Dual Effect of Curcumin–Zinc Complex in Controlling Diabetes Mellitus in Experimentally Induced Diabetic Rats
Ultrasound-assisted extraction of curcumin from Curcuma longa was performed in an ultrasonic bath at 30°C using ethanol for 40 min. A successful attempt has been made to prepare curcumin–zinc (Zn) complex using a simple chemical procedure. The complex formation and its stoichiometry were characteriz...
Saved in:
Published in | Biological & pharmaceutical bulletin Vol. 39; no. 11; pp. 1774 - 1780 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Pharmaceutical Society of Japan
2016
Pharmaceutical Society of Japan Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrasound-assisted extraction of curcumin from Curcuma longa was performed in an ultrasonic bath at 30°C using ethanol for 40 min. A successful attempt has been made to prepare curcumin–zinc (Zn) complex using a simple chemical procedure. The complex formation and its stoichiometry were characterized using elemental analysis, Fourier transform (FT)-IR and UV spectroscopy which revealed the interaction of Zn(II) ion (M) with curcumin (ligand, L) to proceed via (ML) complex type formation. Oral administration of curcumin–Zn complex at a concentration of 150 mg/kg body weight/rat/d for 45 d in streptozotocin-induced diabetic rats in comparison to curcumin and/or Zn administration exerted a hypoglycemic effect. A significant reduction in blood glucose, glycosylated hemoglobin (Hb)A1c, and lipid profile parameters with an excellent improvement in plasma insulin levels have been attained. Also, the reduced activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine in the diabetic rats treated with the complex exhibited the non-toxic nature of the curcumin–Zn complex. Finally, the larger extent of the complex in hyperglycemic improvement in comparison to curcumin and/or Zn supplementation was interpreted by its dual action on glucose and insulin maintenance. |
---|---|
AbstractList | Ultrasound-assisted extraction of curcumin from Curcuma longa was performed in an ultrasonic bath at 30℃ using ethanol for 40 min. A successful attempt has been made to prepare curcumin-zinc (Zn) complex using a simple chemical procedure. The complex formation and its stoichiometry were characterized using elemental analysis, Fourier transform (FT)-IR and UV spectroscopy which revealed the interaction of Zn(II) ion (M) with curcumin (ligand, L) to proceed via (ML) complex type formation. Oral administration of curcumin-Zn complex at a concentration of 150 mg/kg body weight/rat/d for 45d in streptozotocin-induced diabetic rats in comparison to curcumin and/or Zn administration exerted a hypoglycemic effect. A significant reduction in blood glucose, glycosylated hemoglobin (Hb)A1c, and lipid profile parameters with an excellent improvement in plasma insulin levels have been attained. Also, the reduced activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine in the diabetic rats treated with the complex exhibited the non-toxic nature of the curcumin-Zn complex. Finally, the larger extent of the complex in hyperglycemic improvement in comparison to curcumin and/or Zn supplementation was interpreted by its dual action on glucose and insulin maintenance. Ultrasound-assisted extraction of curcumin from Curcuma longa was performed in an ultrasonic bath at 30°C using ethanol for 40 min. A successful attempt has been made to prepare curcumin-zinc (Zn) complex using a simple chemical procedure. The complex formation and its stoichiometry were characterized using elemental analysis, Fourier transform (FT)-IR and UV spectroscopy which revealed the interaction of Zn(II) ion (M) with curcumin (ligand, L) to proceed via (ML) complex type formation. Oral administration of curcumin-Zn complex at a concentration of 150 mg/kg body weight/rat/d for 45 d in streptozotocin-induced diabetic rats in comparison to curcumin and/or Zn administration exerted a hypoglycemic effect. A significant reduction in blood glucose, glycosylated hemoglobin (Hb)A1c, and lipid profile parameters with an excellent improvement in plasma insulin levels have been attained. Also, the reduced activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine in the diabetic rats treated with the complex exhibited the non-toxic nature of the curcumin-Zn complex. Finally, the larger extent of the complex in hyperglycemic improvement in comparison to curcumin and/or Zn supplementation was interpreted by its dual action on glucose and insulin maintenance. |
Author | Fatah, Hala Salah Abdel Al-Ali, Khalil El-Badry, Yaser Abdel-Moemen |
Author_xml | – sequence: 1 fullname: Al-Ali, Khalil organization: Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University – sequence: 2 fullname: Fatah, Hala Salah Abdel organization: Biochemistry Laboratory, Biochemistry and Nutrition Department, Faculty of Women’s for Arts, Science and Education, Ain Shams University – sequence: 3 fullname: El-Badry, Yaser Abdel-Moemen organization: Organic Chemistry Laboratory, Faculty of Specific Education, Ain Shams University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27803448$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1v1DAQhi1URLeFI1cUiQuXFDuOP3JEu0tbqQgJwYWLZTuT4pVjL3YitTf-A_-QX4L3o4vExWN5Hr_zzswFOgsxAEKvCb4iTSvfm625MoTXGBMqnqEFoa2oWUPYGVrgjsiaEybP0UXOG4yxwA19gc4bITFtW7lAcTVrX62HAexUxaFazsnOowt_fv3-7oKtlnHcenioXCjXMKXovQv31cppAxPk6hOUh2nOO2D9sIXkRgiT9v6xug39bKE_ss5WX_SUX6Lng_YZXh3jJfr2cf11eVPffb6-XX64q60QdKotwZbKofSkWY8pZ30ntdQ9ZUYbpjstWug63hrRDBi0odBSYiXvWi6MoAO9RO8OutsUf86QJzW6bItZHSDOWRFJGWtkh3FB3_6HbuKcQnG3ozjlWHJRqPpA2RRzTjCobelVp0dFsNptQpVNqLIJtd9E4d8cVWczQn-in0ZfgOsDULLOah9DmSz8q22zMC76qBq8F6UdISUwRYRoyyFxIxgRmBel1UFpkyd9D6dSOpWpe9gbo50q38t5cnhK2x86KQj0L5DWtUM |
CitedBy_id | crossref_primary_10_1111_jfbc_12988 crossref_primary_10_1016_j_joim_2022_02_008 crossref_primary_10_1016_j_jtemb_2022_127023 crossref_primary_10_1111_jfbc_13477 crossref_primary_10_1248_bpb_b18_00952 crossref_primary_10_1248_cpb_c21_00959 crossref_primary_10_1111_jphp_13322 crossref_primary_10_1007_s10965_018_1667_3 crossref_primary_10_4155_fmc_2018_0190 crossref_primary_10_1002_aoc_6804 crossref_primary_10_2174_1568026623666230428101440 crossref_primary_10_3390_molecules28103996 crossref_primary_10_1016_j_tifs_2018_01_016 crossref_primary_10_3390_pharmaceutics10030080 crossref_primary_10_1016_j_dsx_2021_04_002 crossref_primary_10_1038_s41598_021_00108_w crossref_primary_10_1016_j_ejphar_2019_172625 crossref_primary_10_1016_j_biopha_2021_112531 crossref_primary_10_1016_j_phrs_2020_104744 crossref_primary_10_3390_molecules24142540 crossref_primary_10_2174_1381612826666200928160357 crossref_primary_10_1021_acs_inorgchem_1c02201 crossref_primary_10_1248_bpb_b16_00945 crossref_primary_10_56082_annalsarscibio_2023_2_81 crossref_primary_10_1002_biof_1504 crossref_primary_10_3390_ijms22137094 crossref_primary_10_1016_j_jnim_2018_05_001 |
Cites_doi | 10.1056/NEJM197102182840703 10.1080/07315724.2009.10719772 10.1002/mnfr.200700184 10.1016/j.foodhyd.2014.07.011 10.1016/j.lwt.2014.06.009 10.1016/j.ejphar.2007.12.011 10.2337/dc10-S062 10.1186/1758-5996-4-30 10.1016/S0021-9258(19)52451-6 10.1016/j.ejphar.2012.01.022 10.1002/biof.1062 10.1016/j.bbagen.2014.05.017 10.1136/jcp.22.2.158 10.1515/JBCPP.2005.16.4.257 10.2174/1871525711311010006 10.1016/S0009-9120(84)90200-5 10.1016/j.jff.2015.02.044 10.1016/S0021-9258(18)71594-9 10.1016/j.ejphar.2007.09.002 10.1331/108658002763508515 10.1016/j.foodchem.2011.04.065 10.1007/BF00275265 10.1016/j.molstruc.2010.09.049 10.1172/JCI102012 10.1038/bjp.2008.311 10.1016/j.jep.2004.07.029 10.1016/j.bcp.2007.02.006 10.1016/j.fct.2008.03.020 10.1172/JCI111286 10.1007/BF02867969 10.1016/S0006-3495(93)81397-3 10.1166/jbn.2015.2041 10.1093/ajcp/21.3_ts.275 10.1016/j.taap.2014.12.003 10.1038/414782a 10.1016/0963-6897(95)00020-X 10.1124/pr.110.004044 10.1016/j.foodchem.2014.09.131 10.1210/jcem-61-4-741 10.1177/0003319709356424 |
ContentType | Journal Article |
Copyright | 2016 The Pharmaceutical Society of Japan Copyright Japan Science and Technology Agency 2016 |
Copyright_xml | – notice: 2016 The Pharmaceutical Society of Japan – notice: Copyright Japan Science and Technology Agency 2016 |
CorporateAuthor | dOrganic Chemistry Department Taibah University Science and Education cOrganic Chemistry Laboratory Biochemistry and Nutrition Department Faculty of Science aMedical Laboratory Technology Department Ain Shams University bBiochemistry Laboratory Faculty of Women's for Arts Taif University Faculty of Specific Education College of Applied Medical Sciences |
CorporateAuthor_xml | – name: Taibah University – name: Science and Education – name: Faculty of Specific Education – name: Faculty of Science – name: Ain Shams University – name: Taif University – name: Biochemistry and Nutrition Department – name: dOrganic Chemistry Department – name: College of Applied Medical Sciences – name: Faculty of Women's for Arts – name: bBiochemistry Laboratory – name: cOrganic Chemistry Laboratory – name: aMedical Laboratory Technology Department |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 7X8 |
DOI | 10.1248/bpb.b16-00137 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1347-5215 |
EndPage | 1780 |
ExternalDocumentID | 10_1248_bpb_b16_00137 27803448 cs7biolo_2016_003911_005_1774_17802751706 article_bpb_39_11_39_b16_00137_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 23N 2WC 5GY 6J9 ACGFO ACIWK ACPRK ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBS EJD F5P GX1 HH5 JMI JSF JSH KQ8 MOJWN OK1 P2P RJT RZJ TR2 XSB ABJNI .55 1CY 53G ABTAH AI. CGR CUY CVF ECM EIF NPM TKC VH1 X7M ZXP ZY4 AAYXX CITATION 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c773t-c10c38f013a5d0365d98a8ad35bab5a9a74e9964b72f0eab3e431c869467b73f3 |
ISSN | 0918-6158 |
IngestDate | Wed Jul 17 03:44:15 EDT 2024 Thu Oct 10 19:36:29 EDT 2024 Fri Aug 23 01:03:11 EDT 2024 Thu May 23 23:25:04 EDT 2024 Fri Nov 08 06:50:53 EST 2024 Thu Aug 17 20:29:50 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c773t-c10c38f013a5d0365d98a8ad35bab5a9a74e9964b72f0eab3e431c869467b73f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/bpb/39/11/39_b16-00137/_article/-char/en |
PMID | 27803448 |
PQID | 1836360867 |
PQPubID | 1966364 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1835528900 proquest_journals_1836360867 crossref_primary_10_1248_bpb_b16_00137 pubmed_primary_27803448 medicalonline_journals_cs7biolo_2016_003911_005_1774_17802751706 jstage_primary_article_bpb_39_11_39_b16_00137_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Biological & pharmaceutical bulletin |
PublicationTitleAlternate | Biol Pharm Bull |
PublicationYear | 2016 |
Publisher | The Pharmaceutical Society of Japan Pharmaceutical Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: The Pharmaceutical Society of Japan – name: Pharmaceutical Society of Japan – name: Japan Science and Technology Agency |
References | 42) Pepato MT, Mori DM, Baviera AM, Harami JB, Vendramini RC, Brunetti IL. Fruit of the jambolan tree (Eugenia jambolana Lam.) and experimental diabetes. J. Ethnopharmacol., 96, 43–48 (2005). 5) Gobert CP, Duncan AM. Consumption, precipitations and knowledge of soy among adults with type 2 diabetes. J. Am. Coll. Nutr., 28, 203–218 (2009). 1) Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature, 414, 782–787 (2001). 11) Zou L, Zheng B, Liu W, Liu C, Xiao H, McClements DJ. Enhancing nutraceutical bioavailability using excipient emulsions; Influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin. J. Functional Foods, 15, 72–83 (2015). 7) Sahebkar A. Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome. Biofactors, 39, 197–208 (2013). 9) Suryanarayana P, Satyanarayana A, Balakrishna N, Kumar PU, Reddy GB. Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Med. Sci. Monit., 13, BR286–292 (2007). 45) Scott FW, Trick KD, Lee LP, Hynie I, Heick HM, Nera EA. Serum enzymes in the BB rat before and after onset of the overt diabetic syndrome. Clin. Biochem., 17, 270–275 (1984). 41) Tilvis RS, Miettinen TA. Fatty acid composition of serum lipids, erythrocytes and platelets in insulin-dependent diabetic women. J. Clin. Endocrinol. Metab., 61, 741–745 (1985). 10) Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancers. Pharmacol. Rev., 66, 222–307 (2014). 19) Clark PMS, Hales CN. Assay of insulin. Textbook of Diabetes. (Pickup PC, Williams G eds.) Vol. 1, Blackwell Scientific Publications, NJ, U.S.A., pp. 335–347 (1991). 6) Perez-Torres I, Ruiz-Ramirez A, Banos G, El-Hafidi M. Hibiscus sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol as alternative medicinal agents against metabolic syndrome. Cardiovasc. Hematol. Agents Med. Chem., 11, 25–37 (2013). 39) Best L, Elliott AC, Brown PD. Curcumin induces electrical activity in rat pancreatic beta-cells by activating the volume-regulated anion channel. Biochem. Pharmacol., 73, 1768–1775 (2007). 24) Natelson S, Scott ML, Beffa C. A rapid method for the estimation of urea in biologic fluids. Am. J. Clin. Pathol., 21, 275–281 (1951). 43) Sharma B, Balomajumder C, Roy P. Hypoglycemic and hypolipidemic effects of flavonoid-rich extract from Eugenia jambolana seeds on streptozotocin-induced diabetic rats. Food Chem. Toxicol., 46, 2376–2383 (2008). 35) Emdin SO, Dodson GG, Cutfield JM, Cutfield SM. Role of zinc in insulin biosynthesis. Some possible zinc–insulin interactions in the pancreatic β-cell. Diabetologia, 19, 174–182 (1980). 29) Pari L, Murugan P. Effect of the tetrahydro curcumin on blood glucose, plasma insulin, and hepatic key enzymes in streptozotocin-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol., 16, 257–274 (2005). 32) Meghana K, Sanjeev G, Ramesh B. Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: a prophylactic and protective role. Eur. J. Pharmacol., 577, 183–191 (2007). 2) Rosenberg L. In vivo cell transformation: neogenesis of beta cells from pancreatic ductal cells. Cell Transplant., 4, 371–383 (1995). 12) Aditya NP, Aditya S, Yang H, Kim HW, Park SO, Ko S. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chem., 173, 7–13 (2015). 25) Brod J, Sirota JH. The renal clearance of endogenous creatinine in man. J. Clin. Invest., 27, 645–654 (1948). 14) Bergonzi MC, Hamdouch R, Mazzacura F, Isacchi B, Bilia AR. Optimization, characterization and in vitro evaluation of curcumin microemulsions. LWT-Food Science and Technology, 59, 148–155 (2014). 30) Abdel Aziz MT, El-Asmar MF, El-Nadi EG, Wassef MA, Ahmed HH, Rashed LA, Obaia EM, Sabry D, Hassouna AA, Abdel Aziz AT. The effect of curcumin on insulin release in rat-isolated pancreatic islets. Angiology, 61, 557–566 (2010). 3) American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 33 (Suppl. 1), S62–S69 (2010). 17) Zhao X-Z, Jiang T, Wang L, Yang H, Zhang S, Zhou P. Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation. J. Mol. Struct., 984, 316–325 (2010). 36) Seo KI, Choi MS, Jung UN, Kim HJ, Yeo J, Jeon SM, Lee MK. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol. Nutr. Food Res., 52, 995–1004 (2008). 22) King J. Transaminases: alanine and aspartate transaminases. Practical Clinical Enzymology. Van D. Nostrand Co., London, pp. 363–395 (1965). 27) Jin L, Xue HY, Jin LJ, Li SY, Xu YP. Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J. Pharmacol., 582, 162–167 (2008). 4) Shapiro K, Gong WC. Natural products used for diabetes. J. Am. Pharm. Assoc. (Wash.), 42, 217–226 (2002). 23) Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–275 (1951). 16) Zhan P-Y, Zeng X-H, Zhang H-M, Li H-H. High-efficient column chromatographic extraction of curcumin from Curcuma longa. Food Chem., 129, 700–703 (2011). 46) Dighe RR, Rojas FJ, Birnbaumer L, Garber AJ. Glucagon-stimulable adenylyl cyclase in rat liver. The impact of streptozotocin-induced diabetes mellitus. J. Clin. Invest., 73, 1013–1023 (1984). 38) Vijayaraghavan K, Iyyam Pillai S, Subramanian SP. Design, synthesis, and characterization of zinc-3 hydroxy flavone, a novel zinc metallo complex for the treatment of experimental diabetes in rats. Eur. J. Pharmacol., 680, 122–129 (2012). 20) Trivelli LA, Ranney HM, Lai H-T. Hemoglobin components in patients with diabetes mellitus. N. Engl. J. Med., 284, 353–357 (1971). 34) Foster MC, Leapman RD, Li MX, Atwater I. Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys. J., 64, 525–532 (1993). 40) Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta, 1840, 2709–2729 (2014). 8) Rashid K, Sil PC. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats. Toxicol. Appl. Pharmacol., 282, 297–310 (2015). 15) Lee WH, Bebawy M, Loo CY, Luk F, Mason RS, Rohanizadeh R. Fabrication of curcumin micellar nanoparticles with enhanced anti-cancer activity. J. Biomed. Nanotechnol., 11, 1093–1105 (2015). 28) Ali Hussain HEM. Hypoglycemic, hypolipidemic and antioxidant properties of combination of curcumin from Curcuma longa, Linn, and partially purified product from Abroma augusta, Linn. in streptozotocin-induced diabetes. Indian J. Clin. Biochem., 17, 33–43 (2002). 18) Trinder P. Determination of blood glucose using an oxidase–peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol., 22, 158–161 (1969). 21) Tietz. Fundamentals of clinical chemistry. WB Saunders Co., Philadelphia (1976). 37) Ezaki O. IIb group metal ions (Zn2+, Cd2+, Hg2+) stimulate glucose transport activity by post-insulin receptor kinase mechanism in rat adipocytes. J. Biol. Chem., 264, 16118–16122 (1989). 31) Abdel Aziz MT, El-Asmar MF, El-Ibrashy IN, Rezq AM, Al-Malki AL, Wassef MA, Fouad HH, Ahmed HH, Taha FM, Hassouna AA, Morsi HM. Effect of a novel water soluble curcumin derivative on experimental type-1 diabetes mellitus (short-term study). Diabetol. Metab. Syndr., 4, 30–39 (2012). 44) Fikriah I. Effect of curcumin on the levels of total cholesterol, LDL cholesterol, the amount of F2-isoprostan and foam cell in aortic wall of rats with atherogenic diet. Folia Medica Indonesiana, 43, 136–140 (2007). 13) Sari TP, Mann B, Kumar R, Singh RRB, Sharma R, Bhardwaj M, Athira S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll., 43, 540–546 (2015). 33) Kanitkar M, Gokhale K, Galande S, Bhonde RR. Novel role of curcumin in the prevention of cytokine-induced islet death in vitro and diabetogenesis in vivo. Br. J. Pharmacol., 155, 702–713 (2008). 26) Steel RG, Torri JH. Principle and Procedures of Statistical Biometrical Approach. 2nd edition. McGrew Hill Book Company, New York, U.S.A. (1980). 22 44 23 45 24 46 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – ident: 20 doi: 10.1056/NEJM197102182840703 – ident: 5 doi: 10.1080/07315724.2009.10719772 – ident: 36 doi: 10.1002/mnfr.200700184 – ident: 13 doi: 10.1016/j.foodhyd.2014.07.011 – ident: 14 doi: 10.1016/j.lwt.2014.06.009 – ident: 27 doi: 10.1016/j.ejphar.2007.12.011 – ident: 3 doi: 10.2337/dc10-S062 – ident: 31 doi: 10.1186/1758-5996-4-30 – ident: 23 doi: 10.1016/S0021-9258(19)52451-6 – ident: 38 doi: 10.1016/j.ejphar.2012.01.022 – ident: 7 doi: 10.1002/biof.1062 – ident: 40 doi: 10.1016/j.bbagen.2014.05.017 – ident: 18 doi: 10.1136/jcp.22.2.158 – ident: 29 doi: 10.1515/JBCPP.2005.16.4.257 – ident: 6 doi: 10.2174/1871525711311010006 – ident: 9 – ident: 45 doi: 10.1016/S0009-9120(84)90200-5 – ident: 26 – ident: 22 – ident: 11 doi: 10.1016/j.jff.2015.02.044 – ident: 37 doi: 10.1016/S0021-9258(18)71594-9 – ident: 32 doi: 10.1016/j.ejphar.2007.09.002 – ident: 4 doi: 10.1331/108658002763508515 – ident: 16 doi: 10.1016/j.foodchem.2011.04.065 – ident: 35 doi: 10.1007/BF00275265 – ident: 17 doi: 10.1016/j.molstruc.2010.09.049 – ident: 25 doi: 10.1172/JCI102012 – ident: 33 doi: 10.1038/bjp.2008.311 – ident: 42 doi: 10.1016/j.jep.2004.07.029 – ident: 19 – ident: 39 doi: 10.1016/j.bcp.2007.02.006 – ident: 43 doi: 10.1016/j.fct.2008.03.020 – ident: 46 doi: 10.1172/JCI111286 – ident: 28 doi: 10.1007/BF02867969 – ident: 34 doi: 10.1016/S0006-3495(93)81397-3 – ident: 15 doi: 10.1166/jbn.2015.2041 – ident: 24 doi: 10.1093/ajcp/21.3_ts.275 – ident: 8 doi: 10.1016/j.taap.2014.12.003 – ident: 1 doi: 10.1038/414782a – ident: 2 doi: 10.1016/0963-6897(95)00020-X – ident: 10 doi: 10.1124/pr.110.004044 – ident: 21 – ident: 12 doi: 10.1016/j.foodchem.2014.09.131 – ident: 41 doi: 10.1210/jcem-61-4-741 – ident: 44 – ident: 30 doi: 10.1177/0003319709356424 |
SSID | ssj0007023 ssib023156946 ssib002483627 ssib002822050 ssib017383521 |
Score | 2.3451133 |
Snippet | Ultrasound-assisted extraction of curcumin from Curcuma longa was performed in an ultrasonic bath at 30°C using ethanol for 40 min. A successful attempt has... Ultrasound-assisted extraction of curcumin from Curcuma longa was performed in an ultrasonic bath at 30℃ using ethanol for 40 min. A successful attempt has... |
SourceID | proquest crossref pubmed medicalonline jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1774 |
SubjectTerms | Alanine Alanine transaminase Alanine Transaminase - blood Animals Aspartate aminotransferase Aspartate Aminotransferases - blood Blood glucose Blood Glucose - analysis Body weight Cholesterol - blood Creatinine Creatinine - blood Curcumin Curcumin - chemistry Curcumin - pharmacology Curcumin - therapeutic use curcumin–zinc complex Diabetes diabetes complication Diabetes mellitus Diabetes Mellitus, Experimental - blood Diabetes Mellitus, Experimental - drug therapy dual action Ethanol Fourier analysis Fourier transforms Glycated Hemoglobin A - analysis Hemoglobin Hypoglycemic Agents - chemistry Hypoglycemic Agents - pharmacology Hypoglycemic Agents - therapeutic use Infrared spectroscopy Insulin Insulin - blood Male Oral administration Rats, Sprague-Dawley Rodents Serum Albumin - analysis Stoichiometry Streptozocin Triglycerides - blood Urea - blood Zinc Zinc - chemistry Zinc - pharmacology Zinc - therapeutic use zinc metal |
Title | Dual Effect of Curcumin–Zinc Complex in Controlling Diabetes Mellitus in Experimentally Induced Diabetic Rats |
URI | https://www.jstage.jst.go.jp/article/bpb/39/11/39_b16-00137/_article/-char/en http://mol.medicalonline.jp/library/journal/download?GoodsID=cs7biolo/2016/003911/005&name=1774-1780e https://www.ncbi.nlm.nih.gov/pubmed/27803448 https://www.proquest.com/docview/1836360867 https://search.proquest.com/docview/1835528900 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Biological and Pharmaceutical Bulletin, 2016/11/01, Vol.39(11), pp.1774-1780 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA51FRREtOulukoE6Ut31rlfHgTrbpeiVAS7sPoyJJkMW5lOSzsFu7_ec5KZdIouqC9pmWQ6bb8vJyfJOV8IeeMnIuReEFs8j30LRijXSlzhW0JIx5dZyJhazJl8DscX_sfL4LLTuW5nl1T8RFz_Ma_kf1CFa4ArZsn-A7LmQ-ECvAd8oQSEofwrjM8w96PWH8awis1KbOaz0vo-K4Xq6YX8Waf1YTy6yjw_axZbJyjFWW1UPOyopfNfbAd4ngfGBei2GGrPtOCT2f6dGZuJ1Fle7S2M87akN5KpsIY6C_vTFbj9JqZjyDNZDM5ZxdTazpgVbPAVCrNCPSqsDyzTG_3fYLhdDdQt1mSBi5rtBQunFrrW5tXzI5j66gTOxv5qMaOGZ07LmjqRPsHnNzPv-pi6wJf8hDuhpbRR2-0ApeVcYe5GMWoaxrvRzsQgNlW3yG0XjJRSCB7vpk4RODO1Jis87e3es1BBur57z5258wM8epRquD_Xu2xa7eTmyYtyYqYPyYN69kGHmkqPSEeWXXI4LFm1mG9pn6p4YLXR0iV3T5uzALuk_0UjvD2m013C3vpY3WK0z7eHZI6UpJqSdJHTPUrSmpJ0VtIWJWlDSdpQEhvsU5LWlKQNJSlS8jG5OB9NT8dWfaKHJaLIqyzh2MKLc_gPWZCB7xRkScxilnkBZzxgCYt8CRNwn0dubkvGPQnWQ8RhAsM5j7zce0IOykUpnxHq-bm0wVsXocd95ro8T3IYvQNb2l4gnKRH-g0w6VILt6Q44QUwUwAzBTBTBWaPvNOwmWZ1f1bNvATmyFia9qYa0yLBCvXI-z2009pArFOxjpSSWoq9IFVnMTjwEqTIayhiDBlA-aoeOWoIsrsbxlrU8otD-IavTTXgjjt6rJSLjWoTBBgqYPfIU00s8ysahj6_seYFuYffTC8oHpGDarWRL8HFrvgr1Rd-Acm80f8 |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Effect+of+Curcumin-Zinc+Complex+in+Controlling+Diabetes+Mellitus+in+Experimentally+Induced+Diabetic+Rats&rft.jtitle=Biological+%26+pharmaceutical+bulletin&rft.au=Al-Ali%2C+Khalil&rft.au=Abdel+Fatah%2C+Hala+Salah&rft.au=El-Badry%2C+Yaser+Abdel-Moemen&rft.date=2016&rft.eissn=1347-5215&rft.volume=39&rft.issue=11&rft.spage=1774&rft_id=info:doi/10.1248%2Fbpb.b16-00137&rft_id=info%3Apmid%2F27803448&rft.externalDocID=27803448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon |