Drought Legacy Effects on the Composition of Soil Fungal and Prokaryote Communities
It is increasingly acknowledged that climate change is influencing terrestrial ecosystems by increased drought and rainfall intensities. Soil microbes are key drivers of many processes in terrestrial systems and rely on water in soil pores to fulfill their life cycles and functions. However, little...
Saved in:
Published in | Frontiers in microbiology Vol. 9; no. MAR; pp. 294 - 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media
07.03.2018
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is increasingly acknowledged that climate change is influencing terrestrial ecosystems by increased drought and rainfall intensities. Soil microbes are key drivers of many processes in terrestrial systems and rely on water in soil pores to fulfill their life cycles and functions. However, little is known on how drought and rainfall fluctuations, which affect the composition and structure of microbial communities, persist once original moisture conditions have been restored. Here, we study how simulated short-term drying and re-wetting events shape the community composition of soil fungi and prokaryotes. In a mesocosm experiment, soil was exposed to an extreme drought, then re-wetted to optimal moisture (50% WHC, water holding capacity) or to saturation level (100% WHC). Composition, community structure and diversity of microbes were measured by sequencing ITS and 16S rRNA gene amplicons 3 weeks after original moisture content had been restored. Drying and extreme re-wetting decreased richness of microbial communities, but not evenness. Abundance changes were observed in only 8% of prokaryote OTUs, and 25% of fungal OTUs, whereas all other OTUs did not differ between drying and re-wetting treatments. Two specific legacy response groups (LRGs) were observed for both prokaryotes and fungi. OTUs belonging to the first LRG decreased in relative abundance in soil with a history of drought, whereas OTUs that increased in soil with a history of drought formed a second LRG. These microbial responses were spread among different phyla. Drought appeared to be more important for the microbial community composition than the following extreme re-wetting. 16S profiles were correlated with both inorganic N concentration and basal respiration and ITS profiles correlated with fungal biomass. We conclude that a drying and/or an extreme re-wetting history can persist in soil microbial communities via specific response groups composed of members with broad phylogenetic origins, with possible functional consequences on soil processes and plant species. As a large fraction of OTUs responding to drying and re-wetting belonged to the rare biosphere, our results suggest that low abundant microbial species are potentially important for ecosystem responses to extreme weather events. |
---|---|
AbstractList | It is increasingly acknowledged that climate change is influencing terrestrial ecosystems by increased drought and rainfall intensities. Soil microbes are key drivers of many processes in terrestrial systems and rely on water in soil pores to fulfill their life cycles and functions. However, little is known on how drought and rainfall fluctuations, which affect the composition and structure of microbial communities, persist once original moisture conditions have been restored. Here, we study how simulated short-term drying and re-wetting events shape the community composition of soil fungi and prokaryotes. In a mesocosm experiment, soil was exposed to an extreme drought, then re-wetted to optimal moisture (50% WHC, water holding capacity) or to saturation level (100% WHC). Composition, community structure and diversity of microbes were measured by sequencing ITS and 16S rRNA gene amplicons 3 weeks after original moisture content had been restored. Drying and extreme re-wetting decreased richness of microbial communities, but not evenness. Abundance changes were observed in only 8% of prokaryote OTUs, and 25% of fungal OTUs, whereas all other OTUs did not differ between drying and re-wetting treatments. Two specific legacy response groups (LRGs) were observed for both prokaryotes and fungi. OTUs belonging to the first LRG decreased in relative abundance in soil with a history of drought, whereas OTUs that increased in soil with a history of drought formed a second LRG. These microbial responses were spread among different phyla. Drought appeared to be more important for the microbial community composition than the following extreme re-wetting. 16S profiles were correlated with both inorganic N concentration and basal respiration and ITS profiles correlated with fungal biomass. We conclude that a drying and/or an extreme re-wetting history can persist in soil microbial communities via specific response groups composed of members with broad phylogenetic origins, with possible functional consequences on soil processes and plant species. As a large fraction of OTUs responding to drying and re-wetting belonged to the rare biosphere, our results suggest that low abundant microbial species are potentially important for ecosystem responses to extreme weather events. It is increasingly acknowledged that climate change is influencing terrestrial ecosystems by increased drought and rainfall intensities. Soil microbes are key drivers of many processes in terrestrial systems and rely on water in soil pores to fulfill their life cycles and functions. However, little is known on how drought and rainfall fluctuations, which affect the composition and structure of microbial communities, persist once original moisture conditions have been restored. Here, we study how simulated short-term drying and re-wetting events shape the community composition of soil fungi and prokaryotes. In a mesocosm experiment, soil was exposed to an extreme drought, then re-wetted to optimal moisture (50% WHC, water holding capacity) or to saturation level (100% WHC). Composition, community structure and diversity of microbes were measured by sequencing ITS and 16S rRNA gene amplicons 3 weeks after original moisture content had been restored. Drying and extreme re-wetting decreased richness of microbial communities, but not evenness. Abundance changes were observed in only 8% of prokaryote OTUs, and 25% of fungal OTUs, whereas all other OTUs did not differ between drying and re-wetting treatments. Two specific legacy response groups (LRGs) were observed for both prokaryotes and fungi. OTUs belonging to the first LRG decreased in relative abundance in soil with a history of drought, whereas OTUs that increased in soil with a history of drought formed a second LRG. These microbial responses were spread among different phyla. Drought appeared to be more important for the microbial community composition than the following extreme re-wetting. 16S profiles were correlated with both inorganic N concentration and basal respiration and ITS profiles correlated with fungal biomass. We conclude that a drying and/or an extreme re-wetting history can persist in soil microbial communities via specific response groups composed of members with broad phylogenetic origins, with possible functional consequences on soil processes and plant species. As a large fraction of OTUs responding to drying and re-wetting belonged to the rare biosphere, our results suggest that low abundant microbial species are potentially important for ecosystem responses to extreme weather events.It is increasingly acknowledged that climate change is influencing terrestrial ecosystems by increased drought and rainfall intensities. Soil microbes are key drivers of many processes in terrestrial systems and rely on water in soil pores to fulfill their life cycles and functions. However, little is known on how drought and rainfall fluctuations, which affect the composition and structure of microbial communities, persist once original moisture conditions have been restored. Here, we study how simulated short-term drying and re-wetting events shape the community composition of soil fungi and prokaryotes. In a mesocosm experiment, soil was exposed to an extreme drought, then re-wetted to optimal moisture (50% WHC, water holding capacity) or to saturation level (100% WHC). Composition, community structure and diversity of microbes were measured by sequencing ITS and 16S rRNA gene amplicons 3 weeks after original moisture content had been restored. Drying and extreme re-wetting decreased richness of microbial communities, but not evenness. Abundance changes were observed in only 8% of prokaryote OTUs, and 25% of fungal OTUs, whereas all other OTUs did not differ between drying and re-wetting treatments. Two specific legacy response groups (LRGs) were observed for both prokaryotes and fungi. OTUs belonging to the first LRG decreased in relative abundance in soil with a history of drought, whereas OTUs that increased in soil with a history of drought formed a second LRG. These microbial responses were spread among different phyla. Drought appeared to be more important for the microbial community composition than the following extreme re-wetting. 16S profiles were correlated with both inorganic N concentration and basal respiration and ITS profiles correlated with fungal biomass. We conclude that a drying and/or an extreme re-wetting history can persist in soil microbial communities via specific response groups composed of members with broad phylogenetic origins, with possible functional consequences on soil processes and plant species. As a large fraction of OTUs responding to drying and re-wetting belonged to the rare biosphere, our results suggest that low abundant microbial species are potentially important for ecosystem responses to extreme weather events. |
Author | Snoek, Basten L. Meisner, Annelein ten Hooven, Freddy C. van der Putten, Wim H. Jacquiod, Samuel |
AuthorAffiliation | 1 Microbial Ecology, Department of Biology, Lund University , Lund , Sweden 6 Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands 7 Laboratory of Nematology, Wageningen University , Wageningen , Netherlands 4 Agroécologie, UMR1347, INRA Centre Dijon , Dijon , France 2 Sections of Microbiology and Terrestrial Ecology, Department of Biology, University of Copenhagen , Copenhagen , Denmark 5 Department of Terrestrial Ecology, Netherlands Institute of Ecology , Wageningen , Netherlands 3 Department of Microbial Ecology, Netherlands Institute of Ecology , Wageningen , Netherlands |
AuthorAffiliation_xml | – name: 3 Department of Microbial Ecology, Netherlands Institute of Ecology , Wageningen , Netherlands – name: 6 Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands – name: 5 Department of Terrestrial Ecology, Netherlands Institute of Ecology , Wageningen , Netherlands – name: 4 Agroécologie, UMR1347, INRA Centre Dijon , Dijon , France – name: 2 Sections of Microbiology and Terrestrial Ecology, Department of Biology, University of Copenhagen , Copenhagen , Denmark – name: 1 Microbial Ecology, Department of Biology, Lund University , Lund , Sweden – name: 7 Laboratory of Nematology, Wageningen University , Wageningen , Netherlands |
Author_xml | – sequence: 1 givenname: Annelein surname: Meisner fullname: Meisner, Annelein – sequence: 2 givenname: Samuel surname: Jacquiod fullname: Jacquiod, Samuel – sequence: 3 givenname: Basten L. surname: Snoek fullname: Snoek, Basten L. – sequence: 4 givenname: Freddy C. surname: ten Hooven fullname: ten Hooven, Freddy C. – sequence: 5 givenname: Wim H. surname: van der Putten fullname: van der Putten, Wim H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29563897$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02626888$$DView record in HAL https://lup.lub.lu.se/record/222c8ee0-6edf-45d2-b33e-3aae4377eb2c$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/222c8ee0-6edf-45d2-b33e-3aae4377eb2c$$DView record from Swedish Publication Index |
BookMark | eNqNk01r3DAQhk1JadJt7j0VH9vDprK-bPdQCGnSBBZaSAu9DbI03lWqlbaSnZB_X3k3KUkgUIMka_zOMy-D53Wx54PHonhbkSPGmvZjv7a6O6Kkao4IoS1_URxUUvI5I_TX3oP3_eIwpSuSH05o3l8V-7QVMiPqg-LySwzjcjWUC1wqfVue9j3qIZXBl8MKy5Ow3oRkB5vvoS8vg3Xl2eiXypXKm_J7DL9VvA3DVrkefVZielO87JVLeHh3zoqfZ6c_Ts7ni29fL06OF3Nd13SYc8Uo6Wslaq4MKtUaTljbS1M1VLFsgzLRGkNb07esp6ZGQblu-8pkUUd6NisudlwT1BVsol1nLxCUhW0gxCWoOFjtEJBVotVc0oZLTiRvTG2oZG1TSyYYssz6tGPdqCV66_MGXkVt0xbobBcn-M0Ywbvp2IxdAsGEyJhZoXbJ6QZz_JGVTYiDchAxYcatwI2QELLKWa2mviaglOoGkYBE0wMXhkLHGAJTCjmra-yozjUWz9Zw4yav7o79n7jPO1xmrdFo9EPMNh85f_TF2xUswzWIhoupa7Piww6wepJ2fryAKUaopLJpmusqa9_fFYvhz4hpgLVNGp1THsOYG0CqmshKCJKl7x76-ke-_2OzQO4EOoaUIvag7bBtZLZpHVQEpumA7XRM5Aa205ETyZPEe_azKX8B278WJg |
CitedBy_id | crossref_primary_10_1093_jpe_rtaa038 crossref_primary_10_3389_fmicb_2021_798023 crossref_primary_10_1111_1462_2920_16549 crossref_primary_10_1016_j_envres_2023_117548 crossref_primary_10_5194_acp_19_11013_2019 crossref_primary_10_1186_s12866_022_02574_2 crossref_primary_10_3390_jof6040320 crossref_primary_10_1016_j_pedobi_2023_150875 crossref_primary_10_1016_j_ecolind_2021_107625 crossref_primary_10_1007_s42690_024_01413_3 crossref_primary_10_1016_j_soilbio_2022_108650 crossref_primary_10_1016_j_jtherbio_2021_103006 crossref_primary_10_1051_e3sconf_202129203061 crossref_primary_10_1128_AEM_02057_19 crossref_primary_10_1016_j_geoderma_2021_115425 crossref_primary_10_1126_sciadv_aaz1834 crossref_primary_10_1093_ismeco_ycae074 crossref_primary_10_1038_s41467_021_25675_4 crossref_primary_10_1016_j_catena_2023_107378 crossref_primary_10_1525_elementa_2021_00110 crossref_primary_10_1016_j_apsoil_2023_105198 crossref_primary_10_1016_j_scitotenv_2023_169351 crossref_primary_10_3390_agronomy10040502 crossref_primary_10_3390_plants10091873 crossref_primary_10_3390_microorganisms7050129 crossref_primary_10_1002_ecs2_4063 crossref_primary_10_3390_d14121122 crossref_primary_10_1007_s11104_024_06784_7 crossref_primary_10_1016_j_soilbio_2024_109574 crossref_primary_10_1038_s41396_020_00844_3 crossref_primary_10_1093_femsec_fiz080 crossref_primary_10_5194_bg_19_4011_2022 crossref_primary_10_1016_j_apsoil_2021_104273 crossref_primary_10_1016_j_heliyon_2022_e11674 crossref_primary_10_1093_femsec_fiad051 crossref_primary_10_1111_gcbb_70018 crossref_primary_10_1002_ecm_1529 crossref_primary_10_24072_pcjournal_537 crossref_primary_10_1111_nph_18137 crossref_primary_10_3390_ijms22169036 crossref_primary_10_1016_j_apsoil_2023_105226 crossref_primary_10_1126_sciadv_abn3368 crossref_primary_10_3389_fmicb_2022_945488 crossref_primary_10_1016_j_soilbio_2020_107902 crossref_primary_10_1016_j_scitotenv_2023_167969 crossref_primary_10_1111_gcb_70099 crossref_primary_10_1016_j_still_2023_105739 crossref_primary_10_2139_ssrn_4059804 crossref_primary_10_3390_plants13030393 crossref_primary_10_1016_j_isprsjprs_2020_09_024 crossref_primary_10_1111_geb_13013 crossref_primary_10_1007_s40333_023_0013_8 crossref_primary_10_1111_1365_2435_14529 crossref_primary_10_1111_1462_2920_14990 crossref_primary_10_3390_agriculture11111113 crossref_primary_10_1007_s00442_022_05305_6 crossref_primary_10_1007_s00374_022_01623_2 crossref_primary_10_1093_femsle_fnab010 crossref_primary_10_1111_jvs_13100 crossref_primary_10_1111_gcb_16270 crossref_primary_10_3389_fevo_2019_00367 crossref_primary_10_1111_1365_2435_14000 crossref_primary_10_1007_s00248_023_02321_8 crossref_primary_10_3389_fmicb_2018_02279 crossref_primary_10_1016_j_apsoil_2019_05_031 crossref_primary_10_1111_1365_2435_14521 crossref_primary_10_1016_j_ecoleng_2021_106461 crossref_primary_10_1038_s43705_023_00235_7 crossref_primary_10_3389_fmicb_2020_562775 crossref_primary_10_1007_s00248_019_01432_5 crossref_primary_10_1111_ele_14129 crossref_primary_10_1016_j_apsoil_2023_105200 crossref_primary_10_1016_j_plrev_2022_01_001 crossref_primary_10_3389_fmicb_2020_00982 crossref_primary_10_1111_1462_2920_15096 crossref_primary_10_1002_ece3_11174 crossref_primary_10_1128_MMBR_00026_20 crossref_primary_10_1007_s11104_023_05908_9 crossref_primary_10_1111_mec_15674 crossref_primary_10_3390_microorganisms10050894 crossref_primary_10_2139_ssrn_4107144 crossref_primary_10_1016_j_soilbio_2018_12_022 crossref_primary_10_1111_1462_2920_15418 crossref_primary_10_1111_nph_17707 crossref_primary_10_1128_msystems_01249_21 crossref_primary_10_1016_j_agee_2023_108513 crossref_primary_10_1016_j_agee_2023_108634 crossref_primary_10_1007_s00374_022_01642_z crossref_primary_10_1111_mec_15423 crossref_primary_10_1094_PBIOMES_12_21_0076_R crossref_primary_10_1016_j_catena_2022_106471 crossref_primary_10_1111_gcb_16173 crossref_primary_10_1016_j_soilbio_2025_109712 crossref_primary_10_3390_microorganisms8010009 crossref_primary_10_3389_fpls_2018_01605 crossref_primary_10_1111_eea_13514 crossref_primary_10_1002_ecs2_4545 crossref_primary_10_1016_j_crmicr_2024_100285 crossref_primary_10_1111_1462_2920_16601 crossref_primary_10_1038_s41558_024_02000_7 crossref_primary_10_3390_land12030559 crossref_primary_10_1016_j_scitotenv_2024_176475 crossref_primary_10_1016_j_soilbio_2022_108559 crossref_primary_10_1186_s40168_018_0606_1 crossref_primary_10_1016_j_micres_2024_127698 crossref_primary_10_1093_femsec_fiaa098 crossref_primary_10_3390_su132111848 crossref_primary_10_3389_fenvs_2020_00008 crossref_primary_10_3389_fmicb_2022_750456 crossref_primary_10_1016_j_soilbio_2020_107819 crossref_primary_10_1007_s00374_023_01721_9 crossref_primary_10_3389_fmicb_2020_562546 crossref_primary_10_1007_s00374_022_01621_4 crossref_primary_10_1016_j_apsoil_2024_105711 crossref_primary_10_1016_j_soilbio_2020_107898 crossref_primary_10_1111_1365_2745_14006 crossref_primary_10_3389_fagro_2024_1465165 crossref_primary_10_1111_1365_2745_13550 crossref_primary_10_1016_j_envexpbot_2024_105650 crossref_primary_10_1016_j_soilbio_2023_109252 crossref_primary_10_1111_nph_18327 crossref_primary_10_1016_j_soilbio_2023_109099 crossref_primary_10_1111_gcb_14575 crossref_primary_10_1126_science_aav0550 crossref_primary_10_1002_ecs2_4486 crossref_primary_10_1016_j_soilbio_2019_107692 |
Cites_doi | 10.1016/j.soilbio.2007.08.008 10.1016/j.apsoil.2014.10.009 10.1093/bioinformatics/btr381 10.1016/j.apsoil.2014.06.005 10.1007/s11104-014-2037-5 10.1111/j.1574-6941.2012.01437.x 10.1002/ece3.2700 10.1111/nph.14661 10.1007/BF01343734 10.1002/ecy.1670 10.1016/j.soilbio.2017.05.016 10.1016/j.soilbio.2011.07.013 10.1016/j.soilbio.2015.06.002 10.1128/MMBR.58.4.755-805.1994 10.1111/j.1365-2486.2010.02300.x 10.1007/s00248-010-9723-5 10.1093/femsec/fix006 10.1038/nrmicro3400 10.1038/nclimate3110 10.1351/pac200173071163 10.1016/S0038-0717(00)00073-0 10.1890/11-0026.1 10.3389/fmicb.2015.00024 10.5194/bg-9-2459-2012 10.1016/j.mimet.2012.04.015 10.1016/0038-0717(94)90290-9 10.3389/fmicb.2012.00348 10.1093/bioinformatics/btq461 10.1007/s11104-013-1855-1 10.1890/11-1745.1 10.1073/pnas.1300922110 10.1016/j.resmic.2016.03.003 10.1016/j.jhazmat.2017.09.046 10.1128/aem.02050-12 10.1093/nar/gkt1244 10.1038/ismej.2013.104 10.1073/pnas.1204306109 10.1073/pnas.1516684112 10.1016/0038-0717(83)90010-x 10.1016/j.soilbio.2010.12.004 10.1016/j.soilbio.2005.03.021 10.1073/pnas.1620811114 10.1038/ismej.2010.171 10.1038/nrmicro2367 10.1038/nrmicro3109 10.1016/j.soilbio.2014.02.008 10.1093/femsec/fiw175 10.1111/2041-210x.12073 10.1111/mec.13995 10.1016/0038-0717(94)90093-0 10.1007/s00374-017-1205-1 10.1146/annurev-ecolsys-110411-160340 10.1016/j.soilbio.2013.07.014 10.1016/s0038-0717(99)00080-2 10.3389/fmicb.2014.00579 10.1093/bioinformatics/btp616 10.1016/0038-0717(87)90070-8 10.1186/s40168-016-0208-8 10.1890/13-0500.1 10.1016/j.jaridenv.2007.11.017 10.1007/s00248-002-1007-2 10.1111/j.1365-2745.2011.01858.x 10.1186/1471-2105-13-31 10.1016/s0038-0717(98)00116-3 10.7717/peerj.2584 10.1097/00010694-192412000-00001 10.1146/annurev-marine-120710-100948 10.1093/femsec/fiw228 10.1007/s00442-012-2331-y 10.1111/nph.14990 10.3389/fmicb.2016.00744 10.1038/nclimate1368 10.1093/bioinformatics/bts480 10.1073/pnas.0908284106 10.1111/j.1365-2672.1984.tb01394.x 10.3390/biology1030895 10.1890/13-1031.1 10.1016/j.soilbio.2013.12.008 10.1007/s10533-011-9638-3 10.1111/mec.12481 10.1007/978-3-642-38954-2_338 10.1093/treephys/27.7.929 10.1002/bimj.200810425 10.1111/ele.12206 10.1111/1574-6976.12023 10.1890/09-0135.1 10.1038/ismej.2010.75 10.1038/srep38893 10.1111/j.1365-2486.2010.02327.x 10.1073/pnas.1202319109 10.1890/06-0219 |
ContentType | Journal Article |
Copyright | Attribution Copyright © 2018 Meisner, Jacquiod, Snoek, ten Hooven and van der Putten. 2018 Meisner, Jacquiod, Snoek, ten Hooven and van der Putten Wageningen University & Research |
Copyright_xml | – notice: Attribution – notice: Copyright © 2018 Meisner, Jacquiod, Snoek, ten Hooven and van der Putten. 2018 Meisner, Jacquiod, Snoek, ten Hooven and van der Putten – notice: Wageningen University & Research |
CorporateAuthor | Microbial Ecology Department of Biology Biologiska institutionen Forskargrupper vid Biologiska institutionen Lunds universitet Naturvetenskapliga fakulteten Faculty of Science Lund University Research groups at the Department of Biology Mikrobiologisk ekologi |
CorporateAuthor_xml | – name: Microbial Ecology – name: Naturvetenskapliga fakulteten – name: Lund University – name: Biologiska institutionen – name: Forskargrupper vid Biologiska institutionen – name: Mikrobiologisk ekologi – name: Department of Biology – name: Research groups at the Department of Biology – name: Faculty of Science – name: Lunds universitet |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC QVL DOA |
DOI | 10.3389/fmicb.2018.00294 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text NARCIS:Publications DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Environmental Sciences |
EISSN | 1664-302X |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_e3159c46284640648d7d2639876353e3 oai_library_wur_nl_wurpubs_535526 oai_portal_research_lu_se_publications_222c8ee0_6edf_45d2_b33e_3aae4377eb2c oai_lup_lub_lu_se_222c8ee0_6edf_45d2_b33e_3aae4377eb2c PMC5845876 oai_HAL_hal_02626888v1 29563897 10_3389_fmicb_2018_00294 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: ERC-Adv grant 26055290 – fundername: Vetenskapsrådet grantid: 330-2014-6430 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 1XC VOOES 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC ABPTK IAO IEA IHR ITC QVL |
ID | FETCH-LOGICAL-c772t-4a320f7a574adeaa9d4039f6d182a3fec2359dd29df93f2d7e524c9f1d9f6b0f3 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:31:40 EDT 2025 Thu Oct 13 09:31:33 EDT 2022 Thu Aug 21 07:01:54 EDT 2025 Sat Apr 05 03:35:31 EDT 2025 Thu Aug 21 18:27:32 EDT 2025 Fri May 09 12:22:38 EDT 2025 Thu Jul 10 22:20:21 EDT 2025 Thu Apr 03 07:10:37 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 Tue Jul 01 00:54:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | MAR |
Keywords | bacteria fungi soil microbial communities re-wetting Birch effect climate change |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c772t-4a320f7a574adeaa9d4039f6d182a3fec2359dd29df93f2d7e524c9f1d9f6b0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Zachary B. Freedman, West Virginia University, United States; Barbara Drigo, University of South Australia, Australia; Julie Royann Deslippe, Victoria University of Wellington, New Zealand This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology Edited by: Martin Hartmann, Swiss Federal Institute for Forest, Snow and Landscape Research, Switzerland |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2018.00294 |
PMID | 29563897 |
PQID | 2017061550 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e3159c46284640648d7d2639876353e3 wageningen_narcis_oai_library_wur_nl_wurpubs_535526 swepub_primary_oai_portal_research_lu_se_publications_222c8ee0_6edf_45d2_b33e_3aae4377eb2c swepub_primary_oai_lup_lub_lu_se_222c8ee0_6edf_45d2_b33e_3aae4377eb2c pubmedcentral_primary_oai_pubmedcentral_nih_gov_5845876 hal_primary_oai_HAL_hal_02626888v1 proquest_miscellaneous_2017061550 pubmed_primary_29563897 crossref_citationtrail_10_3389_fmicb_2018_00294 crossref_primary_10_3389_fmicb_2018_00294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-07 |
PublicationDateYYYYMMDD | 2018-03-07 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2018 |
Publisher | Frontiers Media Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media – name: Frontiers Media S.A |
References | de Vries (B16); 2 Jarvis (B42) 2007; 27 Philippot (B75) 2013; 11 Kim (B48) 2012; 9 Placella (B76) 2012; 109 Potts (B77) 1994; 58 Thorsen (B90) 2016; 4 Barnes (B5) 2018 Schimel (B84) 2007; 88 Barnard (B4) 2013; 7 Kielak (B47) 2016; 7 Edgar (B19) 2010; 26 Clein (B11) 1994; 26 Sayer (B82) 2017; 7 Nunes (B70) 2016; 92 Fierer (B24) 2003; 45 Meisner (B67) 2015; 88 Cregger (B13) 2012; 78 de Hollander (B15) 2016 Bates (B6) 2011; 5 Birch (B8) 1958; 10 Masella (B62) 2012; 13 Lynch (B57) 2015; 13 Setia (B87) 2011; 43 Evans (B23) 2014; 95 Lundquist (B56) 1999; 31 Hagemann (B29) 2017 Kaisermann (B43) 2017; 215 Meisner (B66) 2017; 112 Bapiri (B3) 2010; 60 Mackey (B58) 1984; 57 Meisner (B64) 2011; 99 Pulleman (B78) 1999; 31 Manzoni (B61) 2012; 93 Ihrmark (B37) 2012; 82 Kardol (B45) 2010; 91 Fukami (B26) 2015; 46 Warren (B93) 2014; 70 Blazewicz (B9) 2014; 95 de Vries (B17); 170 Fischer (B25) 2016; 6 Schimel (B85) 2012; 3 Vidali (B91) 2001; 73 Chowdhury (B10) 2011; 43 Evans (B22) 2014; 17 Lebedjantzev (B54) 1924; 18 Schöler (B86) 2017; 53 Hothorn (B36) 2008; 50 Dodt (B18) 2012; 1 Vos (B92) 2013; 37 Miller (B68) 2005; 37 Shi (B88) 2016; 6 Bengtsson-Palme (B7) 2013; 4 Aanderud (B1) 2015; 6 Philippot (B74) 2010; 8 Jacquiod (B41) 2016; 167 Meisner (B65); 110 Hartmann (B31) 2017; 26 Kõljalg (B49) 2013; 22 Gordon (B28) 2008; 40 Koster (B50) 2012; 28 Lau (B53) 2012; 109 Field (B39) 2012 Cole (B12) 2014; 42 Maestre (B59) 2015; 112 Hawkes (B34) 2017; 114 Williams (B94) 2008; 72 Nocker (B69) 2012; 90 Yuste (B95) 2011; 17 Acosta-Martínez (B2) 2014; 84 Edgar (B20) 2011; 27 Ilstedt (B38) 2000; 32 Lennon (B55) 2012; 93 Crowther (B14) 2014; 5 Kieft (B46) 1987; 19 Manzoni (B60) 2014; 73 (B79) 2017 Kaisermann (B44) 2015; 86 Pedrós-Alió (B72) 2012; 4 Orchard (B71) 1983; 15 Kurm (B51) 2017; 98 Robinson (B80) 2010; 26 Lado-Monserrat (B52) 2014; 379 Jacquiod (B40) 2018; 344 Rognes (B81) 2016; 4 Stieglmeier (B89) 2014 Meisner (B63); 66 Scheu (B83) 1994; 26 Haugwitz (B32) 2014; 374 Galand (B27) 2009; 106 Hammer (B30) 2001; 4 Evans (B21) 2012; 109 Ho (B35) 2017; 93 Hawkes (B33) 2011; 17 Pester (B73) 2010; 4 |
References_xml | – volume: 40 start-page: 302 year: 2008 ident: B28 article-title: Drying and rewetting effects on soil microbial community composition and nutrient leaching. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.08.008 – volume: 86 start-page: 158 year: 2015 ident: B44 article-title: Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.10.009 – volume: 27 start-page: 2194 year: 2011 ident: B20 article-title: UCHIME improves sensitivity and speed of chimera detection. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 84 start-page: 69 year: 2014 ident: B2 article-title: Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.06.005 – volume: 379 start-page: 21 year: 2014 ident: B52 article-title: Soil moisture increment as a controlling variable of the “Birch effect”. Interactions with the pre-wetting soil moisture and litter addition. publication-title: Plant Soil doi: 10.1007/s11104-014-2037-5 – volume: 82 start-page: 666 year: 2012 ident: B37 article-title: New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2012.01437.x – volume: 7 start-page: 855 year: 2017 ident: B82 article-title: Links between soil microbial communities and plant traits in a species-rich grassland under long-term climate change. publication-title: Ecol. Evol. doi: 10.1002/ece3.2700 – volume: 215 start-page: 1413 year: 2017 ident: B43 article-title: Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. publication-title: New Phytol. doi: 10.1111/nph.14661 – volume: 10 start-page: 9 year: 1958 ident: B8 article-title: The effect of soil drying on humus decomposition and nitrogen availability. publication-title: Plant Soil doi: 10.1007/BF01343734 – volume: 98 start-page: 555 year: 2017 ident: B51 article-title: Low abundant soil bacteria can be metabolically versatile and fast growing. publication-title: Ecology doi: 10.1002/ecy.1670 – volume: 112 start-page: 269 year: 2017 ident: B66 article-title: Partial drying accelerates bacterial growth recovery to rewetting. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.05.016 – volume: 43 start-page: 2265 year: 2011 ident: B10 article-title: The extent of drying influences the flush of respiration after rewetting in non-saline and saline soils. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.07.013 – volume: 88 start-page: 314 year: 2015 ident: B67 article-title: Prolonged drought changes the bacterial growth response to rewetting. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.06.002 – volume: 58 start-page: 755 year: 1994 ident: B77 article-title: Desiccation tolerance of prokaryotes. publication-title: Microbiol. Rev. doi: 10.1128/MMBR.58.4.755-805.1994 – volume: 17 start-page: 1475 year: 2011 ident: B95 article-title: Drought-resistant fungi control soil organic matter decomposition and its response to temperature. publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02300.x – volume: 60 start-page: 419 year: 2010 ident: B3 article-title: Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil. publication-title: Microb. Ecol. doi: 10.1007/s00248-010-9723-5 – volume: 93 year: 2017 ident: B35 article-title: Revisiting life strategy concepts in environmental microbial ecology. publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fix006 – volume: 13 start-page: 217 year: 2015 ident: B57 article-title: Ecology and exploration of the rare biosphere. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3400 – volume: 6 start-page: 986 year: 2016 ident: B25 article-title: Observed heavy precipitation increase confirms theory and early models. publication-title: Nat. Clim. Change doi: 10.1038/nclimate3110 – volume: 73 start-page: 1163 year: 2001 ident: B91 article-title: Bioremediation. An overview. publication-title: Pure Appl. Chem. doi: 10.1351/pac200173071163 – volume: 32 start-page: 1591 year: 2000 ident: B38 article-title: Optimum soil water for soil respiration before and after amendment with glucose in humid tropical acrisols and a boreal mor layer. publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00073-0 – volume: 93 start-page: 930 year: 2012 ident: B61 article-title: Responses of soil microbial communities to water-stress: results from a meta-analysis. publication-title: Ecology doi: 10.1890/11-0026.1 – volume: 6 year: 2015 ident: B1 article-title: Resuscitation of the rare biosphere contributes to pulses of ecosystem activity. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00024 – volume: 9 start-page: 2459 year: 2012 ident: B48 article-title: Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. publication-title: Biogeosciences doi: 10.5194/bg-9-2459-2012 – volume: 90 start-page: 86 year: 2012 ident: B69 article-title: Effect of air drying on bacterial viability: a multi parameter viability assessment. publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2012.04.015 – volume: 26 start-page: 403 year: 1994 ident: B11 article-title: Reduction in microbial activity in Birch litter due to drying and rewetting events. publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(94)90290-9 – volume: 3 year: 2012 ident: B85 article-title: Microbial control over carbon cycling in soil. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00348 – volume: 26 start-page: 2460 year: 2010 ident: B19 article-title: Search and clustering orders of magnitude faster than BLAST. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 374 start-page: 211 year: 2014 ident: B32 article-title: Soil microorganisms respond to five years of climate change manipulations and elevated atmospheric CO2 in a temperate heath ecosystem. publication-title: Plant Soil doi: 10.1007/s11104-013-1855-1 – volume: 93 start-page: 1867 year: 2012 ident: B55 article-title: Mapping the niche space of soil microorganisms using taxonomy and traits. publication-title: Ecology doi: 10.1890/11-1745.1 – volume: 110 start-page: 9835 ident: B65 article-title: Soil biotic legacy effects of extreme weather events influence plant invasiveness. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1300922110 – volume: 167 start-page: 436 year: 2016 ident: B41 article-title: Metagenomes provide valuable comparative information on soil microeukaryotes. publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2016.03.003 – volume: 344 start-page: 299 year: 2018 ident: B40 article-title: Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome. publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.09.046 – volume: 78 start-page: 8587 year: 2012 ident: B13 article-title: Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.02050-12 – volume: 42 start-page: D633 year: 2014 ident: B12 article-title: Ribosomal database project: data and tools for high throughput rRNA analysis. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1244 – volume: 7 start-page: 2229 year: 2013 ident: B4 article-title: Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. publication-title: ISME J. doi: 10.1038/ismej.2013.104 – volume: 109 start-page: 10931 year: 2012 ident: B76 article-title: Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1204306109 – volume: 112 start-page: 15684 year: 2015 ident: B59 article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1516684112 – volume: 15 start-page: 447 year: 1983 ident: B71 article-title: Relationship between soil respiration and soil-moisture. publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(83)90010-x – volume: 43 start-page: 667 year: 2011 ident: B87 article-title: Relationships between carbon dioxide emission and soil properties in salt-affected landscapes. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.12.004 – volume: 37 start-page: 2195 year: 2005 ident: B68 article-title: Episodic rewetting enhances carbon and nitrogen release from chaparral soils. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.03.021 – volume: 114 start-page: 6322 year: 2017 ident: B34 article-title: Historical climate controls soil respiration responses to current soil moisture. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1620811114 – volume: 5 start-page: 908 year: 2011 ident: B6 article-title: Examining the global distribution of dominant archaeal populations in soil. publication-title: ISME J. doi: 10.1038/ismej.2010.171 – volume: 4 start-page: 1 year: 2001 ident: B30 article-title: Paleontological statistics software package for education and data analysis. publication-title: Palaeontol. Electronica – volume: 8 start-page: 523 year: 2010 ident: B74 article-title: The ecological coherence of high bacterial taxonomic ranks. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2367 – volume: 11 start-page: 789 year: 2013 ident: B75 article-title: Going back to the roots: the microbial ecology of the rhizosphere. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3109 – volume: 73 start-page: 69 year: 2014 ident: B60 article-title: A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.02.008 – volume: 92 year: 2016 ident: B70 article-title: Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure. publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiw175 – volume: 4 start-page: 914 year: 2013 ident: B7 article-title: Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210x.12073 – volume: 26 start-page: 1190 year: 2017 ident: B31 article-title: A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. publication-title: Mol. Ecol. doi: 10.1111/mec.13995 – volume: 26 start-page: 1515 year: 1994 ident: B83 article-title: Changes in bacterial and fungal biomass-c, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(94)90093-0 – volume: 53 start-page: 485 year: 2017 ident: B86 article-title: Analysis of soil microbial communities based on amplicon sequencing of marker genes. publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-017-1205-1 – volume: 46 start-page: 1 year: 2015 ident: B26 article-title: Historical contingency in community assembly: integrating niches, species pools, and priority effects. publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev-ecolsys-110411-160340 – volume: 66 start-page: 188 ident: B63 article-title: Microbial growth responses upon rewetting soil dried for four days or one year. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.07.014 – volume: 31 start-page: 1661 year: 1999 ident: B56 article-title: Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. publication-title: Soil Biol. Biochem. doi: 10.1016/s0038-0717(99)00080-2 – volume: 5 year: 2014 ident: B14 article-title: Untangling the fungal niche: the trait-based approach. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00579 – volume: 26 start-page: 139 year: 2010 ident: B80 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 19 start-page: 119 year: 1987 ident: B46 article-title: Microbial biomass response to a rapid increase in water potential when dry soil is wetted. publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90070-8 – volume: 4 year: 2016 ident: B90 article-title: Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies. publication-title: Microbiome doi: 10.1186/s40168-016-0208-8 – volume: 95 start-page: 110 year: 2014 ident: B23 article-title: Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought? publication-title: Ecology doi: 10.1890/13-0500.1 – volume: 72 start-page: 1064 year: 2008 ident: B94 article-title: Grazing and drought reduce cyanobacterial soil crusts in an Australian Acacia woodland. publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2007.11.017 – volume: 45 start-page: 63 year: 2003 ident: B24 article-title: Influence of drying-rewetting frequency on soil bacterial community structure. publication-title: Microb. Ecol. doi: 10.1007/s00248-002-1007-2 – volume: 99 start-page: 1308 year: 2011 ident: B64 article-title: Comparison of nutrient acquisition in exotic plant species and congeneric natives. publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2011.01858.x – volume: 13 year: 2012 ident: B62 article-title: PANDAseq: paired-end assembler for illumina sequences. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-31 – volume: 31 start-page: 275 year: 1999 ident: B78 article-title: Microbial C and N transformations during drying and rewetting of coniferous forest floor material. publication-title: Soil Biol. Biochem. doi: 10.1016/s0038-0717(98)00116-3 – volume: 4 year: 2016 ident: B81 article-title: VSEARCH: a versatile open source tool for metagenomics. publication-title: PeerJ doi: 10.7717/peerj.2584 – volume: 18 start-page: 419 year: 1924 ident: B54 article-title: Drying of soil, as one of the natural factors in maintaining soil fertility. publication-title: Soil Sci. doi: 10.1097/00010694-192412000-00001 – year: 2017 ident: B79 publication-title: R: A Language and Environment for Statistical Computing – volume: 4 start-page: 449 year: 2012 ident: B72 article-title: The rare bacterial biosphere. publication-title: Annu. Rev. Mar. Sci. doi: 10.1146/annurev-marine-120710-100948 – year: 2017 ident: B29 article-title: Cyanobacterial populations in biological soil crusts of the northwest Negev Desert, Israel - effects of local conditions and disturbance. publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiw228 – volume: 170 start-page: 821 ident: B17 article-title: Legacy effects of drought on plant growth and the soil food web. publication-title: Oecologia doi: 10.1007/s00442-012-2331-y – year: 2018 ident: B5 article-title: Extreme rainfall affects assembly of the root-associated fungal community. publication-title: New Phytol. doi: 10.1111/nph.14990 – volume: 7 year: 2016 ident: B47 article-title: The Ecology of Acidobacteria: moving beyond genes and genomes. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00744 – volume: 2 start-page: 276 ident: B16 article-title: Land use alters the resistance and resilience of soil food webs to drought. publication-title: Nat. Clim. Change doi: 10.1038/nclimate1368 – volume: 28 start-page: 2520 year: 2012 ident: B50 article-title: Snakemake-a scalable bioinformatics workflow engine. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts480 – volume: 106 start-page: 22427 year: 2009 ident: B27 article-title: Ecology of the rare microbial biosphere of the Arctic Ocean. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0908284106 – volume: 57 start-page: 299 year: 1984 ident: B58 article-title: Conductance measurements of the lag phase of injured Salmonella-typhimurium. publication-title: J. Appl. Bacteriol. doi: 10.1111/j.1365-2672.1984.tb01394.x – volume: 1 start-page: 895 year: 2012 ident: B18 article-title: FLEXBAR-flexible barcode and adapter processing for next-generation sequencing platforms. publication-title: Biology doi: 10.3390/biology1030895 – volume: 95 start-page: 1162 year: 2014 ident: B9 article-title: Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. publication-title: Ecology doi: 10.1890/13-1031.1 – year: 2016 ident: B15 publication-title: GitLab Community Edition: Open Source Software to Collaborate on Code [Online] – volume: 70 start-page: 22 year: 2014 ident: B93 article-title: Response of osmolytes in soil to drying and rewetting. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.12.008 – volume: 109 start-page: 101 year: 2012 ident: B21 article-title: Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? publication-title: Biogeochemistry doi: 10.1007/s10533-011-9638-3 – volume: 22 start-page: 5271 year: 2013 ident: B49 article-title: Towards a unified paradigm for sequence-based identification of fungi. publication-title: Mol. Ecol. doi: 10.1111/mec.12481 – start-page: 347 year: 2014 ident: B89 article-title: “The phylum Thaumarchaeota,” in publication-title: The Prokaryotes: Other Major Lineages of Bacteria and The Archaea doi: 10.1007/978-3-642-38954-2_338 – volume: 27 start-page: 929 year: 2007 ident: B42 article-title: Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. publication-title: Tree Physiol. doi: 10.1093/treephys/27.7.929 – volume: 50 start-page: 346 year: 2008 ident: B36 article-title: Simultaneous inference in general parametric models. publication-title: Biom. J. doi: 10.1002/bimj.200810425 – year: 2012 ident: B39 publication-title: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change – volume: 17 start-page: 155 year: 2014 ident: B22 article-title: Climate change alters ecological strategies of soil bacteria. publication-title: Ecol. Lett. doi: 10.1111/ele.12206 – volume: 37 start-page: 936 year: 2013 ident: B92 article-title: Micro-scale determinants of bacterial diversity in soil. publication-title: FEMS Microbiol. Rev. doi: 10.1111/1574-6976.12023 – volume: 91 start-page: 767 year: 2010 ident: B45 article-title: Soil ecosystem functioning under climate change: plant species and community effects. publication-title: Ecology doi: 10.1890/09-0135.1 – volume: 4 start-page: 1591 year: 2010 ident: B73 article-title: A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. publication-title: ISME J. doi: 10.1038/ismej.2010.75 – volume: 6 year: 2016 ident: B88 article-title: The biogeography of soil archaeal communities on the eastern Tibetan Plateau. publication-title: Sci. Rep. doi: 10.1038/srep38893 – volume: 17 start-page: 1637 year: 2011 ident: B33 article-title: Fungal community responses to precipitation. publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02327.x – volume: 109 start-page: 14058 year: 2012 ident: B53 article-title: Rapid responses of soil microorganisms improve plant fitness in novel environments. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1202319109 – volume: 88 start-page: 1386 year: 2007 ident: B84 article-title: Microbial stress-response physiology and its implications for ecosystem function. publication-title: Ecology doi: 10.1890/06-0219 |
SSID | ssj0000402000 |
Score | 2.5271668 |
Snippet | It is increasingly acknowledged that climate change is influencing terrestrial ecosystems by increased drought and rainfall intensities. Soil microbes are key... |
SourceID | doaj wageningen swepub pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 294 |
SubjectTerms | Bacteria Biologi Biological Sciences Birch effect Climate change Environmental Sciences Fungi Life Sciences Microbial communities Microbiology Mikrobiologi Natural Sciences Naturvetenskap Re-wetting Soil Vegetal Biology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIJwP4rf1iyi--FCum6RN-3jqLYucIpwHhy8hn-7i0i774bH_vTNJb91yoj74UBbadJrtTDK_aSa_IeT1SNfB4pqhEVrnYiR5XlfW5LIojQ110RiDu5E_fqom5-LDRXmxV-oLc8ISPXB6cUeeg8O1uINSVOB8RO2kY-BWI5Ma95HnE3zeXjAV52AMi4oirUtCFNaAmmbWYCpXzJ1sxMAPRbp-8C5TTIa8jjSvJ0z2tKK3yOElDPs27oPa80vjO-R2Dyjpcfojd8kN394jN1OJye19cvY-1uFZ01P_TdstTWzFK9q1FKAfxemgT9uiXaBn3WxOxzD-QaJuHf287L7r5bZbx5a4kwT5Vx-Q8_HJl3eTvC-kkFsAz-tcaM6KIHUphXZe68aJgjehchBcaA6PZbxsnGONCw0PzElfMmGbMHLQyBSBPyQHbdf6x4TaIGzwABO9rQRAG11wOyqDM7xgAVSUkaOr16pszzKOxS7mCqINVISKilCoCBUVkZE3uzsWiWHjD23foqZ27ZAbO54Ai1G9xai_WUxGXoGeBzImx6cKz0FAyqq6rn-MMvLyygwUDDhcRdGt7zYr7I1EHFgWGXmUzGIni0G0Cf2WGZEDgxk8bHilnU0jqTcAwRJ6mJGTZFqDW-abBRwGDrXyCiCdrb0vVOVdUKJ0TBnOveJae8Gl9IbZjHz9jZwU0qmeR2ray1vsfSD-R-H8l9mrFoterVI_05dHdblZqnaOPyB7pUoAtax68j-U95QcojnELED5jByslxv_HGDh2ryIM8BPe_li0g priority: 102 providerName: Directory of Open Access Journals |
Title | Drought Legacy Effects on the Composition of Soil Fungal and Prokaryote Communities |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29563897 https://www.proquest.com/docview/2017061550 https://hal.inrae.fr/hal-02626888 https://pubmed.ncbi.nlm.nih.gov/PMC5845876 https://lup.lub.lu.se/record/222c8ee0-6edf-45d2-b33e-3aae4377eb2c oai:portal.research.lu.se:publications/222c8ee0-6edf-45d2-b33e-3aae4377eb2c http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F535526 https://doaj.org/article/e3159c46284640648d7d2639876353e3 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCGk8ID5H-JgC4oWHQhI7cfKA0ICVCm0IaVSaeLH8uVZUSUlaRv977py0W7QKIR7SSolzsXxn-3f2-XeEvIxl7jTuGSom5YDFnA7yTKsBj1KlXR4VSuFp5OMv2WjMPp-mpxfHo7sGbLa6dphPalzPXv_-uXoHHf4tepww34IGplphlJYPiyzYdXID5iWO-QyOO7Dvx2V0laKo3avc-iIyA4O_AI94b5rybP4w-UwwVvIqEL0aT9mxjt4iu-cwKpT-mNSlaWt4h9zu8GZ40BrIXXLNlvfIzTYD5eo-Ofno0_QswiN7JvUqbMmMm7AqQ0CGIY4WXVRXWLnwpJrOwiEMDyBRlib8Wlc_ZL2qFr4kHjRBetYHZDw8_PZhNOjyLAw0YOvFgEmaRI7LlDNprJSFYREtXGbA95AUPpvQtDAmKYwrqEsMt2nCdOFiA4VU5OhDslNWpX1EQu2YdhZQpNUZA-QjI6rj1BlFo8QB1AnIm3WzCt2RkGMujJkAZwR1IrxOBOpEeJ0E5NXmjXlLwPGXsu9RU5tySJ3tb1T1meh6orAUEJzGI7ksAzTDcsNNAjjNU_NRSwPyAvTckzE6OBJ4D_zVJMvz_FcckOdrMxDQH3GTRZa2WjZYG44wMY0CsteaxUbW2rgCwnsG0_tY_0k5nXjOb8CJKdQwIIetafVemS3ncCm4RGMFID6dWxuJzBonWGoSoSi1gkppGeXcqkQH5PsWOW1nEx3N1KSTN7-0fvyPwumF2YsSc2I1bT3bhUlxvqxFOcM_kN2IFDBvkj3-70Z5QnbRBnxkIH9Kdhb10j4DqLhQ-36JBX4_ncb7fjT4A5uDb5A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drought+Legacy+Effects+on+the+Composition+of+Soil+Fungal+and+Prokaryote+Communities&rft.jtitle=Frontiers+in+microbiology&rft.au=Meisner%2C+Annelein&rft.au=Jacquiod%2C+Samuel&rft.au=Snoek%2C+Basten+L.&rft.au=ten+Hooven%2C+Freddy+C.&rft.date=2018-03-07&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=9&rft_id=info:doi/10.3389%2Ffmicb.2018.00294&rft_id=info%3Apmid%2F29563897&rft.externalDocID=PMC5845876 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |