002/adma.200400639 10.1021/cm011510a 10.1021/ja302772z 10.1002/adma.201103008 10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O 10.1016/j.carbon.2009.10.026 10.1889/1.3621051 10.1080/02678290902814718 10.1021/ja907826z 10.1038/nmat3888 10.1364/JOSAB.10.000296 10.1039/C4TC00785A 10.1073/pnas.1102130108 10.1038/nmat727 10.1002/1521-4095(20020205)14:3<187::AID-ADMA187>3.0.CO;2-O 10.1039/c2jm34013e 10.1002/adma.201103362 10.1021/ja108437n 10.1889/1.2210808 10.1002/adma.200501355 10.1063/1.3368119 10.1038/ncomms1583 10.1002/adfm.201001303 10.1002/pat.663 10.1021/ma0613279 10.1039/b402558j 10.1039/C2JM15461G 10.1117/12.874688 10.1039/C2SM26807H 10.1364/OE.19.019836 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201502071 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 28 |
ExternalDocumentID | 10_1002_adfm_201502071 ADFM201502071 ark_67375_WNG_JK2KZSZ9_L |
Genre | article |
GrantInformation_xml | – fundername: DoD‐MURI funderid: FA9550–12–1–0037 – fundername: NASA – fundername: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences funderid: DE‐SC0001412 – fundername: DoD‐Army – fundername: AFOSR funderid: FA9950–09–1–0193; FA9950–09–1–0254 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c7761-e8bd892c4dbf00a7ce0827db6414f05fd84d1134ab1eadada602fe108a58b1413 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 00:09:02 EDT 2025 Thu Jul 03 08:37:28 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Wed Jan 22 16:30:09 EST 2025 Wed Oct 30 09:53:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c7761-e8bd892c4dbf00a7ce0827db6414f05fd84d1134ab1eadada602fe108a58b1413 |
Notes | ark:/67375/WNG-JK2KZSZ9-L AFOSR - No. FA9950-09-1-0193; No. FA9950-09-1-0254 ArticleID:ADFM201502071 NASA DoD-Army istex:43C67B269BF7D841BCE657EBF89BEFA7D4EE487A DoD-MURI - No. FA9550-12-1-0037 U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences - No. DE-SC0001412 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1778028928 |
PQPubID | 23500 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1778028928 crossref_citationtrail_10_1002_adfm_201502071 crossref_primary_10_1002_adfm_201502071 wiley_primary_10_1002_adfm_201502071_ADFM201502071 istex_primary_ark_67375_WNG_JK2KZSZ9_L |
PublicationCentury | 2000 |
PublicationDate | January 6, 2016 |
PublicationDateYYYYMMDD | 2016-01-06 |
PublicationDate_xml | – month: 01 year: 2016 text: January 6, 2016 day: 06 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, Phys. Rev. E 2005, 71, 051705. I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, J. E. Sipe, Macromolecules 2006, 39, 1449. J. Yan, L. Rao, M. Jiao, H. C. Cheng, S. T. Wu, J. Mater. Chem. 2011, 21, 7870. K. G. Sullivan, D. G. Hall, Phys. Rev. A 1994, 50, 2701. J. H. Kang, J. H. Moon, S. K. Lee, S. G. Park, S. G. Jang, S. Yang, S. M. Yang, Adv. Mater. 2008, 20, 3061. N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, A. P. H. J. Schenning, J. Am. Chem. Soc. 2012, 134, 7608. Y. Uchida, Y. Takanishi, J. Yamamoto, Adv. Mater. 2013, 25, 3234. Y. H. Kim, D. K. Yoon, H. S. Jeong, J. H. Kim, E. K. Yoon, H.-T. Jung, Adv. Func. Mater. 2009, 19, 3008. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajikawa, Nat. Mater. 2002, 1, 64. Nanoscience with Liquid Crystals: From Self-Organized Nanostructures to Applications (Ed: Q. Li), Springer, Heidelberg, Germany 2014. G. A. Ozin, S. M. Yang, Adv. Funct. Mater. 2001, 11, 95. D. J. Mulder, A. P. H. J. Schenning, C. W. M. Bastiaansen, J. Mater. Chem. C 2014, 2, 6695. A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, Y. Arakawa, Appl. Phys. Lett. 2009, 94, 171115. L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, Q. Li, J. Am. Chem. Soc. 2014, 136, 4480. P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, M. M. Green, Macromolecules 2006, 39, 3986. C. Meyer, L. L. Cunff, M. Belloul, G. Foyart, Materials 2009, 2, 499. A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, R. P. Sijbesm, Chem. Commun. 2012, 48, 4579. X. Su, S. Voskian, R. P. Hughes, I. Aprahamian, Angew. Chem. Int. Ed. 2013, 52, 10934. L. Wang, W. He, X. Xiao, M. Wang, M. Wang, P. Yang, Z. Zhou, H. Yang, H. Yu, Y. Lu, J. Mater. Chem. 2012, 22, 19629. S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutierrez, F. del Monte, Chem. Soc. Rev. 2013, 42, 794. A. Fernández-Nieves, G. Cristobal, V. Garcés-Chávez, G. C. Spalding, K. Dholakia, D. A. Weitz, Adv. Mater. 2005, 17, 680. P. Vukusic, J. R. Sambles, Nature 2003, 424, 852. M. Honda, T. Seki, Y. Takeoka, Adv. Mater. 2009, 21, 18014. I. B. Burgess, M. Loncˇar, J. Aizenberg, J. Mater. Chem. C 2013, 1, 6075. D. S. Miller, X. Wang, N. L. Abbott, Chem. Mater. 2013, 26, 496. V. Welch, V. Lousse, O. Deparis, A. Parker, J. P. Vigneron, Phys. Rev. E 2007, 75, 041919. T.-Z. Shen, S.-H. Hong, J.-K. Song, Nat. Mater. 2014, 13, 394. J. Noh, H. L. Liang, I. Drevensek-Olenik, J. P. F. Lagerwall, J. Mater. Chem. C 2014, 2, 806. Y. Zhao, L. Shang, Y. Cheng, Z. Gu, Acc. Chem. Res. 2014, 47, 3632. Y. Li, C. Xue, M. Wang, A. Urbas, Q. Li, Angew. Chem. Int. Ed. 2013, 52, 13703. J. K. Gupta, S. Sivakumar, F. Caruso, N. L. Abbott, Angew. Chem. Int. Ed. 2009, 48, 1652. J. H. Jang, S. J. Jhaveri, B. Rasin, C. Koh, C. K. Ober, E. L. Thomas, Nano Lett. 2008, 8, 1456. H. Coles, M. Pivnenko, Nature 2005, 436, 997. L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, Q. Li, Adv. Opt. Mater. 2014, 2, 845. P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, X. Hou, Optics Express 2012, 20, 5775. I. W. Hamley, Angew. Chem. Int. Ed. 2003, 42, 1692. Y. Haseba, H. Kikuchi, T. Nagamura, T. Kajiyama, Adv. Mater. 2005, 17, 2311. F. Xu, P. P. Crooker, Phys. Rev. E 1997, 56, 6853. M. Humar, I. Musevic, Opt. Express 2011, 19, 19836. H. K. Bisoyi, Q. Li, Acc. Chem. Res. 2014, 47, 3184. A. R. Parker, V. L. Welch, D. Driver, N. Martini, Nature 2003, 426, 786. P. Vukusic, Phys. World 2004, 17, 35. L. Wang, Q. Li, in Organic & Hybrid Photonic Crystals, (Ed: D. Comoretto), Springer, New York, NY, USA 2015, Ch. 18. Y. Li, A. Urbas, Q. Li, J. Am. Chem. Soc. 2012, 134, 9573. L. Wang, L. Yu, X. Xiao, Z. Wang, P. Yang, W. He, H. Yang, Liq. Cryst. 2012, 39, 629. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, T. J. Bunning, Adv. Mater. 2002, 14, 187. D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, H.-T. Jung, Nat. Mater. 2007, 6, 866. W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, Nat. Mater. 2002, 1, 111. A. Honglawan, S. Yang, in Nanoscience with Liquid Crystals (Ed: Q. Li), Springer, Heidelberg, Germany 2014, Ch. 2. L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, Nature 2006, 442, 551. I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, N. L. Abbott, Science 2011, 332, 1297. Z. Xu, C. Gao, Nat. Commun. 2011, 2, 571. K. H. Jeong, J. Kim, L. P. Lee, Science 2006, 312, 557. Y. Liu, X. W. Sun, Adv. OptoElectron. 2008, 684349. H. S. Sözüer, J. W. Haus, J. Opt. Soc. Am. B 1993, 10, 296. G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, R. Bartolino, Adv. Mater. 2011, 23, 5773. M. Humar, M. Ravnik, S. Pajk, I. Muševicˇ, Nat. Photonics 2009, 3, 595. Y. Hisakado, H. Kikuchi, T. Nagamura, T. Kajiyama, Adv. Mater. 2005, 17, 96. Y. Zhao, Z. Xie, H. Gu, C. Zhu, Z. Gu, Chem. Soc. Rev. 2012, 41, 3297. M. Humar, Ph.D. Thesis, Jozef Stefan Institute, Ljubljana, Slovenia, 2012. C.-W. Chen, H.-C. Jau, C.-T. Wang, C.-H. Lee, I. C. Khoo, T.-H. Lin, Opt. Express 2012, 20, 23978. H. K. Bisoyi, Q. Li, in Anisotropic Nanomaterials (Ed: Q. Li), Springer, Heidelberg, Germany 2015, Ch. 6. J. Aizenberg, G. Hendler, J. Mater. Chem. 2004, 14, 2066. K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, S.-W. Choi, J. Mater. Chem. C 2015, 3, 5383. O. D. Lavrentovich, Proc. Natl Acad. Sci. USA 2011, 108, 5143. P. P. Crooker, in Chirality in Liquid Crystals (Eds: H.-S. Kitzerow, C. Bahr), Springer-Verlag, New York, NY, USA 2001, Ch. 7. Y. H. Kim, D. K. Yoon, H. S. Jeong, O. D. Lavrentovich, H. T. Jung, Adv. Funct. Mater. 2011, 21, 610. K. J. Vahala, Nature 2003, 424, 839. L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, Z. Yang, D. Zhao, H. Yang, L. Guo, J. Mater. Chem. C 2013, 1, 6526. H. Kikuchi, Struct. Bonding 2008, 128, 99. A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 1977, 38, 1351. J. H. Erdmann, S. Zumer, J. W. Doane, Phys. Rev. Lett. 1990, 64, 1907. A. Honglawan, D. A. Beller, M. Cavallaro, R. D. Kamien, K. J. Stebe, S. Yang, Adv. Mater. 2011, 23, 5519. H. Ko, V. V. Tsukruk, Nano Lett. 2006, 6, 1443. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, J. A. Rogers, Nature 2013, 497, 95. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, S.-Y. Lin, Opt. Lett. 2004, 29, 424. A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, E. L. Thomas, Adv. Mater. 2001, 13, 421. D. A. Beller, M. A. Gharbi, A. Honglawan, K. J. Stebe, S. Yang, R. D. Kamien, Phys. Rev. X 2013, 3, 041026. J. Ge, Y. Yin, Angew. Chem. Int. Ed. 2011, 50, 1492. P. Etchegoin, Phys. Rev. E 2000, 62, 1435. R. J. Hernández, Ph.D. Thesis, University of Calabria, Italy, 2012. M. Wang, L. He, S. Zorba, Y. Yin, Nano Lett. 2014, 14, 3966. G. M. Gratson, F. Garcia-Santamaria, V. Lousse, M. J. Xu, S. H. Fan, J. A. Lewis, P. V. Braun, Adv. Mater. 2006, 18, 461. Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, T. J. Bunning, Adv. Mater. 2011, 23, 5069. L. Wang, W. He, X. Xiao, Q. Yang, B. Li, P. Yang, H. Yang, J. Mater. Chem. 2012, 22, 2383. J. H. Moon, J. Ford, S. Yang, Polym. Adv. Technol. 2006, 17, 83. S. Morris, A. Ford, C. Gillespie, M. Pivnenko, O. Hadeler, H. J. Coles, J. Soc. Inf. Display 2006, 14, 565. H. S. Jeong, Y. K. Ko, Y. H. Kim, D. K. Yoon, H.-T. Jung, Carbon 2010, 48, 774. V. Saranathan, C. O. Osuji, S. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, R. O. Prum, Proc. Natl. Acad. Sci. USA 2010, 107, 11676. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, D. A. Weitz, Science 2005, 308, 537. M. J. Escuti, J. Qi, G. P. Crawford, Opt. Lett. 2003, 28, 522. J. Aizenberg, D. A. Muller, J. L. Grazul, D. R. Hamann, Science 2003, 299, 1205. H. Choi, H. Higuchi, H. Kikuchi, Soft Matter 2011, 7, 4252. M. Vennes, S. Martin, T. Gisler, R. Zentel, Macromolecules 2006, 39, 8326. M. Humar, I. Musevic, Opt. Express 2010, 18, 26995. J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, Appl. Phys. Lett. 1986, 48, 269. J. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas, Adv. Mater. 2006, 19, 2505. K. Stratford, O. Henrich, J. S. Lintuvuori, M. E. Cates, D. Marenduzzo, Nat. Comm. 2014, 5, 3594. J. Milette, S. Relaix, C. Lavigne, V. Toader, S. J. Cowling, I. M. Saez, R. B. Lennox, J. W. Goodby, L. Reven, Soft Matter 2012, 8, 2593. L. Wang, W. He, X. Xiao, F. Meng, Y. Zhang, P. Yang, L. Wang, H. Yang, Small 2012, 8, 2189. L. Wang, W. He, M. Wang, M. Wei, J. Sun, X. Chen, H. Yang, Liq. Cryst. 2013, 40, 354. J. A. Moreno-Razo, E. J. Sambriski, N. L. Abbott, J. P. Hernández-Ortiz, J. J. De Pablo, Nature 2012, 485, 86. H. K. Bisoyi, Q. Li, Liquid Crystals in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Honoken, NJ, USA 2014. Y. Han, K. Pacheco, C. W. Bastiaansen, D. J. Broer, R. P. Sijbesma, J. Am. Chem. Soc. 2010, 132, 2961. H. P. Cong, J. F. Chen, S. H. Yu, Chem. Soc. Rev. 2014, 43, 7295. F. Mondiot, X. Wang, J. J. de Pablo, N. L. Abbott, J. Am. Chem. Soc. 2013, 135, 9972. D. Coursault, J. Grand, B. Zappone, H. Ayeb, G. Lévi, N. Félidj, E. Lacaze, Adv. Mater. 2012, 24, 1461. M. Mathews, R. Zola, S. Hurley, D. Yang, T. J. White, T. J. Bunning, Q. Li, J. Am. Chem. Soc. 2010, 132, 18361. N. Horiuchi, Nature Photonics 2013, 7, 767. A. Honglawan, D. A. Beller, M. Cavallaro, R. D. Kamien, K. J. Stebe, S. Yang, Proc. Nat. Acad. Sci. USA 2013, 110, 34. Y. H. Kim, J. O. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. B. Yoon, H. T. Jung, Adv. Mater. 2010, 22, 2416. H. Coles, S. Morris, Nature Photonics 2010, 4, 676. P. V. Shibaev, R. L. Sanford, D. Chiappetta, P. Rivera, Mol. Cryst. Liq. Cryst. 2007, 479, 161. J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, G. Hendler, Nature 2001, 412, 819. Y. Li, M. Wang, T. J. White, T. J. Bunning, Q. Li, Angew. Chem. Int. Ed. 2013, 52, 8925. L. Wang, H. Dong, Y. Li, R. Liu, Y.-F. Wang, H. K. Bisoyi, L.-D. Sun, C.-H. Yan, Q. Li, Adv. Mater. 2015, 27, 2065. D. Brady, G. Papen, J. E. 2002; 14 2013; 3 2012; 485 2013; 1 2010; 107 2004; 29 2010; 18 2010; 104 2006; 39 2009; 110 2007; 75 2013; 7 2012; 11 2014; 136 2013; 9 1983; 99 2010; 22 1981; 82A 2012; 134 2009; 94 1977; 38 2013; 52 1997; 56 2007; 6 2014; 14 2014; 13 2005; 71 2013; 110 2008; 20 2012; 24 2009; 19 2012; 22 2010; 4 2001; 412 2003; 42 2006; 442 2012; 20 2007; 19 1989; 61 2011; 2 2010; 35 2004; 421 2015; 51 1997; 23 2015; 54 2002; 1 2014; 47 2008; 128 1995 2012; 39 2003; 299 2011; 7 2014; 43 2010; 48 1991; 67 2003; 28 2012; 48 2005; 17 2012; 41 2013; 26 2013; 25 2013; 21 2008; 8 2011; 13 2011; 19 2009; 48 2014; 5 2014; 2 2001 1986; 48 2000; 62 2011; 21 2005; 308 2011; 24 2011; 23 2001; 11 2001; 13 2009; 21 2015; 3 2013; 49 2011; 7955 2012 2013; 40 2006; 17 2006; 14 2015; 11 2013; 42 2005; 436 2002; 299 2008 2006; 18 2006; 19 2006; 6 1994; 41 2011; 332 2006; 312 1990; 64 2009; 36 2015; 25 2003; 426 2015; 27 2011; 108 2007; 479 2003; 424 2004; 17 2004; 14 1993; 10 2011; 50 2010; 132 2011; 42 2013; 497 2013; 135 2015 2014 2013 2009; 3 2009; 2 1994; 50 2010; 96 2012; 8 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 Li) Q. (e_1_2_8_24_1) 2014 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Shibaev P. V. (e_1_2_8_81_1) 2007; 479 de Gennes P. G. (e_1_2_8_97_1) 2001 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 Musevic I. (e_1_2_8_112_1) 2011; 23 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_47_1 Wang L. (e_1_2_8_31_1) 2015 Milette J. (e_1_2_8_149_1) 2012; 8 e_1_2_8_3_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 Liu Y. (e_1_2_8_156_1) 2008 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Hernández R. J. (e_1_2_8_93_1) 2012 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 Humar M. (e_1_2_8_105_1) 2012 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 Beller D. A. (e_1_2_8_143_1) 2013; 3 e_1_2_8_161_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – reference: L. Wang, H. Dong, Y. Li, R. Liu, Y.-F. Wang, H. K. Bisoyi, L.-D. Sun, C.-H. Yan, Q. Li, Adv. Mater. 2015, 27, 2065. – reference: H. S. Sözüer, J. P. Dowling, J. Mod. Optic. 1994, 41, 231. – reference: G. A. Ozin, S. M. Yang, Adv. Funct. Mater. 2001, 11, 95. – reference: T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, Q. Li, Adv. Mater. 2013, 25, 5050. – reference: P. Vukusic, J. R. Sambles, Nature 2003, 424, 852. – reference: C.-K. Chang, C. M. W. Bastiaansen, D. J. Broer, H.-L. Kuo, Adv. Funct. Mater. 2012, 22, 2855. – reference: K. Stratford, O. Henrich, J. S. Lintuvuori, M. E. Cates, D. Marenduzzo, Nat. Comm. 2014, 5, 3594. – reference: V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, T. J. Bunning, Adv. Mater. 2002, 14, 187. – reference: Y. Wang, Q. Li, Adv. Mater. 2012, 24, 1926. – reference: L. Wang, L. Yu, X. Xiao, Z. Wang, P. Yang, W. He, H. Yang, Liq. Cryst. 2012, 39, 629. – reference: H. Coles, M. Pivnenko, Nature 2005, 436, 997. – reference: P. Vukusic, Phys. World 2004, 17, 35. – reference: A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 1977, 38, 1351. – reference: Y. Li, C. Xue, M. Wang, A. Urbas, Q. Li, Angew. Chem. Int. Ed. 2013, 52, 13703. – reference: J. H. Moon, S. Yang, Chem. Rev. 2009, 110, 547. – reference: L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, Q. Li, J. Am. Chem. Soc. 2014, 136, 4480. – reference: H. S. Sözüer, J. W. Haus, J. Opt. Soc. Am. B 1993, 10, 296. – reference: D. Brady, G. Papen, J. E. Sipe, J. Opt. Soc. Am. B 1993, 10, 644. – reference: H. K. Bisoyi, Q. Li, in Anisotropic Nanomaterials (Ed: Q. Li), Springer, Heidelberg, Germany 2015, Ch. 6. – reference: S.-Y. Lu, L.-C. Chien, Opt. Lett. 2010, 35, 562. – reference: K. G. Gutiérrez-Cuevas, L. Wang, C. Xue, S. Gautam, S. Kumar, A. Urbas, Q. Li, Chem. Comm. 2015, 51, 9845. – reference: Y. Xu, W. Liang, A. Yariv, J. G. Fleming, S.-Y. Lin, Opt. Lett. 2004, 29, 424. – reference: A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, Y. Arakawa, Appl. Phys. Lett. 2009, 94, 171115. – reference: Y. Haseba, H. Kikuchi, T. Nagamura, T. Kajiyama, Adv. Mater. 2005, 17, 2311. – reference: F. C. Mackintosh, T. C. Lubensky, Phys. Rev. Lett. 1991, 67, 1169. – reference: R. M. Hornreich, S. Shtrikman, Phys. Lett. 1981, 82A, 345. – reference: F. Xu, P. P. Crooker, Phys. Rev. E 1997, 56, 6853. – reference: H. Ko, V. V. Tsukruk, Nano Lett. 2006, 6, 1443. – reference: J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, G. Hendler, Nature 2001, 412, 819. – reference: P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, M. M. Green, Macromolecules 2006, 39, 3986. – reference: J. A. Moreno-Razo, E. J. Sambriski, N. L. Abbott, J. P. Hernández-Ortiz, J. J. De Pablo, Nature 2012, 485, 86. – reference: V. Saranathan, C. O. Osuji, S. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, R. O. Prum, Proc. Natl. Acad. Sci. USA 2010, 107, 11676. – reference: Z. Xu, C. Gao, Nat. Commun. 2011, 2, 571. – reference: H. K. Bisoyi, Q. Li, Liquid Crystals in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Honoken, NJ, USA 2014. – reference: H. Kikuchi, Struct. Bonding 2008, 128, 99. – reference: H. P. Cong, J. F. Chen, S. H. Yu, Chem. Soc. Rev. 2014, 43, 7295. – reference: P. Pollmann, E. Voss, Liq. Cryst. 1997, 23, 299. – reference: G. Heppke, M. Krumrey, F. Oestreicher, Mol. Cryst. Liq. Cryst. 1983, 99, 99. – reference: J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, Appl. Phys. Lett. 1986, 48, 269. – reference: A. R. Parker, V. L. Welch, D. Driver, N. Martini, Nature 2003, 426, 786. – reference: B. Li, W. He, L. Wang, X. Xiao, H. Yang, Soft Matter 2013, 9, 1172. – reference: S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, Adv. Mater. 2006, 18, 48. – reference: N. Horiuchi, Nature Photonics 2013, 7, 767. – reference: F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, H. J. Coles, Nat. Mater. 2014, 13, 817. – reference: M. Wang, L. He, S. Zorba, Y. Yin, Nano Lett. 2014, 14, 3966. – reference: M. Mathews, R. Zola, S. Hurley, D. Yang, T. J. White, T. J. Bunning, Q. Li, J. Am. Chem. Soc. 2010, 132, 18361. – reference: H. J. Coles, M. N. Pivnenko, Nature 2005, 436, 997. – reference: I. W. Hamley, Angew. Chem. Int. Ed. 2003, 42, 1692. – reference: H. Lee, H. J. Park, O. J. Kwon, S. J. Yun, J. H. Park, S. Hong, S. T. Shin, SID Symposium Digest. 2011, 42, 121. – reference: K. H. Jeong, J. Kim, L. P. Lee, Science 2006, 312, 557. – reference: V. Welch, V. Lousse, O. Deparis, A. Parker, J. P. Vigneron, Phys. Rev. E 2007, 75, 041919. – reference: G. N. Burlak, Phys. Lett. A 2002, 299, 94. – reference: M. Vennes, S. Martin, T. Gisler, R. Zentel, Macromolecules 2006, 39, 8326. – reference: A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, Phys. Rev. E 2005, 71, 051705. – reference: D. S. Miller, X. Wang, N. L. Abbott, Chem. Mater. 2013, 26, 496. – reference: P. P. Crooker, in Chirality in Liquid Crystals (Eds: H.-S. Kitzerow, C. Bahr), Springer-Verlag, New York, NY, USA 2001, Ch. 7. – reference: A. Honglawan, D. A. Beller, M. Cavallaro, R. D. Kamien, K. J. Stebe, S. Yang, Proc. Nat. Acad. Sci. USA 2013, 110, 34. – reference: J. H. Kang, J. H. Moon, S. K. Lee, S. G. Park, S. G. Jang, S. Yang, S. M. Yang, Adv. Mater. 2008, 20, 3061. – reference: I. Musevic, M. Humar, Proc. SPIE 2011, 7955, 795509. – reference: Y. Han, K. Pacheco, C. W. Bastiaansen, D. J. Broer, R. P. Sijbesma, J. Am. Chem. Soc. 2010, 132, 2961. – reference: Y. Wang, A. Urbas, Q. Li, J. Am. Chem. Soc. 2012, 134, 3342. – reference: I. Gryn, E. Lacaze, R. Bartolino, B. Zappone, Adv. Funct. Mater. 2015, 25, 142. – reference: O. D. Lavrentovich, Proc. Natl Acad. Sci. USA 2011, 108, 5143. – reference: Y. Hisakado, H. Kikuchi, T. Nagamura, T. Kajiyama, Adv. Mater. 2005, 17, 96. – reference: A. Honglawan, S. Yang, in Nanoscience with Liquid Crystals (Ed: Q. Li), Springer, Heidelberg, Germany 2014, Ch. 2. – reference: N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, A. P. H. J. Schenning, J. Am. Chem. Soc. 2012, 134, 7608. – reference: M. Humar, I. Musevic, Opt. Express 2010, 18, 26995. – reference: Y. Li, A. Urbas, Q. Li, J. Am. Chem. Soc. 2012, 134, 9573. – reference: Y. Xia, B. Gates, Z. Y. Li, Adv. Mater. 2001, 13, 409. – reference: P. Etchegoin, Phys. Rev. E 2000, 62, 1435. – reference: T.-Z. Shen, S.-H. Hong, J.-K. Song, Nat. Mater. 2014, 13, 394. – reference: L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, Nature 2006, 442, 551. – reference: M. Humar, Ph.D. Thesis, Jozef Stefan Institute, Ljubljana, Slovenia, 2012. – reference: Y. Uchida, Y. Takanishi, J. Yamamoto, Adv. Mater. 2013, 25, 3234. – reference: Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, J. A. Rogers, Nature 2013, 497, 95. – reference: J. Aizenberg, G. Hendler, J. Mater. Chem. 2004, 14, 2066. – reference: Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (Ed: Q. Li), John Wiley and Sons, Hoboken, NJ, USA 2012. – reference: Y. Zhao, Y. Cheng, L. Shang, J. Wang, Z. Xie, Z. Gu, Small 2015, 11, 151. – reference: A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, E. L. Thomas, Adv. Mater. 2001, 13, 421. – reference: Intelligent Stimuli-Responsive Materials: From Well-Defined Nanostructures to Applications (Ed: Q. Li), John Wiley & Sons, Hoboken, NJ, USA 2013. – reference: F. Mondiot, X. Wang, J. J. de Pablo, N. L. Abbott, J. Am. Chem. Soc. 2013, 135, 9972. – reference: L. Wang, W. He, X. Xiao, F. Meng, Y. Zhang, P. Yang, L. Wang, H. Yang, Small 2012, 8, 2189. – reference: Y. Zhao, Z. Xie, H. Gu, C. Zhu, Z. Gu, Chem. Soc. Rev. 2012, 41, 3297. – reference: J. H. Erdmann, S. Zumer, J. W. Doane, Phys. Rev. Lett. 1990, 64, 1907. – reference: M. J. Escuti, J. Qi, G. P. Crawford, Opt. Lett. 2003, 28, 522. – reference: A. M. Lowe, N. L. Abbott, Chem. Mater. 2011, 24, 746. – reference: S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, D. A. Weitz, Science 2005, 308, 537. – reference: H. Choi, H. Higuchi, H. Kikuchi, Soft Matter 2011, 7, 4252. – reference: J. Noh, H. L. Liang, I. Drevensek-Olenik, J. P. F. Lagerwall, J. Mater. Chem. C 2014, 2, 806. – reference: L. Wang, W. He, M. Wang, M. Wei, J. Sun, X. Chen, H. Yang, Liq. Cryst. 2013, 40, 354. – reference: M. Ravnik, G. P. Alexander, J. M. Yeomans, S. Žumer, Proc. Nat. Acad. Sci. USA 2011, 108, 5188. – reference: H. Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, J.-H. Liu, Appl. Phys. Lett. 2010, 96, 121103. – reference: P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, X. Hou, Optics Express 2012, 20, 5775. – reference: Y. H. Kim, D. K. Yoon, H. S. Jeong, O. D. Lavrentovich, H. T. Jung, Adv. Funct. Mater. 2011, 21, 610. – reference: G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, R. Bartolino, Adv. Mater. 2011, 23, 5773. – reference: K. J. Vahala, Nature 2003, 424, 839. – reference: J. Chen, E. Lacaze, E. Brasselet, S. R. Harutyunyan, N. Katsonis, B. L. Feringa, J. Mater. Chem. C 2014, 2, 8137. – reference: A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, R. P. Sijbesm, Chem. Commun. 2012, 48, 4579. – reference: X. Su, S. Voskian, R. P. Hughes, I. Aprahamian, Angew. Chem. Int. Ed. 2013, 52, 10934. – reference: R. J. Hernández, Ph.D. Thesis, University of Calabria, Italy, 2012. – reference: L. Wang, W. He, X. Xiao, M. Wang, M. Wang, P. Yang, Z. Zhou, H. Yang, H. Yu, Y. Lu, J. Mater. Chem. 2012, 22, 19629. – reference: M. Escuti, G. Crawford, Mol. Cryst. Liq. Cryst. 2004, 421, 23. – reference: P. S. Drzaic, Liquid Crystal Dispersions, World Scientific, Singapore, 1995. – reference: F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, K. J. Stebe, Adv. Opt. Mater. 2015, 3, 1287. – reference: Y. Liu, X. W. Sun, Adv. OptoElectron. 2008, 684349. – reference: F. Castles, S. M. Morris, E. M. Terentjev, H. J. Coles, Phys. Rev. Lett. 2010, 104, 157801. – reference: L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, Z. Yang, D. Zhao, H. Yang, L. Guo, J. Mater. Chem. C 2013, 1, 6526. – reference: D. C. Wright, N. D. Mermin, Rev. Modern Phys. 1989, 61, 385. – reference: P. V. Shibaev, K. Schaumburg, V. Plaksin, Chem. Mater. 2002, 14, 959. – reference: Y. H. Kim, J. O. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. B. Yoon, H. T. Jung, Adv. Mater. 2010, 22, 2416. – reference: G. M. Gratson, F. Garcia-Santamaria, V. Lousse, M. J. Xu, S. H. Fan, J. A. Lewis, P. V. Braun, Adv. Mater. 2006, 18, 461. – reference: Y. Li, M. Wang, T. J. White, T. J. Bunning, Q. Li, Angew. Chem. Int. Ed. 2013, 52, 8925. – reference: D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, H.-T. Jung, Nat. Mater. 2007, 6, 866. – reference: J. H. Moon, J. Ford, S. Yang, Polym. Adv. Technol. 2006, 17, 83. – reference: S. Morris, A. Ford, C. Gillespie, M. Pivnenko, O. Hadeler, H. J. Coles, J. Soc. Inf. Display 2006, 14, 565. – reference: J. H. Lee, Y. S. Kim, K. Constant, K. M. Ho, Adv. Mater. 2007, 19, 791. – reference: H. S. Jeong, Y. K. Ko, Y. H. Kim, D. K. Yoon, H.-T. Jung, Carbon 2010, 48, 774. – reference: K. G. Sullivan, D. G. Hall, Phys. Rev. A 1994, 50, 2701. – reference: I. B. Burgess, M. Loncˇar, J. Aizenberg, J. Mater. Chem. C 2013, 1, 6075. – reference: J. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas, Adv. Mater. 2006, 19, 2505. – reference: S. T. Hur, B. R. Lee, M. J. Gim, K.W. Park, M. H. Song, S. W. Choi, Adv. Mater. 2013, 21, 3002. – reference: X. Chen, L. Wang, C. Li, J. Xiao, H. Ding, X. Liu, X. Zhang, W. He, H. Yang, Chem. Commun. 2013, 49, 10097. – reference: A. Fernández-Nieves, G. Cristobal, V. Garcés-Chávez, G. C. Spalding, K. Dholakia, D. A. Weitz, Adv. Mater. 2005, 17, 680. – reference: S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutierrez, F. del Monte, Chem. Soc. Rev. 2013, 42, 794. – reference: D. J. Mulder, A. P. H. J. Schenning, C. W. M. Bastiaansen, J. Mater. Chem. C 2014, 2, 6695. – reference: J. H. Jang, S. J. Jhaveri, B. Rasin, C. Koh, C. K. Ober, E. L. Thomas, Nano Lett. 2008, 8, 1456. – reference: J. K. Gupta, S. Sivakumar, F. Caruso, N. L. Abbott, Angew. Chem. Int. Ed. 2009, 48, 1652. – reference: L. Wang, W. He, X. Xiao, Q. Yang, B. Li, P. Yang, H. Yang, J. Mater. Chem. 2012, 22, 2383. – reference: F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. Hands, S. S. Choi, R. H. Friend, H. J. Coles, Nat. Mater. 2012, 11, 599. – reference: H. K. Bisoyi, Q. Li, Acc. Chem. Res. 2014, 47, 3184. – reference: D. Coursault, J. Grand, B. Zappone, H. Ayeb, G. Lévi, N. Félidj, E. Lacaze, Adv. Mater. 2012, 24, 1461. – reference: D. K. Yoon, Y. H. Kim, D. S. Kim, S. D. Oh, I. I. Smalyukh, N. A. Clark, H. T. Jung, Proc. Nat. Acad. Sci. USA 2013, 110, 19263. – reference: J. Aizenberg, D. A. Muller, J. L. Grazul, D. R. Hamann, Science 2003, 299, 1205. – reference: Nanoscience with Liquid Crystals: From Self-Organized Nanostructures to Applications (Ed: Q. Li), Springer, Heidelberg, Germany 2014. – reference: M. R. Bockstaller, R. A. Mickiewicz, E. L. Thomas, Adv. Mater. 2005, 17, 1331. – reference: Y. H. Kim, D. K. Yoon, H. S. Jeong, J. H. Kim, E. K. Yoon, H.-T. Jung, Adv. Func. Mater. 2009, 19, 3008. – reference: C.-W. Chen, H.-C. Jau, C.-T. Wang, C.-H. Lee, I. C. Khoo, T.-H. Lin, Opt. Express 2012, 20, 23978. – reference: A. Honglawan, D. A. Beller, M. Cavallaro, R. D. Kamien, K. J. Stebe, S. Yang, Adv. Mater. 2011, 23, 5519. – reference: J. Ge, Y. Yin, Angew. Chem. Int. Ed. 2011, 50, 1492. – reference: W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, Nat. Mater. 2002, 1, 111. – reference: Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, T. J. Bunning, Adv. Mater. 2011, 23, 5069. – reference: P. V. Shibaev, R. L. Sanford, D. Chiappetta, P. Rivera, Mol. Cryst. Liq. Cryst. 2007, 479, 161. – reference: J. Fan, Y. Li, H. K. Bisoyi, R. S. Zola, D. K. Yang, T. J. Bunning, D. A. Weitz, Q. Li, Angew. Chem. Int. Ed. 2015, 54, 2160. – reference: L. Wang, Q. Li, in Organic & Hybrid Photonic Crystals, (Ed: D. Comoretto), Springer, New York, NY, USA 2015, Ch. 18. – reference: K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, S.-W. Choi, J. Mater. Chem. C 2015, 3, 5383. – reference: J. Milette, S. Relaix, C. Lavigne, V. Toader, S. J. Cowling, I. M. Saez, R. B. Lennox, J. W. Goodby, L. Reven, Soft Matter 2012, 8, 2593. – reference: C. Meyer, L. L. Cunff, M. Belloul, G. Foyart, Materials 2009, 2, 499. – reference: M. Humar, M. Ravnik, S. Pajk, I. Muševicˇ, Nat. Photonics 2009, 3, 595. – reference: P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Oxford University Press, Oxford, 2001. – reference: I. Musevic, M. Skarabo, M. Humar, J. Phys.: Condens. Matter. 2011, 23, 284112. – reference: M. Honda, T. Seki, Y. Takeoka, Adv. Mater. 2009, 21, 18014. – reference: H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajikawa, Nat. Mater. 2002, 1, 64. – reference: H. Coles, S. Morris, Nature Photonics 2010, 4, 676. – reference: H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, B. Taheri, Adv. Mater. 2011, 13, 1069. – reference: L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, Q. Li, Adv. Opt. Mater. 2014, 2, 845. – reference: I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, N. L. Abbott, Science 2011, 332, 1297. – reference: D. A. Beller, M. A. Gharbi, A. Honglawan, K. J. Stebe, S. Yang, R. D. Kamien, Phys. Rev. X 2013, 3, 041026. – reference: I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, J. E. Sipe, Macromolecules 2006, 39, 1449. – reference: M. Kleman, O. D. Lavrentovich, Liq. Cryst. 2009, 36, 1085. – reference: Y. Zhao, L. Shang, Y. Cheng, Z. Gu, Acc. Chem. Res. 2014, 47, 3632. – reference: M. Humar, I. Musevic, Opt. Express 2011, 19, 19836. – reference: J. Yan, L. Rao, M. Jiao, H. C. Cheng, S. T. Wu, J. Mater. Chem. 2011, 21, 7870. – volume: 13 start-page: 421 year: 2001 publication-title: Adv. Mater. – volume: 13 start-page: 1069 year: 2011 publication-title: Adv. Mater. – volume: 42 start-page: 121 year: 2011 publication-title: SID Symposium Digest. – volume: 497 start-page: 95 year: 2013 publication-title: Nature – volume: 21 start-page: 18014 year: 2009 publication-title: Adv. Mater. – volume: 2 start-page: 806 year: 2014 publication-title: J. Mater. Chem. C – volume: 312 start-page: 557 year: 2006 publication-title: Science – start-page: 684349 year: 2008 publication-title: Adv. OptoElectron. – volume: 3 start-page: 5383 year: 2015 publication-title: J. Mater. Chem. C – volume: 25 start-page: 142 year: 2015 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 1461 year: 2012 publication-title: Adv. Mater. – volume: 1 start-page: 6075 year: 2013 publication-title: J. Mater. Chem. C – volume: 21 start-page: 7870 year: 2011 publication-title: J. Mater. Chem. – volume: 39 start-page: 1449 year: 2006 publication-title: Macromolecules – year: 2014 – volume: 50 start-page: 2701 year: 1994 publication-title: Phys. Rev. A – volume: 110 start-page: 547 year: 2009 publication-title: Chem. Rev. – volume: 82A start-page: 345 year: 1981 publication-title: Phys. Lett. – volume: 52 start-page: 8925 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 39 start-page: 3986 year: 2006 publication-title: Macromolecules – volume: 134 start-page: 3342 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 2383 year: 2012 publication-title: J. Mater. Chem. – volume: 2 start-page: 845 year: 2014 publication-title: Adv. Opt. Mater. – volume: 11 start-page: 599 year: 2012 publication-title: Nat. Mater. – volume: 2 start-page: 8137 year: 2014 publication-title: J. Mater. Chem. C – volume: 43 start-page: 7295 year: 2014 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 111 year: 2002 publication-title: Nat. Mater. – volume: 3 start-page: 1287 year: 2015 publication-title: Adv. Opt. Mater. – volume: 19 start-page: 791 year: 2007 publication-title: Adv. Mater. – volume: 424 start-page: 839 year: 2003 publication-title: Nature – volume: 61 start-page: 385 year: 1989 publication-title: Rev. Modern Phys. – volume: 13 start-page: 409 year: 2001 publication-title: Adv. Mater. – volume: 19 start-page: 19836 year: 2011 publication-title: Opt. Express – volume: 135 start-page: 9972 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 5773 year: 2011 publication-title: Adv. Mater. – volume: 485 start-page: 86 year: 2012 publication-title: Nature – volume: 2 start-page: 6695 year: 2014 publication-title: J. Mater. Chem. C – volume: 17 start-page: 83 year: 2006 publication-title: Polym. Adv. Technol. – volume: 26 start-page: 496 year: 2013 publication-title: Chem. Mater. – volume: 40 start-page: 354 year: 2013 publication-title: Liq. Cryst. – volume: 56 start-page: 6853 year: 1997 publication-title: Phys. Rev. E – volume: 23 start-page: 284112 year: 2011 publication-title: J. Phys.: Condens. Matter. – volume: 17 start-page: 1331 year: 2005 publication-title: Adv. Mater. – volume: 13 start-page: 394 year: 2014 publication-title: Nat. Mater. – volume: 42 start-page: 794 year: 2013 publication-title: Chem. Soc. Rev. – volume: 17 start-page: 2311 year: 2005 publication-title: Adv. Mater. – volume: 39 start-page: 629 year: 2012 publication-title: Liq. Cryst. – volume: 14 start-page: 565 year: 2006 publication-title: J. Soc. Inf. Display – volume: 1 start-page: 6526 year: 2013 publication-title: J. Mater. Chem. C – volume: 49 start-page: 10097 year: 2013 publication-title: Chem. Commun. – volume: 5 start-page: 3594 year: 2014 publication-title: Nat. Comm. – volume: 136 start-page: 4480 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7955 start-page: 795509 year: 2011 publication-title: Proc. SPIE – volume: 35 start-page: 562 year: 2010 publication-title: Opt. Lett. – volume: 24 start-page: 1926 year: 2012 publication-title: Adv. Mater. – volume: 23 start-page: 5069 year: 2011 publication-title: Adv. Mater. – volume: 11 start-page: 151 year: 2015 publication-title: Small – volume: 20 start-page: 5775 year: 2012 publication-title: Optics Express – volume: 1 start-page: 64 year: 2002 publication-title: Nat. Mater. – volume: 21 start-page: 610 year: 2011 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 3184 year: 2014 publication-title: Acc. Chem. Res. – volume: 41 start-page: 231 year: 1994 publication-title: J. Mod. Optic. – volume: 308 start-page: 537 year: 2005 publication-title: Science – volume: 6 start-page: 1443 year: 2006 publication-title: Nano Lett. – volume: 13 start-page: 817 year: 2014 publication-title: Nat. Mater. – volume: 132 start-page: 2961 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 746 year: 2011 publication-title: Chem. Mater. – volume: 18 start-page: 48 year: 2006 publication-title: Adv. Mater. – volume: 22 start-page: 2416 year: 2010 publication-title: Adv. Mater. – volume: 14 start-page: 2066 year: 2004 publication-title: J. Mater. Chem. – volume: 108 start-page: 5188 year: 2011 publication-title: Proc. Nat. Acad. Sci. USA – volume: 17 start-page: 35 year: 2004 publication-title: Phys. World – year: 1995 – volume: 48 start-page: 1652 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 187 year: 2002 publication-title: Adv. Mater. – volume: 21 start-page: 3002 year: 2013 publication-title: Adv. Mater. – volume: 25 start-page: 3234 year: 2013 publication-title: Adv. Mater. – volume: 107 start-page: 11676 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – volume: 50 start-page: 1492 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 22 start-page: 2855 year: 2012 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 3632 year: 2014 publication-title: Acc. Chem. Res. – volume: 42 start-page: 1692 year: 2003 publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 5519 year: 2011 publication-title: Adv. Mater. – volume: 8 start-page: 2593 year: 2012 publication-title: Soft Matter – year: 2013 – volume: 52 start-page: 13703 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 75 start-page: 041919 year: 2007 publication-title: Phys. Rev. E – volume: 14 start-page: 3966 year: 2014 publication-title: Nano Lett. – volume: 424 start-page: 852 year: 2003 publication-title: Nature – volume: 299 start-page: 1205 year: 2003 publication-title: Science – volume: 7 start-page: 767 year: 2013 publication-title: Nature Photonics – volume: 4 start-page: 676 year: 2010 publication-title: Nature Photonics – volume: 39 start-page: 8326 year: 2006 publication-title: Macromolecules – volume: 128 start-page: 99 year: 2008 publication-title: Struct. Bonding – volume: 25 start-page: 5050 year: 2013 publication-title: Adv. Mater. – volume: 19 start-page: 2505 year: 2006 publication-title: Adv. Mater. – volume: 104 start-page: 157801 year: 2010 publication-title: Phys. Rev. Lett. – year: 2001 – volume: 2 start-page: 499 year: 2009 publication-title: Materials – volume: 426 start-page: 786 year: 2003 publication-title: Nature – volume: 18 start-page: 461 year: 2006 publication-title: Adv. Mater. – volume: 6 start-page: 866 year: 2007 publication-title: Nat. Mater. – volume: 332 start-page: 1297 year: 2011 publication-title: Science – volume: 28 start-page: 522 year: 2003 publication-title: Opt. Lett. – volume: 3 start-page: 595 year: 2009 publication-title: Nat. Photonics – volume: 108 start-page: 5143 year: 2011 publication-title: Proc. Natl Acad. Sci. USA – volume: 51 start-page: 9845 year: 2015 publication-title: Chem. Comm. – volume: 134 start-page: 9573 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 34 year: 2013 publication-title: Proc. Nat. Acad. Sci. USA – volume: 134 start-page: 7608 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 571 year: 2011 publication-title: Nat. Commun. – volume: 36 start-page: 1085 year: 2009 publication-title: Liq. Cryst. – volume: 29 start-page: 424 year: 2004 publication-title: Opt. Lett. – volume: 27 start-page: 2065 year: 2015 publication-title: Adv. Mater. – volume: 71 start-page: 051705 year: 2005 publication-title: Phys. Rev. E – volume: 22 start-page: 19629 year: 2012 publication-title: J. Mater. Chem. – volume: 10 start-page: 644 year: 1993 publication-title: J. Opt. Soc. Am. B – volume: 7 start-page: 4252 year: 2011 publication-title: Soft Matter – volume: 19 start-page: 3008 year: 2009 publication-title: Adv. Func. Mater. – volume: 412 start-page: 819 year: 2001 publication-title: Nature – volume: 48 start-page: 774 year: 2010 publication-title: Carbon – volume: 67 start-page: 1169 year: 1991 publication-title: Phys. Rev. Lett. – volume: 52 start-page: 10934 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 41 start-page: 3297 year: 2012 publication-title: Chem. Soc. Rev. – year: 2015 – volume: 14 start-page: 959 year: 2002 publication-title: Chem. Mater. – volume: 3 start-page: 041026 year: 2013 publication-title: Phys. Rev. X – volume: 62 start-page: 1435 year: 2000 publication-title: Phys. Rev. E – volume: 436 start-page: 997 year: 2005 publication-title: Nature – volume: 64 start-page: 1907 year: 1990 publication-title: Phys. Rev. Lett. – volume: 20 start-page: 3061 year: 2008 publication-title: Adv. Mater. – volume: 421 start-page: 23 year: 2004 publication-title: Mol. Cryst. Liq. Cryst. – volume: 23 start-page: 299 year: 1997 publication-title: Liq. Cryst. – volume: 99 start-page: 99 year: 1983 publication-title: Mol. Cryst. Liq. Cryst. – volume: 8 start-page: 1456 year: 2008 publication-title: Nano Lett. – volume: 110 start-page: 19263 year: 2013 publication-title: Proc. Nat. Acad. Sci. USA – volume: 479 start-page: 161 year: 2007 publication-title: Mol. Cryst. Liq. Cryst. – volume: 38 start-page: 1351 year: 1977 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 95 year: 2001 publication-title: Adv. Funct. Mater. – year: 2012 – volume: 17 start-page: 96 year: 2005 publication-title: Adv. Mater. – volume: 48 start-page: 4579 year: 2012 publication-title: Chem. Commun. – volume: 9 start-page: 1172 year: 2013 publication-title: Soft Matter – volume: 299 start-page: 94 year: 2002 publication-title: Phys. Lett. A – volume: 20 start-page: 23978 year: 2012 publication-title: Opt. Express – volume: 48 start-page: 269 year: 1986 publication-title: Appl. Phys. Lett. – volume: 54 start-page: 2160 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 94 start-page: 171115 year: 2009 publication-title: Appl. Phys. Lett. – volume: 18 start-page: 26995 year: 2010 publication-title: Opt. Express – volume: 10 start-page: 296 year: 1993 publication-title: J. Opt. Soc. Am. B – volume: 8 start-page: 2189 year: 2012 publication-title: Small – volume: 132 start-page: 18361 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 96 start-page: 121103 year: 2010 publication-title: Appl. Phys. Lett. – volume: 17 start-page: 680 year: 2005 publication-title: Adv. Mater. – volume: 442 start-page: 551 year: 2006 publication-title: Nature – ident: e_1_2_8_74_1 doi: 10.1038/nmat712 – volume: 8 start-page: 2593 year: 2012 ident: e_1_2_8_149_1 publication-title: Soft Matter – ident: e_1_2_8_59_1 doi: 10.1039/c1jm10711a – ident: e_1_2_8_78_1 doi: 10.1002/ange.201305514 – ident: e_1_2_8_25_1 doi: 10.1002/adma.201200241 – volume-title: Organic & Hybrid Photonic Crystals year: 2015 ident: e_1_2_8_31_1 – ident: e_1_2_8_35_1 doi: 10.1007/430_2007_075 – ident: e_1_2_8_115_1 doi: 10.1103/PhysRevA.50.2701 – ident: e_1_2_8_100_1 doi: 10.1126/science.1195639 – ident: e_1_2_8_116_1 doi: 10.1364/JOSAB.10.000644 – ident: e_1_2_8_119_1 doi: 10.1063/1.3127523 – ident: e_1_2_8_144_1 doi: 10.1002/adom.201500153 – ident: e_1_2_8_57_1 doi: 10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6 – volume: 479 start-page: 161 year: 2007 ident: e_1_2_8_81_1 publication-title: Mol. Cryst. Liq. Cryst. – ident: e_1_2_8_137_1 doi: 10.1002/adfm.201402875 – ident: e_1_2_8_129_1 doi: 10.1002/adom.201400166 – ident: e_1_2_8_53_1 doi: 10.1002/adma.201204591 – ident: e_1_2_8_2_1 doi: 10.1002/9781118680469 – ident: e_1_2_8_30_1 doi: 10.1002/9781118259993 – ident: e_1_2_8_118_1 doi: 10.1364/OL.29.000424 – ident: e_1_2_8_52_1 doi: 10.1039/c1sm05098b – ident: e_1_2_8_91_1 doi: 10.1038/nmat3330 – ident: e_1_2_8_96_1 doi: 10.1103/PhysRevLett.64.1907 – ident: e_1_2_8_120_1 doi: 10.1021/ma052167o – ident: e_1_2_8_33_1 doi: 10.1103/RevModPhys.61.385 – ident: e_1_2_8_139_1 doi: 10.1073/pnas.1317922110 – ident: e_1_2_8_1_1 doi: 10.1021/cr900080v – ident: e_1_2_8_54_1 doi: 10.1039/C5TC00420A – ident: e_1_2_8_148_1 doi: 10.1038/nature05024 – ident: e_1_2_8_106_1 doi: 10.1038/nature11084 – ident: e_1_2_8_146_1 doi: 10.1364/OE.20.005775 – ident: e_1_2_8_130_1 doi: 10.1021/ar500317s – ident: e_1_2_8_62_1 doi: 10.1364/OL.35.000562 – ident: e_1_2_8_163_1 doi: 10.1039/C2CS35353A – ident: e_1_2_8_72_1 – ident: e_1_2_8_127_1 doi: 10.1039/C3TC32055C – ident: e_1_2_8_131_1 doi: 10.1002/smll.201401600 – ident: e_1_2_8_85_1 doi: 10.1039/c3tc30919c – ident: e_1_2_8_55_1 doi: 10.1080/026782997208587 – ident: e_1_2_8_157_1 doi: 10.1007/978-3-319-18293-3_6 – ident: e_1_2_8_108_1 doi: 10.1063/1.96577 – ident: e_1_2_8_77_1 doi: 10.1039/c2cc16934g – ident: e_1_2_8_19_1 doi: 10.1002/anie.200907091 – ident: e_1_2_8_86_1 doi: 10.1038/ncomms4954 – ident: e_1_2_8_109_1 doi: 10.1038/nphoton.2009.170 – ident: e_1_2_8_32_1 doi: 10.1021/ar500249k – ident: e_1_2_8_155_1 doi: 10.1080/15421400490501158 – ident: e_1_2_8_61_1 doi: 10.1038/nature03932 – ident: e_1_2_8_23_1 doi: 10.1002/adma.200500167 – ident: e_1_2_8_141_1 doi: 10.1073/pnas.1214708109 – start-page: 684349 year: 2008 ident: e_1_2_8_156_1 publication-title: Adv. OptoElectron. doi: 10.1155/2008/684349 – ident: e_1_2_8_65_1 doi: 10.1039/c3cc46117c – ident: e_1_2_8_111_1 doi: 10.1038/nature01939 – ident: e_1_2_8_150_1 doi: 10.1002/adma.201103791 – ident: e_1_2_8_6_1 doi: 10.1088/2058-7058/17/2/34 – ident: e_1_2_8_117_1 doi: 10.1016/S0375-9601(02)00618-7 – ident: e_1_2_8_134_1 doi: 10.1038/nmat2029 – ident: e_1_2_8_138_1 doi: 10.1002/adma.200903728 – ident: e_1_2_8_67_1 doi: 10.1038/nphoton.2013.255 – ident: e_1_2_8_94_1 doi: 10.1142/2337 – ident: e_1_2_8_14_1 doi: 10.1002/1521-4095(200103)13:6<421::AID-ADMA421>3.0.CO;2-# – volume: 23 start-page: 284112 year: 2011 ident: e_1_2_8_112_1 publication-title: J. Phys.: Condens. Matter. – ident: e_1_2_8_124_1 doi: 10.1002/anie.201306396 – ident: e_1_2_8_8_1 doi: 10.1103/PhysRevE.75.041919 – volume-title: Ph.D. Thesis year: 2012 ident: e_1_2_8_93_1 – ident: e_1_2_8_123_1 doi: 10.1002/anie.201410788 – ident: e_1_2_8_98_1 doi: 10.1103/PhysRevE.56.6853 – ident: e_1_2_8_121_1 doi: 10.1364/OE.18.026995 – ident: e_1_2_8_142_1 doi: 10.3390/ma2020499 – ident: e_1_2_8_73_1 doi: 10.1038/nature03932 – ident: e_1_2_8_60_1 doi: 10.1080/00268948308072031 – ident: e_1_2_8_92_1 doi: 10.1002/adma.201102828 – ident: e_1_2_8_7_1 doi: 10.1073/pnas.0909616107 – ident: e_1_2_8_51_1 doi: 10.1364/OE.20.023978 – ident: e_1_2_8_89_1 doi: 10.1073/pnas.1015831108 – ident: e_1_2_8_70_1 doi: 10.1021/ja211837f – ident: e_1_2_8_42_1 doi: 10.1080/02678292.2012.669501 – ident: e_1_2_8_68_1 doi: 10.1021/ja500933h – ident: e_1_2_8_126_1 doi: 10.1039/C4TC01297F – ident: e_1_2_8_12_1 doi: 10.1002/1521-4095(200103)13:6<409::AID-ADMA409>3.0.CO;2-C – ident: e_1_2_8_110_1 doi: 10.1103/PhysRevLett.38.1351 – ident: e_1_2_8_58_1 doi: 10.1007/0-387-21642-1_7 – ident: e_1_2_8_29_1 doi: 10.1002/0471238961.1209172103151212.a01.pub3 – ident: e_1_2_8_9_1 doi: 10.1038/35090573 – ident: e_1_2_8_161_1 doi: 10.1021/nl060608r – ident: e_1_2_8_133_1 doi: 10.1007/978-3-319-04867-3_2 – ident: e_1_2_8_99_1 doi: 10.1002/anie.200804500 – ident: e_1_2_8_15_1 doi: 10.1002/adma.200602550 – ident: e_1_2_8_128_1 doi: 10.1002/adma.201300776 – ident: e_1_2_8_101_1 doi: 10.1002/adma.200401462 – ident: e_1_2_8_79_1 doi: 10.1021/ja301845n – ident: e_1_2_8_95_1 doi: 10.1103/PhysRevLett.67.1169 – ident: e_1_2_8_21_1 doi: 10.1002/anie.200200546 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevLett.104.157801 – volume-title: The Physics of Liquid Crystals year: 2001 ident: e_1_2_8_97_1 – ident: e_1_2_8_107_1 doi: 10.1021/cm4025028 – ident: e_1_2_8_20_1 doi: 10.1002/adma.200801258 – ident: e_1_2_8_3_1 doi: 10.1038/426786a – ident: e_1_2_8_46_1 doi: 10.1038/nphoton.2010.184 – ident: e_1_2_8_22_1 doi: 10.1002/adma.200502651 – ident: e_1_2_8_147_1 doi: 10.1038/nature12083 – ident: e_1_2_8_158_1 doi: 10.1021/nl501302s – ident: e_1_2_8_122_1 doi: 10.1126/science.1109164 – ident: e_1_2_8_82_1 doi: 10.1021/ma052046o – ident: e_1_2_8_18_1 doi: 10.1021/nl080444 – ident: e_1_2_8_17_1 doi: 10.1002/adma.200800141 – ident: e_1_2_8_10_1 doi: 10.1126/science.1079204 – ident: e_1_2_8_153_1 doi: 10.1364/OL.28.000522 – volume: 3 start-page: 041026 year: 2013 ident: e_1_2_8_143_1 publication-title: Phys. Rev. X – ident: e_1_2_8_56_1 doi: 10.1038/nmat3993 – volume-title: Ph.D. Thesis year: 2012 ident: e_1_2_8_105_1 – ident: e_1_2_8_145_1 doi: 10.1126/science.1123053 – ident: e_1_2_8_69_1 doi: 10.1039/C5CC02127H – ident: e_1_2_8_102_1 doi: 10.1021/ja4022182 – ident: e_1_2_8_104_1 doi: 10.1021/cm202632m – ident: e_1_2_8_88_1 doi: 10.1039/c3tc31253d – ident: e_1_2_8_4_1 doi: 10.1039/c2cs15267c – ident: e_1_2_8_16_1 doi: 10.1002/adma.200501447 – ident: e_1_2_8_44_1 doi: 10.1016/0375-9601(81)90912-9 – ident: e_1_2_8_40_1 doi: 10.1080/02678292.2012.749306 – ident: e_1_2_8_162_1 doi: 10.1039/C4CS00181H – ident: e_1_2_8_66_1 doi: 10.1002/adma.201300798 – ident: e_1_2_8_83_1 doi: 10.1002/adfm.201200362 – ident: e_1_2_8_27_1 doi: 10.1002/anie.201303786 – ident: e_1_2_8_132_1 doi: 10.1002/adfm.200901135 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevE.62.1435 – ident: e_1_2_8_36_1 doi: 10.1002/smll.201200052 – ident: e_1_2_8_38_1 doi: 10.1002/adma.200500042 – ident: e_1_2_8_71_1 doi: 10.1002/adma.201405690 – ident: e_1_2_8_47_1 doi: 10.1080/09500349414550291 – ident: e_1_2_8_5_1 doi: 10.1038/nature01941 – ident: e_1_2_8_63_1 doi: 10.1103/PhysRevE.71.051705 – ident: e_1_2_8_37_1 doi: 10.1002/adma.200400639 – ident: e_1_2_8_80_1 doi: 10.1021/cm011510a – ident: e_1_2_8_125_1 doi: 10.1021/ja302772z – ident: e_1_2_8_140_1 doi: 10.1002/adma.201103008 – ident: e_1_2_8_13_1 doi: 10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O – ident: e_1_2_8_151_1 doi: 10.1016/j.carbon.2009.10.026 – ident: e_1_2_8_75_1 doi: 10.1889/1.3621051 – ident: e_1_2_8_136_1 doi: 10.1080/02678290902814718 – ident: e_1_2_8_76_1 doi: 10.1021/ja907826z – ident: e_1_2_8_159_1 doi: 10.1038/nmat3888 – ident: e_1_2_8_48_1 doi: 10.1364/JOSAB.10.000296 – ident: e_1_2_8_84_1 doi: 10.1039/C4TC00785A – ident: e_1_2_8_90_1 doi: 10.1073/pnas.1102130108 – ident: e_1_2_8_45_1 doi: 10.1038/nmat727 – ident: e_1_2_8_154_1 doi: 10.1002/1521-4095(20020205)14:3<187::AID-ADMA187>3.0.CO;2-O – ident: e_1_2_8_87_1 doi: 10.1039/c2jm34013e – ident: e_1_2_8_26_1 doi: 10.1002/adma.201103362 – ident: e_1_2_8_28_1 doi: 10.1021/ja108437n – ident: e_1_2_8_50_1 doi: 10.1889/1.2210808 – ident: e_1_2_8_49_1 doi: 10.1002/adma.200501355 – ident: e_1_2_8_64_1 doi: 10.1063/1.3368119 – ident: e_1_2_8_160_1 doi: 10.1038/ncomms1583 – ident: e_1_2_8_135_1 doi: 10.1002/adfm.201001303 – ident: e_1_2_8_152_1 doi: 10.1002/pat.663 – ident: e_1_2_8_103_1 doi: 10.1021/ma0613279 – ident: e_1_2_8_11_1 doi: 10.1039/b402558j – ident: e_1_2_8_39_1 doi: 10.1039/C2JM15461G – volume-title: Nanoscience with Liquid Crystals: From Self‐Organized Nanostructures to Applications year: 2014 ident: e_1_2_8_24_1 – ident: e_1_2_8_113_1 doi: 10.1117/12.874688 – ident: e_1_2_8_41_1 doi: 10.1039/C2SM26807H – ident: e_1_2_8_114_1 doi: 10.1364/OE.19.019836 |
SSID | ssj0017734 |
Score | 2.6066725 |
Snippet | 3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10 |
SubjectTerms | Devices Dynamical systems Dynamics liquid crystal Nanostructure Order disorder photonic crystals Photonics self-organized 3D nanostructures soft nanotechnology stimuli-directing Three dimensional Viscosity |
Title | Stimuli-Directing Self-Organized 3D Liquid-Crystalline Nanostructures: From Materials Design to Photonic Applications |
URI | https://api.istex.fr/ark:/67375/WNG-JK2KZSZ9-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201502071 https://www.proquest.com/docview/1778028928 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLWm7WU88DFAFBjyJARP2Ww3sZ29VSvdtK0TokxUe7Hs2IZqI4Eulbbxwk_gN_JL8EeatUgICZSXxHKUxL7XPvE99xiAl5JQbTMvOZvlKvEExoQbK5MuyVnOCsN40NIbntCD0_RwnI0XsvijPkS74OY9I4zX3sGluty5FQ2V2vpMcgdoCApJ5J6w5VHRu1Y_CjMWw8oUe4IXHs9VGxHZWb59aVZa8w18tQQ5F4FrmHkG94Ccv3MknJxvz2q1Xdz8Juf4Px91H9xtYCnsRTt6AFZMuQHuLIgVPgTfRvXEc6l-fv_RjJPlRzgyF9YVNBmdRsNuHx5Pvs4m2pXuTa8d9vSi3wa6UbyKWrUz94O_CwfT6jMcyjo6AOwHIgmsK_j2U1V7uV7YWwitPwKngzfv9w6SZuuGpGCM4sRwpXlOilQri5B0ne6gBtOKpji1KLOapxrjbioVdqbsDoqINRhxmXGF3cT6GKyWVWmeAKiYyqiiPFOBk6pUarSUTGmqEEXWdkAy7zpRNLrmfnuNCxEVmYnwjSraRu2A1239L1HR4481XwVLaKvJ6bnnwbFMfDjZF4dH5OhsdJaL4w7YmpuKcN7pQy6yNNXsUjgL5D6WS3gHkNDxf3mm6PUHw_bq6b_c9Aysu_O4TkSfg1XXt2bTIadavQje8QtybRRB |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQewAOvBHbFjASglPa2JvYDrdVl2XpPoTYVlS9WHZsw6ptUrZZiceFn8Bv5JfgyYtdJIQEyimWrSSeGXvi-eYbhJ4qyoyLgXI2TnQAAMZAWKeCLk14wlPLRcmlN5my4VF0cBw3aELIhan4IdoDN7CMcr0GA4cD6b1frKHKOEgl9x4NDSGLfBPKekMRg_7blkGKcF4FlhkBiBc5bngbQ7q3Pn5tX9qEKf605nSuuq7l3jO4iXTz1hXk5HR3Wejd9MtvhI7_9Vm30I3aM8W9SpVuoys2u4Our_AV3kVfZ8Uc4FQ_vn2vl8rsPZ7ZM-cb6qROa3C3j8fzj8u58a37i8_e_QTeb4v9Qp5XdLVL_4__Ag8W-TmeqKKyAdwvsSS4yPGbD3kBjL24txJdv4eOBi8P94dBXb0hSDlnJLBCG5HQNDLahaHycvfeBjeaRSRyYeyMiAwh3Uhp4rXZXyykzpJQqFho4vfW-2gjyzP7AGHNdcw0E7EuYalaR9YoxbVhOmShcx0UNLKTaU1tDhU2zmRFykwlTKpsJ7WDnrf9LypSjz_2fFaqQttNLU4BCsdj-W76Sh6M6OhkdpLIcQc9aXRFegOFqIvKbL68lF4FBYRzqeggWkr-L8-Uvf5g0t5t_cugx-jq8HAyluPX09E2uubbq2MjtoM2vJztQ-9IFfpRaSo_AZt4GFs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKyE48EZdnkZCcEprexPb4bbqEkr3oYqlYtWLZcc2rFqSsmQl2l76E_iN_BLsOBt2kRASKKdYYyXxzNhfPDOfAXguCdU28ZSzSaoin8AYcWNl1CUpS1luGK-59EZjuncY70-T6UoVf-CHaDfcvGfU87V38FNtd36RhkptfSW5AzQE-SLyzZg6j_Gw6F1LIIUZC3Flin2GF54uaRsR2Vnvv7YsbfoR_raGOVeRa730ZDeBXL50yDg53l5Uajs__43P8X--6ha40eBS2AuGdBtcMcUdcH2FrfAuuJhUM59M9ePyezNRFh_hxJxY19CUdBoNu304nH1ZzLRr3Z2fOfDpWb8NdNN4GchqF-4P_xXM5uVnOJJV8ADYrzNJYFXCg09l5fl6YW8ltn4PHGav3-_uRc3ZDVHOGMWR4UrzlOSxVhYh6bTusAbTisY4tiixmsca424sFXa27C6KiDUYcZlwhd3Keh9sFGVhtgBUTCVUUZ6oOilVqdhoKZnSVCGKrO2AaKk6kTfE5v58jRMRKJmJ8IMq2kHtgJet_Gmg9Pij5IvaEloxOT_2iXAsER_Gb8T-gAyOJkepGHbAs6WpCOeePuYiC1MuvgpngdwHcwnvAFIr_i_PFL1-NmrvHvxLp6fg6kE_E8O348FDcM01hz0j-ghsODWbxw5FVepJ7Sg_AWMEFxM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimuli%E2%80%90Directing+Self%E2%80%90Organized+3D+Liquid%E2%80%90Crystalline+Nanostructures%3A+From+Materials+Design+to+Photonic+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Ling&rft.au=Li%2C+Quan&rft.date=2016-01-06&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=1&rft.spage=10&rft.epage=28&rft_id=info:doi/10.1002%2Fadfm.201502071&rft.externalDBID=10.1002%252Fadfm.201502071&rft.externalDocID=ADFM201502071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |