Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner

Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virion...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 6; no. 9; p. e1001121
Main Authors Nanbo, Asuka, Imai, Masaki, Watanabe, Shinji, Noda, Takeshi, Takahashi, Kei, Neumann, Gabriele, Halfmann, Peter, Kawaoka, Yoshihiro
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.09.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.
AbstractList Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolaemediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrinor caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.
Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.
  Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.
Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection. Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, questions remain regarding the mechanism of EBOV entry. Here, we demonstrate that internalization of EBOV particles is independent of clathrin- or caveolae-mediated endocytosis. Specifically, we show that internalized EBOV particles co-localize with macropinocytosis-specific endosomes (macropinosomes) and that their entry is negatively affected by treatment with macropinocytosis inhibitors. Moreover, the internalization of Ebola virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. We further demonstrate that a pseudotyped vesicular stomatitis virus possessing the EBOV glycoprotein (GP) also co-localizes with macropinosomes and its internalization is similarly affected by macropinocytosis inhibitors. Our results indicate that EBOV uptake into cells involves the macropinocytic pathway and is GP-dependent. These findings provide new insights into the lifecycle of EBOV and may aid in the development of therapeutics for EBOV infection.
Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.
Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection. Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, questions remain regarding the mechanism of EBOV entry. Here, we demonstrate that internalization of EBOV particles is independent of clathrin- or caveolae-mediated endocytosis. Specifically, we show that internalized EBOV particles co-localize with macropinocytosis-specific endosomes (macropinosomes) and that their entry is negatively affected by treatment with macropinocytosis inhibitors. Moreover, the internalization of Ebola virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. We further demonstrate that a pseudotyped vesicular stomatitis virus possessing the EBOV glycoprotein (GP) also co-localizes with macropinosomes and its internalization is similarly affected by macropinocytosis inhibitors. Our results indicate that EBOV uptake into cells involves the macropinocytic pathway and is GP-dependent. These findings provide new insights into the lifecycle of EBOV and may aid in the development of therapeutics for EBOV infection.
Audience Academic
Author Noda, Takeshi
Kawaoka, Yoshihiro
Watanabe, Shinji
Neumann, Gabriele
Imai, Masaki
Takahashi, Kei
Halfmann, Peter
Nanbo, Asuka
AuthorAffiliation 3 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
4 International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
Institut Pasteur, France
2 ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
1 Influenza Research Institute, Department of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
AuthorAffiliation_xml – name: 3 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
– name: 4 International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
– name: 1 Influenza Research Institute, Department of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
– name: 2 ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
– name: Institut Pasteur, France
Author_xml – sequence: 1
  givenname: Asuka
  surname: Nanbo
  fullname: Nanbo, Asuka
– sequence: 2
  givenname: Masaki
  surname: Imai
  fullname: Imai, Masaki
– sequence: 3
  givenname: Shinji
  surname: Watanabe
  fullname: Watanabe, Shinji
– sequence: 4
  givenname: Takeshi
  surname: Noda
  fullname: Noda, Takeshi
– sequence: 5
  givenname: Kei
  surname: Takahashi
  fullname: Takahashi, Kei
– sequence: 6
  givenname: Gabriele
  surname: Neumann
  fullname: Neumann, Gabriele
– sequence: 7
  givenname: Peter
  surname: Halfmann
  fullname: Halfmann, Peter
– sequence: 8
  givenname: Yoshihiro
  surname: Kawaoka
  fullname: Kawaoka, Yoshihiro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20886108$$D View this record in MEDLINE/PubMed
BookMark eNqVk12L1DAUhousuF_-A9GCF-LFzCZpmiZeCMu47g6sCn7dhjQ9nc3QSWqSDo6_3tSZXXZEFGmhIX3eN-Q95xxnB9ZZyLInGE1xUeGzpRu8Vd2071WcYoQwJvhBdoTLsphURUUP7q0Ps-MQlghRXGD2KDskiHOGET_Kbi5q16m18UPI5-m1EUZX8wOa3Njo8isXYj6Drgv52qj8ndLe9cY6vYkumJCgXOVfjVddftlttOu9i2Ds5A30YBuwMUmsBX-aPWxVF-Dx7nuSfXl78Xl2Nbn-cDmfnV9PdFXROBENJgwRoeqSK6BKlA0XjFEhUFNr4K2GkqCKsFrUlEDdIoC2bDETQEhdk-Ike7b17TsX5C6kIDHhYkyopImYb4nGqaXsvVkpv5FOGflrw_mFVD4a3YEUlFNeFS2hFaIFV6pBkFYtQ0B1DUXyer07bahX0Oh035TEnun-H2tu5MKtJRGUcjwavNgZePdtgBDlygSd4lYW3BAkH2tYCob_SVYlY4xQOpLPt-RCpTsY27p0tB5peU4KgbigxRjU9A9UehpYGZ16rTVpf0_wck-QmAjf40INIcj5p4__wb7fZ5_ez_AuvNsmTQDdAqn1QvDQ3iEYyXEWbsssx1mQu1lIsle_ybSJKho3VsJ0fxf_BFKMENQ
CitedBy_id crossref_primary_10_1016_j_antiviral_2018_07_003
crossref_primary_10_1146_annurev_genom_083115_022446
crossref_primary_10_3390_v10040152
crossref_primary_10_1128_JVI_02288_20
crossref_primary_10_1155_2013_487585
crossref_primary_10_3109_07388551_2015_1114465
crossref_primary_10_1080_07391102_2018_1544509
crossref_primary_10_1038_emboj_2011_245
crossref_primary_10_1038_ncomms3763
crossref_primary_10_1093_bfgp_elx026
crossref_primary_10_3390_v13050913
crossref_primary_10_1021_acsinfecdis_1c00474
crossref_primary_10_1093_bfgp_elx020
crossref_primary_10_3390_ijms22105274
crossref_primary_10_3390_v11010025
crossref_primary_10_2222_jsv_62_197
crossref_primary_10_1371_journal_pone_0056265
crossref_primary_10_1016_j_ceca_2022_102528
crossref_primary_10_1016_j_ijbiomac_2020_07_178
crossref_primary_10_1021_bi400040v
crossref_primary_10_1038_nrmicro3524
crossref_primary_10_1021_acs_jpcb_0c08089
crossref_primary_10_1128_JVI_02695_12
crossref_primary_10_1371_journal_pntd_0005540
crossref_primary_10_1016_j_virol_2010_10_018
crossref_primary_10_1128_JVI_02110_13
crossref_primary_10_1038_s41598_018_36449_2
crossref_primary_10_1128_JVI_02191_16
crossref_primary_10_3390_pathogens11030374
crossref_primary_10_1128_jvi_00210_23
crossref_primary_10_1016_j_ceca_2021_102360
crossref_primary_10_1016_j_antiviral_2014_04_014
crossref_primary_10_1128_JVI_01278_09
crossref_primary_10_1016_j_apsb_2022_05_023
crossref_primary_10_1016_j_dci_2018_11_006
crossref_primary_10_1021_nn405998v
crossref_primary_10_1128_JVI_01621_12
crossref_primary_10_1093_infdis_jiy294
crossref_primary_10_1155_2018_1846207
crossref_primary_10_3390_v10100563
crossref_primary_10_1021_acsinfecdis_8b00285
crossref_primary_10_1089_cmb_2016_0201
crossref_primary_10_1128_JVI_02077_15
crossref_primary_10_3390_pathogens10091201
crossref_primary_10_1242_jcs_176149
crossref_primary_10_3389_fmicb_2016_01765
crossref_primary_10_1126_science_1258758
crossref_primary_10_1128_JVI_03156_14
crossref_primary_10_37349_ei_2024_00139
crossref_primary_10_1016_j_tim_2013_06_001
crossref_primary_10_1128_JVI_01598_12
crossref_primary_10_1016_j_virusres_2014_11_028
crossref_primary_10_3390_pathogens10101330
crossref_primary_10_3390_v11121117
crossref_primary_10_1016_j_virol_2011_08_009
crossref_primary_10_1128_MMBR_00007_11
crossref_primary_10_1016_j_antiviral_2017_06_015
crossref_primary_10_1126_scitranslmed_3005471
crossref_primary_10_3390_md23010023
crossref_primary_10_1089_nat_2018_0722
crossref_primary_10_1073_pnas_1815356116
crossref_primary_10_1128_JVI_00336_20
crossref_primary_10_1016_j_jbc_2022_102511
crossref_primary_10_1128_JVI_02185_18
crossref_primary_10_18632_oncotarget_18498
crossref_primary_10_1016_j_virol_2014_09_009
crossref_primary_10_1021_acs_jctc_1c00897
crossref_primary_10_1016_j_antiviral_2015_05_003
crossref_primary_10_1038_icb_2011_20
crossref_primary_10_1155_2012_640894
crossref_primary_10_3389_fimmu_2020_00739
crossref_primary_10_1021_acs_jpcb_4c04527
crossref_primary_10_1038_srep34589
crossref_primary_10_1073_pnas_1524532113
crossref_primary_10_3390_v10040166
crossref_primary_10_1016_j_antiviral_2020_104932
crossref_primary_10_1128_JVI_02242_12
crossref_primary_10_1016_j_str_2013_05_009
crossref_primary_10_1242_jcs_216259
crossref_primary_10_2174_0127724344267452231206061944
crossref_primary_10_1021_acsnano_0c01739
crossref_primary_10_2222_jsv_70_69
crossref_primary_10_1021_acsinfecdis_2c00416
crossref_primary_10_1016_j_cell_2015_01_031
crossref_primary_10_3390_v14091903
crossref_primary_10_3390_v12040413
crossref_primary_10_1038_emboj_2012_53
crossref_primary_10_1128_JVI_01073_21
crossref_primary_10_1080_22221751_2024_2392651
crossref_primary_10_1007_s00203_025_04277_4
crossref_primary_10_1371_journal_ppat_1009312
crossref_primary_10_1016_j_antiviral_2012_01_011
crossref_primary_10_1021_acs_jmedchem_8b01328
crossref_primary_10_1021_acsnano_8b05340
crossref_primary_10_1371_journal_ppat_1008900
crossref_primary_10_1038_s41392_024_01917_x
crossref_primary_10_1038_s41467_024_51356_z
crossref_primary_10_1038_s41579_019_0233_2
crossref_primary_10_1089_dna_2012_1868
crossref_primary_10_1128_spectrum_01908_23
crossref_primary_10_1016_j_coi_2018_05_001
crossref_primary_10_1016_j_virol_2015_11_019
crossref_primary_10_1093_infdis_jiad400
crossref_primary_10_1128_JVI_05992_11
crossref_primary_10_1371_journal_pone_0016324
crossref_primary_10_1371_journal_ppat_1006848
crossref_primary_10_1021_acs_jmedchem_8b00350
crossref_primary_10_3390_v13020332
crossref_primary_10_1128_JVI_01525_12
crossref_primary_10_1128_JVI_01634_12
crossref_primary_10_1038_s41564_021_00877_0
crossref_primary_10_3390_ijerph17249411
crossref_primary_10_15252_embr_202051709
crossref_primary_10_1083_jcb_201108131
crossref_primary_10_5939_sjws_20001
crossref_primary_10_1007_s13238_016_0314_1
crossref_primary_10_1016_j_cell_2015_01_041
crossref_primary_10_1016_j_antiviral_2017_11_016
crossref_primary_10_1128_JVI_00712_12
crossref_primary_10_1016_j_virol_2011_07_018
crossref_primary_10_1242_jcs_119685
crossref_primary_10_1021_acs_jmedchem_7b01249
crossref_primary_10_1128_mBio_02030_16
crossref_primary_10_3389_fimmu_2016_00663
crossref_primary_10_1186_s13567_024_01442_3
crossref_primary_10_1128_JVI_01310_13
crossref_primary_10_1586_14787210_2014_948848
crossref_primary_10_1016_j_coviro_2019_01_003
crossref_primary_10_1093_infdis_jir326
crossref_primary_10_3390_v11050410
crossref_primary_10_1128_mBio_00565_15
crossref_primary_10_31083_j_fbl2908295
crossref_primary_10_1007_s00705_018_3966_8
crossref_primary_10_1021_id500025n
crossref_primary_10_1042_BSR20211930
crossref_primary_10_3390_v8060178
crossref_primary_10_1186_1471_2180_13_57
crossref_primary_10_1128_mBio_03100_20
crossref_primary_10_1128_JVI_01399_12
crossref_primary_10_1016_j_antiviral_2019_104592
crossref_primary_10_1134_S207908642102002X
crossref_primary_10_3390_v14030496
crossref_primary_10_1016_j_virusres_2015_01_022
crossref_primary_10_1128_jvi_00524_24
crossref_primary_10_1042_BJ20111226
crossref_primary_10_1007_s40475_015_0039_x
crossref_primary_10_1016_j_antiviral_2021_105059
crossref_primary_10_1016_j_jconrel_2023_06_011
crossref_primary_10_1016_j_bbrc_2020_04_041
crossref_primary_10_1016_j_coviro_2011_05_014
crossref_primary_10_3390_v11111067
crossref_primary_10_1038_srep41226
crossref_primary_10_1093_infdis_jir331
crossref_primary_10_3390_v4112471
crossref_primary_10_1021_acs_nanolett_1c04677
crossref_primary_10_3390_v4123336
crossref_primary_10_1128_JVI_00453_11
crossref_primary_10_1038_nature10348
crossref_primary_10_3389_fimmu_2023_1204730
crossref_primary_10_1371_journal_pntd_0008602
crossref_primary_10_1371_journal_ppat_1011848
crossref_primary_10_1158_0008_5472_CAN_12_1882
crossref_primary_10_1016_j_chom_2018_04_015
crossref_primary_10_1038_nrmicro3469
crossref_primary_10_1371_journal_pone_0160410
crossref_primary_10_2217_imt_13_124
crossref_primary_10_1074_jbc_M117_816280
crossref_primary_10_1371_journal_pone_0219312
crossref_primary_10_1128_JVI_01272_14
crossref_primary_10_1016_j_yjmcc_2024_06_009
crossref_primary_10_1247_csf_21047
crossref_primary_10_1016_j_vaccine_2011_01_113
crossref_primary_10_1021_acs_chemrev_9b00692
crossref_primary_10_1517_14728222_2015_1068760
crossref_primary_10_1128_mBio_01857_15
crossref_primary_10_1016_j_virol_2014_08_019
crossref_primary_10_1186_s12879_015_1302_4
crossref_primary_10_1371_journal_ppat_1006139
crossref_primary_10_3389_fmicb_2021_631274
crossref_primary_10_1128_JVI_01810_14
crossref_primary_10_1038_nature18615
crossref_primary_10_1128_AAC_00543_16
crossref_primary_10_1128_JVI_06346_11
crossref_primary_10_1016_j_cub_2020_06_050
crossref_primary_10_1074_jbc_M116_716100
crossref_primary_10_3390_v16111700
crossref_primary_10_1021_ml300370k
crossref_primary_10_3389_fmicb_2019_02825
crossref_primary_10_3389_fphys_2022_1037758
crossref_primary_10_1126_science_aaa8121
crossref_primary_10_3390_pathogens6020017
crossref_primary_10_2222_jsv_67_69
crossref_primary_10_3389_fmicb_2025_1498955
crossref_primary_10_1016_j_bsheal_2019_12_009
crossref_primary_10_15789_2220_7619_VPE_8045
crossref_primary_10_3390_pathogens11121400
crossref_primary_10_1016_j_coviro_2012_02_015
crossref_primary_10_3390_v14010142
crossref_primary_10_1128_JVI_00820_18
crossref_primary_10_3390_v11030274
crossref_primary_10_1016_j_antiviral_2016_09_001
crossref_primary_10_1038_srep46374
crossref_primary_10_1371_journal_ppat_1010616
crossref_primary_10_3390_cells9092054
crossref_primary_10_1038_s42003_022_03767_1
crossref_primary_10_2217_fvl_2016_0113
crossref_primary_10_1128_JVI_02343_14
crossref_primary_10_3389_fmicb_2018_02724
crossref_primary_10_1016_j_virol_2010_12_003
crossref_primary_10_1016_j_bpj_2021_01_025
crossref_primary_10_3390_membranes11010064
crossref_primary_10_1128_JVI_01744_14
crossref_primary_10_1016_j_bbagen_2016_12_015
crossref_primary_10_1128_JVI_00941_17
crossref_primary_10_3389_fmicb_2022_1026644
crossref_primary_10_1093_infdis_jiy316
crossref_primary_10_1371_journal_ppat_1004731
crossref_primary_10_1186_s12964_022_01037_5
crossref_primary_10_1111_cmi_12415
crossref_primary_10_1016_j_immuni_2021_01_015
crossref_primary_10_3390_v4101878
crossref_primary_10_1016_j_chembiol_2016_07_019
crossref_primary_10_1016_j_mib_2012_05_016
crossref_primary_10_1021_acsnano_0c06369
crossref_primary_10_1016_j_chom_2017_12_003
crossref_primary_10_1038_cdd_2015_67
crossref_primary_10_3390_v14040816
crossref_primary_10_1128_JVI_03261_13
crossref_primary_10_1080_22221751_2022_2149351
crossref_primary_10_1371_journal_pbio_3000626
crossref_primary_10_15252_embj_2023113578
crossref_primary_10_1128_JVI_06704_11
crossref_primary_10_1038_nature10380
crossref_primary_10_1016_j_drudis_2014_12_010
crossref_primary_10_1186_2049_9957_3_43
crossref_primary_10_1371_journal_ppat_1005016
crossref_primary_10_1073_pnas_1708052114
crossref_primary_10_1016_j_jaut_2019_102375
crossref_primary_10_1128_spectrum_00269_24
crossref_primary_10_1371_journal_pntd_0006349
crossref_primary_10_1073_pnas_1019030108
crossref_primary_10_1093_infdis_jiy460
crossref_primary_10_1016_j_vetmic_2024_110254
crossref_primary_10_3390_v13112297
crossref_primary_10_1007_s11684_017_0589_5
crossref_primary_10_1016_j_ijpharm_2025_125356
crossref_primary_10_1016_j_antiviral_2019_104567
crossref_primary_10_1038_srep01206
crossref_primary_10_1186_s12929_023_00899_2
crossref_primary_10_1038_srep20514
crossref_primary_10_1189_jlb_2A0316_141RR
crossref_primary_10_3389_fchem_2021_613209
crossref_primary_10_1016_j_meegid_2015_02_024
crossref_primary_10_1111_tra_12389
crossref_primary_10_1128_jvi_01446_22
crossref_primary_10_1128_JVI_01239_16
crossref_primary_10_1016_j_antiviral_2015_11_003
crossref_primary_10_1016_j_cell_2015_12_044
crossref_primary_10_1099_jgv_0_000605
crossref_primary_10_1371_journal_pone_0060838
crossref_primary_10_1371_journal_ppat_1009275
crossref_primary_10_1371_journal_ppat_1011595
crossref_primary_10_1021_acs_macromol_6b00091
crossref_primary_10_3390_cells11050871
crossref_primary_10_1038_ncomms7240
crossref_primary_10_1371_journal_ppat_1012444
crossref_primary_10_1016_j_cell_2014_10_006
crossref_primary_10_1146_annurev_virology_111821_104408
crossref_primary_10_1021_acs_jnatprod_0c00968
crossref_primary_10_1099_jgv_0_001261
crossref_primary_10_1080_22221751_2021_2020598
crossref_primary_10_1093_infdis_jiad120
crossref_primary_10_1016_j_jvacx_2019_100009
crossref_primary_10_1016_j_jmb_2019_06_029
crossref_primary_10_1093_jac_dku091
crossref_primary_10_1128_spectrum_02553_23
crossref_primary_10_1007_s13337_017_0398_0
crossref_primary_10_1016_j_coviro_2013_01_005
crossref_primary_10_1128_mBio_02154_15
crossref_primary_10_1016_j_aquaculture_2014_04_044
crossref_primary_10_1016_j_virusres_2015_07_014
crossref_primary_10_1093_infdis_jiy248
crossref_primary_10_1016_j_antiviral_2019_01_006
crossref_primary_10_1093_infdis_jir295
crossref_primary_10_1016_j_celrep_2020_03_025
crossref_primary_10_3390_v4123647
crossref_primary_10_1021_acsinfecdis_3c00622
crossref_primary_10_2222_jsv_66_63
crossref_primary_10_1016_j_bbrc_2019_11_065
crossref_primary_10_1089_dna_2018_4485
crossref_primary_10_1371_journal_ppat_1005466
crossref_primary_10_1038_srep22352
crossref_primary_10_3389_fimmu_2021_638573
crossref_primary_10_1038_nrmicro2764
crossref_primary_10_1371_journal_ppat_1009013
crossref_primary_10_3390_v4020258
crossref_primary_10_1186_2045_3701_3_44
crossref_primary_10_1242_jcs_213736
crossref_primary_10_1016_j_coviro_2019_03_001
crossref_primary_10_1371_journal_pone_0026180
crossref_primary_10_1111_bph_16187
crossref_primary_10_1128_MMBR_00017_15
crossref_primary_10_1371_journal_ppat_1009937
crossref_primary_10_3390_v13091793
crossref_primary_10_3390_biom8020025
crossref_primary_10_1002_jobm_201500575
crossref_primary_10_1128_JVI_00694_18
crossref_primary_10_2174_0929867328666210511015808
crossref_primary_10_1126_scitranslmed_aaa5597
crossref_primary_10_1007_s40588_015_0021_3
crossref_primary_10_1093_femspd_ftaa046
crossref_primary_10_1128_JVI_00396_14
crossref_primary_10_1128_JVI_00136_12
crossref_primary_10_1155_2015_347903
crossref_primary_10_3390_v11070668
crossref_primary_10_1038_s41467_019_09732_7
crossref_primary_10_1038_srep19294
crossref_primary_10_2222_jsv_69_119
crossref_primary_10_1128_JVI_01345_21
crossref_primary_10_3390_v3081501
crossref_primary_10_1021_acs_chemrev_7b00194
crossref_primary_10_1007_s00705_020_04740_1
crossref_primary_10_1371_journal_pcbi_1007612
crossref_primary_10_1073_pnas_1721646115
crossref_primary_10_3390_v11030206
crossref_primary_10_2222_jsv_65_71
crossref_primary_10_4049_jimmunol_1700827
crossref_primary_10_1371_journal_pone_0152527
crossref_primary_10_1093_jmicro_dfac049
crossref_primary_10_18632_oncotarget_12104
crossref_primary_10_1371_journal_pntd_0001923
crossref_primary_10_1038_mt_2013_54
crossref_primary_10_1586_eri_12_104
crossref_primary_10_1186_1743_422X_10_331
crossref_primary_10_3389_fmicb_2018_00210
Cites_doi 10.1038/35074539
10.1091/mbc.11.10.3453
10.1016/j.cell.2006.02.007
10.1128/JVI.80.8.4174-4178.2006
10.1006/viro.2000.0601
10.1083/jcb.121.5.1011
10.1016/S1097-2765(05)00089-4
10.1002/eji.1830270141
10.1146/annurev.immunol.17.1.593
10.1038/ncb1269
10.1189/jlb.0604342
10.1016/0092-8674(90)90369-P
10.1073/pnas.012607899
10.1038/ncb0509-510
10.1242/jcs.03167
10.1084/jem.194.6.781
10.1073/pnas.94.26.14764
10.1038/sj.cdd.4401900
10.1073/pnas.0606212103
10.1128/JVI.77.24.13433-13438.2003
10.1128/JVI.78.6.2943-2947.2004
10.1086/520594
10.1128/JVI.78.2.999-1005.2004
10.1038/nature07082
10.1084/jem.182.2.389
10.1016/j.tcb.2006.08.005
10.1128/JVI.78.14.7344-7351.2004
10.1086/520597
10.1128/JVI.02498-08
10.1038/ncb837
10.1186/1471-2121-9-58
10.1038/383266a0
10.1016/S0962-8924(00)89101-1
10.1128/JVI.01170-07
10.1073/pnas.0708057105
10.1128/JVI.79.2.918-926.2005
10.1038/emboj.2008.38
10.1128/JVI.77.10.5902-5910.2003
10.1083/jcb.83.1.82
10.1371/journal.ppat.1000141
10.1128/JVI.72.4.3155-3160.1998
10.1038/ncb1292
10.1128/JVI.73.10.8907-8912.1999
10.1074/jbc.275.13.9725
10.1016/j.virol.2009.09.016
10.1128/JVI.80.4.2013-2018.2006
10.1128/JVI.76.10.4855-4865.2002
10.1091/mbc.11.10.3341
10.1111/j.1462-5822.2007.00900.x
10.1128/JVI.76.10.5266-5270.2002
10.1016/S0168-1702(97)00143-3
10.1099/0022-1317-83-7-1535
10.1126/science.1110656
10.1038/nsmb769
10.1083/jcb.200407113
10.1517/14728222.6.4.423
10.1016/0092-8674(92)90164-8
10.1083/jcb.200908086
10.1084/jem.20011500
10.1083/jcb.135.5.1249
10.1128/JVI.02433-06
10.1111/j.1365-2567.2006.02335.x
10.1002/jcp.20931
10.1083/jcb.91.3.601
10.1016/j.immuni.2005.05.002
10.1016/j.febslet.2008.04.011
10.1038/nrm2447
10.1083/jcb.200112067
10.1128/JVI.00422-09
10.1099/vir.0.81199-0
10.1371/journal.ppat.1000087
10.1016/S0960-9822(97)70088-5
10.1128/JVI.75.22.11166-11177.2001
10.1128/AAC.47.12.3970-3972.2003
10.1128/JVI.01157-06
10.1016/j.virol.2010.02.015
10.1073/pnas.0832269100
10.1128/JVI.76.13.6841-6844.2002
10.1083/jcb.200509155
10.1038/8971
10.1083/jcb.131.6.1435
10.1091/mbc.E04-08-0739
10.1038/nature01451
10.1016/0022-2836(82)90269-8
10.1006/viro.2002.1730
10.1126/science.1155164
10.1016/S0092-8674(01)00418-4
10.1016/S0960-9822(00)00595-9
10.1242/jcs.114.20.3737
10.1074/jbc.M702309200
10.1128/JVI.76.13.6689-6700.2002
10.1038/ncb1230
10.7164/antibiotics.30.275
10.1016/j.jviromet.2005.02.015
10.1016/0022-2836(80)90281-8
10.1111/j.1600-0854.2009.00878.x
10.1128/MCB.25.22.10087-10096.2005
10.1111/j.1462-5822.2006.00713.x
10.1111/j.1582-4934.2007.00062.x
10.1128/MCB.23.19.6901-6908.2003
10.1038/emboj.2008.59
10.1242/jcs.115.14.2953
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
Nanbo et al. 2010
2010 Nanbo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, et al. (2010) Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner. PLoS Pathog 6(9): e1001121. doi:10.1371/journal.ppat.1001121
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: Nanbo et al. 2010
– notice: 2010 Nanbo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, et al. (2010) Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner. PLoS Pathog 6(9): e1001121. doi:10.1371/journal.ppat.1001121
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
7U9
H94
5PM
DOA
DOI 10.1371/journal.ppat.1001121
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
DatabaseTitleList


AIDS and Cancer Research Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Ebolavirus Is Internalized via Macropinocytosis
EISSN 1553-7374
ExternalDocumentID 1289112154
oai_doaj_org_article_9484873f2470438aad0e704f60e4cbe3
PMC2944813
A239089432
20886108
10_1371_journal_ppat_1001121
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U54 AI057153
– fundername: NIAID NIH HHS
  grantid: R01 AI055519
– fundername: NIAID NIH HHS
  grantid: 1-U54-AI-057153
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
7U9
H94
5PM
PUEGO
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c774t-9d126029ab58ae4a95d89664990dbce8fce520726b9b42ebf0eef5f169e22bb23
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Sun Oct 01 00:11:20 EDT 2023
Wed Aug 27 01:29:16 EDT 2025
Thu Aug 21 13:35:18 EDT 2025
Thu Jul 10 19:34:32 EDT 2025
Fri Jul 11 15:50:35 EDT 2025
Tue Jun 17 21:32:49 EDT 2025
Tue Jun 10 20:42:30 EDT 2025
Fri Jun 27 04:45:57 EDT 2025
Fri Jun 27 05:10:19 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Tue Jul 01 02:54:29 EDT 2025
Thu Apr 24 23:02:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c774t-9d126029ab58ae4a95d89664990dbce8fce520726b9b42ebf0eef5f169e22bb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Current address: Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
Conceived and designed the experiments: AN YK. Performed the experiments: AN MI SW. Analyzed the data: AN SW GN YK. Contributed reagents/materials/analysis tools: MI SW TN KT PH YK. Wrote the paper: AN GN.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1001121
PMID 20886108
PQID 756662441
PQPubID 23479
ParticipantIDs plos_journals_1289112154
doaj_primary_oai_doaj_org_article_9484873f2470438aad0e704f60e4cbe3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2944813
proquest_miscellaneous_815535961
proquest_miscellaneous_756662441
gale_infotracmisc_A239089432
gale_infotracacademiconefile_A239089432
gale_incontextgauss_ISR_A239089432
gale_incontextgauss_ISN_A239089432
pubmed_primary_20886108
crossref_primary_10_1371_journal_ppat_1001121
crossref_citationtrail_10_1371_journal_ppat_1001121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References C Clement (ref12) 2006; 174
J Mercer (ref16) 2009; 11
V Marechal (ref37) 2001; 75
A Takada (ref61) 1997; 94
L Pelkmans (ref9) 2001; 3
A Manninen (ref104) 2005; 25
A Yonezawa (ref58) 2005; 79
MC Subauste (ref89) 2000; 275
A Takada (ref46) 2004; 78
EM Damm (ref74) 2005; 168
N Araki (ref31) 1996; 135
MA West (ref86) 1989; 109
B Amstutz (ref33) 2008; 27
V Rybin (ref81) 1996; 383
RJ Wool-Lewis (ref39) 1998; 72
T Sakai (ref67) 2006; 80
A Takada (ref47) 2000; 278
P Chavrier (ref80) 1990; 62
MA Brindley (ref52) 2007; 81
S Wilkinson (ref105) 2005; 7
K Quinn (ref96) 2009; 83
E Veiga (ref7) 2005; 7
AJ Ridley (ref27) 1992; 70
SB Sieczkarski (ref2) 2002; 83
S Watanabe (ref65) 2004; 78
S Bhattacharyya (ref60); 401
KS Matlin (ref5) 1981; 91
DL Jack (ref95) 2005; 77
G Simmons (ref51) 2003; 77
M Marsh (ref4) 1980; 142
M Imai (ref102) 1998; 53
HT Haigler (ref21) 1979; 83
CJ Empig (ref50) 2002; 76
M Marsh (ref3) 2006; 124
O Pernet (ref35) 2009; 395
Y Feng (ref92) 1995; 131
NQ Liu (ref36) 2002; 76
K Kasahara (ref25) 2007; 211
SY Chan (ref40) 2001; 106
EL Racoosin (ref79) 1993; 121
CC Norbury (ref29) 2006; 117
JD Orth (ref75) 2002; 99
K Chandran (ref53) 2005; 308
SD Conner (ref1) 2003; 422
E Veiga (ref8) 2006; 16
KS Matlin (ref6) 1982; 156
S Bavari (ref57) 2002; 195
F Lasala (ref44) 2003; 47
X Ji (ref43) 2005; 86
EH Walker (ref84) 2000; 6
C Ehrhardt (ref88) 2006; 8
ML Torgersen (ref73) 2001; 114
P Dowrick (ref22) 1993; 61
A Aderem (ref11) 1999; 17
G Kallstrom (ref63) 2005; 127
X Sun (ref87) 2007; 9
M Koivusalo (ref85); 188
H Girao (ref83) 2008; 582
JA Swanson (ref17) 1995; 5
CC Norbury (ref19) 1997; 27
JP Lim (ref78) 2008; 9
LM Stuart (ref10) 2005; 22
CP Alvarez (ref41) 2002; 76
MC Kerr (ref77) 2006; 119
G Simmons (ref45) 2003; 305
JE Lee (ref55) 2008; 454
H Raghu (ref34) 2009; 83
S Omura (ref90) 1977; 30
M Amyere (ref23) 2000; 11
A Sanchez (ref59) 2007; 196
K Schornberg (ref56) 2006; 80
JA Swanson (ref32) 2008; 9
M Lakadamyali (ref69) 2003; 100
M Westphal (ref91) 1997; 7
RL Kaletsky (ref54) 2007; 81
NT Neumann G (ref101) 2004
MC Kerr (ref15) 2009; 10
P Halfmann (ref62) 2008; 105
E Ghigo (ref13) 2008; 4
MA West (ref28) 2000; 10
I Le Blanc (ref68) 2005; 7
MF Saeed (ref93) 2008; 4
JM Licata (ref66) 2004; 78
P Liberali (ref30) 2008; 27
CA Ogden (ref94) 2001; 194
G Kennedy (ref99) 2003; 23
O Meier (ref38) 2002; 158
S Grimmer (ref98) 2002; 115
MJ Rust (ref72) 2004; 11
I Gaidarov (ref70) 1999; 1
AT Jones (ref14) 2007; 11
HS Moskowitz (ref103) 2005; 16
H Ito (ref82) 1999; 73
T Noda (ref64) 2002; 76
B Manavathi (ref106) 2007; 282
W Weissenhorn (ref100) 2004
F Baribaud (ref42) 2002; 6
F Sallusto (ref18) 1995; 182
M Shimojima (ref49) 2006; 80
AJ Newton (ref76) 2006; 103
DV Krysko (ref20) 2006; 13
M Shimojima (ref48) 2007; 196
CJ Merrifield (ref71) 2002; 4
J Mercer (ref26) 2008; 320
PL Sinn (ref97) 2003; 77
S Dharmawardhane (ref24) 2000; 11
17940957 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S251-8
8805704 - Nature. 1996 Sep 19;383(6597):266-9
12223058 - Expert Opin Ther Targets. 2002 Aug;6(4):423-31
12719583 - J Virol. 2003 May;77(10):5902-10
12972608 - Mol Cell Biol. 2003 Oct;23(19):6901-8
16962776 - Trends Cell Biol. 2006 Oct;16(10):499-504
18615077 - Nature. 2008 Jul 10;454(7201):177-82
12050398 - J Virol. 2002 Jul;76(13):6841-4
17491012 - J Biol Chem. 2007 Jul 6;282(27):19820-30
15893559 - J Virol Methods. 2005 Jul;127(1):1-9
11331875 - Nat Cell Biol. 2001 May;3(5):473-83
9022030 - Eur J Immunol. 1997 Jan;27(1):280-8
9405687 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14764-9
16556257 - Immunology. 2006 Apr;117(4):443-51
11707525 - J Cell Sci. 2001 Oct;114(Pt 20):3737-47
17167779 - J Cell Physiol. 2007 Apr;211(1):220-32
11090628 - Mol Cell. 2000 Oct;6(4):909-19
2556406 - J Cell Biol. 1989 Dec;109(6 Pt 1):2731-9
19192253 - Traffic. 2009 Apr;10(4):364-71
11560994 - J Exp Med. 2001 Sep 17;194(6):781-95
7463480 - J Mol Biol. 1980 Sep 25;142(3):439-54
19404330 - Nat Cell Biol. 2009 May;11(5):510-20
15122347 - Nat Struct Mol Biol. 2004 Jun;11(6):567-73
15831716 - Science. 2005 Jun 10;308(5728):1643-5
19279100 - J Virol. 2009 May;83(10):4895-911
15689492 - Mol Biol Cell. 2005 Apr;16(4):1769-76
18612320 - Nat Rev Mol Cell Biol. 2008 Aug;9(8):639-49
12050382 - J Virol. 2002 Jul;76(13):6689-700
12621426 - Nature. 2003 Mar 6;422(6927):37-44
15613320 - J Virol. 2005 Jan;79(2):918-26
16628234 - Cell Death Differ. 2006 Dec;13(12):2011-22
12883000 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9280-5
12221069 - J Cell Biol. 2002 Sep 16;158(6):1119-31
15723050 - Nat Cell Biol. 2005 Mar;7(3):255-61
11967340 - J Virol. 2002 May;76(10):5266-70
9276758 - Curr Biol. 1997 Mar 1;7(3):176-83
7629501 - J Exp Med. 1995 Aug 1;182(2):389-400
8099075 - J Cell Biol. 1993 Jun;121(5):1011-20
17760832 - J Cell Mol Med. 2007 Jul-Aug;11(4):670-84
12075072 - J Gen Virol. 2002 Jul;83(Pt 7):1535-45
17940958 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S259-63
11877482 - J Exp Med. 2002 Mar 4;195(5):593-602
11461707 - Cell. 2001 Jul 13;106(1):117-26
11112476 - Virology. 2000 Dec 5;278(1):20-6
14645601 - J Virol. 2003 Dec;77(24):13433-8
18323776 - EMBO J. 2008 Apr 9;27(7):956-69
18769720 - PLoS Pathog. 2008;4(8):e1000141
14990712 - J Virol. 2004 Mar;78(6):2943-7
15894272 - Immunity. 2005 May;22(5):539-50
19854459 - Virology. 2009 Dec 20;395(2):298-311
16439557 - J Virol. 2006 Feb;80(4):2013-8
12198492 - Nat Cell Biol. 2002 Sep;4(9):691-8
20156964 - J Cell Biol. 2010 Feb 22;188(4):547-63
8947549 - J Cell Biol. 1996 Dec;135(5):1249-60
16099912 - J Gen Virol. 2005 Sep;86(Pt 9):2535-42
315944 - J Cell Biol. 1979 Oct;83(1):82-90
16260622 - Mol Cell Biol. 2005 Nov;25(22):10087-96
18551172 - PLoS Pathog. 2008 Jun;4(6):e1000087
6288961 - J Mol Biol. 1982 Apr 15;156(3):609-31
18436786 - Science. 2008 Apr 25;320(5875):531-5
17475648 - J Virol. 2007 Jul;81(14):7702-9
18354494 - EMBO J. 2008 Apr 9;27(7):970-81
11602756 - J Virol. 2001 Nov;75(22):11166-77
18420037 - FEBS Lett. 2008 Jun 18;582(14):2112-9
10358769 - Annu Rev Immunol. 1999;17:593-623
1643658 - Cell. 1992 Aug 7;70(3):401-10
14694131 - J Virol. 2004 Jan;78(2):999-1005
9525641 - J Virol. 1998 Apr;72(4):3155-60
17005688 - J Virol. 2006 Oct;80(20):10109-16
15569696 - J Leukoc Biol. 2005 Mar;77(3):328-36
15668298 - J Cell Biol. 2005 Jan 31;168(3):477-88
17093049 - Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17955-60
14638512 - Antimicrob Agents Chemother. 2003 Dec;47(12):3970-2
19625394 - J Virol. 2009 Oct;83(19):10176-86
16882036 - Cell Microbiol. 2006 Aug;8(8):1336-48
18854019 - BMC Cell Biol. 2008;9:58
863788 - J Antibiot (Tokyo). 1977 Apr;30(4):275-82
17928356 - J Virol. 2007 Dec;81(24):13378-84
8522602 - J Cell Biol. 1995 Dec;131(6 Pt 1):1435-52
16497584 - Cell. 2006 Feb 24;124(4):729-40
18212124 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1129-33
10559856 - Nat Cell Biol. 1999 May;1(1):1-7
12504546 - Virology. 2003 Jan 5;305(1):115-23
10899002 - Curr Biol. 2000 Jul 13;10(14):839-48
15220407 - J Virol. 2004 Jul;78(14):7344-51
20202662 - Virology. 2010 May 25;401(1):18-28
11782546 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):167-72
11029048 - Mol Biol Cell. 2000 Oct;11(10):3453-67
17578407 - Cell Microbiol. 2007 Jul;9(7):1672-82
10482652 - J Virol. 1999 Oct;73(10):8907-12
15951806 - Nat Cell Biol. 2005 Jul;7(7):653-64
12082155 - J Cell Sci. 2002 Jul 15;115(Pt 14):2953-62
14732047 - Trends Cell Biol. 1995 Nov;5(11):424-8
7328111 - J Cell Biol. 1981 Dec;91(3 Pt 1):601-13
16968745 - J Cell Sci. 2006 Oct 1;119(Pt 19):3967-80
17000878 - J Cell Biol. 2006 Sep 25;174(7):1009-21
8223707 - Eur J Cell Biol. 1993 Jun;61(1):44-53
2115402 - Cell. 1990 Jul 27;62(2):317-29
16113677 - Nat Cell Biol. 2005 Sep;7(9):894-900
9620205 - Virus Res. 1998 Feb;53(2):129-39
16571833 - J Virol. 2006 Apr;80(8):4174-8
11029040 - Mol Biol Cell. 2000 Oct;11(10):3341-52
10734125 - J Biol Chem. 2000 Mar 31;275(13):9725-33
11967302 - J Virol. 2002 May;76(10):4855-65
References_xml – volume: 3
  start-page: 473
  year: 2001
  ident: ref9
  article-title: Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER.
  publication-title: Nat Cell Biol
  doi: 10.1038/35074539
– volume: 11
  start-page: 3453
  year: 2000
  ident: ref23
  article-title: Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C.
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.11.10.3453
– volume: 124
  start-page: 729
  year: 2006
  ident: ref3
  article-title: Virus entry: open sesame.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.007
– volume: 80
  start-page: 4174
  year: 2006
  ident: ref56
  article-title: Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein.
  publication-title: J Virol
  doi: 10.1128/JVI.80.8.4174-4178.2006
– volume: 278
  start-page: 20
  year: 2000
  ident: ref47
  article-title: Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry.
  publication-title: Virology
  doi: 10.1006/viro.2000.0601
– volume: 121
  start-page: 1011
  year: 1993
  ident: ref79
  article-title: Macropinosome maturation and fusion with tubular lysosomes in macrophages.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.121.5.1011
– volume: 6
  start-page: 909
  year: 2000
  ident: ref84
  article-title: Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(05)00089-4
– volume: 27
  start-page: 280
  year: 1997
  ident: ref19
  article-title: Constitutive macropinocytosis allows TAP-dependent major histocompatibility complex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells.
  publication-title: Eur J Immunol
  doi: 10.1002/eji.1830270141
– volume: 17
  start-page: 593
  year: 1999
  ident: ref11
  article-title: Mechanisms of phagocytosis in macrophages.
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.17.1.593
– volume: 7
  start-page: 653
  year: 2005
  ident: ref68
  article-title: Endosome-to-cytosol transport of viral nucleocapsids.
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1269
– volume: 77
  start-page: 328
  year: 2005
  ident: ref95
  article-title: Mannose-binding lectin enhances phagocytosis and killing of Neisseria meningitidis by human macrophages.
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0604342
– volume: 62
  start-page: 317
  year: 1990
  ident: ref80
  article-title: Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments.
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90369-P
– volume: 99
  start-page: 167
  year: 2002
  ident: ref75
  article-title: The large GTPase dynamin regulates actin comet formation and movement in living cells.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.012607899
– volume: 11
  start-page: 510
  year: 2009
  ident: ref16
  article-title: Virus entry by macropinocytosis.
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb0509-510
– volume: 119
  start-page: 3967
  year: 2006
  ident: ref77
  article-title: Visualisation of macropinosome maturation by the recruitment of sorting nexins.
  publication-title: J Cell Sci
  doi: 10.1242/jcs.03167
– volume: 194
  start-page: 781
  year: 2001
  ident: ref94
  article-title: C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells.
  publication-title: J Exp Med
  doi: 10.1084/jem.194.6.781
– volume: 94
  start-page: 14764
  year: 1997
  ident: ref61
  article-title: A system for functional analysis of Ebola virus glycoprotein.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.26.14764
– volume: 13
  start-page: 2011
  year: 2006
  ident: ref20
  article-title: Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells.
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4401900
– volume: 103
  start-page: 17955
  year: 2006
  ident: ref76
  article-title: Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0606212103
– volume: 61
  start-page: 44
  year: 1993
  ident: ref22
  article-title: Circular ruffle formation and closure lead to macropinocytosis in hepatocyte growth factor/scatter factor-treated cells.
  publication-title: Eur J Cell Biol
– volume: 77
  start-page: 13433
  year: 2003
  ident: ref51
  article-title: Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection.
  publication-title: J Virol
  doi: 10.1128/JVI.77.24.13433-13438.2003
– volume: 78
  start-page: 2943
  year: 2004
  ident: ref46
  article-title: Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry.
  publication-title: J Virol
  doi: 10.1128/JVI.78.6.2943-2947.2004
– volume: 196
  start-page: S259
  year: 2007
  ident: ref48
  article-title: The mechanism of Axl-mediated Ebola virus infection.
  publication-title: J Infect Dis
  doi: 10.1086/520594
– volume: 78
  start-page: 999
  year: 2004
  ident: ref65
  article-title: Production of novel ebola virus-like particles from cDNAs: an alternative to ebola virus generation by reverse genetics.
  publication-title: J Virol
  doi: 10.1128/JVI.78.2.999-1005.2004
– volume: 454
  start-page: 177
  year: 2008
  ident: ref55
  article-title: Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor.
  publication-title: Nature
  doi: 10.1038/nature07082
– volume: 182
  start-page: 389
  year: 1995
  ident: ref18
  article-title: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products.
  publication-title: J Exp Med
  doi: 10.1084/jem.182.2.389
– volume: 16
  start-page: 499
  year: 2006
  ident: ref8
  article-title: The role of clathrin-dependent endocytosis in bacterial internalization.
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2006.08.005
– volume: 78
  start-page: 7344
  year: 2004
  ident: ref66
  article-title: Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles.
  publication-title: J Virol
  doi: 10.1128/JVI.78.14.7344-7351.2004
– volume: 196
  start-page: S251
  year: 2007
  ident: ref59
  article-title: Analysis of filovirus entry into vero e6 cells, using inhibitors of endocytosis, endosomal acidification, structural integrity, and cathepsin (B and L) activity.
  publication-title: J Infect Dis
  doi: 10.1086/520597
– volume: 83
  start-page: 4895
  year: 2009
  ident: ref34
  article-title: Kaposi's sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells.
  publication-title: J Virol
  doi: 10.1128/JVI.02498-08
– volume: 4
  start-page: 691
  year: 2002
  ident: ref71
  article-title: Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits.
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb837
– volume: 9
  start-page: 58
  year: 2008
  ident: ref78
  article-title: A role for SNX5 in the regulation of macropinocytosis.
  publication-title: BMC Cell Biol
  doi: 10.1186/1471-2121-9-58
– volume: 383
  start-page: 266
  year: 1996
  ident: ref81
  article-title: GTPase activity of Rab5 acts as a timer for endocytic membrane fusion.
  publication-title: Nature
  doi: 10.1038/383266a0
– volume: 5
  start-page: 424
  year: 1995
  ident: ref17
  article-title: Macropinocytosis.
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(00)89101-1
– volume: 81
  start-page: 13378
  year: 2007
  ident: ref54
  article-title: Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity.
  publication-title: J Virol
  doi: 10.1128/JVI.01170-07
– volume: 105
  start-page: 1129
  year: 2008
  ident: ref62
  article-title: Generation of biologically contained Ebola viruses.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0708057105
– volume: 79
  start-page: 918
  year: 2005
  ident: ref58
  article-title: Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha.
  publication-title: J Virol
  doi: 10.1128/JVI.79.2.918-926.2005
– volume: 27
  start-page: 956
  year: 2008
  ident: ref33
  article-title: Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3.
  publication-title: EMBO J
  doi: 10.1038/emboj.2008.38
– volume: 77
  start-page: 5902
  year: 2003
  ident: ref97
  article-title: Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha.
  publication-title: J Virol
  doi: 10.1128/JVI.77.10.5902-5910.2003
– volume: 83
  start-page: 82
  year: 1979
  ident: ref21
  article-title: Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.83.1.82
– volume: 4
  start-page: e1000141
  year: 2008
  ident: ref93
  article-title: Phosphoinositide-3 kinase-Akt pathway controls cellular entry of Ebola virus.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000141
– volume: 72
  start-page: 3155
  year: 1998
  ident: ref39
  article-title: Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines.
  publication-title: J Virol
  doi: 10.1128/JVI.72.4.3155-3160.1998
– volume: 7
  start-page: 894
  year: 2005
  ident: ref7
  article-title: Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells.
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1292
– volume: 73
  start-page: 8907
  year: 1999
  ident: ref82
  article-title: Mutational analysis of the putative fusion domain of Ebola virus glycoprotein.
  publication-title: J Virol
  doi: 10.1128/JVI.73.10.8907-8912.1999
– volume: 275
  start-page: 9725
  year: 2000
  ident: ref89
  article-title: Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.275.13.9725
– volume: 395
  start-page: 298
  year: 2009
  ident: ref35
  article-title: Nipah virus entry can occur by macropinocytosis.
  publication-title: Virology
  doi: 10.1016/j.virol.2009.09.016
– volume: 80
  start-page: 2013
  year: 2006
  ident: ref67
  article-title: Dual wavelength imaging allows analysis of membrane fusion of influenza virus inside cells.
  publication-title: J Virol
  doi: 10.1128/JVI.80.4.2013-2018.2006
– volume: 76
  start-page: 4855
  year: 2002
  ident: ref64
  article-title: Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP.
  publication-title: J Virol
  doi: 10.1128/JVI.76.10.4855-4865.2002
– volume: 11
  start-page: 3341
  year: 2000
  ident: ref24
  article-title: Regulation of macropinocytosis by p21-activated kinase-1.
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.11.10.3341
– volume: 9
  start-page: 1672
  year: 2007
  ident: ref87
  article-title: Role of the actin cytoskeleton during influenza virus internalization into polarized epithelial cells.
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2007.00900.x
– volume: 76
  start-page: 5266
  year: 2002
  ident: ref50
  article-title: Association of the caveola vesicular system with cellular entry by filoviruses.
  publication-title: J Virol
  doi: 10.1128/JVI.76.10.5266-5270.2002
– volume: 53
  start-page: 129
  year: 1998
  ident: ref102
  article-title: Fusion of influenza virus with the endosomal membrane is inhibited by monoclonal antibodies to defined epitopes on the hemagglutinin.
  publication-title: Virus Res
  doi: 10.1016/S0168-1702(97)00143-3
– volume: 83
  start-page: 1535
  year: 2002
  ident: ref2
  article-title: Dissecting virus entry via endocytosis.
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-83-7-1535
– volume: 308
  start-page: 1643
  year: 2005
  ident: ref53
  article-title: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection.
  publication-title: Science
  doi: 10.1126/science.1110656
– volume: 11
  start-page: 567
  year: 2004
  ident: ref72
  article-title: Assembly of endocytic machinery around individual influenza viruses during viral entry.
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb769
– volume: 168
  start-page: 477
  year: 2005
  ident: ref74
  article-title: Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200407113
– volume: 6
  start-page: 423
  year: 2002
  ident: ref42
  article-title: The role of DC-SIGN and DC-SIGNR in HIV and Ebola virus infection: can potential therapeutics block virus transmission and dissemination?
  publication-title: Expert Opin Ther Targets
  doi: 10.1517/14728222.6.4.423
– volume: 70
  start-page: 401
  year: 1992
  ident: ref27
  article-title: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling.
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90164-8
– volume: 188
  start-page: 547
  ident: ref85
  article-title: Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200908086
– volume: 195
  start-page: 593
  year: 2002
  ident: ref57
  article-title: Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses.
  publication-title: J Exp Med
  doi: 10.1084/jem.20011500
– volume: 135
  start-page: 1249
  year: 1996
  ident: ref31
  article-title: A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.135.5.1249
– volume: 81
  start-page: 7702
  year: 2007
  ident: ref52
  article-title: Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events.
  publication-title: J Virol
  doi: 10.1128/JVI.02433-06
– volume: 117
  start-page: 443
  year: 2006
  ident: ref29
  article-title: Drinking a lot is good for dendritic cells.
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2006.02335.x
– volume: 211
  start-page: 220
  year: 2007
  ident: ref25
  article-title: Role of Src-family kinases in formation and trafficking of macropinosomes.
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.20931
– volume: 91
  start-page: 601
  year: 1981
  ident: ref5
  article-title: Infectious entry pathway of influenza virus in a canine kidney cell line.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.91.3.601
– volume: 22
  start-page: 539
  year: 2005
  ident: ref10
  article-title: Phagocytosis: elegant complexity.
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.05.002
– volume: 582
  start-page: 2112
  year: 2008
  ident: ref83
  article-title: Actin in the endocytic pathway: from yeast to mammals.
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2008.04.011
– volume: 9
  start-page: 639
  year: 2008
  ident: ref32
  article-title: Shaping cups into phagosomes and macropinosomes.
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2447
– volume: 158
  start-page: 1119
  year: 2002
  ident: ref38
  article-title: Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200112067
– volume: 83
  start-page: 10176
  year: 2009
  ident: ref96
  article-title: Rho GTPases modulate entry of Ebola virus and vesicular stomatitis virus pseudotyped vectors.
  publication-title: J Virol
  doi: 10.1128/JVI.00422-09
– volume: 86
  start-page: 2535
  year: 2005
  ident: ref43
  article-title: Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization.
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.81199-0
– start-page: 230
  year: 2004
  ident: ref101
  article-title: Roles of Filoviral Matrix- and Glycoproteins in the Viral life Cycle.
– volume: 4
  start-page: e1000087
  year: 2008
  ident: ref13
  article-title: Ameobal pathogen mimivirus infects macrophages through phagocytosis.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000087
– volume: 7
  start-page: 176
  year: 1997
  ident: ref91
  article-title: Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein.
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(97)70088-5
– volume: 75
  start-page: 11166
  year: 2001
  ident: ref37
  article-title: Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis.
  publication-title: J Virol
  doi: 10.1128/JVI.75.22.11166-11177.2001
– volume: 47
  start-page: 3970
  year: 2003
  ident: ref44
  article-title: Mannosyl glycodendritic structure inhibits DC-SIGN-mediated Ebola virus infection in cis and in trans.
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.47.12.3970-3972.2003
– volume: 80
  start-page: 10109
  year: 2006
  ident: ref49
  article-title: Tyro3 family-mediated cell entry of Ebola and Marburg viruses.
  publication-title: J Virol
  doi: 10.1128/JVI.01157-06
– volume: 401
  start-page: 18
  ident: ref60
  article-title: Ebola virus uses clathrin-mediated endocytosis as an entry pathway.
  publication-title: Virology
  doi: 10.1016/j.virol.2010.02.015
– volume: 100
  start-page: 9280
  year: 2003
  ident: ref69
  article-title: Visualizing infection of individual influenza viruses.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0832269100
– volume: 76
  start-page: 6841
  year: 2002
  ident: ref41
  article-title: C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans.
  publication-title: J Virol
  doi: 10.1128/JVI.76.13.6841-6844.2002
– volume: 174
  start-page: 1009
  year: 2006
  ident: ref12
  article-title: A novel role for phagocytosis-like uptake in herpes simplex virus entry.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200509155
– volume: 1
  start-page: 1
  year: 1999
  ident: ref70
  article-title: Spatial control of coated-pit dynamics in living cells.
  publication-title: Nat Cell Biol
  doi: 10.1038/8971
– volume: 131
  start-page: 1435
  year: 1995
  ident: ref92
  article-title: Rab 7: an important regulator of late endocytic membrane traffic.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.131.6.1435
– volume: 16
  start-page: 1769
  year: 2005
  ident: ref103
  article-title: Highly cooperative control of endocytosis by clathrin.
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E04-08-0739
– volume: 422
  start-page: 37
  year: 2003
  ident: ref1
  article-title: Regulated portals of entry into the cell.
  publication-title: Nature
  doi: 10.1038/nature01451
– volume: 109
  start-page: 2731
  year: 1989
  ident: ref86
  article-title: Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells.
  publication-title: J Cell Biol
– volume: 156
  start-page: 609
  year: 1982
  ident: ref6
  article-title: Pathway of vesicular stomatitis virus entry leading to infection.
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(82)90269-8
– volume: 305
  start-page: 115
  year: 2003
  ident: ref45
  article-title: DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells.
  publication-title: Virology
  doi: 10.1006/viro.2002.1730
– volume: 320
  start-page: 531
  year: 2008
  ident: ref26
  article-title: Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells.
  publication-title: Science
  doi: 10.1126/science.1155164
– volume: 106
  start-page: 117
  year: 2001
  ident: ref40
  article-title: Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses.
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00418-4
– volume: 10
  start-page: 839
  year: 2000
  ident: ref28
  article-title: Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation.
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(00)00595-9
– volume: 114
  start-page: 3737
  year: 2001
  ident: ref73
  article-title: Internalization of cholera toxin by different endocytic mechanisms.
  publication-title: J Cell Sci
  doi: 10.1242/jcs.114.20.3737
– volume: 282
  start-page: 19820
  year: 2007
  ident: ref106
  article-title: Phosphorylation-dependent regulation of stability and transforming potential of ETS transcriptional factor ESE-1 by p21-activated kinase 1.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M702309200
– volume: 76
  start-page: 6689
  year: 2002
  ident: ref36
  article-title: Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway.
  publication-title: J Virol
  doi: 10.1128/JVI.76.13.6689-6700.2002
– volume: 7
  start-page: 255
  year: 2005
  ident: ref105
  article-title: Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion.
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1230
– volume: 30
  start-page: 275
  year: 1977
  ident: ref90
  article-title: A new alkaloid AM-2282 OF Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization.
  publication-title: J Antibiot (Tokyo)
  doi: 10.7164/antibiotics.30.275
– volume: 127
  start-page: 1
  year: 2005
  ident: ref63
  article-title: Analysis of Ebola virus and VLP release using an immunocapture assay.
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2005.02.015
– volume: 142
  start-page: 439
  year: 1980
  ident: ref4
  article-title: Adsorptive endocytosis of Semliki Forest virus.
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(80)90281-8
– volume: 10
  start-page: 364
  year: 2009
  ident: ref15
  article-title: Defining macropinocytosis.
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2009.00878.x
– volume: 25
  start-page: 10087
  year: 2005
  ident: ref104
  article-title: Caveolin-1 is not essential for biosynthetic apical membrane transport.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.25.22.10087-10096.2005
– volume: 8
  start-page: 1336
  year: 2006
  ident: ref88
  article-title: Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence.
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2006.00713.x
– start-page: 27
  year: 2004
  ident: ref100
  article-title: Structure of Viral Protein.
– volume: 11
  start-page: 670
  year: 2007
  ident: ref14
  article-title: Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides.
  publication-title: J Cell Mol Med
  doi: 10.1111/j.1582-4934.2007.00062.x
– volume: 23
  start-page: 6901
  year: 2003
  ident: ref99
  article-title: EBNA-1, a bifunctional transcriptional activator.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.19.6901-6908.2003
– volume: 27
  start-page: 970
  year: 2008
  ident: ref30
  article-title: The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS.
  publication-title: EMBO J
  doi: 10.1038/emboj.2008.59
– volume: 115
  start-page: 2953
  year: 2002
  ident: ref98
  article-title: Membrane ruffling and macropinocytosis in A431 cells require cholesterol.
  publication-title: J Cell Sci
  doi: 10.1242/jcs.115.14.2953
– reference: 19625394 - J Virol. 2009 Oct;83(19):10176-86
– reference: 2556406 - J Cell Biol. 1989 Dec;109(6 Pt 1):2731-9
– reference: 17167779 - J Cell Physiol. 2007 Apr;211(1):220-32
– reference: 16260622 - Mol Cell Biol. 2005 Nov;25(22):10087-96
– reference: 18854019 - BMC Cell Biol. 2008;9:58
– reference: 11112476 - Virology. 2000 Dec 5;278(1):20-6
– reference: 15831716 - Science. 2005 Jun 10;308(5728):1643-5
– reference: 14645601 - J Virol. 2003 Dec;77(24):13433-8
– reference: 8522602 - J Cell Biol. 1995 Dec;131(6 Pt 1):1435-52
– reference: 8099075 - J Cell Biol. 1993 Jun;121(5):1011-20
– reference: 16497584 - Cell. 2006 Feb 24;124(4):729-40
– reference: 16962776 - Trends Cell Biol. 2006 Oct;16(10):499-504
– reference: 14990712 - J Virol. 2004 Mar;78(6):2943-7
– reference: 17928356 - J Virol. 2007 Dec;81(24):13378-84
– reference: 10734125 - J Biol Chem. 2000 Mar 31;275(13):9725-33
– reference: 14732047 - Trends Cell Biol. 1995 Nov;5(11):424-8
– reference: 19854459 - Virology. 2009 Dec 20;395(2):298-311
– reference: 11782546 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):167-72
– reference: 12719583 - J Virol. 2003 May;77(10):5902-10
– reference: 19404330 - Nat Cell Biol. 2009 May;11(5):510-20
– reference: 15220407 - J Virol. 2004 Jul;78(14):7344-51
– reference: 8805704 - Nature. 1996 Sep 19;383(6597):266-9
– reference: 12050382 - J Virol. 2002 Jul;76(13):6689-700
– reference: 15569696 - J Leukoc Biol. 2005 Mar;77(3):328-36
– reference: 17940958 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S259-63
– reference: 11877482 - J Exp Med. 2002 Mar 4;195(5):593-602
– reference: 17475648 - J Virol. 2007 Jul;81(14):7702-9
– reference: 16628234 - Cell Death Differ. 2006 Dec;13(12):2011-22
– reference: 19192253 - Traffic. 2009 Apr;10(4):364-71
– reference: 15893559 - J Virol Methods. 2005 Jul;127(1):1-9
– reference: 16099912 - J Gen Virol. 2005 Sep;86(Pt 9):2535-42
– reference: 16571833 - J Virol. 2006 Apr;80(8):4174-8
– reference: 15122347 - Nat Struct Mol Biol. 2004 Jun;11(6):567-73
– reference: 11602756 - J Virol. 2001 Nov;75(22):11166-77
– reference: 6288961 - J Mol Biol. 1982 Apr 15;156(3):609-31
– reference: 9525641 - J Virol. 1998 Apr;72(4):3155-60
– reference: 17578407 - Cell Microbiol. 2007 Jul;9(7):1672-82
– reference: 15613320 - J Virol. 2005 Jan;79(2):918-26
– reference: 12082155 - J Cell Sci. 2002 Jul 15;115(Pt 14):2953-62
– reference: 12198492 - Nat Cell Biol. 2002 Sep;4(9):691-8
– reference: 9405687 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14764-9
– reference: 18769720 - PLoS Pathog. 2008;4(8):e1000141
– reference: 12972608 - Mol Cell Biol. 2003 Oct;23(19):6901-8
– reference: 17760832 - J Cell Mol Med. 2007 Jul-Aug;11(4):670-84
– reference: 19279100 - J Virol. 2009 May;83(10):4895-911
– reference: 315944 - J Cell Biol. 1979 Oct;83(1):82-90
– reference: 12223058 - Expert Opin Ther Targets. 2002 Aug;6(4):423-31
– reference: 2115402 - Cell. 1990 Jul 27;62(2):317-29
– reference: 14694131 - J Virol. 2004 Jan;78(2):999-1005
– reference: 12504546 - Virology. 2003 Jan 5;305(1):115-23
– reference: 9620205 - Virus Res. 1998 Feb;53(2):129-39
– reference: 17093049 - Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17955-60
– reference: 12221069 - J Cell Biol. 2002 Sep 16;158(6):1119-31
– reference: 12883000 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9280-5
– reference: 20156964 - J Cell Biol. 2010 Feb 22;188(4):547-63
– reference: 7629501 - J Exp Med. 1995 Aug 1;182(2):389-400
– reference: 15689492 - Mol Biol Cell. 2005 Apr;16(4):1769-76
– reference: 20202662 - Virology. 2010 May 25;401(1):18-28
– reference: 16556257 - Immunology. 2006 Apr;117(4):443-51
– reference: 15668298 - J Cell Biol. 2005 Jan 31;168(3):477-88
– reference: 9276758 - Curr Biol. 1997 Mar 1;7(3):176-83
– reference: 8947549 - J Cell Biol. 1996 Dec;135(5):1249-60
– reference: 1643658 - Cell. 1992 Aug 7;70(3):401-10
– reference: 11967302 - J Virol. 2002 May;76(10):4855-65
– reference: 15894272 - Immunity. 2005 May;22(5):539-50
– reference: 11461707 - Cell. 2001 Jul 13;106(1):117-26
– reference: 16968745 - J Cell Sci. 2006 Oct 1;119(Pt 19):3967-80
– reference: 18323776 - EMBO J. 2008 Apr 9;27(7):956-69
– reference: 18420037 - FEBS Lett. 2008 Jun 18;582(14):2112-9
– reference: 863788 - J Antibiot (Tokyo). 1977 Apr;30(4):275-82
– reference: 11331875 - Nat Cell Biol. 2001 May;3(5):473-83
– reference: 17940957 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S251-8
– reference: 9022030 - Eur J Immunol. 1997 Jan;27(1):280-8
– reference: 15951806 - Nat Cell Biol. 2005 Jul;7(7):653-64
– reference: 15723050 - Nat Cell Biol. 2005 Mar;7(3):255-61
– reference: 11029048 - Mol Biol Cell. 2000 Oct;11(10):3453-67
– reference: 11090628 - Mol Cell. 2000 Oct;6(4):909-19
– reference: 10482652 - J Virol. 1999 Oct;73(10):8907-12
– reference: 10559856 - Nat Cell Biol. 1999 May;1(1):1-7
– reference: 17000878 - J Cell Biol. 2006 Sep 25;174(7):1009-21
– reference: 11707525 - J Cell Sci. 2001 Oct;114(Pt 20):3737-47
– reference: 16439557 - J Virol. 2006 Feb;80(4):2013-8
– reference: 17005688 - J Virol. 2006 Oct;80(20):10109-16
– reference: 16882036 - Cell Microbiol. 2006 Aug;8(8):1336-48
– reference: 7328111 - J Cell Biol. 1981 Dec;91(3 Pt 1):601-13
– reference: 18615077 - Nature. 2008 Jul 10;454(7201):177-82
– reference: 12075072 - J Gen Virol. 2002 Jul;83(Pt 7):1535-45
– reference: 18551172 - PLoS Pathog. 2008 Jun;4(6):e1000087
– reference: 7463480 - J Mol Biol. 1980 Sep 25;142(3):439-54
– reference: 12050398 - J Virol. 2002 Jul;76(13):6841-4
– reference: 11967340 - J Virol. 2002 May;76(10):5266-70
– reference: 18436786 - Science. 2008 Apr 25;320(5875):531-5
– reference: 11029040 - Mol Biol Cell. 2000 Oct;11(10):3341-52
– reference: 8223707 - Eur J Cell Biol. 1993 Jun;61(1):44-53
– reference: 10358769 - Annu Rev Immunol. 1999;17:593-623
– reference: 14638512 - Antimicrob Agents Chemother. 2003 Dec;47(12):3970-2
– reference: 18612320 - Nat Rev Mol Cell Biol. 2008 Aug;9(8):639-49
– reference: 16113677 - Nat Cell Biol. 2005 Sep;7(9):894-900
– reference: 12621426 - Nature. 2003 Mar 6;422(6927):37-44
– reference: 18354494 - EMBO J. 2008 Apr 9;27(7):970-81
– reference: 10899002 - Curr Biol. 2000 Jul 13;10(14):839-48
– reference: 18212124 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1129-33
– reference: 11560994 - J Exp Med. 2001 Sep 17;194(6):781-95
– reference: 17491012 - J Biol Chem. 2007 Jul 6;282(27):19820-30
SSID ssj0041316
Score 2.4957857
Snippet Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans...
  Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1001121
SubjectTerms Animals
Blotting, Western
Caveolae - metabolism
Caveolae - virology
Cell Biology
Cells, Cultured
Cercopithecus aethiops
Clathrin - metabolism
Ebola virus
Ebolavirus - physiology
Endocytosis - physiology
Gene expression
Genetic aspects
Hemorrhagic Fever, Ebola - metabolism
Hemorrhagic Fever, Ebola - virology
Humans
Infections
Infectious disease incubation period
Infectious Diseases/Viral Infections
Influenza
Kinases
Lasers
Microscopy, Fluorescence
Mortality
Physiological aspects
Pinocytosis
Pinocytosis - physiology
Plasma
Primates
Proteins
rab GTP-Binding Proteins - genetics
rab GTP-Binding Proteins - metabolism
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
Signal Transduction
Sorting Nexins - genetics
Sorting Nexins - metabolism
Studies
Vero Cells
Vesicular stomatitis virus
Vesiculovirus
Viral Envelope Proteins - genetics
Viral Envelope Proteins - metabolism
Virion - genetics
Virology/Host Invasion and Cell Entry
Virus Internalization
Virus Replication
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBL6TvbpkWUQk9ubEm2rGNaEtJCc2gbyE1IspQYNvYSewPbX98Z2V7i0pBLwQc_RgfNjKRvrNE3hHwokBHGBp5EDxZ5qBIrkPdWWmVDYXmo8IDz99Pi5Ex8O8_Pb5X6wpywgR54UNyBEiVgah6YkLhpZUyVergLReqFsz7yfMKaNwVTwxwMM3MseopFcRLJi2I8NMdldjDa6NN6bfrIQJSxbLYoRe7-3Qy9WK_a7l_w8-8sylvL0vET8njEk_Rw6MdT8sA3z8jDocLk9jm5PLIQu97U15uO1nAN__9W9W9f4UNL8ZAHxb_3Hb2pDb0yWNKrblq37dsutqCGYiLwil6stq6NvA51k0zFc3togtW7XpCz46NfX06SsbhC4gDx9YmqMghlmDI2L40XRuVVCaEPBEBpZZ0vg_M5SyUrwGaCeRtS70MeskJ5xqxl_CVZNG3j9wi1ALFc4B4Wfyekq5RULpPWMGsqAEBsSfikXe1G5nEsgLHScTtNQgQyKEujTfRokyVJdq3WA_PGPfKf0XA7WeTNji_Am_ToTfo-b1qS92h2jcwYDabeXJhN1-mvP0_1IeO4Ryo4u1Pox0zo4ygUWuisM-NxB1AZMm7NJPdnkjC-3ezzHrrg1OdOA6JQ2OFcLAmd3FJjK8yXa3y76bQElF4AcsvuFilxcOSqAJFXgyPvVMdg4AKsLpdEzlx8ptv5l6a-jNzkTEG8n_HX_8MYb8ijIVcDM_r2yaK_3vi3AAF7-y6O9j86uFoY
  priority: 102
  providerName: Directory of Open Access Journals
Title Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner
URI https://www.ncbi.nlm.nih.gov/pubmed/20886108
https://www.proquest.com/docview/756662441
https://www.proquest.com/docview/815535961
https://pubmed.ncbi.nlm.nih.gov/PMC2944813
https://doaj.org/article/9484873f2470438aad0e704f60e4cbe3
http://dx.doi.org/10.1371/journal.ppat.1001121
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZdymAvY7-brQtmDPbkEsuyZT-M0Y6WbtAwugXyJiRZSg2encVOWfbX7062wzwa9jLIQxKfDLo7Sd9Jp_sIeRtjRRhlQ995MIts5iuGdW-5SpWNVWgzvOB8NYsv5-zzIlockJ6ztVNgfWdoh3xS83Vx8vPH9gMM-PeOtYEHfaOT1Uo2rqZQgDfLD2Ft4shpcMV25wowYzsyVCTL8XkYx91lun1vGSxWrqb_buYerYqqvguW_p1d-cdydfGIPOxwpnfaOsZjcmDKJ-R-yzy5fUpuzhV0_DZfb2ovh0-7L1jkv0yGPyoPL394uKtfe7e59L5LpPrKy0pvm6p2LTzpYYJw4S2Lra5cvYe89HtS3QaaIKvXMzK_OP_28dLvSBd8DUiw8dMsgBCHplJFiTRMplGWQEgEgdE0U9okVpuITjmNwZaMGmWnxtjIBnFqKFWKhs_JqKxKc0Q8BdBL29AAKNCM6yzlqQ64klTJDIARHZOw167QXUVyJMYohDtm4xCZtMoSaBPR2WRM_F2rVVuR4x_yZ2i4nSzW03Z_VOul6IanSFkCkVtoKeN4NCplNjXwzcZTw7Qy4Zi8QbMLrJhRYkrOUm7qWnz6OhOnNMSzUxbSvULXA6F3nZCtoLNadtcgQGVYiWsgeTyQhHGvB4-P0AX7PtcCkEaKHY7YmHi9WwpshXl0pak2teCA3mNAdMF-kQQHR5TGIPKideSd6igMaIDbyZjwgYsPdDt8UuY3rmY5TRlLgvDl_zDGK_KgzeHATL9jMmrWG_MaoGGjJuQeX_AJOTw7n325nrgNlombAX4DyLVoJQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ebolavirus+is+internalized+into+host+cells+via+macropinocytosis+in+a+viral+glycoprotein-dependent+manner&rft.jtitle=PLoS+pathogens&rft.au=Asuka+Nanbo&rft.au=Masaki+Imai&rft.au=Shinji+Watanabe&rft.au=Takeshi+Noda&rft.date=2010-09-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=6&rft.issue=9&rft.spage=e1001121&rft_id=info:doi/10.1371%2Fjournal.ppat.1001121&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9484873f2470438aad0e704f60e4cbe3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon