Stimuli-Directing Self-Organized 3D Liquid-Crystalline Nanostructures: From Materials Design to Photonic Applications

3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions because of the ability to control or confine electromagnetic waves in all three dimensions. Although substantial progress has been made in fabricat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 26; no. 1; pp. 10 - 28
Main Authors Wang, Ling, Li, Quan
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 06.01.2016
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.201502071

Cover

Loading…
Abstract 3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions because of the ability to control or confine electromagnetic waves in all three dimensions. Although substantial progress has been made in fabricating 3D nanostructures by means of lithography and nanotechnology, various bottlenecks still need to be overcome, and developing soft 3D stimuli‐directed nanostructures with tailored properties remains a challenging but exciting work. In this context, soft nanotechnology—i.e., exploiting self‐organized soft materials in nanotechnology—is emerging as a vibrant and burgeoning field of research in the bottom‐up nanofabrication of intelligent stimuli‐driven 3D photonic materials and devices. Liquid‐crystalline materials undoubtedly represent such a marvelous dynamic system that combines the liquid‐like fluidity and crystal‐like ordering from molecular to macroscopic material levels. Importantly, being “soft” makes the materials responsive to various stimuli such as temperature, light, mechanical force, and electric and magnetic fields as well as chemical and electrochemical reactions, resulting in a fascinating tunability of dynamic photonic bandgaps in the 3D nanostructure that provides numerous opportunities in all‐optical integrated circuits and next‐generation communication systems. Here, the development of 3D photonic nanostructures is reviewed, culminating with perspectives for the future scope and challenges of these emerging soft 3D photonic nanostructures towards device applications. Soft nanotechnology—i.e., exploiting self‐organized soft materials in nanotechnology—is emerging as an attractive paradigm in the bottom‐up nanofabrication of intelligent stimuli‐driven 3D photonic materials and devices. Liquid‐crystalline materials undoubtedly represent such an elegant dynamic system that combines the liquid‐like fluidity and crystal‐like ordering from molecular to macroscopic levels. This review provides a glimpse of the advancements in design, fabrication and applications of stimuli‐directing self‐organized 3D liquid‐crystalline photonic nanostructures.
AbstractList 3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions because of the ability to control or confine electromagnetic waves in all three dimensions. Although substantial progress has been made in fabricating 3D nanostructures by means of lithography and nanotechnology, various bottlenecks still need to be overcome, and developing soft 3D stimuli‐directed nanostructures with tailored properties remains a challenging but exciting work. In this context, soft nanotechnology—i.e., exploiting self‐organized soft materials in nanotechnology—is emerging as a vibrant and burgeoning field of research in the bottom‐up nanofabrication of intelligent stimuli‐driven 3D photonic materials and devices. Liquid‐crystalline materials undoubtedly represent such a marvelous dynamic system that combines the liquid‐like fluidity and crystal‐like ordering from molecular to macroscopic material levels. Importantly, being “soft” makes the materials responsive to various stimuli such as temperature, light, mechanical force, and electric and magnetic fields as well as chemical and electrochemical reactions, resulting in a fascinating tunability of dynamic photonic bandgaps in the 3D nanostructure that provides numerous opportunities in all‐optical integrated circuits and next‐generation communication systems. Here, the development of 3D photonic nanostructures is reviewed, culminating with perspectives for the future scope and challenges of these emerging soft 3D photonic nanostructures towards device applications.
3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions because of the ability to control or confine electromagnetic waves in all three dimensions. Although substantial progress has been made in fabricating 3D nanostructures by means of lithography and nanotechnology, various bottlenecks still need to be overcome, and developing soft 3D stimuli-directed nanostructures with tailored properties remains a challenging but exciting work. In this context, soft nanotechnology-i.e., exploiting self-organized soft materials in nanotechnology-is emerging as a vibrant and burgeoning field of research in the bottom-up nanofabrication of intelligent stimuli-driven 3D photonic materials and devices. Liquid-crystalline materials undoubtedly represent such a marvelous dynamic system that combines the liquid-like fluidity and crystal-like ordering from molecular to macroscopic material levels. Importantly, being "soft" makes the materials responsive to various stimuli such as temperature, light, mechanical force, and electric and magnetic fields as well as chemical and electrochemical reactions, resulting in a fascinating tunability of dynamic photonic bandgaps in the 3D nanostructure that provides numerous opportunities in all-optical integrated circuits and next-generation communication systems. Here, the development of 3D photonic nanostructures is reviewed, culminating with perspectives for the future scope and challenges of these emerging soft 3D photonic nanostructures towards device applications. Soft nanotechnology-i.e., exploiting self-organized soft materials in nanotechnology-is emerging as an attractive paradigm in the bottom-up nanofabrication of intelligent stimuli-driven 3D photonic materials and devices. Liquid-crystalline materials undoubtedly represent such an elegant dynamic system that combines the liquid-like fluidity and crystal-like ordering from molecular to macroscopic levels. This review provides a glimpse of the advancements in design, fabrication and applications of stimuli-directing self-organized 3D liquid-crystalline photonic nanostructures.
3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions because of the ability to control or confine electromagnetic waves in all three dimensions. Although substantial progress has been made in fabricating 3D nanostructures by means of lithography and nanotechnology, various bottlenecks still need to be overcome, and developing soft 3D stimuli‐directed nanostructures with tailored properties remains a challenging but exciting work. In this context, soft nanotechnology—i.e., exploiting self‐organized soft materials in nanotechnology—is emerging as a vibrant and burgeoning field of research in the bottom‐up nanofabrication of intelligent stimuli‐driven 3D photonic materials and devices. Liquid‐crystalline materials undoubtedly represent such a marvelous dynamic system that combines the liquid‐like fluidity and crystal‐like ordering from molecular to macroscopic material levels. Importantly, being “soft” makes the materials responsive to various stimuli such as temperature, light, mechanical force, and electric and magnetic fields as well as chemical and electrochemical reactions, resulting in a fascinating tunability of dynamic photonic bandgaps in the 3D nanostructure that provides numerous opportunities in all‐optical integrated circuits and next‐generation communication systems. Here, the development of 3D photonic nanostructures is reviewed, culminating with perspectives for the future scope and challenges of these emerging soft 3D photonic nanostructures towards device applications. Soft nanotechnology—i.e., exploiting self‐organized soft materials in nanotechnology—is emerging as an attractive paradigm in the bottom‐up nanofabrication of intelligent stimuli‐driven 3D photonic materials and devices. Liquid‐crystalline materials undoubtedly represent such an elegant dynamic system that combines the liquid‐like fluidity and crystal‐like ordering from molecular to macroscopic levels. This review provides a glimpse of the advancements in design, fabrication and applications of stimuli‐directing self‐organized 3D liquid‐crystalline photonic nanostructures.
Author Li, Quan
Wang, Ling
Author_xml – sequence: 1
  givenname: Ling
  surname: Wang
  fullname: Wang, Ling
  organization: Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Ohio, 44242, Kent, United States
– sequence: 2
  givenname: Quan
  surname: Li
  fullname: Li, Quan
  email: qli1@kent.edu
  organization: Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Ohio, 44242, Kent, United States
BookMark eNqFkEFv0zAUgC00JLbBlbOPXNLZSRq73KqWDli3IRUE2sVy7JfywLE72xGUX09GUYWQEPLh-fB9T0_fGTnxwQMhzzmbcMbKC227flIyPmUlE_wROeUNb4qKlfLk-OefnpCzlL4wxoWo6lMybDL2g8NiiRFMRr-lG3BdcRu32uMPsLRa0jXeD2iLRdynrJ1DD_RG-5ByHEweIqSXdBVDT691hojaJbqEhFtPc6DvPoccPBo63-0cGp0x-PSUPO5GDJ79nufkw-rV-8XrYn17-WYxXxdGiIYXIFsrZ6WpbdsxpoUBJkth26bmdcemnZW15byqdctB2_E1rOyAM6mnsuU1r87Ji8PeXQz3A6SsekwGnNMewpDUGEGOfWalHNH6gJoYUorQKYP517U5anSKM_VQWT1UVsfKozb5S9tF7HXc_1uYHYRv6GD_H1rNl6vrP93i4GLK8P3o6vhVNaISU_Xx5lK9vSqv7jZ3M7WufgJQbKN_
CitedBy_id crossref_primary_10_1039_C9LC00655A
crossref_primary_10_1002_adfm_202424655
crossref_primary_10_1002_adom_201700923
crossref_primary_10_1016_j_molliq_2020_115172
crossref_primary_10_1021_acsami_1c11711
crossref_primary_10_1021_acs_chemrev_6b00415
crossref_primary_10_1002_ange_201606895
crossref_primary_10_1016_j_mattod_2025_02_016
crossref_primary_10_1021_acsami_8b14223
crossref_primary_10_1016_j_molliq_2021_115328
crossref_primary_10_1002_adom_201800409
crossref_primary_10_1039_D2NR07084G
crossref_primary_10_1038_s41467_023_41884_5
crossref_primary_10_1002_cptc_202100124
crossref_primary_10_1016_j_apmt_2020_100749
crossref_primary_10_3390_coatings9100669
crossref_primary_10_1073_pnas_1906511116
crossref_primary_10_1007_s10118_017_1981_y
crossref_primary_10_1016_j_polymer_2018_11_022
crossref_primary_10_1021_acs_jpcb_1c07422
crossref_primary_10_1063_5_0245343
crossref_primary_10_1002_ange_202213915
crossref_primary_10_1002_lpor_202400366
crossref_primary_10_1002_adfm_202104991
crossref_primary_10_1021_acs_chemmater_4c00471
crossref_primary_10_1016_j_actbio_2020_12_008
crossref_primary_10_1016_j_compscitech_2019_04_028
crossref_primary_10_1002_adom_201900156
crossref_primary_10_1002_chem_202102226
crossref_primary_10_1002_adom_201900393
crossref_primary_10_1002_adom_201901363
crossref_primary_10_1002_adfm_202421280
crossref_primary_10_1007_s40094_019_0318_3
crossref_primary_10_1016_j_ccr_2016_06_009
crossref_primary_10_1002_ange_201802881
crossref_primary_10_3390_ma13061475
crossref_primary_10_1016_j_molliq_2019_02_054
crossref_primary_10_1021_acsomega_8b00554
crossref_primary_10_1016_j_actbio_2016_11_033
crossref_primary_10_1002_slct_202200490
crossref_primary_10_1016_j_mattod_2017_04_028
crossref_primary_10_1002_adom_201800515
crossref_primary_10_1002_rpm_20230005
crossref_primary_10_1002_tcr_201800010
crossref_primary_10_3390_nano7070169
crossref_primary_10_1002_adma_201700676
crossref_primary_10_1039_C8TC06428H
crossref_primary_10_1039_D3MA00931A
crossref_primary_10_1002_adom_202000155
crossref_primary_10_1016_j_cplett_2018_08_056
crossref_primary_10_1021_acs_jpclett_0c03438
crossref_primary_10_1039_D2TC01333A
crossref_primary_10_1002_adfm_201504534
crossref_primary_10_1002_admi_202001977
crossref_primary_10_1002_ange_202405615
crossref_primary_10_1002_asia_201800225
crossref_primary_10_1016_j_cclet_2024_110374
crossref_primary_10_1021_acsami_7b12292
crossref_primary_10_1021_acsapm_9b00841
crossref_primary_10_3390_app14114682
crossref_primary_10_1002_adom_201800070
crossref_primary_10_1002_smo_20230025
crossref_primary_10_1002_adma_201600043
crossref_primary_10_1080_02678292_2020_1769754
crossref_primary_10_1038_srep26840
crossref_primary_10_1002_adfm_201702261
crossref_primary_10_1002_rpm_20230016
crossref_primary_10_1002_ange_202211030
crossref_primary_10_1002_chem_201701167
crossref_primary_10_1080_02678292_2019_1640905
crossref_primary_10_1039_D1TC01801A
crossref_primary_10_1117_1_JBO_22_8_080901
crossref_primary_10_1021_acsnano_8b02832
crossref_primary_10_1002_adma_201701903
crossref_primary_10_1002_adma_201806172
crossref_primary_10_1002_cptc_202100256
crossref_primary_10_1016_j_nanoen_2016_06_021
crossref_primary_10_1021_acs_langmuir_1c00256
crossref_primary_10_1039_C9CE01551E
crossref_primary_10_1002_adfm_202007957
crossref_primary_10_1021_acsami_2c03420
crossref_primary_10_3390_mi10110761
crossref_primary_10_1039_D1MA00863C
crossref_primary_10_3390_sym13091584
crossref_primary_10_1002_admt_201600102
crossref_primary_10_1021_acs_biomac_3c00503
crossref_primary_10_1080_02678292_2019_1655808
crossref_primary_10_1039_C7TC00534B
crossref_primary_10_1021_acsapm_0c00856
crossref_primary_10_1021_jacs_8b09622
crossref_primary_10_1016_j_optmat_2021_111670
crossref_primary_10_1021_acsami_0c12479
crossref_primary_10_1002_adfm_201702905
crossref_primary_10_1039_C6CC01442A
crossref_primary_10_1039_D0ME00070A
crossref_primary_10_1039_C6SC00758A
crossref_primary_10_1080_02678292_2016_1196506
crossref_primary_10_1080_02678292_2021_1881834
crossref_primary_10_1002_anie_201802881
crossref_primary_10_1063_1_5081766
crossref_primary_10_1002_asia_201600918
crossref_primary_10_1039_C7PY00471K
crossref_primary_10_1002_rpm_20230030
crossref_primary_10_1080_15980316_2017_1410500
crossref_primary_10_1002_ange_201705138
crossref_primary_10_1039_D2TC05370E
crossref_primary_10_1080_02678292_2020_1811411
crossref_primary_10_1038_s43246_021_00146_x
crossref_primary_10_1021_acsnano_3c04199
crossref_primary_10_1039_C7CC01920C
crossref_primary_10_3390_cryst6100129
crossref_primary_10_3390_polym10080884
crossref_primary_10_1039_C5CC06146F
crossref_primary_10_3390_cryst11060576
crossref_primary_10_1016_j_pmatsci_2020_100702
crossref_primary_10_1038_s41467_020_16059_1
crossref_primary_10_1016_j_polymer_2022_124641
crossref_primary_10_1038_s41377_024_01479_1
crossref_primary_10_1021_acs_chemmater_9b01767
crossref_primary_10_3390_ma16010194
crossref_primary_10_1039_D0RA03465G
crossref_primary_10_1080_1358314X_2017_1398307
crossref_primary_10_3390_colloids2040047
crossref_primary_10_1021_acs_macromol_0c01820
crossref_primary_10_1080_21680396_2016_1193065
crossref_primary_10_1002_anie_201800366
crossref_primary_10_1016_j_progpolymsci_2021_101365
crossref_primary_10_1021_acsami_6b08628
crossref_primary_10_1038_s41377_022_00937_y
crossref_primary_10_1039_D3TC00861D
crossref_primary_10_1021_acsami_6b10809
crossref_primary_10_1080_02678292_2023_2182925
crossref_primary_10_1021_jacs_8b06323
crossref_primary_10_1016_j_mtphys_2022_100892
crossref_primary_10_1039_C6CC09120B
crossref_primary_10_1007_s12274_017_1694_0
crossref_primary_10_1021_acs_jpcb_8b07653
crossref_primary_10_1021_acsapm_2c00173
crossref_primary_10_1021_acsomega_2c06718
crossref_primary_10_1126_sciadv_aba6728
crossref_primary_10_1039_C5NR08406G
crossref_primary_10_1002_adom_202102475
crossref_primary_10_1002_ange_201800366
crossref_primary_10_1016_j_molliq_2022_118889
crossref_primary_10_1038_s41377_022_00913_6
crossref_primary_10_1039_C9TC04380B
crossref_primary_10_1039_C8CE00286J
crossref_primary_10_1021_acs_chemrev_1c00761
crossref_primary_10_1016_j_jpcs_2020_109418
crossref_primary_10_1002_adma_201606671
crossref_primary_10_1021_acsami_0c14614
crossref_primary_10_1515_aot_2019_0012
crossref_primary_10_1021_acsami_9b08827
crossref_primary_10_1002_adfm_202009626
crossref_primary_10_1039_C6TA01647B
crossref_primary_10_1002_adfm_202000252
crossref_primary_10_1002_adfm_202004610
crossref_primary_10_1002_anie_202211030
crossref_primary_10_1039_D0MH01406K
crossref_primary_10_1039_D2MH00232A
crossref_primary_10_1002_adma_202312915
crossref_primary_10_1021_acsami_0c20628
crossref_primary_10_1021_acs_nanolett_4c06047
crossref_primary_10_1002_chem_201600095
crossref_primary_10_1039_D3NR03366J
crossref_primary_10_1002_adts_201900229
crossref_primary_10_1039_C9TA00993K
crossref_primary_10_1021_acsami_9b01523
crossref_primary_10_1016_j_molliq_2017_12_147
crossref_primary_10_1021_acsapm_8b00276
crossref_primary_10_1002_anie_201705138
crossref_primary_10_1002_adfm_201909537
crossref_primary_10_1039_C7CS00630F
crossref_primary_10_1039_C9QM00415G
crossref_primary_10_1002_adfm_201703522
crossref_primary_10_1016_j_molliq_2018_11_088
crossref_primary_10_1055_s_0042_1757971
crossref_primary_10_1016_j_molliq_2018_11_058
crossref_primary_10_1039_C6SM02142E
crossref_primary_10_1002_ange_201807372
crossref_primary_10_1016_j_jiec_2017_09_022
crossref_primary_10_1039_C6SM01772J
crossref_primary_10_1002_adom_201500533
crossref_primary_10_1039_D0TC02059A
crossref_primary_10_1080_02678292_2021_1945694
crossref_primary_10_1039_C9TC02938A
crossref_primary_10_1039_C9TC06130D
crossref_primary_10_1039_C8SM01426D
crossref_primary_10_1021_acsami_6b02789
crossref_primary_10_1002_adma_201801335
crossref_primary_10_1002_lpor_202401635
crossref_primary_10_1038_s41428_023_00805_5
crossref_primary_10_1002_smll_202304590
crossref_primary_10_1002_adma_201800237
crossref_primary_10_1002_adma_201706512
crossref_primary_10_3390_ijms19092715
crossref_primary_10_1039_C9TC05052C
crossref_primary_10_1246_bcsj_20200304
crossref_primary_10_1002_asia_202401211
crossref_primary_10_1002_adfm_201802500
crossref_primary_10_1002_anie_202405615
crossref_primary_10_1038_ncomms13981
crossref_primary_10_1039_C6CC04721A
crossref_primary_10_1080_02678292_2022_2037769
crossref_primary_10_3390_s18092973
crossref_primary_10_1016_j_micron_2021_103136
crossref_primary_10_1016_j_molliq_2019_111417
crossref_primary_10_1039_C8TC05879B
crossref_primary_10_1039_C6TC02557A
crossref_primary_10_1002_smsc_202100007
crossref_primary_10_1039_C6TC05267C
crossref_primary_10_1002_adom_201800335
crossref_primary_10_1039_C6MH00101G
crossref_primary_10_1002_adom_201800458
crossref_primary_10_1002_open_201700121
crossref_primary_10_1002_anie_201807372
crossref_primary_10_1021_acsnano_2c09203
crossref_primary_10_1039_C7MH00644F
crossref_primary_10_1016_j_mtchem_2016_11_001
crossref_primary_10_1002_adom_202000692
crossref_primary_10_1016_j_pmatsci_2019_03_005
crossref_primary_10_1002_adom_201600281
crossref_primary_10_1002_adma_201600258
crossref_primary_10_1002_adma_202109800
crossref_primary_10_3390_polym16081152
crossref_primary_10_1002_anie_201606895
crossref_primary_10_1002_chem_201802927
crossref_primary_10_1002_adma_201905318
crossref_primary_10_1002_cphc_201900585
crossref_primary_10_1002_sstr_202100038
crossref_primary_10_1039_C6PY02096H
crossref_primary_10_1016_j_cej_2020_126539
crossref_primary_10_1021_acs_macromol_6b00640
crossref_primary_10_1039_C8TC04947E
crossref_primary_10_3390_app8122544
crossref_primary_10_3390_e19120669
crossref_primary_10_1002_advs_202002132
crossref_primary_10_1002_adfm_202213162
crossref_primary_10_1002_adfm_202107275
crossref_primary_10_1002_mame_202100594
crossref_primary_10_1002_adom_202101526
crossref_primary_10_1039_C8TC02200C
crossref_primary_10_1039_C9SM01265F
crossref_primary_10_3390_polym14122455
crossref_primary_10_1002_adma_201703713
crossref_primary_10_1039_C6TC01103A
crossref_primary_10_1021_acsami_7b10198
crossref_primary_10_1002_anie_202213915
crossref_primary_10_1038_s41378_024_00806_1
crossref_primary_10_1002_adma_201603751
crossref_primary_10_1002_adom_202401934
crossref_primary_10_1002_smll_202201597
crossref_primary_10_1021_acs_macromol_3c02295
crossref_primary_10_1016_j_porgcoat_2020_105904
crossref_primary_10_1002_adma_201703165
crossref_primary_10_1002_smll_201900019
crossref_primary_10_1002_adom_202001572
crossref_primary_10_1016_j_jpowsour_2017_01_123
crossref_primary_10_1080_02678292_2021_1921866
crossref_primary_10_1039_C5TC04163E
crossref_primary_10_1021_acsami_4c14574
crossref_primary_10_1080_02678292_2017_1330430
crossref_primary_10_1016_j_molliq_2020_115059
Cites_doi 10.1038/nmat712
10.1039/c1jm10711a
10.1002/ange.201305514
10.1002/adma.201200241
10.1007/430_2007_075
10.1103/PhysRevA.50.2701
10.1126/science.1195639
10.1364/JOSAB.10.000644
10.1063/1.3127523
10.1002/adom.201500153
10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6
10.1002/adfm.201402875
10.1002/adom.201400166
10.1002/adma.201204591
10.1002/9781118680469
10.1002/9781118259993
10.1364/OL.29.000424
10.1039/c1sm05098b
10.1038/nmat3330
10.1103/PhysRevLett.64.1907
10.1021/ma052167o
10.1103/RevModPhys.61.385
10.1073/pnas.1317922110
10.1021/cr900080v
10.1039/C5TC00420A
10.1038/nature05024
10.1038/nature11084
10.1364/OE.20.005775
10.1021/ar500317s
10.1364/OL.35.000562
10.1039/C2CS35353A
10.1039/C3TC32055C
10.1002/smll.201401600
10.1039/c3tc30919c
10.1080/026782997208587
10.1007/978-3-319-18293-3_6
10.1063/1.96577
10.1039/c2cc16934g
10.1002/anie.200907091
10.1038/ncomms4954
10.1038/nphoton.2009.170
10.1021/ar500249k
10.1080/15421400490501158
10.1038/nature03932
10.1002/adma.200500167
10.1073/pnas.1214708109
10.1155/2008/684349
10.1039/c3cc46117c
10.1038/nature01939
10.1002/adma.201103791
10.1088/2058-7058/17/2/34
10.1016/S0375-9601(02)00618-7
10.1038/nmat2029
10.1002/adma.200903728
10.1038/nphoton.2013.255
10.1142/2337
10.1002/1521-4095(200103)13:6<421::AID-ADMA421>3.0.CO;2-#
10.1002/anie.201306396
10.1103/PhysRevE.75.041919
10.1002/anie.201410788
10.1103/PhysRevE.56.6853
10.1364/OE.18.026995
10.3390/ma2020499
10.1080/00268948308072031
10.1002/adma.201102828
10.1073/pnas.0909616107
10.1364/OE.20.023978
10.1073/pnas.1015831108
10.1021/ja211837f
10.1080/02678292.2012.669501
10.1021/ja500933h
10.1039/C4TC01297F
10.1002/1521-4095(200103)13:6<409::AID-ADMA409>3.0.CO;2-C
10.1103/PhysRevLett.38.1351
10.1007/0-387-21642-1_7
10.1002/0471238961.1209172103151212.a01.pub3
10.1038/35090573
10.1021/nl060608r
10.1007/978-3-319-04867-3_2
10.1002/anie.200804500
10.1002/adma.200602550
10.1002/adma.201300776
10.1002/adma.200401462
10.1021/ja301845n
10.1103/PhysRevLett.67.1169
10.1002/anie.200200546
10.1103/PhysRevLett.104.157801
10.1021/cm4025028
10.1002/adma.200801258
10.1038/426786a
10.1038/nphoton.2010.184
10.1002/adma.200502651
10.1038/nature12083
10.1021/nl501302s
10.1126/science.1109164
10.1021/ma052046o
10.1021/nl080444
10.1002/adma.200800141
10.1126/science.1079204
10.1364/OL.28.000522
10.1038/nmat3993
10.1126/science.1123053
10.1039/C5CC02127H
10.1021/ja4022182
10.1021/cm202632m
10.1039/c3tc31253d
10.1039/c2cs15267c
10.1002/adma.200501447
10.1016/0375-9601(81)90912-9
10.1080/02678292.2012.749306
10.1039/C4CS00181H
10.1002/adma.201300798
10.1002/adfm.201200362
10.1002/anie.201303786
10.1002/adfm.200901135
10.1103/PhysRevE.62.1435
10.1002/smll.201200052
10.1002/adma.200500042
10.1002/adma.201405690
10.1080/09500349414550291
10.1038/nature01941
10.1103/PhysRevE.71.051705
10.1002/adma.200400639
10.1021/cm011510a
10.1021/ja302772z
10.1002/adma.201103008
10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O
10.1016/j.carbon.2009.10.026
10.1889/1.3621051
10.1080/02678290902814718
10.1021/ja907826z
10.1038/nmat3888
10.1364/JOSAB.10.000296
10.1039/C4TC00785A
10.1073/pnas.1102130108
10.1038/nmat727
10.1002/1521-4095(20020205)14:3<187::AID-ADMA187>3.0.CO;2-O
10.1039/c2jm34013e
10.1002/adma.201103362
10.1021/ja108437n
10.1889/1.2210808
10.1002/adma.200501355
10.1063/1.3368119
10.1038/ncomms1583
10.1002/adfm.201001303
10.1002/pat.663
10.1021/ma0613279
10.1039/b402558j
10.1039/C2JM15461G
10.1117/12.874688
10.1039/C2SM26807H
10.1364/OE.19.019836
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201502071
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 28
ExternalDocumentID 10_1002_adfm_201502071
ADFM201502071
ark_67375_WNG_JK2KZSZ9_L
Genre article
GrantInformation_xml – fundername: DoD‐MURI
  funderid: FA9550–12–1–0037
– fundername: NASA
– fundername: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
  funderid: DE‐SC0001412
– fundername: DoD‐Army
– fundername: AFOSR
  funderid: FA9950–09–1–0193; FA9950–09–1–0254
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c7761-e8bd892c4dbf00a7ce0827db6414f05fd84d1134ab1eadada602fe108a58b1413
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 00:09:02 EDT 2025
Thu Jul 03 08:37:28 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Wed Jan 22 16:30:09 EST 2025
Wed Oct 30 09:53:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7761-e8bd892c4dbf00a7ce0827db6414f05fd84d1134ab1eadada602fe108a58b1413
Notes ark:/67375/WNG-JK2KZSZ9-L
AFOSR - No. FA9950-09-1-0193; No. FA9950-09-1-0254
ArticleID:ADFM201502071
NASA
DoD-Army
istex:43C67B269BF7D841BCE657EBF89BEFA7D4EE487A
DoD-MURI - No. FA9550-12-1-0037
U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences - No. DE-SC0001412
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1778028928
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1778028928
crossref_citationtrail_10_1002_adfm_201502071
crossref_primary_10_1002_adfm_201502071
wiley_primary_10_1002_adfm_201502071_ADFM201502071
istex_primary_ark_67375_WNG_JK2KZSZ9_L
PublicationCentury 2000
PublicationDate January 6, 2016
PublicationDateYYYYMMDD 2016-01-06
PublicationDate_xml – month: 01
  year: 2016
  text: January 6, 2016
  day: 06
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, Phys. Rev. E 2005, 71, 051705.
I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, J. E. Sipe, Macromolecules 2006, 39, 1449.
J. Yan, L. Rao, M. Jiao, H. C. Cheng, S. T. Wu, J. Mater. Chem. 2011, 21, 7870.
K. G. Sullivan, D. G. Hall, Phys. Rev. A 1994, 50, 2701.
J. H. Kang, J. H. Moon, S. K. Lee, S. G. Park, S. G. Jang, S. Yang, S. M. Yang, Adv. Mater. 2008, 20, 3061.
N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, A. P. H. J. Schenning, J. Am. Chem. Soc. 2012, 134, 7608.
Y. Uchida, Y. Takanishi, J. Yamamoto, Adv. Mater. 2013, 25, 3234.
Y. H. Kim, D. K. Yoon, H. S. Jeong, J. H. Kim, E. K. Yoon, H.-T. Jung, Adv. Func. Mater. 2009, 19, 3008.
H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajikawa, Nat. Mater. 2002, 1, 64.
Nanoscience with Liquid Crystals: From Self-Organized Nanostructures to Applications (Ed: Q. Li), Springer, Heidelberg, Germany 2014.
G. A. Ozin, S. M. Yang, Adv. Funct. Mater. 2001, 11, 95.
D. J. Mulder, A. P. H. J. Schenning, C. W. M. Bastiaansen, J. Mater. Chem. C 2014, 2, 6695.
A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, Y. Arakawa, Appl. Phys. Lett. 2009, 94, 171115.
L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, Q. Li, J. Am. Chem. Soc. 2014, 136, 4480.
P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, M. M. Green, Macromolecules 2006, 39, 3986.
C. Meyer, L. L. Cunff, M. Belloul, G. Foyart, Materials 2009, 2, 499.
A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, R. P. Sijbesm, Chem. Commun. 2012, 48, 4579.
X. Su, S. Voskian, R. P. Hughes, I. Aprahamian, Angew. Chem. Int. Ed. 2013, 52, 10934.
L. Wang, W. He, X. Xiao, M. Wang, M. Wang, P. Yang, Z. Zhou, H. Yang, H. Yu, Y. Lu, J. Mater. Chem. 2012, 22, 19629.
S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutierrez, F. del Monte, Chem. Soc. Rev. 2013, 42, 794.
A. Fernández-Nieves, G. Cristobal, V. Garcés-Chávez, G. C. Spalding, K. Dholakia, D. A. Weitz, Adv. Mater. 2005, 17, 680.
P. Vukusic, J. R. Sambles, Nature 2003, 424, 852.
M. Honda, T. Seki, Y. Takeoka, Adv. Mater. 2009, 21, 18014.
I. B. Burgess, M. Loncˇar, J. Aizenberg, J. Mater. Chem. C 2013, 1, 6075.
D. S. Miller, X. Wang, N. L. Abbott, Chem. Mater. 2013, 26, 496.
V. Welch, V. Lousse, O. Deparis, A. Parker, J. P. Vigneron, Phys. Rev. E 2007, 75, 041919.
T.-Z. Shen, S.-H. Hong, J.-K. Song, Nat. Mater. 2014, 13, 394.
J. Noh, H. L. Liang, I. Drevensek-Olenik, J. P. F. Lagerwall, J. Mater. Chem. C 2014, 2, 806.
Y. Zhao, L. Shang, Y. Cheng, Z. Gu, Acc. Chem. Res. 2014, 47, 3632.
Y. Li, C. Xue, M. Wang, A. Urbas, Q. Li, Angew. Chem. Int. Ed. 2013, 52, 13703.
J. K. Gupta, S. Sivakumar, F. Caruso, N. L. Abbott, Angew. Chem. Int. Ed. 2009, 48, 1652.
J. H. Jang, S. J. Jhaveri, B. Rasin, C. Koh, C. K. Ober, E. L. Thomas, Nano Lett. 2008, 8, 1456.
H. Coles, M. Pivnenko, Nature 2005, 436, 997.
L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, Q. Li, Adv. Opt. Mater. 2014, 2, 845.
P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, X. Hou, Optics Express 2012, 20, 5775.
I. W. Hamley, Angew. Chem. Int. Ed. 2003, 42, 1692.
Y. Haseba, H. Kikuchi, T. Nagamura, T. Kajiyama, Adv. Mater. 2005, 17, 2311.
F. Xu, P. P. Crooker, Phys. Rev. E 1997, 56, 6853.
M. Humar, I. Musevic, Opt. Express 2011, 19, 19836.
H. K. Bisoyi, Q. Li, Acc. Chem. Res. 2014, 47, 3184.
A. R. Parker, V. L. Welch, D. Driver, N. Martini, Nature 2003, 426, 786.
P. Vukusic, Phys. World 2004, 17, 35.
L. Wang, Q. Li, in Organic & Hybrid Photonic Crystals, (Ed: D. Comoretto), Springer, New York, NY, USA 2015, Ch. 18.
Y. Li, A. Urbas, Q. Li, J. Am. Chem. Soc. 2012, 134, 9573.
L. Wang, L. Yu, X. Xiao, Z. Wang, P. Yang, W. He, H. Yang, Liq. Cryst. 2012, 39, 629.
V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, T. J. Bunning, Adv. Mater. 2002, 14, 187.
D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, H.-T. Jung, Nat. Mater. 2007, 6, 866.
W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, Nat. Mater. 2002, 1, 111.
A. Honglawan, S. Yang, in Nanoscience with Liquid Crystals (Ed: Q. Li), Springer, Heidelberg, Germany 2014, Ch. 2.
L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, Nature 2006, 442, 551.
I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, N. L. Abbott, Science 2011, 332, 1297.
Z. Xu, C. Gao, Nat. Commun. 2011, 2, 571.
K. H. Jeong, J. Kim, L. P. Lee, Science 2006, 312, 557.
Y. Liu, X. W. Sun, Adv. OptoElectron. 2008, 684349.
H. S. Sözüer, J. W. Haus, J. Opt. Soc. Am. B 1993, 10, 296.
G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, R. Bartolino, Adv. Mater. 2011, 23, 5773.
M. Humar, M. Ravnik, S. Pajk, I. Muševicˇ, Nat. Photonics 2009, 3, 595.
Y. Hisakado, H. Kikuchi, T. Nagamura, T. Kajiyama, Adv. Mater. 2005, 17, 96.
Y. Zhao, Z. Xie, H. Gu, C. Zhu, Z. Gu, Chem. Soc. Rev. 2012, 41, 3297.
M. Humar, Ph.D. Thesis, Jozef Stefan Institute, Ljubljana, Slovenia, 2012.
C.-W. Chen, H.-C. Jau, C.-T. Wang, C.-H. Lee, I. C. Khoo, T.-H. Lin, Opt. Express 2012, 20, 23978.
H. K. Bisoyi, Q. Li, in Anisotropic Nanomaterials (Ed: Q. Li), Springer, Heidelberg, Germany 2015, Ch. 6.
J. Aizenberg, G. Hendler, J. Mater. Chem. 2004, 14, 2066.
K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, S.-W. Choi, J. Mater. Chem. C 2015, 3, 5383.
O. D. Lavrentovich, Proc. Natl Acad. Sci. USA 2011, 108, 5143.
P. P. Crooker, in Chirality in Liquid Crystals (Eds: H.-S. Kitzerow, C. Bahr), Springer-Verlag, New York, NY, USA 2001, Ch. 7.
Y. H. Kim, D. K. Yoon, H. S. Jeong, O. D. Lavrentovich, H. T. Jung, Adv. Funct. Mater. 2011, 21, 610.
K. J. Vahala, Nature 2003, 424, 839.
L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, Z. Yang, D. Zhao, H. Yang, L. Guo, J. Mater. Chem. C 2013, 1, 6526.
H. Kikuchi, Struct. Bonding 2008, 128, 99.
A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 1977, 38, 1351.
J. H. Erdmann, S. Zumer, J. W. Doane, Phys. Rev. Lett. 1990, 64, 1907.
A. Honglawan, D. A. Beller, M. Cavallaro, R. D. Kamien, K. J. Stebe, S. Yang, Adv. Mater. 2011, 23, 5519.
H. Ko, V. V. Tsukruk, Nano Lett. 2006, 6, 1443.
Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, J. A. Rogers, Nature 2013, 497, 95.
Y. Xu, W. Liang, A. Yariv, J. G. Fleming, S.-Y. Lin, Opt. Lett. 2004, 29, 424.
A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, E. L. Thomas, Adv. Mater. 2001, 13, 421.
D. A. Beller, M. A. Gharbi, A. Honglawan, K. J. Stebe, S. Yang, R. D. Kamien, Phys. Rev. X 2013, 3, 041026.
J. Ge, Y. Yin, Angew. Chem. Int. Ed. 2011, 50, 1492.
P. Etchegoin, Phys. Rev. E 2000, 62, 1435.
R. J. Hernández, Ph.D. Thesis, University of Calabria, Italy, 2012.
M. Wang, L. He, S. Zorba, Y. Yin, Nano Lett. 2014, 14, 3966.
G. M. Gratson, F. Garcia-Santamaria, V. Lousse, M. J. Xu, S. H. Fan, J. A. Lewis, P. V. Braun, Adv. Mater. 2006, 18, 461.
Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, T. J. Bunning, Adv. Mater. 2011, 23, 5069.
L. Wang, W. He, X. Xiao, Q. Yang, B. Li, P. Yang, H. Yang, J. Mater. Chem. 2012, 22, 2383.
J. H. Moon, J. Ford, S. Yang, Polym. Adv. Technol. 2006, 17, 83.
S. Morris, A. Ford, C. Gillespie, M. Pivnenko, O. Hadeler, H. J. Coles, J. Soc. Inf. Display 2006, 14, 565.
H. S. Jeong, Y. K. Ko, Y. H. Kim, D. K. Yoon, H.-T. Jung, Carbon 2010, 48, 774.
V. Saranathan, C. O. Osuji, S. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, R. O. Prum, Proc. Natl. Acad. Sci. USA 2010, 107, 11676.
S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, D. A. Weitz, Science 2005, 308, 537.
M. J. Escuti, J. Qi, G. P. Crawford, Opt. Lett. 2003, 28, 522.
J. Aizenberg, D. A. Muller, J. L. Grazul, D. R. Hamann, Science 2003, 299, 1205.
H. Choi, H. Higuchi, H. Kikuchi, Soft Matter 2011, 7, 4252.
M. Vennes, S. Martin, T. Gisler, R. Zentel, Macromolecules 2006, 39, 8326.
M. Humar, I. Musevic, Opt. Express 2010, 18, 26995.
J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, Appl. Phys. Lett. 1986, 48, 269.
J. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas, Adv. Mater. 2006, 19, 2505.
K. Stratford, O. Henrich, J. S. Lintuvuori, M. E. Cates, D. Marenduzzo, Nat. Comm. 2014, 5, 3594.
J. Milette, S. Relaix, C. Lavigne, V. Toader, S. J. Cowling, I. M. Saez, R. B. Lennox, J. W. Goodby, L. Reven, Soft Matter 2012, 8, 2593.
L. Wang, W. He, X. Xiao, F. Meng, Y. Zhang, P. Yang, L. Wang, H. Yang, Small 2012, 8, 2189.
L. Wang, W. He, M. Wang, M. Wei, J. Sun, X. Chen, H. Yang, Liq. Cryst. 2013, 40, 354.
J. A. Moreno-Razo, E. J. Sambriski, N. L. Abbott, J. P. Hernández-Ortiz, J. J. De Pablo, Nature 2012, 485, 86.
H. K. Bisoyi, Q. Li, Liquid Crystals in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Honoken, NJ, USA 2014.
Y. Han, K. Pacheco, C. W. Bastiaansen, D. J. Broer, R. P. Sijbesma, J. Am. Chem. Soc. 2010, 132, 2961.
H. P. Cong, J. F. Chen, S. H. Yu, Chem. Soc. Rev. 2014, 43, 7295.
F. Mondiot, X. Wang, J. J. de Pablo, N. L. Abbott, J. Am. Chem. Soc. 2013, 135, 9972.
D. Coursault, J. Grand, B. Zappone, H. Ayeb, G. Lévi, N. Félidj, E. Lacaze, Adv. Mater. 2012, 24, 1461.
M. Mathews, R. Zola, S. Hurley, D. Yang, T. J. White, T. J. Bunning, Q. Li, J. Am. Chem. Soc. 2010, 132, 18361.
N. Horiuchi, Nature Photonics 2013, 7, 767.
A. Honglawan, D. A. Beller, M. Cavallaro, R. D. Kamien, K. J. Stebe, S. Yang, Proc. Nat. Acad. Sci. USA 2013, 110, 34.
Y. H. Kim, J. O. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. B. Yoon, H. T. Jung, Adv. Mater. 2010, 22, 2416.
H. Coles, S. Morris, Nature Photonics 2010, 4, 676.
P. V. Shibaev, R. L. Sanford, D. Chiappetta, P. Rivera, Mol. Cryst. Liq. Cryst. 2007, 479, 161.
J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, G. Hendler, Nature 2001, 412, 819.
Y. Li, M. Wang, T. J. White, T. J. Bunning, Q. Li, Angew. Chem. Int. Ed. 2013, 52, 8925.
L. Wang, H. Dong, Y. Li, R. Liu, Y.-F. Wang, H. K. Bisoyi, L.-D. Sun, C.-H. Yan, Q. Li, Adv. Mater. 2015, 27, 2065.
D. Brady, G. Papen, J. E.
2002; 14
2013; 3
2012; 485
2013; 1
2010; 107
2004; 29
2010; 18
2010; 104
2006; 39
2009; 110
2007; 75
2013; 7
2012; 11
2014; 136
2013; 9
1983; 99
2010; 22
1981; 82A
2012; 134
2009; 94
1977; 38
2013; 52
1997; 56
2007; 6
2014; 14
2014; 13
2005; 71
2013; 110
2008; 20
2012; 24
2009; 19
2012; 22
2010; 4
2001; 412
2003; 42
2006; 442
2012; 20
2007; 19
1989; 61
2011; 2
2010; 35
2004; 421
2015; 51
1997; 23
2015; 54
2002; 1
2014; 47
2008; 128
1995
2012; 39
2003; 299
2011; 7
2014; 43
2010; 48
1991; 67
2003; 28
2012; 48
2005; 17
2012; 41
2013; 26
2013; 25
2013; 21
2008; 8
2011; 13
2011; 19
2009; 48
2014; 5
2014; 2
2001
1986; 48
2000; 62
2011; 21
2005; 308
2011; 24
2011; 23
2001; 11
2001; 13
2009; 21
2015; 3
2013; 49
2011; 7955
2012
2013; 40
2006; 17
2006; 14
2015; 11
2013; 42
2005; 436
2002; 299
2008
2006; 18
2006; 19
2006; 6
1994; 41
2011; 332
2006; 312
1990; 64
2009; 36
2015; 25
2003; 426
2015; 27
2011; 108
2007; 479
2003; 424
2004; 17
2004; 14
1993; 10
2011; 50
2010; 132
2011; 42
2013; 497
2013; 135
2015
2014
2013
2009; 3
2009; 2
1994; 50
2010; 96
2012; 8
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
Li) Q. (e_1_2_8_24_1) 2014
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Shibaev P. V. (e_1_2_8_81_1) 2007; 479
de Gennes P. G. (e_1_2_8_97_1) 2001
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
Musevic I. (e_1_2_8_112_1) 2011; 23
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_47_1
Wang L. (e_1_2_8_31_1) 2015
Milette J. (e_1_2_8_149_1) 2012; 8
e_1_2_8_3_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
Liu Y. (e_1_2_8_156_1) 2008
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Hernández R. J. (e_1_2_8_93_1) 2012
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
Humar M. (e_1_2_8_105_1) 2012
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
Beller D. A. (e_1_2_8_143_1) 2013; 3
e_1_2_8_161_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – reference: L. Wang, H. Dong, Y. Li, R. Liu, Y.-F. Wang, H. K. Bisoyi, L.-D. Sun, C.-H. Yan, Q. Li, Adv. Mater. 2015, 27, 2065.
– reference: H. S. Sözüer, J. P. Dowling, J. Mod. Optic. 1994, 41, 231.
– reference: G. A. Ozin, S. M. Yang, Adv. Funct. Mater. 2001, 11, 95.
– reference: T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, Q. Li, Adv. Mater. 2013, 25, 5050.
– reference: P. Vukusic, J. R. Sambles, Nature 2003, 424, 852.
– reference: C.-K. Chang, C. M. W. Bastiaansen, D. J. Broer, H.-L. Kuo, Adv. Funct. Mater. 2012, 22, 2855.
– reference: K. Stratford, O. Henrich, J. S. Lintuvuori, M. E. Cates, D. Marenduzzo, Nat. Comm. 2014, 5, 3594.
– reference: V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, T. J. Bunning, Adv. Mater. 2002, 14, 187.
– reference: Y. Wang, Q. Li, Adv. Mater. 2012, 24, 1926.
– reference: L. Wang, L. Yu, X. Xiao, Z. Wang, P. Yang, W. He, H. Yang, Liq. Cryst. 2012, 39, 629.
– reference: H. Coles, M. Pivnenko, Nature 2005, 436, 997.
– reference: P. Vukusic, Phys. World 2004, 17, 35.
– reference: A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 1977, 38, 1351.
– reference: Y. Li, C. Xue, M. Wang, A. Urbas, Q. Li, Angew. Chem. Int. Ed. 2013, 52, 13703.
– reference: J. H. Moon, S. Yang, Chem. Rev. 2009, 110, 547.
– reference: L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, Q. Li, J. Am. Chem. Soc. 2014, 136, 4480.
– reference: H. S. Sözüer, J. W. Haus, J. Opt. Soc. Am. B 1993, 10, 296.
– reference: D. Brady, G. Papen, J. E. Sipe, J. Opt. Soc. Am. B 1993, 10, 644.
– reference: H. K. Bisoyi, Q. Li, in Anisotropic Nanomaterials (Ed: Q. Li), Springer, Heidelberg, Germany 2015, Ch. 6.
– reference: S.-Y. Lu, L.-C. Chien, Opt. Lett. 2010, 35, 562.
– reference: K. G. Gutiérrez-Cuevas, L. Wang, C. Xue, S. Gautam, S. Kumar, A. Urbas, Q. Li, Chem. Comm. 2015, 51, 9845.
– reference: Y. Xu, W. Liang, A. Yariv, J. G. Fleming, S.-Y. Lin, Opt. Lett. 2004, 29, 424.
– reference: A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, Y. Arakawa, Appl. Phys. Lett. 2009, 94, 171115.
– reference: Y. Haseba, H. Kikuchi, T. Nagamura, T. Kajiyama, Adv. Mater. 2005, 17, 2311.
– reference: F. C. Mackintosh, T. C. Lubensky, Phys. Rev. Lett. 1991, 67, 1169.
– reference: R. M. Hornreich, S. Shtrikman, Phys. Lett. 1981, 82A, 345.
– reference: F. Xu, P. P. Crooker, Phys. Rev. E 1997, 56, 6853.
– reference: H. Ko, V. V. Tsukruk, Nano Lett. 2006, 6, 1443.
– reference: J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, G. Hendler, Nature 2001, 412, 819.
– reference: P. V. Shibaev, D. Chiappetta, R. L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, M. M. Green, Macromolecules 2006, 39, 3986.
– reference: J. A. Moreno-Razo, E. J. Sambriski, N. L. Abbott, J. P. Hernández-Ortiz, J. J. De Pablo, Nature 2012, 485, 86.
– reference: V. Saranathan, C. O. Osuji, S. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, R. O. Prum, Proc. Natl. Acad. Sci. USA 2010, 107, 11676.
– reference: Z. Xu, C. Gao, Nat. Commun. 2011, 2, 571.
– reference: H. K. Bisoyi, Q. Li, Liquid Crystals in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Honoken, NJ, USA 2014.
– reference: H. Kikuchi, Struct. Bonding 2008, 128, 99.
– reference: H. P. Cong, J. F. Chen, S. H. Yu, Chem. Soc. Rev. 2014, 43, 7295.
– reference: P. Pollmann, E. Voss, Liq. Cryst. 1997, 23, 299.
– reference: G. Heppke, M. Krumrey, F. Oestreicher, Mol. Cryst. Liq. Cryst. 1983, 99, 99.
– reference: J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, Appl. Phys. Lett. 1986, 48, 269.
– reference: A. R. Parker, V. L. Welch, D. Driver, N. Martini, Nature 2003, 426, 786.
– reference: B. Li, W. He, L. Wang, X. Xiao, H. Yang, Soft Matter 2013, 9, 1172.
– reference: S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, Adv. Mater. 2006, 18, 48.
– reference: N. Horiuchi, Nature Photonics 2013, 7, 767.
– reference: F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, H. J. Coles, Nat. Mater. 2014, 13, 817.
– reference: M. Wang, L. He, S. Zorba, Y. Yin, Nano Lett. 2014, 14, 3966.
– reference: M. Mathews, R. Zola, S. Hurley, D. Yang, T. J. White, T. J. Bunning, Q. Li, J. Am. Chem. Soc. 2010, 132, 18361.
– reference: H. J. Coles, M. N. Pivnenko, Nature 2005, 436, 997.
– reference: I. W. Hamley, Angew. Chem. Int. Ed. 2003, 42, 1692.
– reference: H. Lee, H. J. Park, O. J. Kwon, S. J. Yun, J. H. Park, S. Hong, S. T. Shin, SID Symposium Digest. 2011, 42, 121.
– reference: K. H. Jeong, J. Kim, L. P. Lee, Science 2006, 312, 557.
– reference: V. Welch, V. Lousse, O. Deparis, A. Parker, J. P. Vigneron, Phys. Rev. E 2007, 75, 041919.
– reference: G. N. Burlak, Phys. Lett. A 2002, 299, 94.
– reference: M. Vennes, S. Martin, T. Gisler, R. Zentel, Macromolecules 2006, 39, 8326.
– reference: A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, Phys. Rev. E 2005, 71, 051705.
– reference: D. S. Miller, X. Wang, N. L. Abbott, Chem. Mater. 2013, 26, 496.
– reference: P. P. Crooker, in Chirality in Liquid Crystals (Eds: H.-S. Kitzerow, C. Bahr), Springer-Verlag, New York, NY, USA 2001, Ch. 7.
– reference: A. Honglawan, D. A. Beller, M. Cavallaro, R. D. Kamien, K. J. Stebe, S. Yang, Proc. Nat. Acad. Sci. USA 2013, 110, 34.
– reference: J. H. Kang, J. H. Moon, S. K. Lee, S. G. Park, S. G. Jang, S. Yang, S. M. Yang, Adv. Mater. 2008, 20, 3061.
– reference: I. Musevic, M. Humar, Proc. SPIE 2011, 7955, 795509.
– reference: Y. Han, K. Pacheco, C. W. Bastiaansen, D. J. Broer, R. P. Sijbesma, J. Am. Chem. Soc. 2010, 132, 2961.
– reference: Y. Wang, A. Urbas, Q. Li, J. Am. Chem. Soc. 2012, 134, 3342.
– reference: I. Gryn, E. Lacaze, R. Bartolino, B. Zappone, Adv. Funct. Mater. 2015, 25, 142.
– reference: O. D. Lavrentovich, Proc. Natl Acad. Sci. USA 2011, 108, 5143.
– reference: Y. Hisakado, H. Kikuchi, T. Nagamura, T. Kajiyama, Adv. Mater. 2005, 17, 96.
– reference: A. Honglawan, S. Yang, in Nanoscience with Liquid Crystals (Ed: Q. Li), Springer, Heidelberg, Germany 2014, Ch. 2.
– reference: N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, A. P. H. J. Schenning, J. Am. Chem. Soc. 2012, 134, 7608.
– reference: M. Humar, I. Musevic, Opt. Express 2010, 18, 26995.
– reference: Y. Li, A. Urbas, Q. Li, J. Am. Chem. Soc. 2012, 134, 9573.
– reference: Y. Xia, B. Gates, Z. Y. Li, Adv. Mater. 2001, 13, 409.
– reference: P. Etchegoin, Phys. Rev. E 2000, 62, 1435.
– reference: T.-Z. Shen, S.-H. Hong, J.-K. Song, Nat. Mater. 2014, 13, 394.
– reference: L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, Nature 2006, 442, 551.
– reference: M. Humar, Ph.D. Thesis, Jozef Stefan Institute, Ljubljana, Slovenia, 2012.
– reference: Y. Uchida, Y. Takanishi, J. Yamamoto, Adv. Mater. 2013, 25, 3234.
– reference: Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, J. A. Rogers, Nature 2013, 497, 95.
– reference: J. Aizenberg, G. Hendler, J. Mater. Chem. 2004, 14, 2066.
– reference: Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (Ed: Q. Li), John Wiley and Sons, Hoboken, NJ, USA 2012.
– reference: Y. Zhao, Y. Cheng, L. Shang, J. Wang, Z. Xie, Z. Gu, Small 2015, 11, 151.
– reference: A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, E. L. Thomas, Adv. Mater. 2001, 13, 421.
– reference: Intelligent Stimuli-Responsive Materials: From Well-Defined Nanostructures to Applications (Ed: Q. Li), John Wiley & Sons, Hoboken, NJ, USA 2013.
– reference: F. Mondiot, X. Wang, J. J. de Pablo, N. L. Abbott, J. Am. Chem. Soc. 2013, 135, 9972.
– reference: L. Wang, W. He, X. Xiao, F. Meng, Y. Zhang, P. Yang, L. Wang, H. Yang, Small 2012, 8, 2189.
– reference: Y. Zhao, Z. Xie, H. Gu, C. Zhu, Z. Gu, Chem. Soc. Rev. 2012, 41, 3297.
– reference: J. H. Erdmann, S. Zumer, J. W. Doane, Phys. Rev. Lett. 1990, 64, 1907.
– reference: M. J. Escuti, J. Qi, G. P. Crawford, Opt. Lett. 2003, 28, 522.
– reference: A. M. Lowe, N. L. Abbott, Chem. Mater. 2011, 24, 746.
– reference: S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, D. A. Weitz, Science 2005, 308, 537.
– reference: H. Choi, H. Higuchi, H. Kikuchi, Soft Matter 2011, 7, 4252.
– reference: J. Noh, H. L. Liang, I. Drevensek-Olenik, J. P. F. Lagerwall, J. Mater. Chem. C 2014, 2, 806.
– reference: L. Wang, W. He, M. Wang, M. Wei, J. Sun, X. Chen, H. Yang, Liq. Cryst. 2013, 40, 354.
– reference: M. Ravnik, G. P. Alexander, J. M. Yeomans, S. Žumer, Proc. Nat. Acad. Sci. USA 2011, 108, 5188.
– reference: H. Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, J.-H. Liu, Appl. Phys. Lett. 2010, 96, 121103.
– reference: P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, X. Hou, Optics Express 2012, 20, 5775.
– reference: Y. H. Kim, D. K. Yoon, H. S. Jeong, O. D. Lavrentovich, H. T. Jung, Adv. Funct. Mater. 2011, 21, 610.
– reference: G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, R. Bartolino, Adv. Mater. 2011, 23, 5773.
– reference: K. J. Vahala, Nature 2003, 424, 839.
– reference: J. Chen, E. Lacaze, E. Brasselet, S. R. Harutyunyan, N. Katsonis, B. L. Feringa, J. Mater. Chem. C 2014, 2, 8137.
– reference: A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, R. P. Sijbesm, Chem. Commun. 2012, 48, 4579.
– reference: X. Su, S. Voskian, R. P. Hughes, I. Aprahamian, Angew. Chem. Int. Ed. 2013, 52, 10934.
– reference: R. J. Hernández, Ph.D. Thesis, University of Calabria, Italy, 2012.
– reference: L. Wang, W. He, X. Xiao, M. Wang, M. Wang, P. Yang, Z. Zhou, H. Yang, H. Yu, Y. Lu, J. Mater. Chem. 2012, 22, 19629.
– reference: M. Escuti, G. Crawford, Mol. Cryst. Liq. Cryst. 2004, 421, 23.
– reference: P. S. Drzaic, Liquid Crystal Dispersions, World Scientific, Singapore, 1995.
– reference: F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, K. J. Stebe, Adv. Opt. Mater. 2015, 3, 1287.
– reference: Y. Liu, X. W. Sun, Adv. OptoElectron. 2008, 684349.
– reference: F. Castles, S. M. Morris, E. M. Terentjev, H. J. Coles, Phys. Rev. Lett. 2010, 104, 157801.
– reference: L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang, M. Ellahi, Z. Yang, D. Zhao, H. Yang, L. Guo, J. Mater. Chem. C 2013, 1, 6526.
– reference: D. C. Wright, N. D. Mermin, Rev. Modern Phys. 1989, 61, 385.
– reference: P. V. Shibaev, K. Schaumburg, V. Plaksin, Chem. Mater. 2002, 14, 959.
– reference: Y. H. Kim, J. O. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. B. Yoon, H. T. Jung, Adv. Mater. 2010, 22, 2416.
– reference: G. M. Gratson, F. Garcia-Santamaria, V. Lousse, M. J. Xu, S. H. Fan, J. A. Lewis, P. V. Braun, Adv. Mater. 2006, 18, 461.
– reference: Y. Li, M. Wang, T. J. White, T. J. Bunning, Q. Li, Angew. Chem. Int. Ed. 2013, 52, 8925.
– reference: D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, H.-T. Jung, Nat. Mater. 2007, 6, 866.
– reference: J. H. Moon, J. Ford, S. Yang, Polym. Adv. Technol. 2006, 17, 83.
– reference: S. Morris, A. Ford, C. Gillespie, M. Pivnenko, O. Hadeler, H. J. Coles, J. Soc. Inf. Display 2006, 14, 565.
– reference: J. H. Lee, Y. S. Kim, K. Constant, K. M. Ho, Adv. Mater. 2007, 19, 791.
– reference: H. S. Jeong, Y. K. Ko, Y. H. Kim, D. K. Yoon, H.-T. Jung, Carbon 2010, 48, 774.
– reference: K. G. Sullivan, D. G. Hall, Phys. Rev. A 1994, 50, 2701.
– reference: I. B. Burgess, M. Loncˇar, J. Aizenberg, J. Mater. Chem. C 2013, 1, 6075.
– reference: J. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas, Adv. Mater. 2006, 19, 2505.
– reference: S. T. Hur, B. R. Lee, M. J. Gim, K.W. Park, M. H. Song, S. W. Choi, Adv. Mater. 2013, 21, 3002.
– reference: X. Chen, L. Wang, C. Li, J. Xiao, H. Ding, X. Liu, X. Zhang, W. He, H. Yang, Chem. Commun. 2013, 49, 10097.
– reference: A. Fernández-Nieves, G. Cristobal, V. Garcés-Chávez, G. C. Spalding, K. Dholakia, D. A. Weitz, Adv. Mater. 2005, 17, 680.
– reference: S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutierrez, F. del Monte, Chem. Soc. Rev. 2013, 42, 794.
– reference: D. J. Mulder, A. P. H. J. Schenning, C. W. M. Bastiaansen, J. Mater. Chem. C 2014, 2, 6695.
– reference: J. H. Jang, S. J. Jhaveri, B. Rasin, C. Koh, C. K. Ober, E. L. Thomas, Nano Lett. 2008, 8, 1456.
– reference: J. K. Gupta, S. Sivakumar, F. Caruso, N. L. Abbott, Angew. Chem. Int. Ed. 2009, 48, 1652.
– reference: L. Wang, W. He, X. Xiao, Q. Yang, B. Li, P. Yang, H. Yang, J. Mater. Chem. 2012, 22, 2383.
– reference: F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. Hands, S. S. Choi, R. H. Friend, H. J. Coles, Nat. Mater. 2012, 11, 599.
– reference: H. K. Bisoyi, Q. Li, Acc. Chem. Res. 2014, 47, 3184.
– reference: D. Coursault, J. Grand, B. Zappone, H. Ayeb, G. Lévi, N. Félidj, E. Lacaze, Adv. Mater. 2012, 24, 1461.
– reference: D. K. Yoon, Y. H. Kim, D. S. Kim, S. D. Oh, I. I. Smalyukh, N. A. Clark, H. T. Jung, Proc. Nat. Acad. Sci. USA 2013, 110, 19263.
– reference: J. Aizenberg, D. A. Muller, J. L. Grazul, D. R. Hamann, Science 2003, 299, 1205.
– reference: Nanoscience with Liquid Crystals: From Self-Organized Nanostructures to Applications (Ed: Q. Li), Springer, Heidelberg, Germany 2014.
– reference: M. R. Bockstaller, R. A. Mickiewicz, E. L. Thomas, Adv. Mater. 2005, 17, 1331.
– reference: Y. H. Kim, D. K. Yoon, H. S. Jeong, J. H. Kim, E. K. Yoon, H.-T. Jung, Adv. Func. Mater. 2009, 19, 3008.
– reference: C.-W. Chen, H.-C. Jau, C.-T. Wang, C.-H. Lee, I. C. Khoo, T.-H. Lin, Opt. Express 2012, 20, 23978.
– reference: A. Honglawan, D. A. Beller, M. Cavallaro, R. D. Kamien, K. J. Stebe, S. Yang, Adv. Mater. 2011, 23, 5519.
– reference: J. Ge, Y. Yin, Angew. Chem. Int. Ed. 2011, 50, 1492.
– reference: W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, Nat. Mater. 2002, 1, 111.
– reference: Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, T. J. Bunning, Adv. Mater. 2011, 23, 5069.
– reference: P. V. Shibaev, R. L. Sanford, D. Chiappetta, P. Rivera, Mol. Cryst. Liq. Cryst. 2007, 479, 161.
– reference: J. Fan, Y. Li, H. K. Bisoyi, R. S. Zola, D. K. Yang, T. J. Bunning, D. A. Weitz, Q. Li, Angew. Chem. Int. Ed. 2015, 54, 2160.
– reference: L. Wang, Q. Li, in Organic & Hybrid Photonic Crystals, (Ed: D. Comoretto), Springer, New York, NY, USA 2015, Ch. 18.
– reference: K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, S.-W. Choi, J. Mater. Chem. C 2015, 3, 5383.
– reference: J. Milette, S. Relaix, C. Lavigne, V. Toader, S. J. Cowling, I. M. Saez, R. B. Lennox, J. W. Goodby, L. Reven, Soft Matter 2012, 8, 2593.
– reference: C. Meyer, L. L. Cunff, M. Belloul, G. Foyart, Materials 2009, 2, 499.
– reference: M. Humar, M. Ravnik, S. Pajk, I. Muševicˇ, Nat. Photonics 2009, 3, 595.
– reference: P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Oxford University Press, Oxford, 2001.
– reference: I. Musevic, M. Skarabo, M. Humar, J. Phys.: Condens. Matter. 2011, 23, 284112.
– reference: M. Honda, T. Seki, Y. Takeoka, Adv. Mater. 2009, 21, 18014.
– reference: H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajikawa, Nat. Mater. 2002, 1, 64.
– reference: H. Coles, S. Morris, Nature Photonics 2010, 4, 676.
– reference: H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, B. Taheri, Adv. Mater. 2011, 13, 1069.
– reference: L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, Q. Li, Adv. Opt. Mater. 2014, 2, 845.
– reference: I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, N. L. Abbott, Science 2011, 332, 1297.
– reference: D. A. Beller, M. A. Gharbi, A. Honglawan, K. J. Stebe, S. Yang, R. D. Kamien, Phys. Rev. X 2013, 3, 041026.
– reference: I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, J. E. Sipe, Macromolecules 2006, 39, 1449.
– reference: M. Kleman, O. D. Lavrentovich, Liq. Cryst. 2009, 36, 1085.
– reference: Y. Zhao, L. Shang, Y. Cheng, Z. Gu, Acc. Chem. Res. 2014, 47, 3632.
– reference: M. Humar, I. Musevic, Opt. Express 2011, 19, 19836.
– reference: J. Yan, L. Rao, M. Jiao, H. C. Cheng, S. T. Wu, J. Mater. Chem. 2011, 21, 7870.
– volume: 13
  start-page: 421
  year: 2001
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1069
  year: 2011
  publication-title: Adv. Mater.
– volume: 42
  start-page: 121
  year: 2011
  publication-title: SID Symposium Digest.
– volume: 497
  start-page: 95
  year: 2013
  publication-title: Nature
– volume: 21
  start-page: 18014
  year: 2009
  publication-title: Adv. Mater.
– volume: 2
  start-page: 806
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 312
  start-page: 557
  year: 2006
  publication-title: Science
– start-page: 684349
  year: 2008
  publication-title: Adv. OptoElectron.
– volume: 3
  start-page: 5383
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 25
  start-page: 142
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 1461
  year: 2012
  publication-title: Adv. Mater.
– volume: 1
  start-page: 6075
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 21
  start-page: 7870
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 39
  start-page: 1449
  year: 2006
  publication-title: Macromolecules
– year: 2014
– volume: 50
  start-page: 2701
  year: 1994
  publication-title: Phys. Rev. A
– volume: 110
  start-page: 547
  year: 2009
  publication-title: Chem. Rev.
– volume: 82A
  start-page: 345
  year: 1981
  publication-title: Phys. Lett.
– volume: 52
  start-page: 8925
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 39
  start-page: 3986
  year: 2006
  publication-title: Macromolecules
– volume: 134
  start-page: 3342
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 2383
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 845
  year: 2014
  publication-title: Adv. Opt. Mater.
– volume: 11
  start-page: 599
  year: 2012
  publication-title: Nat. Mater.
– volume: 2
  start-page: 8137
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 43
  start-page: 7295
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 111
  year: 2002
  publication-title: Nat. Mater.
– volume: 3
  start-page: 1287
  year: 2015
  publication-title: Adv. Opt. Mater.
– volume: 19
  start-page: 791
  year: 2007
  publication-title: Adv. Mater.
– volume: 424
  start-page: 839
  year: 2003
  publication-title: Nature
– volume: 61
  start-page: 385
  year: 1989
  publication-title: Rev. Modern Phys.
– volume: 13
  start-page: 409
  year: 2001
  publication-title: Adv. Mater.
– volume: 19
  start-page: 19836
  year: 2011
  publication-title: Opt. Express
– volume: 135
  start-page: 9972
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 5773
  year: 2011
  publication-title: Adv. Mater.
– volume: 485
  start-page: 86
  year: 2012
  publication-title: Nature
– volume: 2
  start-page: 6695
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 17
  start-page: 83
  year: 2006
  publication-title: Polym. Adv. Technol.
– volume: 26
  start-page: 496
  year: 2013
  publication-title: Chem. Mater.
– volume: 40
  start-page: 354
  year: 2013
  publication-title: Liq. Cryst.
– volume: 56
  start-page: 6853
  year: 1997
  publication-title: Phys. Rev. E
– volume: 23
  start-page: 284112
  year: 2011
  publication-title: J. Phys.: Condens. Matter.
– volume: 17
  start-page: 1331
  year: 2005
  publication-title: Adv. Mater.
– volume: 13
  start-page: 394
  year: 2014
  publication-title: Nat. Mater.
– volume: 42
  start-page: 794
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 17
  start-page: 2311
  year: 2005
  publication-title: Adv. Mater.
– volume: 39
  start-page: 629
  year: 2012
  publication-title: Liq. Cryst.
– volume: 14
  start-page: 565
  year: 2006
  publication-title: J. Soc. Inf. Display
– volume: 1
  start-page: 6526
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 49
  start-page: 10097
  year: 2013
  publication-title: Chem. Commun.
– volume: 5
  start-page: 3594
  year: 2014
  publication-title: Nat. Comm.
– volume: 136
  start-page: 4480
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7955
  start-page: 795509
  year: 2011
  publication-title: Proc. SPIE
– volume: 35
  start-page: 562
  year: 2010
  publication-title: Opt. Lett.
– volume: 24
  start-page: 1926
  year: 2012
  publication-title: Adv. Mater.
– volume: 23
  start-page: 5069
  year: 2011
  publication-title: Adv. Mater.
– volume: 11
  start-page: 151
  year: 2015
  publication-title: Small
– volume: 20
  start-page: 5775
  year: 2012
  publication-title: Optics Express
– volume: 1
  start-page: 64
  year: 2002
  publication-title: Nat. Mater.
– volume: 21
  start-page: 610
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 3184
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 41
  start-page: 231
  year: 1994
  publication-title: J. Mod. Optic.
– volume: 308
  start-page: 537
  year: 2005
  publication-title: Science
– volume: 6
  start-page: 1443
  year: 2006
  publication-title: Nano Lett.
– volume: 13
  start-page: 817
  year: 2014
  publication-title: Nat. Mater.
– volume: 132
  start-page: 2961
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 746
  year: 2011
  publication-title: Chem. Mater.
– volume: 18
  start-page: 48
  year: 2006
  publication-title: Adv. Mater.
– volume: 22
  start-page: 2416
  year: 2010
  publication-title: Adv. Mater.
– volume: 14
  start-page: 2066
  year: 2004
  publication-title: J. Mater. Chem.
– volume: 108
  start-page: 5188
  year: 2011
  publication-title: Proc. Nat. Acad. Sci. USA
– volume: 17
  start-page: 35
  year: 2004
  publication-title: Phys. World
– year: 1995
– volume: 48
  start-page: 1652
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 187
  year: 2002
  publication-title: Adv. Mater.
– volume: 21
  start-page: 3002
  year: 2013
  publication-title: Adv. Mater.
– volume: 25
  start-page: 3234
  year: 2013
  publication-title: Adv. Mater.
– volume: 107
  start-page: 11676
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 50
  start-page: 1492
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 22
  start-page: 2855
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 3632
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 42
  start-page: 1692
  year: 2003
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  start-page: 5519
  year: 2011
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2593
  year: 2012
  publication-title: Soft Matter
– year: 2013
– volume: 52
  start-page: 13703
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 75
  start-page: 041919
  year: 2007
  publication-title: Phys. Rev. E
– volume: 14
  start-page: 3966
  year: 2014
  publication-title: Nano Lett.
– volume: 424
  start-page: 852
  year: 2003
  publication-title: Nature
– volume: 299
  start-page: 1205
  year: 2003
  publication-title: Science
– volume: 7
  start-page: 767
  year: 2013
  publication-title: Nature Photonics
– volume: 4
  start-page: 676
  year: 2010
  publication-title: Nature Photonics
– volume: 39
  start-page: 8326
  year: 2006
  publication-title: Macromolecules
– volume: 128
  start-page: 99
  year: 2008
  publication-title: Struct. Bonding
– volume: 25
  start-page: 5050
  year: 2013
  publication-title: Adv. Mater.
– volume: 19
  start-page: 2505
  year: 2006
  publication-title: Adv. Mater.
– volume: 104
  start-page: 157801
  year: 2010
  publication-title: Phys. Rev. Lett.
– year: 2001
– volume: 2
  start-page: 499
  year: 2009
  publication-title: Materials
– volume: 426
  start-page: 786
  year: 2003
  publication-title: Nature
– volume: 18
  start-page: 461
  year: 2006
  publication-title: Adv. Mater.
– volume: 6
  start-page: 866
  year: 2007
  publication-title: Nat. Mater.
– volume: 332
  start-page: 1297
  year: 2011
  publication-title: Science
– volume: 28
  start-page: 522
  year: 2003
  publication-title: Opt. Lett.
– volume: 3
  start-page: 595
  year: 2009
  publication-title: Nat. Photonics
– volume: 108
  start-page: 5143
  year: 2011
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 51
  start-page: 9845
  year: 2015
  publication-title: Chem. Comm.
– volume: 134
  start-page: 9573
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 34
  year: 2013
  publication-title: Proc. Nat. Acad. Sci. USA
– volume: 134
  start-page: 7608
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 571
  year: 2011
  publication-title: Nat. Commun.
– volume: 36
  start-page: 1085
  year: 2009
  publication-title: Liq. Cryst.
– volume: 29
  start-page: 424
  year: 2004
  publication-title: Opt. Lett.
– volume: 27
  start-page: 2065
  year: 2015
  publication-title: Adv. Mater.
– volume: 71
  start-page: 051705
  year: 2005
  publication-title: Phys. Rev. E
– volume: 22
  start-page: 19629
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 644
  year: 1993
  publication-title: J. Opt. Soc. Am. B
– volume: 7
  start-page: 4252
  year: 2011
  publication-title: Soft Matter
– volume: 19
  start-page: 3008
  year: 2009
  publication-title: Adv. Func. Mater.
– volume: 412
  start-page: 819
  year: 2001
  publication-title: Nature
– volume: 48
  start-page: 774
  year: 2010
  publication-title: Carbon
– volume: 67
  start-page: 1169
  year: 1991
  publication-title: Phys. Rev. Lett.
– volume: 52
  start-page: 10934
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 41
  start-page: 3297
  year: 2012
  publication-title: Chem. Soc. Rev.
– year: 2015
– volume: 14
  start-page: 959
  year: 2002
  publication-title: Chem. Mater.
– volume: 3
  start-page: 041026
  year: 2013
  publication-title: Phys. Rev. X
– volume: 62
  start-page: 1435
  year: 2000
  publication-title: Phys. Rev. E
– volume: 436
  start-page: 997
  year: 2005
  publication-title: Nature
– volume: 64
  start-page: 1907
  year: 1990
  publication-title: Phys. Rev. Lett.
– volume: 20
  start-page: 3061
  year: 2008
  publication-title: Adv. Mater.
– volume: 421
  start-page: 23
  year: 2004
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 23
  start-page: 299
  year: 1997
  publication-title: Liq. Cryst.
– volume: 99
  start-page: 99
  year: 1983
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 8
  start-page: 1456
  year: 2008
  publication-title: Nano Lett.
– volume: 110
  start-page: 19263
  year: 2013
  publication-title: Proc. Nat. Acad. Sci. USA
– volume: 479
  start-page: 161
  year: 2007
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 38
  start-page: 1351
  year: 1977
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 95
  year: 2001
  publication-title: Adv. Funct. Mater.
– year: 2012
– volume: 17
  start-page: 96
  year: 2005
  publication-title: Adv. Mater.
– volume: 48
  start-page: 4579
  year: 2012
  publication-title: Chem. Commun.
– volume: 9
  start-page: 1172
  year: 2013
  publication-title: Soft Matter
– volume: 299
  start-page: 94
  year: 2002
  publication-title: Phys. Lett. A
– volume: 20
  start-page: 23978
  year: 2012
  publication-title: Opt. Express
– volume: 48
  start-page: 269
  year: 1986
  publication-title: Appl. Phys. Lett.
– volume: 54
  start-page: 2160
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 94
  start-page: 171115
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 26995
  year: 2010
  publication-title: Opt. Express
– volume: 10
  start-page: 296
  year: 1993
  publication-title: J. Opt. Soc. Am. B
– volume: 8
  start-page: 2189
  year: 2012
  publication-title: Small
– volume: 132
  start-page: 18361
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 96
  start-page: 121103
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 680
  year: 2005
  publication-title: Adv. Mater.
– volume: 442
  start-page: 551
  year: 2006
  publication-title: Nature
– ident: e_1_2_8_74_1
  doi: 10.1038/nmat712
– volume: 8
  start-page: 2593
  year: 2012
  ident: e_1_2_8_149_1
  publication-title: Soft Matter
– ident: e_1_2_8_59_1
  doi: 10.1039/c1jm10711a
– ident: e_1_2_8_78_1
  doi: 10.1002/ange.201305514
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.201200241
– volume-title: Organic & Hybrid Photonic Crystals
  year: 2015
  ident: e_1_2_8_31_1
– ident: e_1_2_8_35_1
  doi: 10.1007/430_2007_075
– ident: e_1_2_8_115_1
  doi: 10.1103/PhysRevA.50.2701
– ident: e_1_2_8_100_1
  doi: 10.1126/science.1195639
– ident: e_1_2_8_116_1
  doi: 10.1364/JOSAB.10.000644
– ident: e_1_2_8_119_1
  doi: 10.1063/1.3127523
– ident: e_1_2_8_144_1
  doi: 10.1002/adom.201500153
– ident: e_1_2_8_57_1
  doi: 10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6
– volume: 479
  start-page: 161
  year: 2007
  ident: e_1_2_8_81_1
  publication-title: Mol. Cryst. Liq. Cryst.
– ident: e_1_2_8_137_1
  doi: 10.1002/adfm.201402875
– ident: e_1_2_8_129_1
  doi: 10.1002/adom.201400166
– ident: e_1_2_8_53_1
  doi: 10.1002/adma.201204591
– ident: e_1_2_8_2_1
  doi: 10.1002/9781118680469
– ident: e_1_2_8_30_1
  doi: 10.1002/9781118259993
– ident: e_1_2_8_118_1
  doi: 10.1364/OL.29.000424
– ident: e_1_2_8_52_1
  doi: 10.1039/c1sm05098b
– ident: e_1_2_8_91_1
  doi: 10.1038/nmat3330
– ident: e_1_2_8_96_1
  doi: 10.1103/PhysRevLett.64.1907
– ident: e_1_2_8_120_1
  doi: 10.1021/ma052167o
– ident: e_1_2_8_33_1
  doi: 10.1103/RevModPhys.61.385
– ident: e_1_2_8_139_1
  doi: 10.1073/pnas.1317922110
– ident: e_1_2_8_1_1
  doi: 10.1021/cr900080v
– ident: e_1_2_8_54_1
  doi: 10.1039/C5TC00420A
– ident: e_1_2_8_148_1
  doi: 10.1038/nature05024
– ident: e_1_2_8_106_1
  doi: 10.1038/nature11084
– ident: e_1_2_8_146_1
  doi: 10.1364/OE.20.005775
– ident: e_1_2_8_130_1
  doi: 10.1021/ar500317s
– ident: e_1_2_8_62_1
  doi: 10.1364/OL.35.000562
– ident: e_1_2_8_163_1
  doi: 10.1039/C2CS35353A
– ident: e_1_2_8_72_1
– ident: e_1_2_8_127_1
  doi: 10.1039/C3TC32055C
– ident: e_1_2_8_131_1
  doi: 10.1002/smll.201401600
– ident: e_1_2_8_85_1
  doi: 10.1039/c3tc30919c
– ident: e_1_2_8_55_1
  doi: 10.1080/026782997208587
– ident: e_1_2_8_157_1
  doi: 10.1007/978-3-319-18293-3_6
– ident: e_1_2_8_108_1
  doi: 10.1063/1.96577
– ident: e_1_2_8_77_1
  doi: 10.1039/c2cc16934g
– ident: e_1_2_8_19_1
  doi: 10.1002/anie.200907091
– ident: e_1_2_8_86_1
  doi: 10.1038/ncomms4954
– ident: e_1_2_8_109_1
  doi: 10.1038/nphoton.2009.170
– ident: e_1_2_8_32_1
  doi: 10.1021/ar500249k
– ident: e_1_2_8_155_1
  doi: 10.1080/15421400490501158
– ident: e_1_2_8_61_1
  doi: 10.1038/nature03932
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.200500167
– ident: e_1_2_8_141_1
  doi: 10.1073/pnas.1214708109
– start-page: 684349
  year: 2008
  ident: e_1_2_8_156_1
  publication-title: Adv. OptoElectron.
  doi: 10.1155/2008/684349
– ident: e_1_2_8_65_1
  doi: 10.1039/c3cc46117c
– ident: e_1_2_8_111_1
  doi: 10.1038/nature01939
– ident: e_1_2_8_150_1
  doi: 10.1002/adma.201103791
– ident: e_1_2_8_6_1
  doi: 10.1088/2058-7058/17/2/34
– ident: e_1_2_8_117_1
  doi: 10.1016/S0375-9601(02)00618-7
– ident: e_1_2_8_134_1
  doi: 10.1038/nmat2029
– ident: e_1_2_8_138_1
  doi: 10.1002/adma.200903728
– ident: e_1_2_8_67_1
  doi: 10.1038/nphoton.2013.255
– ident: e_1_2_8_94_1
  doi: 10.1142/2337
– ident: e_1_2_8_14_1
  doi: 10.1002/1521-4095(200103)13:6<421::AID-ADMA421>3.0.CO;2-#
– volume: 23
  start-page: 284112
  year: 2011
  ident: e_1_2_8_112_1
  publication-title: J. Phys.: Condens. Matter.
– ident: e_1_2_8_124_1
  doi: 10.1002/anie.201306396
– ident: e_1_2_8_8_1
  doi: 10.1103/PhysRevE.75.041919
– volume-title: Ph.D. Thesis
  year: 2012
  ident: e_1_2_8_93_1
– ident: e_1_2_8_123_1
  doi: 10.1002/anie.201410788
– ident: e_1_2_8_98_1
  doi: 10.1103/PhysRevE.56.6853
– ident: e_1_2_8_121_1
  doi: 10.1364/OE.18.026995
– ident: e_1_2_8_142_1
  doi: 10.3390/ma2020499
– ident: e_1_2_8_73_1
  doi: 10.1038/nature03932
– ident: e_1_2_8_60_1
  doi: 10.1080/00268948308072031
– ident: e_1_2_8_92_1
  doi: 10.1002/adma.201102828
– ident: e_1_2_8_7_1
  doi: 10.1073/pnas.0909616107
– ident: e_1_2_8_51_1
  doi: 10.1364/OE.20.023978
– ident: e_1_2_8_89_1
  doi: 10.1073/pnas.1015831108
– ident: e_1_2_8_70_1
  doi: 10.1021/ja211837f
– ident: e_1_2_8_42_1
  doi: 10.1080/02678292.2012.669501
– ident: e_1_2_8_68_1
  doi: 10.1021/ja500933h
– ident: e_1_2_8_126_1
  doi: 10.1039/C4TC01297F
– ident: e_1_2_8_12_1
  doi: 10.1002/1521-4095(200103)13:6<409::AID-ADMA409>3.0.CO;2-C
– ident: e_1_2_8_110_1
  doi: 10.1103/PhysRevLett.38.1351
– ident: e_1_2_8_58_1
  doi: 10.1007/0-387-21642-1_7
– ident: e_1_2_8_29_1
  doi: 10.1002/0471238961.1209172103151212.a01.pub3
– ident: e_1_2_8_9_1
  doi: 10.1038/35090573
– ident: e_1_2_8_161_1
  doi: 10.1021/nl060608r
– ident: e_1_2_8_133_1
  doi: 10.1007/978-3-319-04867-3_2
– ident: e_1_2_8_99_1
  doi: 10.1002/anie.200804500
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.200602550
– ident: e_1_2_8_128_1
  doi: 10.1002/adma.201300776
– ident: e_1_2_8_101_1
  doi: 10.1002/adma.200401462
– ident: e_1_2_8_79_1
  doi: 10.1021/ja301845n
– ident: e_1_2_8_95_1
  doi: 10.1103/PhysRevLett.67.1169
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.200200546
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevLett.104.157801
– volume-title: The Physics of Liquid Crystals
  year: 2001
  ident: e_1_2_8_97_1
– ident: e_1_2_8_107_1
  doi: 10.1021/cm4025028
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.200801258
– ident: e_1_2_8_3_1
  doi: 10.1038/426786a
– ident: e_1_2_8_46_1
  doi: 10.1038/nphoton.2010.184
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.200502651
– ident: e_1_2_8_147_1
  doi: 10.1038/nature12083
– ident: e_1_2_8_158_1
  doi: 10.1021/nl501302s
– ident: e_1_2_8_122_1
  doi: 10.1126/science.1109164
– ident: e_1_2_8_82_1
  doi: 10.1021/ma052046o
– ident: e_1_2_8_18_1
  doi: 10.1021/nl080444
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.200800141
– ident: e_1_2_8_10_1
  doi: 10.1126/science.1079204
– ident: e_1_2_8_153_1
  doi: 10.1364/OL.28.000522
– volume: 3
  start-page: 041026
  year: 2013
  ident: e_1_2_8_143_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_56_1
  doi: 10.1038/nmat3993
– volume-title: Ph.D. Thesis
  year: 2012
  ident: e_1_2_8_105_1
– ident: e_1_2_8_145_1
  doi: 10.1126/science.1123053
– ident: e_1_2_8_69_1
  doi: 10.1039/C5CC02127H
– ident: e_1_2_8_102_1
  doi: 10.1021/ja4022182
– ident: e_1_2_8_104_1
  doi: 10.1021/cm202632m
– ident: e_1_2_8_88_1
  doi: 10.1039/c3tc31253d
– ident: e_1_2_8_4_1
  doi: 10.1039/c2cs15267c
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.200501447
– ident: e_1_2_8_44_1
  doi: 10.1016/0375-9601(81)90912-9
– ident: e_1_2_8_40_1
  doi: 10.1080/02678292.2012.749306
– ident: e_1_2_8_162_1
  doi: 10.1039/C4CS00181H
– ident: e_1_2_8_66_1
  doi: 10.1002/adma.201300798
– ident: e_1_2_8_83_1
  doi: 10.1002/adfm.201200362
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.201303786
– ident: e_1_2_8_132_1
  doi: 10.1002/adfm.200901135
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevE.62.1435
– ident: e_1_2_8_36_1
  doi: 10.1002/smll.201200052
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.200500042
– ident: e_1_2_8_71_1
  doi: 10.1002/adma.201405690
– ident: e_1_2_8_47_1
  doi: 10.1080/09500349414550291
– ident: e_1_2_8_5_1
  doi: 10.1038/nature01941
– ident: e_1_2_8_63_1
  doi: 10.1103/PhysRevE.71.051705
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.200400639
– ident: e_1_2_8_80_1
  doi: 10.1021/cm011510a
– ident: e_1_2_8_125_1
  doi: 10.1021/ja302772z
– ident: e_1_2_8_140_1
  doi: 10.1002/adma.201103008
– ident: e_1_2_8_13_1
  doi: 10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O
– ident: e_1_2_8_151_1
  doi: 10.1016/j.carbon.2009.10.026
– ident: e_1_2_8_75_1
  doi: 10.1889/1.3621051
– ident: e_1_2_8_136_1
  doi: 10.1080/02678290902814718
– ident: e_1_2_8_76_1
  doi: 10.1021/ja907826z
– ident: e_1_2_8_159_1
  doi: 10.1038/nmat3888
– ident: e_1_2_8_48_1
  doi: 10.1364/JOSAB.10.000296
– ident: e_1_2_8_84_1
  doi: 10.1039/C4TC00785A
– ident: e_1_2_8_90_1
  doi: 10.1073/pnas.1102130108
– ident: e_1_2_8_45_1
  doi: 10.1038/nmat727
– ident: e_1_2_8_154_1
  doi: 10.1002/1521-4095(20020205)14:3<187::AID-ADMA187>3.0.CO;2-O
– ident: e_1_2_8_87_1
  doi: 10.1039/c2jm34013e
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.201103362
– ident: e_1_2_8_28_1
  doi: 10.1021/ja108437n
– ident: e_1_2_8_50_1
  doi: 10.1889/1.2210808
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.200501355
– ident: e_1_2_8_64_1
  doi: 10.1063/1.3368119
– ident: e_1_2_8_160_1
  doi: 10.1038/ncomms1583
– ident: e_1_2_8_135_1
  doi: 10.1002/adfm.201001303
– ident: e_1_2_8_152_1
  doi: 10.1002/pat.663
– ident: e_1_2_8_103_1
  doi: 10.1021/ma0613279
– ident: e_1_2_8_11_1
  doi: 10.1039/b402558j
– ident: e_1_2_8_39_1
  doi: 10.1039/C2JM15461G
– volume-title: Nanoscience with Liquid Crystals: From Self‐Organized Nanostructures to Applications
  year: 2014
  ident: e_1_2_8_24_1
– ident: e_1_2_8_113_1
  doi: 10.1117/12.874688
– ident: e_1_2_8_41_1
  doi: 10.1039/C2SM26807H
– ident: e_1_2_8_114_1
  doi: 10.1364/OE.19.019836
SSID ssj0017734
Score 2.6066725
Snippet 3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10
SubjectTerms Devices
Dynamical systems
Dynamics
liquid crystal
Nanostructure
Order disorder
photonic crystals
Photonics
self-organized 3D nanostructures
soft nanotechnology
stimuli-directing
Three dimensional
Viscosity
Title Stimuli-Directing Self-Organized 3D Liquid-Crystalline Nanostructures: From Materials Design to Photonic Applications
URI https://api.istex.fr/ark:/67375/WNG-JK2KZSZ9-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201502071
https://www.proquest.com/docview/1778028928
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLWm7WU88DFAFBjyJARP2Ww3sZ29VSvdtK0TokxUe7Hs2IZqI4Eulbbxwk_gN_JL8EeatUgICZSXxHKUxL7XPvE99xiAl5JQbTMvOZvlKvEExoQbK5MuyVnOCsN40NIbntCD0_RwnI0XsvijPkS74OY9I4zX3sGluty5FQ2V2vpMcgdoCApJ5J6w5VHRu1Y_CjMWw8oUe4IXHs9VGxHZWb59aVZa8w18tQQ5F4FrmHkG94Ccv3MknJxvz2q1Xdz8Juf4Px91H9xtYCnsRTt6AFZMuQHuLIgVPgTfRvXEc6l-fv_RjJPlRzgyF9YVNBmdRsNuHx5Pvs4m2pXuTa8d9vSi3wa6UbyKWrUz94O_CwfT6jMcyjo6AOwHIgmsK_j2U1V7uV7YWwitPwKngzfv9w6SZuuGpGCM4sRwpXlOilQri5B0ne6gBtOKpji1KLOapxrjbioVdqbsDoqINRhxmXGF3cT6GKyWVWmeAKiYyqiiPFOBk6pUarSUTGmqEEXWdkAy7zpRNLrmfnuNCxEVmYnwjSraRu2A1239L1HR4481XwVLaKvJ6bnnwbFMfDjZF4dH5OhsdJaL4w7YmpuKcN7pQy6yNNXsUjgL5D6WS3gHkNDxf3mm6PUHw_bq6b_c9Aysu_O4TkSfg1XXt2bTIadavQje8QtybRRB
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQewAOvBHbFjASglPa2JvYDrdVl2XpPoTYVlS9WHZsw6ptUrZZiceFn8Bv5JfgyYtdJIQEyimWrSSeGXvi-eYbhJ4qyoyLgXI2TnQAAMZAWKeCLk14wlPLRcmlN5my4VF0cBw3aELIhan4IdoDN7CMcr0GA4cD6b1frKHKOEgl9x4NDSGLfBPKekMRg_7blkGKcF4FlhkBiBc5bngbQ7q3Pn5tX9qEKf605nSuuq7l3jO4iXTz1hXk5HR3Wejd9MtvhI7_9Vm30I3aM8W9SpVuoys2u4Our_AV3kVfZ8Uc4FQ_vn2vl8rsPZ7ZM-cb6qROa3C3j8fzj8u58a37i8_e_QTeb4v9Qp5XdLVL_4__Ag8W-TmeqKKyAdwvsSS4yPGbD3kBjL24txJdv4eOBi8P94dBXb0hSDlnJLBCG5HQNDLahaHycvfeBjeaRSRyYeyMiAwh3Uhp4rXZXyykzpJQqFho4vfW-2gjyzP7AGHNdcw0E7EuYalaR9YoxbVhOmShcx0UNLKTaU1tDhU2zmRFykwlTKpsJ7WDnrf9LypSjz_2fFaqQttNLU4BCsdj-W76Sh6M6OhkdpLIcQc9aXRFegOFqIvKbL68lF4FBYRzqeggWkr-L8-Uvf5g0t5t_cugx-jq8HAyluPX09E2uubbq2MjtoM2vJztQ-9IFfpRaSo_AZt4GFs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKyE48EZdnkZCcEprexPb4bbqEkr3oYqlYtWLZcc2rFqSsmQl2l76E_iN_BLsOBt2kRASKKdYYyXxzNhfPDOfAXguCdU28ZSzSaoin8AYcWNl1CUpS1luGK-59EZjuncY70-T6UoVf-CHaDfcvGfU87V38FNtd36RhkptfSW5AzQE-SLyzZg6j_Gw6F1LIIUZC3Flin2GF54uaRsR2Vnvv7YsbfoR_raGOVeRa730ZDeBXL50yDg53l5Uajs__43P8X--6ha40eBS2AuGdBtcMcUdcH2FrfAuuJhUM59M9ePyezNRFh_hxJxY19CUdBoNu304nH1ZzLRr3Z2fOfDpWb8NdNN4GchqF-4P_xXM5uVnOJJV8ADYrzNJYFXCg09l5fl6YW8ltn4PHGav3-_uRc3ZDVHOGMWR4UrzlOSxVhYh6bTusAbTisY4tiixmsca424sFXa27C6KiDUYcZlwhd3Keh9sFGVhtgBUTCVUUZ6oOilVqdhoKZnSVCGKrO2AaKk6kTfE5v58jRMRKJmJ8IMq2kHtgJet_Gmg9Pij5IvaEloxOT_2iXAsER_Gb8T-gAyOJkepGHbAs6WpCOeePuYiC1MuvgpngdwHcwnvAFIr_i_PFL1-NmrvHvxLp6fg6kE_E8O348FDcM01hz0j-ghsODWbxw5FVepJ7Sg_AWMEFxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimuli%E2%80%90Directing+Self%E2%80%90Organized+3D+Liquid%E2%80%90Crystalline+Nanostructures%3A+From+Materials+Design+to+Photonic+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Ling&rft.au=Li%2C+Quan&rft.date=2016-01-06&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=1&rft.spage=10&rft.epage=28&rft_id=info:doi/10.1002%2Fadfm.201502071&rft.externalDBID=10.1002%252Fadfm.201502071&rft.externalDocID=ADFM201502071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon