Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner
Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virion...
Saved in:
Published in | PLoS pathogens Vol. 6; no. 9; p. e1001121 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.09.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection. |
---|---|
AbstractList | Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolaemediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrinor caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection. Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection. Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection. Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection. Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, questions remain regarding the mechanism of EBOV entry. Here, we demonstrate that internalization of EBOV particles is independent of clathrin- or caveolae-mediated endocytosis. Specifically, we show that internalized EBOV particles co-localize with macropinocytosis-specific endosomes (macropinosomes) and that their entry is negatively affected by treatment with macropinocytosis inhibitors. Moreover, the internalization of Ebola virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. We further demonstrate that a pseudotyped vesicular stomatitis virus possessing the EBOV glycoprotein (GP) also co-localizes with macropinosomes and its internalization is similarly affected by macropinocytosis inhibitors. Our results indicate that EBOV uptake into cells involves the macropinocytic pathway and is GP-dependent. These findings provide new insights into the lifecycle of EBOV and may aid in the development of therapeutics for EBOV infection. Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection. Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection. Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, questions remain regarding the mechanism of EBOV entry. Here, we demonstrate that internalization of EBOV particles is independent of clathrin- or caveolae-mediated endocytosis. Specifically, we show that internalized EBOV particles co-localize with macropinocytosis-specific endosomes (macropinosomes) and that their entry is negatively affected by treatment with macropinocytosis inhibitors. Moreover, the internalization of Ebola virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. We further demonstrate that a pseudotyped vesicular stomatitis virus possessing the EBOV glycoprotein (GP) also co-localizes with macropinosomes and its internalization is similarly affected by macropinocytosis inhibitors. Our results indicate that EBOV uptake into cells involves the macropinocytic pathway and is GP-dependent. These findings provide new insights into the lifecycle of EBOV and may aid in the development of therapeutics for EBOV infection. |
Audience | Academic |
Author | Noda, Takeshi Kawaoka, Yoshihiro Watanabe, Shinji Neumann, Gabriele Imai, Masaki Takahashi, Kei Halfmann, Peter Nanbo, Asuka |
AuthorAffiliation | 3 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan 4 International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan Institut Pasteur, France 2 ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan 1 Influenza Research Institute, Department of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America |
AuthorAffiliation_xml | – name: 3 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan – name: 4 International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan – name: 1 Influenza Research Institute, Department of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America – name: 2 ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan – name: Institut Pasteur, France |
Author_xml | – sequence: 1 givenname: Asuka surname: Nanbo fullname: Nanbo, Asuka – sequence: 2 givenname: Masaki surname: Imai fullname: Imai, Masaki – sequence: 3 givenname: Shinji surname: Watanabe fullname: Watanabe, Shinji – sequence: 4 givenname: Takeshi surname: Noda fullname: Noda, Takeshi – sequence: 5 givenname: Kei surname: Takahashi fullname: Takahashi, Kei – sequence: 6 givenname: Gabriele surname: Neumann fullname: Neumann, Gabriele – sequence: 7 givenname: Peter surname: Halfmann fullname: Halfmann, Peter – sequence: 8 givenname: Yoshihiro surname: Kawaoka fullname: Kawaoka, Yoshihiro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20886108$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk12L1DAUhousuF_-A9GCF-LFzCZpmiZeCMu47g6sCn7dhjQ9nc3QSWqSDo6_3tSZXXZEFGmhIX3eN-Q95xxnB9ZZyLInGE1xUeGzpRu8Vd2071WcYoQwJvhBdoTLsphURUUP7q0Ps-MQlghRXGD2KDskiHOGET_Kbi5q16m18UPI5-m1EUZX8wOa3Njo8isXYj6Drgv52qj8ndLe9cY6vYkumJCgXOVfjVddftlttOu9i2Ds5A30YBuwMUmsBX-aPWxVF-Dx7nuSfXl78Xl2Nbn-cDmfnV9PdFXROBENJgwRoeqSK6BKlA0XjFEhUFNr4K2GkqCKsFrUlEDdIoC2bDETQEhdk-Ike7b17TsX5C6kIDHhYkyopImYb4nGqaXsvVkpv5FOGflrw_mFVD4a3YEUlFNeFS2hFaIFV6pBkFYtQ0B1DUXyer07bahX0Oh035TEnun-H2tu5MKtJRGUcjwavNgZePdtgBDlygSd4lYW3BAkH2tYCob_SVYlY4xQOpLPt-RCpTsY27p0tB5peU4KgbigxRjU9A9UehpYGZ16rTVpf0_wck-QmAjf40INIcj5p4__wb7fZ5_ez_AuvNsmTQDdAqn1QvDQ3iEYyXEWbsssx1mQu1lIsle_ybSJKho3VsJ0fxf_BFKMENQ |
CitedBy_id | crossref_primary_10_1016_j_antiviral_2018_07_003 crossref_primary_10_1146_annurev_genom_083115_022446 crossref_primary_10_3390_v10040152 crossref_primary_10_1128_JVI_02288_20 crossref_primary_10_1155_2013_487585 crossref_primary_10_3109_07388551_2015_1114465 crossref_primary_10_1080_07391102_2018_1544509 crossref_primary_10_1038_emboj_2011_245 crossref_primary_10_1038_ncomms3763 crossref_primary_10_1093_bfgp_elx026 crossref_primary_10_3390_v13050913 crossref_primary_10_1021_acsinfecdis_1c00474 crossref_primary_10_1093_bfgp_elx020 crossref_primary_10_3390_ijms22105274 crossref_primary_10_3390_v11010025 crossref_primary_10_2222_jsv_62_197 crossref_primary_10_1371_journal_pone_0056265 crossref_primary_10_1016_j_ceca_2022_102528 crossref_primary_10_1016_j_ijbiomac_2020_07_178 crossref_primary_10_1021_bi400040v crossref_primary_10_1038_nrmicro3524 crossref_primary_10_1021_acs_jpcb_0c08089 crossref_primary_10_1128_JVI_02695_12 crossref_primary_10_1371_journal_pntd_0005540 crossref_primary_10_1016_j_virol_2010_10_018 crossref_primary_10_1128_JVI_02110_13 crossref_primary_10_1038_s41598_018_36449_2 crossref_primary_10_1128_JVI_02191_16 crossref_primary_10_3390_pathogens11030374 crossref_primary_10_1128_jvi_00210_23 crossref_primary_10_1016_j_ceca_2021_102360 crossref_primary_10_1016_j_antiviral_2014_04_014 crossref_primary_10_1128_JVI_01278_09 crossref_primary_10_1016_j_apsb_2022_05_023 crossref_primary_10_1016_j_dci_2018_11_006 crossref_primary_10_1021_nn405998v crossref_primary_10_1128_JVI_01621_12 crossref_primary_10_1093_infdis_jiy294 crossref_primary_10_1155_2018_1846207 crossref_primary_10_3390_v10100563 crossref_primary_10_1021_acsinfecdis_8b00285 crossref_primary_10_1089_cmb_2016_0201 crossref_primary_10_1128_JVI_02077_15 crossref_primary_10_3390_pathogens10091201 crossref_primary_10_1242_jcs_176149 crossref_primary_10_3389_fmicb_2016_01765 crossref_primary_10_1126_science_1258758 crossref_primary_10_1128_JVI_03156_14 crossref_primary_10_37349_ei_2024_00139 crossref_primary_10_1016_j_tim_2013_06_001 crossref_primary_10_1128_JVI_01598_12 crossref_primary_10_1016_j_virusres_2014_11_028 crossref_primary_10_3390_pathogens10101330 crossref_primary_10_3390_v11121117 crossref_primary_10_1016_j_virol_2011_08_009 crossref_primary_10_1128_MMBR_00007_11 crossref_primary_10_1016_j_antiviral_2017_06_015 crossref_primary_10_1126_scitranslmed_3005471 crossref_primary_10_3390_md23010023 crossref_primary_10_1089_nat_2018_0722 crossref_primary_10_1073_pnas_1815356116 crossref_primary_10_1128_JVI_00336_20 crossref_primary_10_1016_j_jbc_2022_102511 crossref_primary_10_1128_JVI_02185_18 crossref_primary_10_18632_oncotarget_18498 crossref_primary_10_1016_j_virol_2014_09_009 crossref_primary_10_1021_acs_jctc_1c00897 crossref_primary_10_1016_j_antiviral_2015_05_003 crossref_primary_10_1038_icb_2011_20 crossref_primary_10_1155_2012_640894 crossref_primary_10_3389_fimmu_2020_00739 crossref_primary_10_1021_acs_jpcb_4c04527 crossref_primary_10_1038_srep34589 crossref_primary_10_1073_pnas_1524532113 crossref_primary_10_3390_v10040166 crossref_primary_10_1016_j_antiviral_2020_104932 crossref_primary_10_1128_JVI_02242_12 crossref_primary_10_1016_j_str_2013_05_009 crossref_primary_10_1242_jcs_216259 crossref_primary_10_2174_0127724344267452231206061944 crossref_primary_10_1021_acsnano_0c01739 crossref_primary_10_2222_jsv_70_69 crossref_primary_10_1021_acsinfecdis_2c00416 crossref_primary_10_1016_j_cell_2015_01_031 crossref_primary_10_3390_v14091903 crossref_primary_10_3390_v12040413 crossref_primary_10_1038_emboj_2012_53 crossref_primary_10_1128_JVI_01073_21 crossref_primary_10_1080_22221751_2024_2392651 crossref_primary_10_1007_s00203_025_04277_4 crossref_primary_10_1371_journal_ppat_1009312 crossref_primary_10_1016_j_antiviral_2012_01_011 crossref_primary_10_1021_acs_jmedchem_8b01328 crossref_primary_10_1021_acsnano_8b05340 crossref_primary_10_1371_journal_ppat_1008900 crossref_primary_10_1038_s41392_024_01917_x crossref_primary_10_1038_s41467_024_51356_z crossref_primary_10_1038_s41579_019_0233_2 crossref_primary_10_1089_dna_2012_1868 crossref_primary_10_1128_spectrum_01908_23 crossref_primary_10_1016_j_coi_2018_05_001 crossref_primary_10_1016_j_virol_2015_11_019 crossref_primary_10_1093_infdis_jiad400 crossref_primary_10_1128_JVI_05992_11 crossref_primary_10_1371_journal_pone_0016324 crossref_primary_10_1371_journal_ppat_1006848 crossref_primary_10_1021_acs_jmedchem_8b00350 crossref_primary_10_3390_v13020332 crossref_primary_10_1128_JVI_01525_12 crossref_primary_10_1128_JVI_01634_12 crossref_primary_10_1038_s41564_021_00877_0 crossref_primary_10_3390_ijerph17249411 crossref_primary_10_15252_embr_202051709 crossref_primary_10_1083_jcb_201108131 crossref_primary_10_5939_sjws_20001 crossref_primary_10_1007_s13238_016_0314_1 crossref_primary_10_1016_j_cell_2015_01_041 crossref_primary_10_1016_j_antiviral_2017_11_016 crossref_primary_10_1128_JVI_00712_12 crossref_primary_10_1016_j_virol_2011_07_018 crossref_primary_10_1242_jcs_119685 crossref_primary_10_1021_acs_jmedchem_7b01249 crossref_primary_10_1128_mBio_02030_16 crossref_primary_10_3389_fimmu_2016_00663 crossref_primary_10_1186_s13567_024_01442_3 crossref_primary_10_1128_JVI_01310_13 crossref_primary_10_1586_14787210_2014_948848 crossref_primary_10_1016_j_coviro_2019_01_003 crossref_primary_10_1093_infdis_jir326 crossref_primary_10_3390_v11050410 crossref_primary_10_1128_mBio_00565_15 crossref_primary_10_31083_j_fbl2908295 crossref_primary_10_1007_s00705_018_3966_8 crossref_primary_10_1021_id500025n crossref_primary_10_1042_BSR20211930 crossref_primary_10_3390_v8060178 crossref_primary_10_1186_1471_2180_13_57 crossref_primary_10_1128_mBio_03100_20 crossref_primary_10_1128_JVI_01399_12 crossref_primary_10_1016_j_antiviral_2019_104592 crossref_primary_10_1134_S207908642102002X crossref_primary_10_3390_v14030496 crossref_primary_10_1016_j_virusres_2015_01_022 crossref_primary_10_1128_jvi_00524_24 crossref_primary_10_1042_BJ20111226 crossref_primary_10_1007_s40475_015_0039_x crossref_primary_10_1016_j_antiviral_2021_105059 crossref_primary_10_1016_j_jconrel_2023_06_011 crossref_primary_10_1016_j_bbrc_2020_04_041 crossref_primary_10_1016_j_coviro_2011_05_014 crossref_primary_10_3390_v11111067 crossref_primary_10_1038_srep41226 crossref_primary_10_1093_infdis_jir331 crossref_primary_10_3390_v4112471 crossref_primary_10_1021_acs_nanolett_1c04677 crossref_primary_10_3390_v4123336 crossref_primary_10_1128_JVI_00453_11 crossref_primary_10_1038_nature10348 crossref_primary_10_3389_fimmu_2023_1204730 crossref_primary_10_1371_journal_pntd_0008602 crossref_primary_10_1371_journal_ppat_1011848 crossref_primary_10_1158_0008_5472_CAN_12_1882 crossref_primary_10_1016_j_chom_2018_04_015 crossref_primary_10_1038_nrmicro3469 crossref_primary_10_1371_journal_pone_0160410 crossref_primary_10_2217_imt_13_124 crossref_primary_10_1074_jbc_M117_816280 crossref_primary_10_1371_journal_pone_0219312 crossref_primary_10_1128_JVI_01272_14 crossref_primary_10_1016_j_yjmcc_2024_06_009 crossref_primary_10_1247_csf_21047 crossref_primary_10_1016_j_vaccine_2011_01_113 crossref_primary_10_1021_acs_chemrev_9b00692 crossref_primary_10_1517_14728222_2015_1068760 crossref_primary_10_1128_mBio_01857_15 crossref_primary_10_1016_j_virol_2014_08_019 crossref_primary_10_1186_s12879_015_1302_4 crossref_primary_10_1371_journal_ppat_1006139 crossref_primary_10_3389_fmicb_2021_631274 crossref_primary_10_1128_JVI_01810_14 crossref_primary_10_1038_nature18615 crossref_primary_10_1128_AAC_00543_16 crossref_primary_10_1128_JVI_06346_11 crossref_primary_10_1016_j_cub_2020_06_050 crossref_primary_10_1074_jbc_M116_716100 crossref_primary_10_3390_v16111700 crossref_primary_10_1021_ml300370k crossref_primary_10_3389_fmicb_2019_02825 crossref_primary_10_3389_fphys_2022_1037758 crossref_primary_10_1126_science_aaa8121 crossref_primary_10_3390_pathogens6020017 crossref_primary_10_2222_jsv_67_69 crossref_primary_10_3389_fmicb_2025_1498955 crossref_primary_10_1016_j_bsheal_2019_12_009 crossref_primary_10_15789_2220_7619_VPE_8045 crossref_primary_10_3390_pathogens11121400 crossref_primary_10_1016_j_coviro_2012_02_015 crossref_primary_10_3390_v14010142 crossref_primary_10_1128_JVI_00820_18 crossref_primary_10_3390_v11030274 crossref_primary_10_1016_j_antiviral_2016_09_001 crossref_primary_10_1038_srep46374 crossref_primary_10_1371_journal_ppat_1010616 crossref_primary_10_3390_cells9092054 crossref_primary_10_1038_s42003_022_03767_1 crossref_primary_10_2217_fvl_2016_0113 crossref_primary_10_1128_JVI_02343_14 crossref_primary_10_3389_fmicb_2018_02724 crossref_primary_10_1016_j_virol_2010_12_003 crossref_primary_10_1016_j_bpj_2021_01_025 crossref_primary_10_3390_membranes11010064 crossref_primary_10_1128_JVI_01744_14 crossref_primary_10_1016_j_bbagen_2016_12_015 crossref_primary_10_1128_JVI_00941_17 crossref_primary_10_3389_fmicb_2022_1026644 crossref_primary_10_1093_infdis_jiy316 crossref_primary_10_1371_journal_ppat_1004731 crossref_primary_10_1186_s12964_022_01037_5 crossref_primary_10_1111_cmi_12415 crossref_primary_10_1016_j_immuni_2021_01_015 crossref_primary_10_3390_v4101878 crossref_primary_10_1016_j_chembiol_2016_07_019 crossref_primary_10_1016_j_mib_2012_05_016 crossref_primary_10_1021_acsnano_0c06369 crossref_primary_10_1016_j_chom_2017_12_003 crossref_primary_10_1038_cdd_2015_67 crossref_primary_10_3390_v14040816 crossref_primary_10_1128_JVI_03261_13 crossref_primary_10_1080_22221751_2022_2149351 crossref_primary_10_1371_journal_pbio_3000626 crossref_primary_10_15252_embj_2023113578 crossref_primary_10_1128_JVI_06704_11 crossref_primary_10_1038_nature10380 crossref_primary_10_1016_j_drudis_2014_12_010 crossref_primary_10_1186_2049_9957_3_43 crossref_primary_10_1371_journal_ppat_1005016 crossref_primary_10_1073_pnas_1708052114 crossref_primary_10_1016_j_jaut_2019_102375 crossref_primary_10_1128_spectrum_00269_24 crossref_primary_10_1371_journal_pntd_0006349 crossref_primary_10_1073_pnas_1019030108 crossref_primary_10_1093_infdis_jiy460 crossref_primary_10_1016_j_vetmic_2024_110254 crossref_primary_10_3390_v13112297 crossref_primary_10_1007_s11684_017_0589_5 crossref_primary_10_1016_j_ijpharm_2025_125356 crossref_primary_10_1016_j_antiviral_2019_104567 crossref_primary_10_1038_srep01206 crossref_primary_10_1186_s12929_023_00899_2 crossref_primary_10_1038_srep20514 crossref_primary_10_1189_jlb_2A0316_141RR crossref_primary_10_3389_fchem_2021_613209 crossref_primary_10_1016_j_meegid_2015_02_024 crossref_primary_10_1111_tra_12389 crossref_primary_10_1128_jvi_01446_22 crossref_primary_10_1128_JVI_01239_16 crossref_primary_10_1016_j_antiviral_2015_11_003 crossref_primary_10_1016_j_cell_2015_12_044 crossref_primary_10_1099_jgv_0_000605 crossref_primary_10_1371_journal_pone_0060838 crossref_primary_10_1371_journal_ppat_1009275 crossref_primary_10_1371_journal_ppat_1011595 crossref_primary_10_1021_acs_macromol_6b00091 crossref_primary_10_3390_cells11050871 crossref_primary_10_1038_ncomms7240 crossref_primary_10_1371_journal_ppat_1012444 crossref_primary_10_1016_j_cell_2014_10_006 crossref_primary_10_1146_annurev_virology_111821_104408 crossref_primary_10_1021_acs_jnatprod_0c00968 crossref_primary_10_1099_jgv_0_001261 crossref_primary_10_1080_22221751_2021_2020598 crossref_primary_10_1093_infdis_jiad120 crossref_primary_10_1016_j_jvacx_2019_100009 crossref_primary_10_1016_j_jmb_2019_06_029 crossref_primary_10_1093_jac_dku091 crossref_primary_10_1128_spectrum_02553_23 crossref_primary_10_1007_s13337_017_0398_0 crossref_primary_10_1016_j_coviro_2013_01_005 crossref_primary_10_1128_mBio_02154_15 crossref_primary_10_1016_j_aquaculture_2014_04_044 crossref_primary_10_1016_j_virusres_2015_07_014 crossref_primary_10_1093_infdis_jiy248 crossref_primary_10_1016_j_antiviral_2019_01_006 crossref_primary_10_1093_infdis_jir295 crossref_primary_10_1016_j_celrep_2020_03_025 crossref_primary_10_3390_v4123647 crossref_primary_10_1021_acsinfecdis_3c00622 crossref_primary_10_2222_jsv_66_63 crossref_primary_10_1016_j_bbrc_2019_11_065 crossref_primary_10_1089_dna_2018_4485 crossref_primary_10_1371_journal_ppat_1005466 crossref_primary_10_1038_srep22352 crossref_primary_10_3389_fimmu_2021_638573 crossref_primary_10_1038_nrmicro2764 crossref_primary_10_1371_journal_ppat_1009013 crossref_primary_10_3390_v4020258 crossref_primary_10_1186_2045_3701_3_44 crossref_primary_10_1242_jcs_213736 crossref_primary_10_1016_j_coviro_2019_03_001 crossref_primary_10_1371_journal_pone_0026180 crossref_primary_10_1111_bph_16187 crossref_primary_10_1128_MMBR_00017_15 crossref_primary_10_1371_journal_ppat_1009937 crossref_primary_10_3390_v13091793 crossref_primary_10_3390_biom8020025 crossref_primary_10_1002_jobm_201500575 crossref_primary_10_1128_JVI_00694_18 crossref_primary_10_2174_0929867328666210511015808 crossref_primary_10_1126_scitranslmed_aaa5597 crossref_primary_10_1007_s40588_015_0021_3 crossref_primary_10_1093_femspd_ftaa046 crossref_primary_10_1128_JVI_00396_14 crossref_primary_10_1128_JVI_00136_12 crossref_primary_10_1155_2015_347903 crossref_primary_10_3390_v11070668 crossref_primary_10_1038_s41467_019_09732_7 crossref_primary_10_1038_srep19294 crossref_primary_10_2222_jsv_69_119 crossref_primary_10_1128_JVI_01345_21 crossref_primary_10_3390_v3081501 crossref_primary_10_1021_acs_chemrev_7b00194 crossref_primary_10_1007_s00705_020_04740_1 crossref_primary_10_1371_journal_pcbi_1007612 crossref_primary_10_1073_pnas_1721646115 crossref_primary_10_3390_v11030206 crossref_primary_10_2222_jsv_65_71 crossref_primary_10_4049_jimmunol_1700827 crossref_primary_10_1371_journal_pone_0152527 crossref_primary_10_1093_jmicro_dfac049 crossref_primary_10_18632_oncotarget_12104 crossref_primary_10_1371_journal_pntd_0001923 crossref_primary_10_1038_mt_2013_54 crossref_primary_10_1586_eri_12_104 crossref_primary_10_1186_1743_422X_10_331 crossref_primary_10_3389_fmicb_2018_00210 |
Cites_doi | 10.1038/35074539 10.1091/mbc.11.10.3453 10.1016/j.cell.2006.02.007 10.1128/JVI.80.8.4174-4178.2006 10.1006/viro.2000.0601 10.1083/jcb.121.5.1011 10.1016/S1097-2765(05)00089-4 10.1002/eji.1830270141 10.1146/annurev.immunol.17.1.593 10.1038/ncb1269 10.1189/jlb.0604342 10.1016/0092-8674(90)90369-P 10.1073/pnas.012607899 10.1038/ncb0509-510 10.1242/jcs.03167 10.1084/jem.194.6.781 10.1073/pnas.94.26.14764 10.1038/sj.cdd.4401900 10.1073/pnas.0606212103 10.1128/JVI.77.24.13433-13438.2003 10.1128/JVI.78.6.2943-2947.2004 10.1086/520594 10.1128/JVI.78.2.999-1005.2004 10.1038/nature07082 10.1084/jem.182.2.389 10.1016/j.tcb.2006.08.005 10.1128/JVI.78.14.7344-7351.2004 10.1086/520597 10.1128/JVI.02498-08 10.1038/ncb837 10.1186/1471-2121-9-58 10.1038/383266a0 10.1016/S0962-8924(00)89101-1 10.1128/JVI.01170-07 10.1073/pnas.0708057105 10.1128/JVI.79.2.918-926.2005 10.1038/emboj.2008.38 10.1128/JVI.77.10.5902-5910.2003 10.1083/jcb.83.1.82 10.1371/journal.ppat.1000141 10.1128/JVI.72.4.3155-3160.1998 10.1038/ncb1292 10.1128/JVI.73.10.8907-8912.1999 10.1074/jbc.275.13.9725 10.1016/j.virol.2009.09.016 10.1128/JVI.80.4.2013-2018.2006 10.1128/JVI.76.10.4855-4865.2002 10.1091/mbc.11.10.3341 10.1111/j.1462-5822.2007.00900.x 10.1128/JVI.76.10.5266-5270.2002 10.1016/S0168-1702(97)00143-3 10.1099/0022-1317-83-7-1535 10.1126/science.1110656 10.1038/nsmb769 10.1083/jcb.200407113 10.1517/14728222.6.4.423 10.1016/0092-8674(92)90164-8 10.1083/jcb.200908086 10.1084/jem.20011500 10.1083/jcb.135.5.1249 10.1128/JVI.02433-06 10.1111/j.1365-2567.2006.02335.x 10.1002/jcp.20931 10.1083/jcb.91.3.601 10.1016/j.immuni.2005.05.002 10.1016/j.febslet.2008.04.011 10.1038/nrm2447 10.1083/jcb.200112067 10.1128/JVI.00422-09 10.1099/vir.0.81199-0 10.1371/journal.ppat.1000087 10.1016/S0960-9822(97)70088-5 10.1128/JVI.75.22.11166-11177.2001 10.1128/AAC.47.12.3970-3972.2003 10.1128/JVI.01157-06 10.1016/j.virol.2010.02.015 10.1073/pnas.0832269100 10.1128/JVI.76.13.6841-6844.2002 10.1083/jcb.200509155 10.1038/8971 10.1083/jcb.131.6.1435 10.1091/mbc.E04-08-0739 10.1038/nature01451 10.1016/0022-2836(82)90269-8 10.1006/viro.2002.1730 10.1126/science.1155164 10.1016/S0092-8674(01)00418-4 10.1016/S0960-9822(00)00595-9 10.1242/jcs.114.20.3737 10.1074/jbc.M702309200 10.1128/JVI.76.13.6689-6700.2002 10.1038/ncb1230 10.7164/antibiotics.30.275 10.1016/j.jviromet.2005.02.015 10.1016/0022-2836(80)90281-8 10.1111/j.1600-0854.2009.00878.x 10.1128/MCB.25.22.10087-10096.2005 10.1111/j.1462-5822.2006.00713.x 10.1111/j.1582-4934.2007.00062.x 10.1128/MCB.23.19.6901-6908.2003 10.1038/emboj.2008.59 10.1242/jcs.115.14.2953 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 Public Library of Science Nanbo et al. 2010 2010 Nanbo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, et al. (2010) Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner. PLoS Pathog 6(9): e1001121. doi:10.1371/journal.ppat.1001121 |
Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: Nanbo et al. 2010 – notice: 2010 Nanbo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, et al. (2010) Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner. PLoS Pathog 6(9): e1001121. doi:10.1371/journal.ppat.1001121 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 7U9 H94 5PM DOA |
DOI | 10.1371/journal.ppat.1001121 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Ebolavirus Is Internalized via Macropinocytosis |
EISSN | 1553-7374 |
ExternalDocumentID | 1289112154 oai_doaj_org_article_9484873f2470438aad0e704f60e4cbe3 PMC2944813 A239089432 20886108 10_1371_journal_ppat_1001121 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U54 AI057153 – fundername: NIAID NIH HHS grantid: R01 AI055519 – fundername: NIAID NIH HHS grantid: 1-U54-AI-057153 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR IPNFZ ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QN7 RIG RNS RPM SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 7X8 7U9 H94 5PM PUEGO 3V. AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c774t-9d126029ab58ae4a95d89664990dbce8fce520726b9b42ebf0eef5f169e22bb23 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Oct 01 00:11:20 EDT 2023 Wed Aug 27 01:29:16 EDT 2025 Thu Aug 21 13:35:18 EDT 2025 Thu Jul 10 19:34:32 EDT 2025 Fri Jul 11 15:50:35 EDT 2025 Tue Jun 17 21:32:49 EDT 2025 Tue Jun 10 20:42:30 EDT 2025 Fri Jun 27 04:45:57 EDT 2025 Fri Jun 27 05:10:19 EDT 2025 Mon Jul 21 06:03:07 EDT 2025 Tue Jul 01 02:54:29 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c774t-9d126029ab58ae4a95d89664990dbce8fce520726b9b42ebf0eef5f169e22bb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Current address: Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan Conceived and designed the experiments: AN YK. Performed the experiments: AN MI SW. Analyzed the data: AN SW GN YK. Contributed reagents/materials/analysis tools: MI SW TN KT PH YK. Wrote the paper: AN GN. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1001121 |
PMID | 20886108 |
PQID | 756662441 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1289112154 doaj_primary_oai_doaj_org_article_9484873f2470438aad0e704f60e4cbe3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2944813 proquest_miscellaneous_815535961 proquest_miscellaneous_756662441 gale_infotracmisc_A239089432 gale_infotracacademiconefile_A239089432 gale_incontextgauss_ISR_A239089432 gale_incontextgauss_ISN_A239089432 pubmed_primary_20886108 crossref_primary_10_1371_journal_ppat_1001121 crossref_citationtrail_10_1371_journal_ppat_1001121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2010 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | C Clement (ref12) 2006; 174 J Mercer (ref16) 2009; 11 V Marechal (ref37) 2001; 75 A Takada (ref61) 1997; 94 L Pelkmans (ref9) 2001; 3 A Manninen (ref104) 2005; 25 A Yonezawa (ref58) 2005; 79 MC Subauste (ref89) 2000; 275 A Takada (ref46) 2004; 78 EM Damm (ref74) 2005; 168 N Araki (ref31) 1996; 135 MA West (ref86) 1989; 109 B Amstutz (ref33) 2008; 27 V Rybin (ref81) 1996; 383 RJ Wool-Lewis (ref39) 1998; 72 T Sakai (ref67) 2006; 80 A Takada (ref47) 2000; 278 P Chavrier (ref80) 1990; 62 MA Brindley (ref52) 2007; 81 S Wilkinson (ref105) 2005; 7 K Quinn (ref96) 2009; 83 E Veiga (ref7) 2005; 7 AJ Ridley (ref27) 1992; 70 SB Sieczkarski (ref2) 2002; 83 S Watanabe (ref65) 2004; 78 S Bhattacharyya (ref60); 401 KS Matlin (ref5) 1981; 91 DL Jack (ref95) 2005; 77 G Simmons (ref51) 2003; 77 M Marsh (ref4) 1980; 142 M Imai (ref102) 1998; 53 HT Haigler (ref21) 1979; 83 CJ Empig (ref50) 2002; 76 M Marsh (ref3) 2006; 124 O Pernet (ref35) 2009; 395 Y Feng (ref92) 1995; 131 NQ Liu (ref36) 2002; 76 K Kasahara (ref25) 2007; 211 SY Chan (ref40) 2001; 106 EL Racoosin (ref79) 1993; 121 CC Norbury (ref29) 2006; 117 JD Orth (ref75) 2002; 99 K Chandran (ref53) 2005; 308 SD Conner (ref1) 2003; 422 E Veiga (ref8) 2006; 16 KS Matlin (ref6) 1982; 156 S Bavari (ref57) 2002; 195 F Lasala (ref44) 2003; 47 X Ji (ref43) 2005; 86 EH Walker (ref84) 2000; 6 C Ehrhardt (ref88) 2006; 8 ML Torgersen (ref73) 2001; 114 P Dowrick (ref22) 1993; 61 A Aderem (ref11) 1999; 17 G Kallstrom (ref63) 2005; 127 X Sun (ref87) 2007; 9 M Koivusalo (ref85); 188 H Girao (ref83) 2008; 582 JA Swanson (ref17) 1995; 5 CC Norbury (ref19) 1997; 27 JP Lim (ref78) 2008; 9 LM Stuart (ref10) 2005; 22 CP Alvarez (ref41) 2002; 76 MC Kerr (ref77) 2006; 119 G Simmons (ref45) 2003; 305 JE Lee (ref55) 2008; 454 H Raghu (ref34) 2009; 83 S Omura (ref90) 1977; 30 M Amyere (ref23) 2000; 11 A Sanchez (ref59) 2007; 196 K Schornberg (ref56) 2006; 80 JA Swanson (ref32) 2008; 9 M Lakadamyali (ref69) 2003; 100 M Westphal (ref91) 1997; 7 RL Kaletsky (ref54) 2007; 81 NT Neumann G (ref101) 2004 MC Kerr (ref15) 2009; 10 P Halfmann (ref62) 2008; 105 E Ghigo (ref13) 2008; 4 MA West (ref28) 2000; 10 I Le Blanc (ref68) 2005; 7 MF Saeed (ref93) 2008; 4 JM Licata (ref66) 2004; 78 P Liberali (ref30) 2008; 27 CA Ogden (ref94) 2001; 194 G Kennedy (ref99) 2003; 23 O Meier (ref38) 2002; 158 S Grimmer (ref98) 2002; 115 MJ Rust (ref72) 2004; 11 I Gaidarov (ref70) 1999; 1 AT Jones (ref14) 2007; 11 HS Moskowitz (ref103) 2005; 16 H Ito (ref82) 1999; 73 T Noda (ref64) 2002; 76 B Manavathi (ref106) 2007; 282 W Weissenhorn (ref100) 2004 F Baribaud (ref42) 2002; 6 F Sallusto (ref18) 1995; 182 M Shimojima (ref49) 2006; 80 AJ Newton (ref76) 2006; 103 DV Krysko (ref20) 2006; 13 M Shimojima (ref48) 2007; 196 CJ Merrifield (ref71) 2002; 4 J Mercer (ref26) 2008; 320 PL Sinn (ref97) 2003; 77 S Dharmawardhane (ref24) 2000; 11 17940957 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S251-8 8805704 - Nature. 1996 Sep 19;383(6597):266-9 12223058 - Expert Opin Ther Targets. 2002 Aug;6(4):423-31 12719583 - J Virol. 2003 May;77(10):5902-10 12972608 - Mol Cell Biol. 2003 Oct;23(19):6901-8 16962776 - Trends Cell Biol. 2006 Oct;16(10):499-504 18615077 - Nature. 2008 Jul 10;454(7201):177-82 12050398 - J Virol. 2002 Jul;76(13):6841-4 17491012 - J Biol Chem. 2007 Jul 6;282(27):19820-30 15893559 - J Virol Methods. 2005 Jul;127(1):1-9 11331875 - Nat Cell Biol. 2001 May;3(5):473-83 9022030 - Eur J Immunol. 1997 Jan;27(1):280-8 9405687 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14764-9 16556257 - Immunology. 2006 Apr;117(4):443-51 11707525 - J Cell Sci. 2001 Oct;114(Pt 20):3737-47 17167779 - J Cell Physiol. 2007 Apr;211(1):220-32 11090628 - Mol Cell. 2000 Oct;6(4):909-19 2556406 - J Cell Biol. 1989 Dec;109(6 Pt 1):2731-9 19192253 - Traffic. 2009 Apr;10(4):364-71 11560994 - J Exp Med. 2001 Sep 17;194(6):781-95 7463480 - J Mol Biol. 1980 Sep 25;142(3):439-54 19404330 - Nat Cell Biol. 2009 May;11(5):510-20 15122347 - Nat Struct Mol Biol. 2004 Jun;11(6):567-73 15831716 - Science. 2005 Jun 10;308(5728):1643-5 19279100 - J Virol. 2009 May;83(10):4895-911 15689492 - Mol Biol Cell. 2005 Apr;16(4):1769-76 18612320 - Nat Rev Mol Cell Biol. 2008 Aug;9(8):639-49 12050382 - J Virol. 2002 Jul;76(13):6689-700 12621426 - Nature. 2003 Mar 6;422(6927):37-44 15613320 - J Virol. 2005 Jan;79(2):918-26 16628234 - Cell Death Differ. 2006 Dec;13(12):2011-22 12883000 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9280-5 12221069 - J Cell Biol. 2002 Sep 16;158(6):1119-31 15723050 - Nat Cell Biol. 2005 Mar;7(3):255-61 11967340 - J Virol. 2002 May;76(10):5266-70 9276758 - Curr Biol. 1997 Mar 1;7(3):176-83 7629501 - J Exp Med. 1995 Aug 1;182(2):389-400 8099075 - J Cell Biol. 1993 Jun;121(5):1011-20 17760832 - J Cell Mol Med. 2007 Jul-Aug;11(4):670-84 12075072 - J Gen Virol. 2002 Jul;83(Pt 7):1535-45 17940958 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S259-63 11877482 - J Exp Med. 2002 Mar 4;195(5):593-602 11461707 - Cell. 2001 Jul 13;106(1):117-26 11112476 - Virology. 2000 Dec 5;278(1):20-6 14645601 - J Virol. 2003 Dec;77(24):13433-8 18323776 - EMBO J. 2008 Apr 9;27(7):956-69 18769720 - PLoS Pathog. 2008;4(8):e1000141 14990712 - J Virol. 2004 Mar;78(6):2943-7 15894272 - Immunity. 2005 May;22(5):539-50 19854459 - Virology. 2009 Dec 20;395(2):298-311 16439557 - J Virol. 2006 Feb;80(4):2013-8 12198492 - Nat Cell Biol. 2002 Sep;4(9):691-8 20156964 - J Cell Biol. 2010 Feb 22;188(4):547-63 8947549 - J Cell Biol. 1996 Dec;135(5):1249-60 16099912 - J Gen Virol. 2005 Sep;86(Pt 9):2535-42 315944 - J Cell Biol. 1979 Oct;83(1):82-90 16260622 - Mol Cell Biol. 2005 Nov;25(22):10087-96 18551172 - PLoS Pathog. 2008 Jun;4(6):e1000087 6288961 - J Mol Biol. 1982 Apr 15;156(3):609-31 18436786 - Science. 2008 Apr 25;320(5875):531-5 17475648 - J Virol. 2007 Jul;81(14):7702-9 18354494 - EMBO J. 2008 Apr 9;27(7):970-81 11602756 - J Virol. 2001 Nov;75(22):11166-77 18420037 - FEBS Lett. 2008 Jun 18;582(14):2112-9 10358769 - Annu Rev Immunol. 1999;17:593-623 1643658 - Cell. 1992 Aug 7;70(3):401-10 14694131 - J Virol. 2004 Jan;78(2):999-1005 9525641 - J Virol. 1998 Apr;72(4):3155-60 17005688 - J Virol. 2006 Oct;80(20):10109-16 15569696 - J Leukoc Biol. 2005 Mar;77(3):328-36 15668298 - J Cell Biol. 2005 Jan 31;168(3):477-88 17093049 - Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17955-60 14638512 - Antimicrob Agents Chemother. 2003 Dec;47(12):3970-2 19625394 - J Virol. 2009 Oct;83(19):10176-86 16882036 - Cell Microbiol. 2006 Aug;8(8):1336-48 18854019 - BMC Cell Biol. 2008;9:58 863788 - J Antibiot (Tokyo). 1977 Apr;30(4):275-82 17928356 - J Virol. 2007 Dec;81(24):13378-84 8522602 - J Cell Biol. 1995 Dec;131(6 Pt 1):1435-52 16497584 - Cell. 2006 Feb 24;124(4):729-40 18212124 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1129-33 10559856 - Nat Cell Biol. 1999 May;1(1):1-7 12504546 - Virology. 2003 Jan 5;305(1):115-23 10899002 - Curr Biol. 2000 Jul 13;10(14):839-48 15220407 - J Virol. 2004 Jul;78(14):7344-51 20202662 - Virology. 2010 May 25;401(1):18-28 11782546 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):167-72 11029048 - Mol Biol Cell. 2000 Oct;11(10):3453-67 17578407 - Cell Microbiol. 2007 Jul;9(7):1672-82 10482652 - J Virol. 1999 Oct;73(10):8907-12 15951806 - Nat Cell Biol. 2005 Jul;7(7):653-64 12082155 - J Cell Sci. 2002 Jul 15;115(Pt 14):2953-62 14732047 - Trends Cell Biol. 1995 Nov;5(11):424-8 7328111 - J Cell Biol. 1981 Dec;91(3 Pt 1):601-13 16968745 - J Cell Sci. 2006 Oct 1;119(Pt 19):3967-80 17000878 - J Cell Biol. 2006 Sep 25;174(7):1009-21 8223707 - Eur J Cell Biol. 1993 Jun;61(1):44-53 2115402 - Cell. 1990 Jul 27;62(2):317-29 16113677 - Nat Cell Biol. 2005 Sep;7(9):894-900 9620205 - Virus Res. 1998 Feb;53(2):129-39 16571833 - J Virol. 2006 Apr;80(8):4174-8 11029040 - Mol Biol Cell. 2000 Oct;11(10):3341-52 10734125 - J Biol Chem. 2000 Mar 31;275(13):9725-33 11967302 - J Virol. 2002 May;76(10):4855-65 |
References_xml | – volume: 3 start-page: 473 year: 2001 ident: ref9 article-title: Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. publication-title: Nat Cell Biol doi: 10.1038/35074539 – volume: 11 start-page: 3453 year: 2000 ident: ref23 article-title: Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. publication-title: Mol Biol Cell doi: 10.1091/mbc.11.10.3453 – volume: 124 start-page: 729 year: 2006 ident: ref3 article-title: Virus entry: open sesame. publication-title: Cell doi: 10.1016/j.cell.2006.02.007 – volume: 80 start-page: 4174 year: 2006 ident: ref56 article-title: Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. publication-title: J Virol doi: 10.1128/JVI.80.8.4174-4178.2006 – volume: 278 start-page: 20 year: 2000 ident: ref47 article-title: Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry. publication-title: Virology doi: 10.1006/viro.2000.0601 – volume: 121 start-page: 1011 year: 1993 ident: ref79 article-title: Macropinosome maturation and fusion with tubular lysosomes in macrophages. publication-title: J Cell Biol doi: 10.1083/jcb.121.5.1011 – volume: 6 start-page: 909 year: 2000 ident: ref84 article-title: Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. publication-title: Mol Cell doi: 10.1016/S1097-2765(05)00089-4 – volume: 27 start-page: 280 year: 1997 ident: ref19 article-title: Constitutive macropinocytosis allows TAP-dependent major histocompatibility complex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells. publication-title: Eur J Immunol doi: 10.1002/eji.1830270141 – volume: 17 start-page: 593 year: 1999 ident: ref11 article-title: Mechanisms of phagocytosis in macrophages. publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.17.1.593 – volume: 7 start-page: 653 year: 2005 ident: ref68 article-title: Endosome-to-cytosol transport of viral nucleocapsids. publication-title: Nat Cell Biol doi: 10.1038/ncb1269 – volume: 77 start-page: 328 year: 2005 ident: ref95 article-title: Mannose-binding lectin enhances phagocytosis and killing of Neisseria meningitidis by human macrophages. publication-title: J Leukoc Biol doi: 10.1189/jlb.0604342 – volume: 62 start-page: 317 year: 1990 ident: ref80 article-title: Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. publication-title: Cell doi: 10.1016/0092-8674(90)90369-P – volume: 99 start-page: 167 year: 2002 ident: ref75 article-title: The large GTPase dynamin regulates actin comet formation and movement in living cells. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.012607899 – volume: 11 start-page: 510 year: 2009 ident: ref16 article-title: Virus entry by macropinocytosis. publication-title: Nat Cell Biol doi: 10.1038/ncb0509-510 – volume: 119 start-page: 3967 year: 2006 ident: ref77 article-title: Visualisation of macropinosome maturation by the recruitment of sorting nexins. publication-title: J Cell Sci doi: 10.1242/jcs.03167 – volume: 194 start-page: 781 year: 2001 ident: ref94 article-title: C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. publication-title: J Exp Med doi: 10.1084/jem.194.6.781 – volume: 94 start-page: 14764 year: 1997 ident: ref61 article-title: A system for functional analysis of Ebola virus glycoprotein. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.26.14764 – volume: 13 start-page: 2011 year: 2006 ident: ref20 article-title: Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401900 – volume: 103 start-page: 17955 year: 2006 ident: ref76 article-title: Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0606212103 – volume: 61 start-page: 44 year: 1993 ident: ref22 article-title: Circular ruffle formation and closure lead to macropinocytosis in hepatocyte growth factor/scatter factor-treated cells. publication-title: Eur J Cell Biol – volume: 77 start-page: 13433 year: 2003 ident: ref51 article-title: Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. publication-title: J Virol doi: 10.1128/JVI.77.24.13433-13438.2003 – volume: 78 start-page: 2943 year: 2004 ident: ref46 article-title: Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. publication-title: J Virol doi: 10.1128/JVI.78.6.2943-2947.2004 – volume: 196 start-page: S259 year: 2007 ident: ref48 article-title: The mechanism of Axl-mediated Ebola virus infection. publication-title: J Infect Dis doi: 10.1086/520594 – volume: 78 start-page: 999 year: 2004 ident: ref65 article-title: Production of novel ebola virus-like particles from cDNAs: an alternative to ebola virus generation by reverse genetics. publication-title: J Virol doi: 10.1128/JVI.78.2.999-1005.2004 – volume: 454 start-page: 177 year: 2008 ident: ref55 article-title: Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. publication-title: Nature doi: 10.1038/nature07082 – volume: 182 start-page: 389 year: 1995 ident: ref18 article-title: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. publication-title: J Exp Med doi: 10.1084/jem.182.2.389 – volume: 16 start-page: 499 year: 2006 ident: ref8 article-title: The role of clathrin-dependent endocytosis in bacterial internalization. publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2006.08.005 – volume: 78 start-page: 7344 year: 2004 ident: ref66 article-title: Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. publication-title: J Virol doi: 10.1128/JVI.78.14.7344-7351.2004 – volume: 196 start-page: S251 year: 2007 ident: ref59 article-title: Analysis of filovirus entry into vero e6 cells, using inhibitors of endocytosis, endosomal acidification, structural integrity, and cathepsin (B and L) activity. publication-title: J Infect Dis doi: 10.1086/520597 – volume: 83 start-page: 4895 year: 2009 ident: ref34 article-title: Kaposi's sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells. publication-title: J Virol doi: 10.1128/JVI.02498-08 – volume: 4 start-page: 691 year: 2002 ident: ref71 article-title: Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. publication-title: Nat Cell Biol doi: 10.1038/ncb837 – volume: 9 start-page: 58 year: 2008 ident: ref78 article-title: A role for SNX5 in the regulation of macropinocytosis. publication-title: BMC Cell Biol doi: 10.1186/1471-2121-9-58 – volume: 383 start-page: 266 year: 1996 ident: ref81 article-title: GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. publication-title: Nature doi: 10.1038/383266a0 – volume: 5 start-page: 424 year: 1995 ident: ref17 article-title: Macropinocytosis. publication-title: Trends Cell Biol doi: 10.1016/S0962-8924(00)89101-1 – volume: 81 start-page: 13378 year: 2007 ident: ref54 article-title: Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. publication-title: J Virol doi: 10.1128/JVI.01170-07 – volume: 105 start-page: 1129 year: 2008 ident: ref62 article-title: Generation of biologically contained Ebola viruses. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0708057105 – volume: 79 start-page: 918 year: 2005 ident: ref58 article-title: Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha. publication-title: J Virol doi: 10.1128/JVI.79.2.918-926.2005 – volume: 27 start-page: 956 year: 2008 ident: ref33 article-title: Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. publication-title: EMBO J doi: 10.1038/emboj.2008.38 – volume: 77 start-page: 5902 year: 2003 ident: ref97 article-title: Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. publication-title: J Virol doi: 10.1128/JVI.77.10.5902-5910.2003 – volume: 83 start-page: 82 year: 1979 ident: ref21 article-title: Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. publication-title: J Cell Biol doi: 10.1083/jcb.83.1.82 – volume: 4 start-page: e1000141 year: 2008 ident: ref93 article-title: Phosphoinositide-3 kinase-Akt pathway controls cellular entry of Ebola virus. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000141 – volume: 72 start-page: 3155 year: 1998 ident: ref39 article-title: Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. publication-title: J Virol doi: 10.1128/JVI.72.4.3155-3160.1998 – volume: 7 start-page: 894 year: 2005 ident: ref7 article-title: Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. publication-title: Nat Cell Biol doi: 10.1038/ncb1292 – volume: 73 start-page: 8907 year: 1999 ident: ref82 article-title: Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. publication-title: J Virol doi: 10.1128/JVI.73.10.8907-8912.1999 – volume: 275 start-page: 9725 year: 2000 ident: ref89 article-title: Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. publication-title: J Biol Chem doi: 10.1074/jbc.275.13.9725 – volume: 395 start-page: 298 year: 2009 ident: ref35 article-title: Nipah virus entry can occur by macropinocytosis. publication-title: Virology doi: 10.1016/j.virol.2009.09.016 – volume: 80 start-page: 2013 year: 2006 ident: ref67 article-title: Dual wavelength imaging allows analysis of membrane fusion of influenza virus inside cells. publication-title: J Virol doi: 10.1128/JVI.80.4.2013-2018.2006 – volume: 76 start-page: 4855 year: 2002 ident: ref64 article-title: Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. publication-title: J Virol doi: 10.1128/JVI.76.10.4855-4865.2002 – volume: 11 start-page: 3341 year: 2000 ident: ref24 article-title: Regulation of macropinocytosis by p21-activated kinase-1. publication-title: Mol Biol Cell doi: 10.1091/mbc.11.10.3341 – volume: 9 start-page: 1672 year: 2007 ident: ref87 article-title: Role of the actin cytoskeleton during influenza virus internalization into polarized epithelial cells. publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2007.00900.x – volume: 76 start-page: 5266 year: 2002 ident: ref50 article-title: Association of the caveola vesicular system with cellular entry by filoviruses. publication-title: J Virol doi: 10.1128/JVI.76.10.5266-5270.2002 – volume: 53 start-page: 129 year: 1998 ident: ref102 article-title: Fusion of influenza virus with the endosomal membrane is inhibited by monoclonal antibodies to defined epitopes on the hemagglutinin. publication-title: Virus Res doi: 10.1016/S0168-1702(97)00143-3 – volume: 83 start-page: 1535 year: 2002 ident: ref2 article-title: Dissecting virus entry via endocytosis. publication-title: J Gen Virol doi: 10.1099/0022-1317-83-7-1535 – volume: 308 start-page: 1643 year: 2005 ident: ref53 article-title: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. publication-title: Science doi: 10.1126/science.1110656 – volume: 11 start-page: 567 year: 2004 ident: ref72 article-title: Assembly of endocytic machinery around individual influenza viruses during viral entry. publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb769 – volume: 168 start-page: 477 year: 2005 ident: ref74 article-title: Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. publication-title: J Cell Biol doi: 10.1083/jcb.200407113 – volume: 6 start-page: 423 year: 2002 ident: ref42 article-title: The role of DC-SIGN and DC-SIGNR in HIV and Ebola virus infection: can potential therapeutics block virus transmission and dissemination? publication-title: Expert Opin Ther Targets doi: 10.1517/14728222.6.4.423 – volume: 70 start-page: 401 year: 1992 ident: ref27 article-title: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. publication-title: Cell doi: 10.1016/0092-8674(92)90164-8 – volume: 188 start-page: 547 ident: ref85 article-title: Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. publication-title: J Cell Biol doi: 10.1083/jcb.200908086 – volume: 195 start-page: 593 year: 2002 ident: ref57 article-title: Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. publication-title: J Exp Med doi: 10.1084/jem.20011500 – volume: 135 start-page: 1249 year: 1996 ident: ref31 article-title: A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. publication-title: J Cell Biol doi: 10.1083/jcb.135.5.1249 – volume: 81 start-page: 7702 year: 2007 ident: ref52 article-title: Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events. publication-title: J Virol doi: 10.1128/JVI.02433-06 – volume: 117 start-page: 443 year: 2006 ident: ref29 article-title: Drinking a lot is good for dendritic cells. publication-title: Immunology doi: 10.1111/j.1365-2567.2006.02335.x – volume: 211 start-page: 220 year: 2007 ident: ref25 article-title: Role of Src-family kinases in formation and trafficking of macropinosomes. publication-title: J Cell Physiol doi: 10.1002/jcp.20931 – volume: 91 start-page: 601 year: 1981 ident: ref5 article-title: Infectious entry pathway of influenza virus in a canine kidney cell line. publication-title: J Cell Biol doi: 10.1083/jcb.91.3.601 – volume: 22 start-page: 539 year: 2005 ident: ref10 article-title: Phagocytosis: elegant complexity. publication-title: Immunity doi: 10.1016/j.immuni.2005.05.002 – volume: 582 start-page: 2112 year: 2008 ident: ref83 article-title: Actin in the endocytic pathway: from yeast to mammals. publication-title: FEBS Lett doi: 10.1016/j.febslet.2008.04.011 – volume: 9 start-page: 639 year: 2008 ident: ref32 article-title: Shaping cups into phagosomes and macropinosomes. publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2447 – volume: 158 start-page: 1119 year: 2002 ident: ref38 article-title: Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. publication-title: J Cell Biol doi: 10.1083/jcb.200112067 – volume: 83 start-page: 10176 year: 2009 ident: ref96 article-title: Rho GTPases modulate entry of Ebola virus and vesicular stomatitis virus pseudotyped vectors. publication-title: J Virol doi: 10.1128/JVI.00422-09 – volume: 86 start-page: 2535 year: 2005 ident: ref43 article-title: Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. publication-title: J Gen Virol doi: 10.1099/vir.0.81199-0 – start-page: 230 year: 2004 ident: ref101 article-title: Roles of Filoviral Matrix- and Glycoproteins in the Viral life Cycle. – volume: 4 start-page: e1000087 year: 2008 ident: ref13 article-title: Ameobal pathogen mimivirus infects macrophages through phagocytosis. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000087 – volume: 7 start-page: 176 year: 1997 ident: ref91 article-title: Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. publication-title: Curr Biol doi: 10.1016/S0960-9822(97)70088-5 – volume: 75 start-page: 11166 year: 2001 ident: ref37 article-title: Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. publication-title: J Virol doi: 10.1128/JVI.75.22.11166-11177.2001 – volume: 47 start-page: 3970 year: 2003 ident: ref44 article-title: Mannosyl glycodendritic structure inhibits DC-SIGN-mediated Ebola virus infection in cis and in trans. publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.47.12.3970-3972.2003 – volume: 80 start-page: 10109 year: 2006 ident: ref49 article-title: Tyro3 family-mediated cell entry of Ebola and Marburg viruses. publication-title: J Virol doi: 10.1128/JVI.01157-06 – volume: 401 start-page: 18 ident: ref60 article-title: Ebola virus uses clathrin-mediated endocytosis as an entry pathway. publication-title: Virology doi: 10.1016/j.virol.2010.02.015 – volume: 100 start-page: 9280 year: 2003 ident: ref69 article-title: Visualizing infection of individual influenza viruses. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0832269100 – volume: 76 start-page: 6841 year: 2002 ident: ref41 article-title: C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. publication-title: J Virol doi: 10.1128/JVI.76.13.6841-6844.2002 – volume: 174 start-page: 1009 year: 2006 ident: ref12 article-title: A novel role for phagocytosis-like uptake in herpes simplex virus entry. publication-title: J Cell Biol doi: 10.1083/jcb.200509155 – volume: 1 start-page: 1 year: 1999 ident: ref70 article-title: Spatial control of coated-pit dynamics in living cells. publication-title: Nat Cell Biol doi: 10.1038/8971 – volume: 131 start-page: 1435 year: 1995 ident: ref92 article-title: Rab 7: an important regulator of late endocytic membrane traffic. publication-title: J Cell Biol doi: 10.1083/jcb.131.6.1435 – volume: 16 start-page: 1769 year: 2005 ident: ref103 article-title: Highly cooperative control of endocytosis by clathrin. publication-title: Mol Biol Cell doi: 10.1091/mbc.E04-08-0739 – volume: 422 start-page: 37 year: 2003 ident: ref1 article-title: Regulated portals of entry into the cell. publication-title: Nature doi: 10.1038/nature01451 – volume: 109 start-page: 2731 year: 1989 ident: ref86 article-title: Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. publication-title: J Cell Biol – volume: 156 start-page: 609 year: 1982 ident: ref6 article-title: Pathway of vesicular stomatitis virus entry leading to infection. publication-title: J Mol Biol doi: 10.1016/0022-2836(82)90269-8 – volume: 305 start-page: 115 year: 2003 ident: ref45 article-title: DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. publication-title: Virology doi: 10.1006/viro.2002.1730 – volume: 320 start-page: 531 year: 2008 ident: ref26 article-title: Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. publication-title: Science doi: 10.1126/science.1155164 – volume: 106 start-page: 117 year: 2001 ident: ref40 article-title: Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. publication-title: Cell doi: 10.1016/S0092-8674(01)00418-4 – volume: 10 start-page: 839 year: 2000 ident: ref28 article-title: Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. publication-title: Curr Biol doi: 10.1016/S0960-9822(00)00595-9 – volume: 114 start-page: 3737 year: 2001 ident: ref73 article-title: Internalization of cholera toxin by different endocytic mechanisms. publication-title: J Cell Sci doi: 10.1242/jcs.114.20.3737 – volume: 282 start-page: 19820 year: 2007 ident: ref106 article-title: Phosphorylation-dependent regulation of stability and transforming potential of ETS transcriptional factor ESE-1 by p21-activated kinase 1. publication-title: J Biol Chem doi: 10.1074/jbc.M702309200 – volume: 76 start-page: 6689 year: 2002 ident: ref36 article-title: Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. publication-title: J Virol doi: 10.1128/JVI.76.13.6689-6700.2002 – volume: 7 start-page: 255 year: 2005 ident: ref105 article-title: Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. publication-title: Nat Cell Biol doi: 10.1038/ncb1230 – volume: 30 start-page: 275 year: 1977 ident: ref90 article-title: A new alkaloid AM-2282 OF Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization. publication-title: J Antibiot (Tokyo) doi: 10.7164/antibiotics.30.275 – volume: 127 start-page: 1 year: 2005 ident: ref63 article-title: Analysis of Ebola virus and VLP release using an immunocapture assay. publication-title: J Virol Methods doi: 10.1016/j.jviromet.2005.02.015 – volume: 142 start-page: 439 year: 1980 ident: ref4 article-title: Adsorptive endocytosis of Semliki Forest virus. publication-title: J Mol Biol doi: 10.1016/0022-2836(80)90281-8 – volume: 10 start-page: 364 year: 2009 ident: ref15 article-title: Defining macropinocytosis. publication-title: Traffic doi: 10.1111/j.1600-0854.2009.00878.x – volume: 25 start-page: 10087 year: 2005 ident: ref104 article-title: Caveolin-1 is not essential for biosynthetic apical membrane transport. publication-title: Mol Cell Biol doi: 10.1128/MCB.25.22.10087-10096.2005 – volume: 8 start-page: 1336 year: 2006 ident: ref88 article-title: Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence. publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2006.00713.x – start-page: 27 year: 2004 ident: ref100 article-title: Structure of Viral Protein. – volume: 11 start-page: 670 year: 2007 ident: ref14 article-title: Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2007.00062.x – volume: 23 start-page: 6901 year: 2003 ident: ref99 article-title: EBNA-1, a bifunctional transcriptional activator. publication-title: Mol Cell Biol doi: 10.1128/MCB.23.19.6901-6908.2003 – volume: 27 start-page: 970 year: 2008 ident: ref30 article-title: The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. publication-title: EMBO J doi: 10.1038/emboj.2008.59 – volume: 115 start-page: 2953 year: 2002 ident: ref98 article-title: Membrane ruffling and macropinocytosis in A431 cells require cholesterol. publication-title: J Cell Sci doi: 10.1242/jcs.115.14.2953 – reference: 19625394 - J Virol. 2009 Oct;83(19):10176-86 – reference: 2556406 - J Cell Biol. 1989 Dec;109(6 Pt 1):2731-9 – reference: 17167779 - J Cell Physiol. 2007 Apr;211(1):220-32 – reference: 16260622 - Mol Cell Biol. 2005 Nov;25(22):10087-96 – reference: 18854019 - BMC Cell Biol. 2008;9:58 – reference: 11112476 - Virology. 2000 Dec 5;278(1):20-6 – reference: 15831716 - Science. 2005 Jun 10;308(5728):1643-5 – reference: 14645601 - J Virol. 2003 Dec;77(24):13433-8 – reference: 8522602 - J Cell Biol. 1995 Dec;131(6 Pt 1):1435-52 – reference: 8099075 - J Cell Biol. 1993 Jun;121(5):1011-20 – reference: 16497584 - Cell. 2006 Feb 24;124(4):729-40 – reference: 16962776 - Trends Cell Biol. 2006 Oct;16(10):499-504 – reference: 14990712 - J Virol. 2004 Mar;78(6):2943-7 – reference: 17928356 - J Virol. 2007 Dec;81(24):13378-84 – reference: 10734125 - J Biol Chem. 2000 Mar 31;275(13):9725-33 – reference: 14732047 - Trends Cell Biol. 1995 Nov;5(11):424-8 – reference: 19854459 - Virology. 2009 Dec 20;395(2):298-311 – reference: 11782546 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):167-72 – reference: 12719583 - J Virol. 2003 May;77(10):5902-10 – reference: 19404330 - Nat Cell Biol. 2009 May;11(5):510-20 – reference: 15220407 - J Virol. 2004 Jul;78(14):7344-51 – reference: 8805704 - Nature. 1996 Sep 19;383(6597):266-9 – reference: 12050382 - J Virol. 2002 Jul;76(13):6689-700 – reference: 15569696 - J Leukoc Biol. 2005 Mar;77(3):328-36 – reference: 17940958 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S259-63 – reference: 11877482 - J Exp Med. 2002 Mar 4;195(5):593-602 – reference: 17475648 - J Virol. 2007 Jul;81(14):7702-9 – reference: 16628234 - Cell Death Differ. 2006 Dec;13(12):2011-22 – reference: 19192253 - Traffic. 2009 Apr;10(4):364-71 – reference: 15893559 - J Virol Methods. 2005 Jul;127(1):1-9 – reference: 16099912 - J Gen Virol. 2005 Sep;86(Pt 9):2535-42 – reference: 16571833 - J Virol. 2006 Apr;80(8):4174-8 – reference: 15122347 - Nat Struct Mol Biol. 2004 Jun;11(6):567-73 – reference: 11602756 - J Virol. 2001 Nov;75(22):11166-77 – reference: 6288961 - J Mol Biol. 1982 Apr 15;156(3):609-31 – reference: 9525641 - J Virol. 1998 Apr;72(4):3155-60 – reference: 17578407 - Cell Microbiol. 2007 Jul;9(7):1672-82 – reference: 15613320 - J Virol. 2005 Jan;79(2):918-26 – reference: 12082155 - J Cell Sci. 2002 Jul 15;115(Pt 14):2953-62 – reference: 12198492 - Nat Cell Biol. 2002 Sep;4(9):691-8 – reference: 9405687 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14764-9 – reference: 18769720 - PLoS Pathog. 2008;4(8):e1000141 – reference: 12972608 - Mol Cell Biol. 2003 Oct;23(19):6901-8 – reference: 17760832 - J Cell Mol Med. 2007 Jul-Aug;11(4):670-84 – reference: 19279100 - J Virol. 2009 May;83(10):4895-911 – reference: 315944 - J Cell Biol. 1979 Oct;83(1):82-90 – reference: 12223058 - Expert Opin Ther Targets. 2002 Aug;6(4):423-31 – reference: 2115402 - Cell. 1990 Jul 27;62(2):317-29 – reference: 14694131 - J Virol. 2004 Jan;78(2):999-1005 – reference: 12504546 - Virology. 2003 Jan 5;305(1):115-23 – reference: 9620205 - Virus Res. 1998 Feb;53(2):129-39 – reference: 17093049 - Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17955-60 – reference: 12221069 - J Cell Biol. 2002 Sep 16;158(6):1119-31 – reference: 12883000 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9280-5 – reference: 20156964 - J Cell Biol. 2010 Feb 22;188(4):547-63 – reference: 7629501 - J Exp Med. 1995 Aug 1;182(2):389-400 – reference: 15689492 - Mol Biol Cell. 2005 Apr;16(4):1769-76 – reference: 20202662 - Virology. 2010 May 25;401(1):18-28 – reference: 16556257 - Immunology. 2006 Apr;117(4):443-51 – reference: 15668298 - J Cell Biol. 2005 Jan 31;168(3):477-88 – reference: 9276758 - Curr Biol. 1997 Mar 1;7(3):176-83 – reference: 8947549 - J Cell Biol. 1996 Dec;135(5):1249-60 – reference: 1643658 - Cell. 1992 Aug 7;70(3):401-10 – reference: 11967302 - J Virol. 2002 May;76(10):4855-65 – reference: 15894272 - Immunity. 2005 May;22(5):539-50 – reference: 11461707 - Cell. 2001 Jul 13;106(1):117-26 – reference: 16968745 - J Cell Sci. 2006 Oct 1;119(Pt 19):3967-80 – reference: 18323776 - EMBO J. 2008 Apr 9;27(7):956-69 – reference: 18420037 - FEBS Lett. 2008 Jun 18;582(14):2112-9 – reference: 863788 - J Antibiot (Tokyo). 1977 Apr;30(4):275-82 – reference: 11331875 - Nat Cell Biol. 2001 May;3(5):473-83 – reference: 17940957 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S251-8 – reference: 9022030 - Eur J Immunol. 1997 Jan;27(1):280-8 – reference: 15951806 - Nat Cell Biol. 2005 Jul;7(7):653-64 – reference: 15723050 - Nat Cell Biol. 2005 Mar;7(3):255-61 – reference: 11029048 - Mol Biol Cell. 2000 Oct;11(10):3453-67 – reference: 11090628 - Mol Cell. 2000 Oct;6(4):909-19 – reference: 10482652 - J Virol. 1999 Oct;73(10):8907-12 – reference: 10559856 - Nat Cell Biol. 1999 May;1(1):1-7 – reference: 17000878 - J Cell Biol. 2006 Sep 25;174(7):1009-21 – reference: 11707525 - J Cell Sci. 2001 Oct;114(Pt 20):3737-47 – reference: 16439557 - J Virol. 2006 Feb;80(4):2013-8 – reference: 17005688 - J Virol. 2006 Oct;80(20):10109-16 – reference: 16882036 - Cell Microbiol. 2006 Aug;8(8):1336-48 – reference: 7328111 - J Cell Biol. 1981 Dec;91(3 Pt 1):601-13 – reference: 18615077 - Nature. 2008 Jul 10;454(7201):177-82 – reference: 12075072 - J Gen Virol. 2002 Jul;83(Pt 7):1535-45 – reference: 18551172 - PLoS Pathog. 2008 Jun;4(6):e1000087 – reference: 7463480 - J Mol Biol. 1980 Sep 25;142(3):439-54 – reference: 12050398 - J Virol. 2002 Jul;76(13):6841-4 – reference: 11967340 - J Virol. 2002 May;76(10):5266-70 – reference: 18436786 - Science. 2008 Apr 25;320(5875):531-5 – reference: 11029040 - Mol Biol Cell. 2000 Oct;11(10):3341-52 – reference: 8223707 - Eur J Cell Biol. 1993 Jun;61(1):44-53 – reference: 10358769 - Annu Rev Immunol. 1999;17:593-623 – reference: 14638512 - Antimicrob Agents Chemother. 2003 Dec;47(12):3970-2 – reference: 18612320 - Nat Rev Mol Cell Biol. 2008 Aug;9(8):639-49 – reference: 16113677 - Nat Cell Biol. 2005 Sep;7(9):894-900 – reference: 12621426 - Nature. 2003 Mar 6;422(6927):37-44 – reference: 18354494 - EMBO J. 2008 Apr 9;27(7):970-81 – reference: 10899002 - Curr Biol. 2000 Jul 13;10(14):839-48 – reference: 18212124 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1129-33 – reference: 11560994 - J Exp Med. 2001 Sep 17;194(6):781-95 – reference: 17491012 - J Biol Chem. 2007 Jul 6;282(27):19820-30 |
SSID | ssj0041316 |
Score | 2.4957857 |
Snippet | Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans... Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1001121 |
SubjectTerms | Animals Blotting, Western Caveolae - metabolism Caveolae - virology Cell Biology Cells, Cultured Cercopithecus aethiops Clathrin - metabolism Ebola virus Ebolavirus - physiology Endocytosis - physiology Gene expression Genetic aspects Hemorrhagic Fever, Ebola - metabolism Hemorrhagic Fever, Ebola - virology Humans Infections Infectious disease incubation period Infectious Diseases/Viral Infections Influenza Kinases Lasers Microscopy, Fluorescence Mortality Physiological aspects Pinocytosis Pinocytosis - physiology Plasma Primates Proteins rab GTP-Binding Proteins - genetics rab GTP-Binding Proteins - metabolism Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - genetics Signal Transduction Sorting Nexins - genetics Sorting Nexins - metabolism Studies Vero Cells Vesicular stomatitis virus Vesiculovirus Viral Envelope Proteins - genetics Viral Envelope Proteins - metabolism Virion - genetics Virology/Host Invasion and Cell Entry Virus Internalization Virus Replication |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBL6TvbpkWUQk9ubEm2rGNaEtJCc2gbyE1IspQYNvYSewPbX98Z2V7i0pBLwQc_RgfNjKRvrNE3hHwokBHGBp5EDxZ5qBIrkPdWWmVDYXmo8IDz99Pi5Ex8O8_Pb5X6wpywgR54UNyBEiVgah6YkLhpZUyVergLReqFsz7yfMKaNwVTwxwMM3MseopFcRLJi2I8NMdldjDa6NN6bfrIQJSxbLYoRe7-3Qy9WK_a7l_w8-8sylvL0vET8njEk_Rw6MdT8sA3z8jDocLk9jm5PLIQu97U15uO1nAN__9W9W9f4UNL8ZAHxb_3Hb2pDb0yWNKrblq37dsutqCGYiLwil6stq6NvA51k0zFc3togtW7XpCz46NfX06SsbhC4gDx9YmqMghlmDI2L40XRuVVCaEPBEBpZZ0vg_M5SyUrwGaCeRtS70MeskJ5xqxl_CVZNG3j9wi1ALFc4B4Wfyekq5RULpPWMGsqAEBsSfikXe1G5nEsgLHScTtNQgQyKEujTfRokyVJdq3WA_PGPfKf0XA7WeTNji_Am_ToTfo-b1qS92h2jcwYDabeXJhN1-mvP0_1IeO4Ryo4u1Pox0zo4ygUWuisM-NxB1AZMm7NJPdnkjC-3ezzHrrg1OdOA6JQ2OFcLAmd3FJjK8yXa3y76bQElF4AcsvuFilxcOSqAJFXgyPvVMdg4AKsLpdEzlx8ptv5l6a-jNzkTEG8n_HX_8MYb8ijIVcDM_r2yaK_3vi3AAF7-y6O9j86uFoY priority: 102 providerName: Directory of Open Access Journals |
Title | Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20886108 https://www.proquest.com/docview/756662441 https://www.proquest.com/docview/815535961 https://pubmed.ncbi.nlm.nih.gov/PMC2944813 https://doaj.org/article/9484873f2470438aad0e704f60e4cbe3 http://dx.doi.org/10.1371/journal.ppat.1001121 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZdymAvY7-brQtmDPbkEsuyZT-M0Y6WbtAwugXyJiRZSg2encVOWfbX7062wzwa9jLIQxKfDLo7Sd9Jp_sIeRtjRRhlQ995MIts5iuGdW-5SpWNVWgzvOB8NYsv5-zzIlockJ6ztVNgfWdoh3xS83Vx8vPH9gMM-PeOtYEHfaOT1Uo2rqZQgDfLD2Ft4shpcMV25wowYzsyVCTL8XkYx91lun1vGSxWrqb_buYerYqqvguW_p1d-cdydfGIPOxwpnfaOsZjcmDKJ-R-yzy5fUpuzhV0_DZfb2ovh0-7L1jkv0yGPyoPL394uKtfe7e59L5LpPrKy0pvm6p2LTzpYYJw4S2Lra5cvYe89HtS3QaaIKvXMzK_OP_28dLvSBd8DUiw8dMsgBCHplJFiTRMplGWQEgEgdE0U9okVpuITjmNwZaMGmWnxtjIBnFqKFWKhs_JqKxKc0Q8BdBL29AAKNCM6yzlqQ64klTJDIARHZOw167QXUVyJMYohDtm4xCZtMoSaBPR2WRM_F2rVVuR4x_yZ2i4nSzW03Z_VOul6IanSFkCkVtoKeN4NCplNjXwzcZTw7Qy4Zi8QbMLrJhRYkrOUm7qWnz6OhOnNMSzUxbSvULXA6F3nZCtoLNadtcgQGVYiWsgeTyQhHGvB4-P0AX7PtcCkEaKHY7YmHi9WwpshXl0pak2teCA3mNAdMF-kQQHR5TGIPKideSd6igMaIDbyZjwgYsPdDt8UuY3rmY5TRlLgvDl_zDGK_KgzeHATL9jMmrWG_MaoGGjJuQeX_AJOTw7n325nrgNlombAX4DyLVoJQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ebolavirus+is+internalized+into+host+cells+via+macropinocytosis+in+a+viral+glycoprotein-dependent+manner&rft.jtitle=PLoS+pathogens&rft.au=Asuka+Nanbo&rft.au=Masaki+Imai&rft.au=Shinji+Watanabe&rft.au=Takeshi+Noda&rft.date=2010-09-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=6&rft.issue=9&rft.spage=e1001121&rft_id=info:doi/10.1371%2Fjournal.ppat.1001121&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9484873f2470438aad0e704f60e4cbe3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |