FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise

In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercis...

Full description

Saved in:
Bibliographic Details
Published inMetabolism, clinical and experimental Vol. 61; no. 12; pp. 1725 - 1738
Main Authors Huh, Joo Young, Panagiotou, Grigorios, Mougios, Vassilis, Brinkoetter, Mary, Vamvini, Maria T., Schneider, Benjamin E., Mantzoros, Christos S.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.12.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8week period. Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6months after bariatric surgery. Circulating irisin levels were significantly upregulated 30min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects.
AbstractList Abstract Objective In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. Materials/Methods A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8 week period. Results Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6 months after bariatric surgery. Circulating irisin levels were significantly upregulated 30 min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. Conclusions Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects.
In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8week period. Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6months after bariatric surgery. Circulating irisin levels were significantly upregulated 30min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects.
In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans.OBJECTIVEIn mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans.A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8 week period.MATERIALS/METHODSA. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8 week period.Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6 months after bariatric surgery. Circulating irisin levels were significantly upregulated 30 min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle.RESULTSTissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6 months after bariatric surgery. Circulating irisin levels were significantly upregulated 30 min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle.Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects.CONCLUSIONSSimilar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects.
OBJECTIVE: In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. MATERIALS/METHODS: A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8week period. RESULTS: Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6months after bariatric surgery. Circulating irisin levels were significantly upregulated 30min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. CONCLUSIONS: Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects.
In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8 week period. Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6 months after bariatric surgery. Circulating irisin levels were significantly upregulated 30 min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects.
Objective: In mouse, PGC1-[alpha] overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. Materials/Methods: A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8 week period. Results: Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6 months after bariatric surgery. Circulating irisin levels were significantly upregulated 30 min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. Conclusions: Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects.
Author Vamvini, Maria T.
Panagiotou, Grigorios
Mougios, Vassilis
Brinkoetter, Mary
Schneider, Benjamin E.
Huh, Joo Young
Mantzoros, Christos S.
AuthorAffiliation a Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
c Division of Minimally Invasive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
d Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA
b Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
AuthorAffiliation_xml – name: b Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
– name: c Division of Minimally Invasive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
– name: d Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA
– name: a Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
Author_xml – sequence: 1
  givenname: Joo Young
  surname: Huh
  fullname: Huh, Joo Young
  organization: Division of Endocrinology, Diabetes, and Metabolism, BethIsrael Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
– sequence: 2
  givenname: Grigorios
  surname: Panagiotou
  fullname: Panagiotou, Grigorios
  organization: Division of Endocrinology, Diabetes, and Metabolism, BethIsrael Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
– sequence: 3
  givenname: Vassilis
  surname: Mougios
  fullname: Mougios, Vassilis
  organization: Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
– sequence: 4
  givenname: Mary
  surname: Brinkoetter
  fullname: Brinkoetter, Mary
  organization: Division of Endocrinology, Diabetes, and Metabolism, BethIsrael Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
– sequence: 5
  givenname: Maria T.
  surname: Vamvini
  fullname: Vamvini, Maria T.
  organization: Division of Endocrinology, Diabetes, and Metabolism, BethIsrael Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
– sequence: 6
  givenname: Benjamin E.
  surname: Schneider
  fullname: Schneider, Benjamin E.
  organization: Division of Minimally Invasive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
– sequence: 7
  givenname: Christos S.
  surname: Mantzoros
  fullname: Mantzoros, Christos S.
  email: cmantzor@bidmc.harvard.edu
  organization: Division of Endocrinology, Diabetes, and Metabolism, BethIsrael Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26673725$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23018146$$D View this record in MEDLINE/PubMed
BookMark eNqNk91u0zAYhiM0xH7gEkA-QeKkwXYSOwFtaCoMKk0D8XNsOc7n1iWxi52M7da4Opy242cSdFKk2M7zvvns7_VhsmedhSR5THBKMGHPl2kHvaxdm1JMaIqrFGN6LzkgRUYnJcN4LzmIK2yC86rYTw5DWGKMOS_Zg2SfZpiUJGcHyY-zi9fTAknbIONNMBbFZzF00oYXaJaiDx4ao3rnA3IaKePV0Mre2DlSziqwvY8zZ8MoC-CHbm21amXo5Ho4iybdx4tTBFcrDyFEeL3-f6tIruIQUO_QdzDzRY9aF8JaCVfglQnwMLmvZRvg0fZ9lHw5e_N5-m5y_v7tbHp6PlGck35Scky0rEpNa60lNDktGs44a6qK1I3WWUkUJaQqCl7lnPIKM04qynldal3jOjtKTja-q6HuoNlU2oqVN53018JJI_7-Ys1CzN2lyBjJc8KjwbOtgXffBgi96ExQ0LbSghuCiEhWFDnBeDea0azEsfw7oKTieVkQxiL65M8d_Cr9JgYReLoFZFCy1V7aeMK_OcZ4xmkRuZcbTvnYDQ9aKNOvuxY3blpBsBjDKZZiG04xhlPgSsQoRnVxS33zg126VxsdxC5fGvAiKAMxMo3xoHrROLPT4eSWg2qNNXGrX-EawtIN3sYICSJC1IhP48UZ7w2hsScZHQ_7-N8GdyjgJyRiLPY
CitedBy_id crossref_primary_10_1016_j_metabol_2020_154280
crossref_primary_10_3389_fcvm_2023_1235953
crossref_primary_10_2174_1389557523666230411105506
crossref_primary_10_3390_cells10061479
crossref_primary_10_1016_j_vph_2019_106579
crossref_primary_10_1016_j_exger_2015_07_006
crossref_primary_10_1007_s12017_021_08666_y
crossref_primary_10_1155_2021_6572342
crossref_primary_10_1111_ahe_12371
crossref_primary_10_2527_jas_2016_1036
crossref_primary_10_23736_S0022_4707_20_10738_2
crossref_primary_10_3389_fphar_2020_582484
crossref_primary_10_4103_epj_epj_50_20
crossref_primary_10_1016_j_jdiacomp_2013_04_002
crossref_primary_10_3923_rjog_2018_36_40
crossref_primary_10_14341_probl13138
crossref_primary_10_1186_1476_511X_14_2
crossref_primary_10_1177_17455057241302559
crossref_primary_10_1111_apha_12274
crossref_primary_10_1007_s11033_021_07109_y
crossref_primary_10_1016_j_arteri_2013_11_002
crossref_primary_10_1016_j_cyto_2021_155708
crossref_primary_10_3389_fonc_2021_746040
crossref_primary_10_1016_j_metabol_2014_01_005
crossref_primary_10_1371_journal_pone_0166225
crossref_primary_10_1016_j_metabol_2014_01_006
crossref_primary_10_1038_s41598_017_16602_z
crossref_primary_10_1016_j_redox_2025_103527
crossref_primary_10_1371_journal_pone_0110680
crossref_primary_10_1186_s40200_016_0239_5
crossref_primary_10_1042_BCJ20170241
crossref_primary_10_1038_ijo_2014_166
crossref_primary_10_3892_ijmm_2023_5235
crossref_primary_10_1530_EJE_15_1217
crossref_primary_10_1186_s12931_019_1033_y
crossref_primary_10_1038_ijo_2013_158
crossref_primary_10_1007_s12020_014_0170_9
crossref_primary_10_4103_2347_9906_184171
crossref_primary_10_3390_cells8030232
crossref_primary_10_5812_asjsm_35205
crossref_primary_10_3390_life12122139
crossref_primary_10_1371_journal_pone_0146605
crossref_primary_10_15406_jnhfe_2015_03_00101
crossref_primary_10_1007_s12020_022_03050_7
crossref_primary_10_1111_dme_12731
crossref_primary_10_2147_OTT_S245178
crossref_primary_10_1139_apnm_2015_0464
crossref_primary_10_1007_s40618_018_0902_4
crossref_primary_10_1007_s13596_019_00364_2
crossref_primary_10_4081_ejtm_2024_12693
crossref_primary_10_2147_DDDT_S279318
crossref_primary_10_1186_s12872_021_02380_0
crossref_primary_10_3389_fcell_2020_585644
crossref_primary_10_3390_ijms22168520
crossref_primary_10_1002_iub_1209
crossref_primary_10_1007_s42978_022_00164_2
crossref_primary_10_3390_ijms18010008
crossref_primary_10_1016_j_metabol_2015_09_001
crossref_primary_10_1007_s00595_021_02339_w
crossref_primary_10_1186_s12890_015_0035_x
crossref_primary_10_1249_MSS_0000000000000286
crossref_primary_10_1007_s12020_018_1550_3
crossref_primary_10_1186_s40798_023_00596_2
crossref_primary_10_3390_jcm7110407
crossref_primary_10_1210_jc_2018_01440
crossref_primary_10_1530_JOE_14_0189
crossref_primary_10_17656_jsmc_10160
crossref_primary_10_26442_20751753_2022_12_202036
crossref_primary_10_3389_fendo_2019_00549
crossref_primary_10_3389_fphys_2019_00871
crossref_primary_10_3389_fphys_2020_00923
crossref_primary_10_3390_jcm14030793
crossref_primary_10_1016_j_gene_2018_09_024
crossref_primary_10_1155_2018_7816806
crossref_primary_10_1097_MD_0000000000019235
crossref_primary_10_1016_j_jdiacomp_2013_03_002
crossref_primary_10_1186_s12944_016_0263_y
crossref_primary_10_3390_medicina56060274
crossref_primary_10_1016_j_metabol_2014_10_024
crossref_primary_10_1111_bph_14802
crossref_primary_10_1007_s40618_015_0403_7
crossref_primary_10_1155_2018_7628957
crossref_primary_10_1016_j_mce_2013_04_017
crossref_primary_10_1007_s00360_016_1036_7
crossref_primary_10_12677_ACM_2022_121012
crossref_primary_10_1080_17461391_2018_1506504
crossref_primary_10_1210_er_2012_1041
crossref_primary_10_24985_kjss_2017_28_2_285
crossref_primary_10_1249_MSS_0000000000002242
crossref_primary_10_1016_j_lfs_2024_123088
crossref_primary_10_1016_j_jtherbio_2021_103067
crossref_primary_10_1113_jphysiol_2013_265371
crossref_primary_10_3389_fendo_2019_00524
crossref_primary_10_4239_wjd_v11_i5_165
crossref_primary_10_1515_hmbci_2022_0009
crossref_primary_10_1016_j_clinbiochem_2015_07_098
crossref_primary_10_1111_avj_12436
crossref_primary_10_1210_clinem_dgab921
crossref_primary_10_1016_j_bbadis_2013_05_011
crossref_primary_10_3390_antiox13010126
crossref_primary_10_1111_bph_13732
crossref_primary_10_1007_s12020_021_02738_6
crossref_primary_10_1002_jcp_27037
crossref_primary_10_3390_healthcare9111438
crossref_primary_10_1016_j_sjbs_2020_10_061
crossref_primary_10_3390_ijerph19106153
crossref_primary_10_1016_j_ygcen_2024_114515
crossref_primary_10_1371_journal_pone_0181461
crossref_primary_10_1111_jfbc_12264
crossref_primary_10_1016_j_metabol_2013_05_021
crossref_primary_10_1161_HYPERTENSIONAHA_123_22353
crossref_primary_10_36899_JAPS_2024_3_0765
crossref_primary_10_1155_2014_857270
crossref_primary_10_3389_fendo_2021_653179
crossref_primary_10_1016_j_clnu_2024_07_024
crossref_primary_10_3109_09513590_2015_1065482
crossref_primary_10_1016_j_neuroscience_2022_07_018
crossref_primary_10_1016_j_metabol_2013_05_019
crossref_primary_10_1096_fj_201700983RR
crossref_primary_10_1002_jcsm_12006
crossref_primary_10_1016_j_cyto_2013_11_009
crossref_primary_10_1530_EJE_13_0276
crossref_primary_10_1016_j_celrep_2015_10_069
crossref_primary_10_1186_s13098_017_0302_5
crossref_primary_10_1556_2060_2020_00037
crossref_primary_10_1371_journal_pone_0064025
crossref_primary_10_1111_apha_12421
crossref_primary_10_3390_cells13030277
crossref_primary_10_62347_PZDM1736
crossref_primary_10_3389_fendo_2022_879066
crossref_primary_10_1080_02640414_2018_1530056
crossref_primary_10_1038_s41440_023_01508_3
crossref_primary_10_1016_j_metabol_2013_04_007
crossref_primary_10_1139_apnm_2024_0091
crossref_primary_10_1016_j_metabol_2013_04_008
crossref_primary_10_34172_jsums_2021_03
crossref_primary_10_1111_apha_13766
crossref_primary_10_3390_ijms241512440
crossref_primary_10_1155_jdr_6624919
crossref_primary_10_3803_EnM_2020_658
crossref_primary_10_1016_j_peptides_2014_01_016
crossref_primary_10_1080_10641963_2021_2018601
crossref_primary_10_1016_j_cellsig_2015_04_010
crossref_primary_10_3390_ijms21144977
crossref_primary_10_1371_journal_pone_0181259
crossref_primary_10_3390_jcm9092797
crossref_primary_10_1089_acm_2020_0104
crossref_primary_10_1089_ther_2019_0001
crossref_primary_10_1111_apha_12686
crossref_primary_10_1002_dmrr_2660
crossref_primary_10_5812_ijp_63642
crossref_primary_10_1186_s40064_016_2869_y
crossref_primary_10_3109_14767058_2016_1142967
crossref_primary_10_1016_j_biochi_2021_06_016
crossref_primary_10_1055_a_1284_5428
crossref_primary_10_3389_fphar_2019_00548
crossref_primary_10_1007_s13300_019_0588_4
crossref_primary_10_1002_mnfr_201300126
crossref_primary_10_1016_j_brainresbull_2022_07_007
crossref_primary_10_54393_pbmj_v6i07_905
crossref_primary_10_12688_f1000research_11107_2
crossref_primary_10_12688_f1000research_11107_1
crossref_primary_10_31680_gaunjss_1119354
crossref_primary_10_1097_MD_0000000000003742
crossref_primary_10_33549_physiolres_932997
crossref_primary_10_1155_2018_3296535
crossref_primary_10_1007_s13105_021_00825_w
crossref_primary_10_3109_01443615_2016_1174200
crossref_primary_10_3389_fendo_2022_946982
crossref_primary_10_1016_j_jhep_2013_04_030
crossref_primary_10_1016_j_scispo_2016_07_005
crossref_primary_10_2337_db13_1586
crossref_primary_10_1016_j_livres_2020_03_001
crossref_primary_10_1016_j_biocel_2016_07_022
crossref_primary_10_1515_revneuro_2024_0147
crossref_primary_10_3389_fncel_2014_00170
crossref_primary_10_1371_journal_pone_0088060
crossref_primary_10_1111_dth_13272
crossref_primary_10_1155_2013_746281
crossref_primary_10_1007_s00198_014_2673_x
crossref_primary_10_1016_j_numecd_2019_09_025
crossref_primary_10_1016_j_cyto_2021_155553
crossref_primary_10_1016_j_metabol_2015_07_019
crossref_primary_10_2337_db13_1106
crossref_primary_10_1016_j_neulet_2021_136261
crossref_primary_10_1007_s12291_022_01083_3
crossref_primary_10_3390_app12125837
crossref_primary_10_3390_ijms21228848
crossref_primary_10_58962_HSR_2024_10_1_27_38
crossref_primary_10_1101_gad_211649_112
crossref_primary_10_3390_metabo13090979
crossref_primary_10_1016_j_peptides_2019_01_004
crossref_primary_10_1080_14767058_2018_1454422
crossref_primary_10_3390_jcm9103158
crossref_primary_10_1016_j_aehs_2024_08_001
crossref_primary_10_1016_j_peptides_2016_12_014
crossref_primary_10_4093_dmj_2016_40_5_386
crossref_primary_10_4103_MJBL_MJBL_52_22
crossref_primary_10_1507_endocrj_EJ17_0260
crossref_primary_10_2147_DMSO_S249090
crossref_primary_10_1080_13813455_2021_1894178
crossref_primary_10_1089_thy_2016_0098
crossref_primary_10_1016_j_metabol_2015_07_020
crossref_primary_10_3390_genes13081368
crossref_primary_10_1007_s12265_022_10310_4
crossref_primary_10_1007_s11695_022_06426_w
crossref_primary_10_1016_j_freeradbiomed_2016_02_018
crossref_primary_10_1080_13813455_2020_1829649
crossref_primary_10_1371_journal_pone_0160364
crossref_primary_10_3389_fendo_2024_1388717
crossref_primary_10_3390_genes13091612
crossref_primary_10_1371_journal_pone_0102483
crossref_primary_10_3390_healthcare8040378
crossref_primary_10_1016_j_tips_2013_04_004
crossref_primary_10_1016_j_ijbiomac_2021_02_181
crossref_primary_10_17343_sdutfd_718412
crossref_primary_10_1111_cen_13805
crossref_primary_10_1590_2359_3997000000270
crossref_primary_10_1002_jcla_22077
crossref_primary_10_1530_JOE_15_0026
crossref_primary_10_3389_fendo_2022_918467
crossref_primary_10_36899_japs_2024_5_0809
crossref_primary_10_1016_j_scispo_2023_10_005
crossref_primary_10_1038_s41598_020_57855_5
crossref_primary_10_1002_jcp_27541
crossref_primary_10_18632_oncotarget_21636
crossref_primary_10_1186_s12958_021_00702_7
crossref_primary_10_1016_j_tips_2015_08_014
crossref_primary_10_1016_j_biopha_2023_115347
crossref_primary_10_4161_adip_27370
crossref_primary_10_15857_ksep_2016_25_3_174
crossref_primary_10_4070_kcj_2016_0079
crossref_primary_10_1111_cen_13800
crossref_primary_10_2196_50030
crossref_primary_10_3390_ijms242316870
crossref_primary_10_1007_s00424_015_1701_9
crossref_primary_10_2174_1389203723666220629163524
crossref_primary_10_1016_j_acthis_2019_02_001
crossref_primary_10_1016_j_peptides_2018_03_018
crossref_primary_10_1155_2019_1932503
crossref_primary_10_3390_genes12050755
crossref_primary_10_1038_ijo_2017_255
crossref_primary_10_1016_j_cryobiol_2015_10_143
crossref_primary_10_3389_fphys_2020_00025
crossref_primary_10_3390_biomedicines10092253
crossref_primary_10_1186_1741_7015_11_235
crossref_primary_10_1111_jdi_13249
crossref_primary_10_1016_j_bbr_2022_114008
crossref_primary_10_1016_j_metabol_2014_04_001
crossref_primary_10_14814_phy2_12419
crossref_primary_10_3390_nu11102368
crossref_primary_10_1007_s40618_014_0078_5
crossref_primary_10_1016_j_numecd_2018_04_009
crossref_primary_10_1007_s11695_019_03998_y
crossref_primary_10_35864_evmd_954977
crossref_primary_10_1111_1440_1681_12439
crossref_primary_10_1007_s00421_020_04332_6
crossref_primary_10_1016_j_nicl_2023_103555
crossref_primary_10_1016_j_transproceed_2018_02_169
crossref_primary_10_1007_s00403_022_02378_4
crossref_primary_10_1124_jpet_124_002238
crossref_primary_10_7759_cureus_46483
crossref_primary_10_1016_j_metabol_2017_10_011
crossref_primary_10_25048_tudod_1516025
crossref_primary_10_1080_17461391_2018_1478452
crossref_primary_10_1016_j_metabol_2013_09_003
crossref_primary_10_2147_CIA_S308893
crossref_primary_10_1590_2359_3997000000077
crossref_primary_10_1186_s40246_022_00383_2
crossref_primary_10_3390_ani10122268
crossref_primary_10_3390_biom14070768
crossref_primary_10_1016_j_metabol_2016_02_006
crossref_primary_10_1016_j_brainres_2024_149192
crossref_primary_10_1016_j_bbrc_2019_10_077
crossref_primary_10_24880_maeuvfd_1202455
crossref_primary_10_1007_s10571_014_0053_x
crossref_primary_10_4161_adip_26082
crossref_primary_10_1007_s12662_024_00984_0
crossref_primary_10_1007_s13105_015_0433_9
crossref_primary_10_1016_j_bmcl_2013_12_016
crossref_primary_10_1186_s12944_016_0224_5
crossref_primary_10_1038_s41598_024_61415_6
crossref_primary_10_1152_ajpendo_00308_2013
crossref_primary_10_1007_s13679_014_0091_1
crossref_primary_10_1038_nrendo_2013_230
crossref_primary_10_3390_foods10102318
crossref_primary_10_1016_j_pupt_2017_10_011
crossref_primary_10_1111_nyas_12009
crossref_primary_10_3390_ijerph18031261
crossref_primary_10_1016_j_imr_2014_09_007
crossref_primary_10_1016_j_neulet_2017_02_066
crossref_primary_10_1515_hmbci_2019_0009
crossref_primary_10_1016_j_ando_2014_05_005
crossref_primary_10_1002_jcb_30565
crossref_primary_10_1007_s40487_022_00194_4
crossref_primary_10_1155_2019_6737318
crossref_primary_10_1155_2015_359159
crossref_primary_10_34172_ddj_1633
crossref_primary_10_1590_1678_4685_jbn_3802
crossref_primary_10_3389_fphar_2024_1461995
crossref_primary_10_1530_EC_21_0625
crossref_primary_10_1007_s12020_022_03010_1
crossref_primary_10_1371_journal_pone_0060563
crossref_primary_10_1016_j_neuropharm_2024_109986
crossref_primary_10_5812_asjsm_68943
crossref_primary_10_3389_fendo_2022_989135
crossref_primary_10_1007_s11010_025_05225_y
crossref_primary_10_14814_phy2_13539
crossref_primary_10_1016_j_biopha_2019_109452
crossref_primary_10_1007_s10549_021_06111_z
crossref_primary_10_4103_1687_4625_195886
crossref_primary_10_1016_j_metabol_2019_01_013
crossref_primary_10_1097_JP9_0000000000000039
crossref_primary_10_1371_journal_pone_0100218
crossref_primary_10_1111_eci_12468
crossref_primary_10_1007_s13105_015_0400_5
crossref_primary_10_1038_nrendo_2013_204
crossref_primary_10_1007_s00592_014_0576_0
crossref_primary_10_1038_s41598_024_76658_6
crossref_primary_10_1080_00015458_2018_1534393
crossref_primary_10_1016_j_arr_2022_101680
crossref_primary_10_3390_ijms151223163
crossref_primary_10_1007_s11357_023_01025_8
crossref_primary_10_1155_2015_924131
crossref_primary_10_1155_2017_9414525
crossref_primary_10_1111_sms_12904
crossref_primary_10_3390_biomedicines10102529
crossref_primary_10_1590_2175_8239_jbn_2019_0051
crossref_primary_10_1016_j_obmed_2015_12_002
crossref_primary_10_1074_jbc_M114_617399
crossref_primary_10_14814_phy2_13319
crossref_primary_10_1210_endocr_bqac208
crossref_primary_10_1096_fj_201801754RR
crossref_primary_10_21215_kjfp_2022_12_5_311
crossref_primary_10_1089_lap_2021_0558
crossref_primary_10_3389_fphys_2021_620608
crossref_primary_10_1038_srep08889
crossref_primary_10_1016_j_advms_2025_01_010
crossref_primary_10_1590_s1677_5538_ibju_2017_0404
crossref_primary_10_1159_000487689
crossref_primary_10_1210_jc_2013_3669
crossref_primary_10_14814_phy2_12262
crossref_primary_10_12677_OJNS_2021_91018
crossref_primary_10_1002_oby_21029
crossref_primary_10_1111_cen_12582
crossref_primary_10_1371_journal_pone_0073680
crossref_primary_10_1016_j_metabol_2013_09_013
crossref_primary_10_1152_physiol_00019_2013
crossref_primary_10_3390_ijerph18189797
crossref_primary_10_3390_jcm12010369
crossref_primary_10_1186_s12944_019_1128_y
crossref_primary_10_1016_j_imr_2018_01_007
crossref_primary_10_1155_2021_6656671
crossref_primary_10_1159_000517529
crossref_primary_10_1016_j_molmet_2020_01_016
crossref_primary_10_2478_enr_2024_0013
crossref_primary_10_31362_patd_1102543
crossref_primary_10_3389_fphys_2020_562895
crossref_primary_10_1007_s00018_016_2420_x
crossref_primary_10_23736_S0393_3660_22_04790_8
crossref_primary_10_1007_s13105_015_0402_3
crossref_primary_10_1016_j_cyto_2016_12_018
crossref_primary_10_1371_journal_pone_0121367
crossref_primary_10_3390_ijms22084052
crossref_primary_10_2147_IJGM_S483793
crossref_primary_10_1016_j_diabres_2013_12_025
crossref_primary_10_3389_fphys_2017_00171
crossref_primary_10_3390_biology11070999
crossref_primary_10_1038_nrendo_2016_221
crossref_primary_10_3390_biom11020286
crossref_primary_10_4161_21623945_2014_964075
crossref_primary_10_1080_1354750X_2018_1485056
crossref_primary_10_1016_j_cmet_2013_09_008
crossref_primary_10_1016_j_dib_2018_10_028
crossref_primary_10_1097_MCO_0b013e328363bc65
crossref_primary_10_1177_1010428319892790
crossref_primary_10_3390_ijms21207587
crossref_primary_10_14341_probl12779
crossref_primary_10_3390_biom14030291
crossref_primary_10_1186_s12872_016_0239_x
crossref_primary_10_3390_ijms23020690
crossref_primary_10_52881_gsbdergi_861600
crossref_primary_10_1016_j_bbr_2021_113472
crossref_primary_10_1016_j_lfs_2020_118954
crossref_primary_10_3389_fphys_2020_596896
crossref_primary_10_1016_j_tice_2025_102829
crossref_primary_10_1111_cen_12383
crossref_primary_10_1155_2023_5810157
crossref_primary_10_1371_journal_pone_0136864
crossref_primary_10_1016_j_critrevonc_2022_103578
crossref_primary_10_1007_s41999_022_00635_3
crossref_primary_10_1093_lifemeta_loae006
crossref_primary_10_1371_journal_pone_0131171
crossref_primary_10_1016_j_ebiom_2016_02_041
crossref_primary_10_1210_jc_2013_2373
crossref_primary_10_1016_j_scispo_2017_11_002
crossref_primary_10_1016_j_arr_2015_05_001
crossref_primary_10_1186_s12974_018_1177_6
crossref_primary_10_2147_NDT_S290148
crossref_primary_10_1515_cclm_2017_0674
crossref_primary_10_14341_probl13250
crossref_primary_10_1159_000521265
crossref_primary_10_1371_journal_pone_0120354
crossref_primary_10_1016_j_metabol_2018_01_013
crossref_primary_10_3389_fendo_2019_00621
crossref_primary_10_1038_s41598_020_74588_7
crossref_primary_10_3390_nu13051459
crossref_primary_10_1186_s41043_024_00730_0
crossref_primary_10_1002_tox_24027
crossref_primary_10_1155_2019_6561726
crossref_primary_10_1210_jc_2013_4127
crossref_primary_10_1016_j_jare_2024_11_031
crossref_primary_10_1371_journal_pone_0176137
crossref_primary_10_3390_ijms22041530
crossref_primary_10_1515_med_2020_0215
crossref_primary_10_3390_ijms252111418
crossref_primary_10_1096_fj_14_263699
crossref_primary_10_1016_j_amjms_2021_02_020
crossref_primary_10_2478_pjst_2020_0023
crossref_primary_10_26477_jbcd_v36i1_3587
crossref_primary_10_1016_j_arr_2022_101829
crossref_primary_10_1007_s13304_024_01866_8
crossref_primary_10_1016_j_repbio_2017_05_011
crossref_primary_10_1016_j_peptides_2012_11_014
crossref_primary_10_1038_s41585_021_00476_y
crossref_primary_10_1371_journal_pone_0189254
crossref_primary_10_1007_s11357_014_9620_9
crossref_primary_10_1177_1933719117711264
crossref_primary_10_1371_journal_pone_0165229
crossref_primary_10_1002_iub_1511
crossref_primary_10_1016_j_gene_2014_08_045
crossref_primary_10_1016_j_jhep_2018_10_021
crossref_primary_10_1016_j_jot_2023_09_007
crossref_primary_10_3390_ijms19123727
crossref_primary_10_1038_s41598_021_87974_6
crossref_primary_10_1016_j_currproblcancer_2019_100529
crossref_primary_10_7759_cureus_41475
crossref_primary_10_3803_EnM_2015_30_3_235
crossref_primary_10_1007_s12264_022_00914_w
crossref_primary_10_2217_clp_13_71
crossref_primary_10_1074_jbc_M113_516641
crossref_primary_10_14814_phy2_70167
crossref_primary_10_1371_journal_pone_0154319
crossref_primary_10_1155_2020_1897027
crossref_primary_10_1002_fsn3_4321
crossref_primary_10_1007_s40519_018_0491_4
crossref_primary_10_3389_fphys_2021_564963
crossref_primary_10_1186_s12885_015_1898_1
crossref_primary_10_3109_0886022X_2016_1172918
crossref_primary_10_1007_s40618_021_01529_0
crossref_primary_10_1016_j_drudis_2022_03_019
crossref_primary_10_51539_biotech_1180314
crossref_primary_10_1007_s40618_020_01432_0
crossref_primary_10_33549_physiolres_934896
crossref_primary_10_3390_metabo13020270
crossref_primary_10_1016_j_arr_2022_101637
crossref_primary_10_1016_j_jneuroim_2016_08_007
crossref_primary_10_1093_stmcls_sxab010
crossref_primary_10_3803_EnM_2016_31_3_361
crossref_primary_10_7717_peerj_18413
crossref_primary_10_3389_fphys_2024_1410068
crossref_primary_10_1186_s13098_019_0458_2
crossref_primary_10_1210_endrev_bnab003
crossref_primary_10_3390_app11157120
crossref_primary_10_1371_journal_pone_0201499
crossref_primary_10_1007_s00408_016_9870_7
crossref_primary_10_1016_j_gene_2020_145018
crossref_primary_10_3389_fphys_2019_00522
crossref_primary_10_1210_clinem_dgaa720
crossref_primary_10_1016_j_diabres_2018_03_046
crossref_primary_10_1016_j_mce_2016_09_030
crossref_primary_10_1007_s00210_023_02726_9
crossref_primary_10_3390_ijerph16040660
crossref_primary_10_1016_j_gene_2018_01_097
crossref_primary_10_3389_fendo_2017_00320
crossref_primary_10_1186_s12902_019_0479_8
crossref_primary_10_1016_j_domaniend_2023_106787
crossref_primary_10_1111_resp_12963
crossref_primary_10_1111_eci_12196
crossref_primary_10_1515_hmbci_2017_0054
crossref_primary_10_1007_s11095_025_03834_2
crossref_primary_10_1016_j_arr_2022_101611
crossref_primary_10_1007_s13410_019_00717_2
crossref_primary_10_1007_s12272_017_0994_y
crossref_primary_10_1016_j_cca_2021_08_022
crossref_primary_10_3389_fendo_2025_1554617
crossref_primary_10_21070_acopen_8_2023_7844
crossref_primary_10_1111_febs_12619
crossref_primary_10_1371_journal_pone_0109957
crossref_primary_10_1080_14767058_2020_1793315
crossref_primary_10_1159_000543214
crossref_primary_10_14218_JCTH_2017_00013
crossref_primary_10_18229_kocatepetip_1138553
crossref_primary_10_1016_j_jbspin_2017_03_011
crossref_primary_10_1016_j_ygcen_2017_06_027
crossref_primary_10_3389_fphys_2022_935772
crossref_primary_10_1016_j_metabol_2015_05_010
crossref_primary_10_1371_journal_pone_0210320
crossref_primary_10_3920_CEP220047
crossref_primary_10_1002_dmrr_2767
crossref_primary_10_1530_EJE_14_0204
crossref_primary_10_1007_s11357_022_00692_3
crossref_primary_10_1080_13813455_2019_1673432
crossref_primary_10_1186_s12902_016_0123_9
crossref_primary_10_1053_j_jrn_2020_05_005
crossref_primary_10_23736_S0393_3660_22_04972_5
crossref_primary_10_2478_ahem_2022_0031
crossref_primary_10_1080_14767058_2019_1667322
crossref_primary_10_1371_journal_pone_0090696
crossref_primary_10_1177_10998004221142580
crossref_primary_10_1002_ajhb_22493
crossref_primary_10_1016_j_metabol_2015_05_005
crossref_primary_10_1155_2015_620919
crossref_primary_10_1016_j_metabol_2023_155711
crossref_primary_10_1038_s41401_020_00557_5
crossref_primary_10_1016_j_jdiacomp_2013_09_011
crossref_primary_10_1089_cbr_2019_2933
crossref_primary_10_1016_j_heliyon_2022_e12352
crossref_primary_10_1002_oby_20739
crossref_primary_10_3390_ijms23094759
crossref_primary_10_1016_j_metabol_2015_12_006
crossref_primary_10_1016_j_gene_2017_05_010
crossref_primary_10_3390_ijerph18116042
crossref_primary_10_1111_ggi_13030
crossref_primary_10_1002_jcp_25857
crossref_primary_10_1016_j_metabol_2014_06_001
crossref_primary_10_1080_09546634_2016_1254327
crossref_primary_10_1007_s11357_014_9733_1
crossref_primary_10_4155_fmc_2017_0035
crossref_primary_10_1055_a_0723_3749
crossref_primary_10_33689_spormetre_657420
crossref_primary_10_1534_g3_117_044651
crossref_primary_10_1080_14767058_2019_1597843
crossref_primary_10_53886_gga_e0000151_PT
crossref_primary_10_29235_1814_6023_2021_18_4_402_412
crossref_primary_10_3390_ijms21249408
crossref_primary_10_1007_s11695_023_06764_3
crossref_primary_10_3390_biology10111207
crossref_primary_10_1016_j_mehy_2016_02_020
crossref_primary_10_1016_j_scispo_2022_08_004
crossref_primary_10_1016_j_metabol_2013_10_011
crossref_primary_10_1155_2013_320724
crossref_primary_10_3390_jcdd9090305
crossref_primary_10_1155_2020_8818191
crossref_primary_10_1186_s12933_015_0319_8
crossref_primary_10_1016_j_neuroscience_2013_02_050
crossref_primary_10_1038_ijo_2014_42
crossref_primary_10_1093_qjmed_hcw074
crossref_primary_10_1016_j_amjmed_2014_04_025
crossref_primary_10_1016_j_jbc_2022_101679
crossref_primary_10_1515_enr_2017_0001
crossref_primary_10_1007_s00125_014_3224_x
crossref_primary_10_1016_j_peptides_2013_09_011
crossref_primary_10_1113_EP088220
crossref_primary_10_3390_ijms20246159
crossref_primary_10_1016_j_metabol_2013_10_005
crossref_primary_10_1161_CIRCRESAHA_118_314129
crossref_primary_10_12677_ACM_2023_13122830
crossref_primary_10_1111_jfbc_13493
crossref_primary_10_1016_j_biopha_2017_03_070
crossref_primary_10_3390_molecules25153329
crossref_primary_10_1016_j_amolm_2025_100068
crossref_primary_10_1007_s12020_024_04139_x
crossref_primary_10_21673_anadoluklin_349294
crossref_primary_10_3389_fendo_2023_1151184
crossref_primary_10_3892_mmr_2018_9743
crossref_primary_10_1016_j_jdiacomp_2016_07_019
crossref_primary_10_1016_j_arcmed_2019_05_009
crossref_primary_10_3390_nu12030742
crossref_primary_10_1210_jc_2014_1367
crossref_primary_10_1139_apnm_2017_0614
crossref_primary_10_1155_2022_8235809
crossref_primary_10_1515_jbcpp_2018_0090
crossref_primary_10_3389_fneur_2018_00818
crossref_primary_10_3390_biomedicines10020258
crossref_primary_10_3920_CEP210031
crossref_primary_10_1038_boneres_2016_56
crossref_primary_10_1002_biof_2054
crossref_primary_10_1186_1758_5996_6_133
crossref_primary_10_3390_nu16234231
crossref_primary_10_1016_j_physbeh_2017_07_004
crossref_primary_10_1089_met_2016_0109
crossref_primary_10_1016_j_phrs_2024_107480
crossref_primary_10_3389_fendo_2023_1326851
crossref_primary_10_1016_j_metabol_2013_11_012
crossref_primary_10_2174_1871529X19666190918144727
crossref_primary_10_1371_journal_pone_0072858
crossref_primary_10_1016_j_appet_2015_03_003
crossref_primary_10_1002_lsm_23839
crossref_primary_10_3389_fnagi_2021_649929
crossref_primary_10_1097_MEG_0000000000002461
crossref_primary_10_1038_srep29898
crossref_primary_10_4103_jpdtsm_jpdtsm_91_23
crossref_primary_10_1002_edm2_403
crossref_primary_10_1016_j_metabol_2013_11_009
crossref_primary_10_1016_j_peptides_2014_03_021
crossref_primary_10_1016_j_npep_2018_05_002
crossref_primary_10_1210_me_2015_1292
crossref_primary_10_1016_j_cellsig_2020_109805
crossref_primary_10_3920_CEP200050
crossref_primary_10_1016_j_mce_2015_05_036
crossref_primary_10_1016_j_metabol_2015_06_005
crossref_primary_10_1530_EC_22_0028
crossref_primary_10_3390_ijms252413480
crossref_primary_10_1038_srep18732
crossref_primary_10_3390_jcm12010062
crossref_primary_10_1038_ijo_2016_110
crossref_primary_10_1186_s13104_025_07118_1
crossref_primary_10_12680_balneo_2021_473
crossref_primary_10_1152_ajpendo_00034_2020
crossref_primary_10_3390_biology11030392
crossref_primary_10_1590_2359_3997000000166
crossref_primary_10_1590_1806_9282_20211210
crossref_primary_10_1016_j_jchemneu_2018_02_010
crossref_primary_10_1515_hmbci_2020_0007
crossref_primary_10_3389_fphys_2019_00042
crossref_primary_10_1111_cen_12627
crossref_primary_10_1186_s12933_017_0627_2
crossref_primary_10_3390_ijerph18052476
crossref_primary_10_1007_s40618_018_0899_8
crossref_primary_10_1113_jphysiol_2013_264655
crossref_primary_10_1007_s10072_021_05652_x
crossref_primary_10_5507_ag_2018_007
crossref_primary_10_1007_s12020_017_1476_1
crossref_primary_10_1001_jamasurg_2019_0424
crossref_primary_10_1016_j_metabol_2013_02_002
crossref_primary_10_1016_j_jnim_2015_10_001
crossref_primary_10_1177_03000605211018422
crossref_primary_10_5812_ijem_142746
crossref_primary_10_3390_jcm11071831
crossref_primary_10_1556_OH_2014_29959
crossref_primary_10_1038_srep23067
crossref_primary_10_1016_j_peptides_2014_03_003
crossref_primary_10_1016_j_metabol_2013_02_012
crossref_primary_10_1016_j_domaniend_2020_106576
crossref_primary_10_1038_nutd_2014_7
crossref_primary_10_1155_2014_261545
crossref_primary_10_1007_s12020_015_0607_9
crossref_primary_10_1002_dev_70017
crossref_primary_10_3390_biom11020322
crossref_primary_10_1080_13813455_2019_1635622
crossref_primary_10_3109_09513590_2014_920006
crossref_primary_10_1016_j_cmet_2013_12_017
crossref_primary_10_1371_journal_pone_0124100
crossref_primary_10_3390_jcm9041150
crossref_primary_10_3390_molecules28041950
crossref_primary_10_3389_fpsyt_2022_967683
crossref_primary_10_3389_fphys_2021_746049
crossref_primary_10_1016_j_archger_2018_01_006
crossref_primary_10_1016_j_metabol_2023_155597
crossref_primary_10_1007_s12262_024_04257_w
crossref_primary_10_3390_ijms24098171
crossref_primary_10_3389_fvets_2022_960778
crossref_primary_10_3389_fphys_2021_736244
crossref_primary_10_53886_gga_e0000151_EN
crossref_primary_10_1155_2017_1039161
crossref_primary_10_20960_nh_03852
crossref_primary_10_1016_j_metabol_2013_12_007
crossref_primary_10_1016_j_ijbiomac_2015_12_049
crossref_primary_10_1016_j_lfs_2024_122894
crossref_primary_10_1016_j_jocd_2019_05_002
crossref_primary_10_1016_j_peptides_2014_04_002
crossref_primary_10_1155_2021_4717349
crossref_primary_10_1016_j_peptides_2014_09_014
crossref_primary_10_15857_ksep_2014_23_4_357
crossref_primary_10_1007_s12020_022_02981_5
crossref_primary_10_1016_j_gene_2014_12_010
crossref_primary_10_1016_j_peptides_2019_170182
crossref_primary_10_3390_life13122285
crossref_primary_10_3389_fimmu_2023_1224335
crossref_primary_10_3389_fneur_2023_1187666
crossref_primary_10_3390_app11125579
crossref_primary_10_1007_s00421_014_2922_x
crossref_primary_10_1016_j_neulet_2016_02_046
crossref_primary_10_15857_ksep_2024_00472
crossref_primary_10_3389_fphys_2018_01782
crossref_primary_10_1515_labmed_2017_0042
crossref_primary_10_1111_resp_12513
crossref_primary_10_1186_s12944_019_0960_4
crossref_primary_10_7868_S0301179818040057
crossref_primary_10_1038_ijo_2014_101
crossref_primary_10_1242_jeb_198424
crossref_primary_10_5812_asjsm_13025
crossref_primary_10_3389_fphys_2018_01307
crossref_primary_10_1152_ajpendo_00297_2015
crossref_primary_10_1038_s41598_021_82288_z
crossref_primary_10_1371_journal_pone_0170690
crossref_primary_10_1016_j_bbrc_2019_08_112
crossref_primary_10_1016_j_diabres_2018_05_038
crossref_primary_10_1210_jc_2012_2749
crossref_primary_10_20463_jenb_2018_0011
crossref_primary_10_3390_ijms25021213
crossref_primary_10_1007_s11357_023_00770_0
crossref_primary_10_1016_j_peptides_2013_11_024
crossref_primary_10_1155_2017_2628968
crossref_primary_10_1620_tjem_233_135
crossref_primary_10_1155_2014_902186
crossref_primary_10_1111_cen_13527
crossref_primary_10_1016_j_ejcb_2015_04_002
crossref_primary_10_1186_s12894_024_01404_z
crossref_primary_10_3389_fphar_2020_00769
crossref_primary_10_1016_j_isci_2022_104135
crossref_primary_10_1016_j_tem_2022_06_003
crossref_primary_10_1111_cen_12672
crossref_primary_10_1016_j_ygcen_2020_113647
crossref_primary_10_1016_j_aquaculture_2021_736648
crossref_primary_10_1093_pm_pnx294
crossref_primary_10_1111_eci_12324
crossref_primary_10_1111_jdi_13517
crossref_primary_10_1016_j_jhazmat_2024_133997
crossref_primary_10_1111_cen_13555
crossref_primary_10_1139_apnm_2020_1087
crossref_primary_10_3748_wjg_v31_i7_100039
crossref_primary_10_7717_peerj_605
crossref_primary_10_1371_journal_pone_0094463
crossref_primary_10_1016_j_arr_2022_101780
crossref_primary_10_1016_j_clnu_2015_03_022
crossref_primary_10_1080_0886022X_2016_1194163
crossref_primary_10_1186_s13578_020_00413_3
crossref_primary_10_1590_0004_282x_anp_2020_0520
crossref_primary_10_1016_j_lfs_2018_11_062
crossref_primary_10_1038_srep30820
crossref_primary_10_1038_ijo_2015_130
crossref_primary_10_1007_s12072_023_10523_y
crossref_primary_10_1016_j_metabol_2015_01_001
crossref_primary_10_2147_IJGM_S403564
crossref_primary_10_3390_ijerph192214925
crossref_primary_10_1371_journal_pone_0094235
crossref_primary_10_3390_ijms222011229
crossref_primary_10_1159_000505666
crossref_primary_10_1080_13813455_2020_1722706
crossref_primary_10_1186_s12882_015_0009_5
crossref_primary_10_3109_10408363_2015_1023429
crossref_primary_10_1016_j_jesf_2020_06_004
crossref_primary_10_1016_j_ejphar_2022_175476
crossref_primary_10_1113_jphysiol_2013_263707
crossref_primary_10_1042_CS20150009
crossref_primary_10_4103_jesnt_jesnt_24_22
crossref_primary_10_1007_s12020_016_0913_x
crossref_primary_10_1016_j_bbadis_2015_06_017
crossref_primary_10_7600_jspfsm_63_91
crossref_primary_10_1016_j_tjog_2019_01_027
crossref_primary_10_1038_s41467_017_01131_0
crossref_primary_10_1038_ijo_2015_199
crossref_primary_10_4162_nrp_2014_8_2_177
crossref_primary_10_1007_s00424_020_02367_4
crossref_primary_10_1016_j_ghir_2015_12_008
crossref_primary_10_1016_j_metabol_2017_05_002
crossref_primary_10_1016_j_cellsig_2022_110300
crossref_primary_10_1016_j_metabol_2017_05_007
crossref_primary_10_1186_s13098_022_00922_w
crossref_primary_10_1007_s40279_014_0293_4
crossref_primary_10_1038_s12276_022_00811_2
crossref_primary_10_1002_mco2_70030
crossref_primary_10_1007_s40519_017_0431_8
crossref_primary_10_1016_j_gene_2015_06_022
crossref_primary_10_1155_2019_7356187
crossref_primary_10_1186_s13098_015_0019_2
crossref_primary_10_1074_jbc_M114_591008
crossref_primary_10_1590_2359_3997000000129
crossref_primary_10_3390_ijms21020592
crossref_primary_10_1089_dna_2017_4067
crossref_primary_10_1007_s12020_018_1814_y
crossref_primary_10_1007_s00394_016_1268_z
crossref_primary_10_1016_j_jshs_2024_04_005
crossref_primary_10_3390_ijms24076551
crossref_primary_10_3390_nu14112289
crossref_primary_10_1016_j_tvjl_2024_106161
crossref_primary_10_1080_13813455_2020_1716018
crossref_primary_10_1016_j_metabol_2015_02_009
crossref_primary_10_1016_j_theriogenology_2021_06_011
crossref_primary_10_1016_j_peptides_2014_07_021
crossref_primary_10_3803_EnM_2022_1412
crossref_primary_10_1002_jcp_29613
crossref_primary_10_1186_s13098_024_01452_3
crossref_primary_10_1042_CS20130426
crossref_primary_10_1007_s11845_019_02020_9
Cites_doi 10.2174/138161212802481192
10.1210/jc.2011-1665
10.1210/jc.2003-030519
10.1210/er.2002-0029
10.1210/jc.2011-1453
10.1038/nrendo.2012.49
10.1172/JCI31785
10.1172/JCI44271
10.1530/EJE-09-0767
10.1056/NEJM200105033441801
10.2337/diabetes.53.7.1643
10.1381/0960892053923789
10.1210/jc.2012-1289
10.1381/0960892041590980
10.1038/nature10777
10.1023/B:REMD.0000016121.58762.6d
10.1152/physrev.00012.2011
10.1113/jphysiol.2009.179515
10.1097/HJR.0b013e3282f55e09
10.1016/j.cmet.2010.03.008
10.1038/nature11364
10.1080/02640414.2011.583672
10.1097/00075197-199805000-00004
10.1111/j.1753-0407.2012.00194.x
10.1016/j.cmet.2012.02.010
10.1016/j.exger.2011.04.006
10.1152/advan.90111.2008
10.1097/00075197-200405000-00006
10.1152/physrev.90100.2007
ContentType Journal Article
Copyright 2012
2014 INIST-CNRS
Published by Elsevier Inc.
Copyright_xml – notice: 2012
– notice: 2014 INIST-CNRS
– notice: Published by Elsevier Inc.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7S9
L.6
5PM
DOI 10.1016/j.metabol.2012.09.002
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


MEDLINE - Academic
AGRICOLA
MEDLINE
Nucleic Acids Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1532-8600
EndPage 1738
ExternalDocumentID PMC3614417
23018146
26673725
10_1016_j_metabol_2012_09_002
S0026049512003320
1_s2_0_S0026049512003320
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: K24 DK081913
– fundername: NIDDK NIH HHS
  grantid: R01 DK058785
– fundername: NIDDK NIH HHS
  grantid: R56 DK058785
– fundername: NIDDK NIH HHS
  grantid: R01 DK079929
– fundername: CSRD VA
  grantid: I01 CX000422
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: R56 DK058785 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: R01 DK079929 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: R01 DK058785 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: K24 DK081913 || DK
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYJJ
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACIEU
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AEVXI
AFFNX
AFJKZ
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
LZ1
M29
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OB0
OHT
ON-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UAP
UHS
WUQ
X7M
Z5R
ZGI
~G-
~KM
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
DOVZS
EFLBG
G8K
LCYCR
ZA5
AAYXX
AGRNS
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7S9
L.6
5PM
ID FETCH-LOGICAL-c771t-8701fa98f2bffaed425d7676d991bdff381c211955794727906719277b8ffb0b3
IEDL.DBID .~1
ISSN 0026-0495
1532-8600
IngestDate Thu Aug 21 18:45:04 EDT 2025
Fri Jul 11 01:07:54 EDT 2025
Fri Jul 11 06:03:50 EDT 2025
Thu Jul 10 22:10:41 EDT 2025
Mon Jul 21 06:03:27 EDT 2025
Mon Jul 21 09:15:26 EDT 2025
Tue Jul 01 00:56:38 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Fri Feb 23 02:21:22 EST 2024
Sun Feb 23 10:20:06 EST 2025
Tue Aug 26 19:44:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords WHR
FNDC5
GH
Irisin
PGC1-α
Exercise
IGFBP-3
Weight loss
UCP1
IGF-1
PPARγ
BMI
body mass index
waist-to-hip ratio
uncoupling protein 1
insulin-like growth factor binding protein 3
PPARγ coactivator 1 alpha
growth hormone
insulin-like growth factor 1
peroxisome proliferator-activated receptor gamma
Physical exercise
Human
Messenger RNA
Prediction
Serum
Concentration
Gene expression
Endocrinology
Blood plasma
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c771t-8701fa98f2bffaed425d7676d991bdff381c211955794727906719277b8ffb0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Authors contributed equally to this work.
OpenAccessLink http://www.metabolismjournal.com/article/S0026049512003320/pdf
PMID 23018146
PQID 1197485166
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3614417
proquest_miscellaneous_1733554100
proquest_miscellaneous_1323807670
proquest_miscellaneous_1197485166
pubmed_primary_23018146
pascalfrancis_primary_26673725
crossref_citationtrail_10_1016_j_metabol_2012_09_002
crossref_primary_10_1016_j_metabol_2012_09_002
elsevier_sciencedirect_doi_10_1016_j_metabol_2012_09_002
elsevier_clinicalkeyesjournals_1_s2_0_S0026049512003320
elsevier_clinicalkey_doi_10_1016_j_metabol_2012_09_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle Metabolism, clinical and experimental
PublicationTitleAlternate Metabolism
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Nocon, Hiemann, Muller-Riemenschneider (bb0015) 2008; 15
Ruschke, Fishbein, Dietrich (bb0105) 2010; 162
Welle (bb0125) 1998; 1
Pedersen, Febbraio (bb0030) 2012; 8
Vamvini, Aronis, Chamberland (bb0080) 2011; 96
Pedersen (bb0035) 2009; 587
Vijgen, Bouvy, Teule (bb0110) 2012; 97
Handschin, Choi, Chin (bb0045) 2007; 117
Thompson, Karpe, Lafontan (bb0020) 2012; 92
Ballantyne, Gumbs, Modlin (bb0095) 2005; 15
Enerback (bb0060) 2010; 11
Ogden, Carroll, Kit (bb0005) 2012; 82
Sanchis-Gomar, Lippi, Mayero (bb0150) 2012; 4
Saraslanidis, Petridou, Bogdanis (bb0075) 2011; 29
Moragianni, Aronis, Chamberland (bb0085) 2011; 96
Nijhuis, Van Dielen, Buurman (bb0090) 2004; 14
Pedersen, Febbraio (bb0145) 2008; 88
Bostrom, Wu, Jedrychowski (bb0050) 2012; 481
Herbst, Bhasin (bb0135) 2004; 7
Lee, Chan, Yiannakouris (bb0070) 2003; 88
Pinto, Di Raimondo, Tuttolomondo (bb0025) 2012
Greising, Carey, Blackford (bb0130) 2011; 46
Tuomilehto, Lindstrom, Eriksson (bb0010) 2001; 344
Villarroya (bb0100) 2012; 15
Van Der Lely, Tschop, Heiman (bb0115) 2004; 25
Timmons, Baar, Davidsen (bb0065) 2012; 488
Brown (bb0140) 2008; 32
Seale, Conroe, Estall (bb0055) 2011; 121
Febbraio, Hiscock, Sacchetti (bb0040) 2004; 53
Salvatori (bb0120) 2004; 5
Thompson (10.1016/j.metabol.2012.09.002_bb0020) 2012; 92
Nocon (10.1016/j.metabol.2012.09.002_bb0015) 2008; 15
Nijhuis (10.1016/j.metabol.2012.09.002_bb0090) 2004; 14
Timmons (10.1016/j.metabol.2012.09.002_bb0065) 2012; 488
Ballantyne (10.1016/j.metabol.2012.09.002_bb0095) 2005; 15
Brown (10.1016/j.metabol.2012.09.002_bb0140) 2008; 32
Seale (10.1016/j.metabol.2012.09.002_bb0055) 2011; 121
Greising (10.1016/j.metabol.2012.09.002_bb0130) 2011; 46
Enerback (10.1016/j.metabol.2012.09.002_bb0060) 2010; 11
Saraslanidis (10.1016/j.metabol.2012.09.002_bb0075) 2011; 29
Welle (10.1016/j.metabol.2012.09.002_bb0125) 1998; 1
Ruschke (10.1016/j.metabol.2012.09.002_bb0105) 2010; 162
Tuomilehto (10.1016/j.metabol.2012.09.002_bb0010) 2001; 344
Bostrom (10.1016/j.metabol.2012.09.002_bb0050) 2012; 481
Lee (10.1016/j.metabol.2012.09.002_bb0070) 2003; 88
Febbraio (10.1016/j.metabol.2012.09.002_bb0040) 2004; 53
Sanchis-Gomar (10.1016/j.metabol.2012.09.002_bb0150) 2012; 4
Handschin (10.1016/j.metabol.2012.09.002_bb0045) 2007; 117
Moragianni (10.1016/j.metabol.2012.09.002_bb0085) 2011; 96
Van Der Lely (10.1016/j.metabol.2012.09.002_bb0115) 2004; 25
Vamvini (10.1016/j.metabol.2012.09.002_bb0080) 2011; 96
Pedersen (10.1016/j.metabol.2012.09.002_bb0035) 2009; 587
Salvatori (10.1016/j.metabol.2012.09.002_bb0120) 2004; 5
Herbst (10.1016/j.metabol.2012.09.002_bb0135) 2004; 7
Pedersen (10.1016/j.metabol.2012.09.002_bb0030) 2012; 8
Pedersen (10.1016/j.metabol.2012.09.002_bb0145) 2008; 88
Pinto (10.1016/j.metabol.2012.09.002_bb0025) 2012
Vijgen (10.1016/j.metabol.2012.09.002_bb0110) 2012; 97
Ogden (10.1016/j.metabol.2012.09.002_bb0005) 2012; 82
Villarroya (10.1016/j.metabol.2012.09.002_bb0100) 2012; 15
18539850 - Adv Physiol Educ. 2008 Jun;32(2):120-6
20374955 - Cell Metab. 2010 Apr 7;11(4):248-52
22405065 - Cell Metab. 2012 Mar 7;15(3):277-8
15318982 - Obes Surg. 2004 Jun-Jul;14(6):783-7
18525377 - Eur J Cardiovasc Prev Rehabil. 2008 Jun;15(3):239-46
15180951 - Endocr Rev. 2004 Jun;25(3):426-57
21917874 - J Clin Endocrinol Metab. 2011 Dec;96(12):3750-8
22473333 - Nat Rev Endocrinol. 2012 Aug;8(8):457-65
15946462 - Obes Surg. 2005 May;15(5):692-9
22535970 - J Clin Endocrinol Metab. 2012 Jul;97(7):E1229-33
21123942 - J Clin Invest. 2011 Jan;121(1):96-105
19752112 - J Physiol. 2009 Dec 1;587(Pt 23):5559-68
15220185 - Diabetes. 2004 Jul;53(7):1643-8
22390642 - Curr Pharm Des. 2012;18(28):4326-49
15075918 - Curr Opin Clin Nutr Metab Care. 2004 May;7(3):271-7
14557464 - J Clin Endocrinol Metab. 2003 Oct;88(10):4848-56
21777153 - J Sports Sci. 2011 Aug;29(11):1167-74
17932564 - J Clin Invest. 2007 Nov;117(11):3463-74
22237023 - Nature. 2012 Jan 26;481(7382):463-8
22617494 - NCHS Data Brief. 2012 Jan;(82):1-8
18923185 - Physiol Rev. 2008 Oct;88(4):1379-406
22932392 - Nature. 2012 Aug 30;488(7413):E9-10; discussion E10-1
22298655 - Physiol Rev. 2012 Jan;92(1):157-91
22372821 - J Diabetes. 2012 Sep;4(3):196
14966386 - Rev Endocr Metab Disord. 2004 Mar;5(1):15-23
21570459 - Exp Gerontol. 2011 Aug;46(8):685-93
21865351 - J Clin Endocrinol Metab. 2011 Nov;96(11):3416-23
19966034 - Eur J Endocrinol. 2010 Mar;162(3):515-23
11333990 - N Engl J Med. 2001 May 3;344(18):1343-50
10565358 - Curr Opin Clin Nutr Metab Care. 1998 May;1(3):257-62
References_xml – volume: 15
  start-page: 692
  year: 2005
  end-page: 699
  ident: bb0095
  article-title: Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin, adiponectin and resistin
  publication-title: Obes Surg
– volume: 88
  start-page: 1379
  year: 2008
  end-page: 1406
  ident: bb0145
  article-title: Muscle as an endocrine organ: focus on muscle-derived interleukin-6
  publication-title: Physiol Rev
– volume: 1
  start-page: 257
  year: 1998
  end-page: 262
  ident: bb0125
  article-title: Growth hormone and insulin-like growth factor-i as anabolic agents
  publication-title: Curr Opin Clin Nutr Metab Care
– volume: 14
  start-page: 783
  year: 2004
  end-page: 787
  ident: bb0090
  article-title: Ghrelin, leptin and insulin levels after restrictive surgery: a 2-year follow-up study
  publication-title: Obes Surg
– volume: 25
  start-page: 426
  year: 2004
  end-page: 457
  ident: bb0115
  article-title: Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin
  publication-title: Endocr Rev
– volume: 96
  start-page: 3750
  year: 2011
  end-page: 3758
  ident: bb0085
  article-title: Short-term energy deprivation alters activin a and follistatin but not inhibin b levels of lean healthy women in a leptin-independent manner
  publication-title: J Clin Endocrinol Metab
– volume: 4
  start-page: 196
  year: 2012
  ident: bb0150
  article-title: Irisin: a new potential hormonal target for the treatment of obesity and type 2 diabetes
  publication-title: J Diabetes
– volume: 82
  start-page: 1
  year: 2012
  end-page: 8
  ident: bb0005
  article-title: Prevalence of obesity in the United States, 2009–2010
  publication-title: NCHS Data Brief
– volume: 117
  start-page: 3463
  year: 2007
  end-page: 3474
  ident: bb0045
  article-title: Abnormal glucose homeostasis in skeletal muscle-specific pgc-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk
  publication-title: J Clin Invest
– volume: 29
  start-page: 1167
  year: 2011
  end-page: 1174
  ident: bb0075
  article-title: Muscle metabolism and performance improvement after two training programmes of sprint running differing in rest interval duration
  publication-title: J Sports Sci
– volume: 587
  start-page: 5559
  year: 2009
  end-page: 5568
  ident: bb0035
  article-title: The diseasome of physical inactivity — and the role of myokines in muscle–fat cross talk
  publication-title: J Physiol
– volume: 344
  start-page: 1343
  year: 2001
  end-page: 1350
  ident: bb0010
  article-title: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance
  publication-title: N Engl J Med
– volume: 32
  start-page: 120
  year: 2008
  end-page: 126
  ident: bb0140
  article-title: Skeletal muscle and bone: effect of sex steroids and aging
  publication-title: Adv Physiol Educ
– volume: 88
  start-page: 4848
  year: 2003
  end-page: 4856
  ident: bb0070
  article-title: Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects
  publication-title: J Clin Endocrinol Metab
– volume: 7
  start-page: 271
  year: 2004
  end-page: 277
  ident: bb0135
  article-title: Testosterone action on skeletal muscle
  publication-title: Curr Opin Clin Nutr Metab Care
– volume: 92
  start-page: 157
  year: 2012
  end-page: 191
  ident: bb0020
  article-title: Physical activity and exercise in the regulation of human adipose tissue physiology
  publication-title: Physiol Rev
– volume: 46
  start-page: 685
  year: 2011
  end-page: 693
  ident: bb0130
  article-title: Estradiol treatment, physical activity, and muscle function in ovarian-senescent mice
  publication-title: Exp Gerontol
– volume: 11
  start-page: 248
  year: 2010
  end-page: 252
  ident: bb0060
  article-title: Human brown adipose tissue
  publication-title: Cell Metab
– volume: 162
  start-page: 515
  year: 2010
  end-page: 523
  ident: bb0105
  article-title: Gene expression of ppargamma and pgc-1alpha in human omental and subcutaneous adipose tissues is related to insulin resistance markers and mediates beneficial effects of physical training
  publication-title: Eur J Endocrinol
– volume: 53
  start-page: 1643
  year: 2004
  end-page: 1648
  ident: bb0040
  article-title: Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction
  publication-title: Diabetes
– volume: 488
  start-page: E9
  year: 2012
  end-page: E10
  ident: bb0065
  article-title: Is irisin a human exercise gene?
  publication-title: Nature
– volume: 8
  start-page: 457
  year: 2012
  end-page: 465
  ident: bb0030
  article-title: Muscles, exercise and obesity: skeletal muscle as a secretory organ
  publication-title: Nat Rev Endocrinol
– volume: 15
  start-page: 277
  year: 2012
  end-page: 278
  ident: bb0100
  article-title: Irisin, turning up the heat
  publication-title: Cell Metab
– volume: 121
  start-page: 96
  year: 2011
  end-page: 105
  ident: bb0055
  article-title: Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
  publication-title: J Clin Invest
– volume: 96
  start-page: 3416
  year: 2011
  end-page: 3423
  ident: bb0080
  article-title: Energy deprivation alters in a leptin- and cortisol-independent manner circulating levels of activin a and follistatin but not myostatin in healthy males
  publication-title: J Clin Endocrinol Metab
– volume: 97
  start-page: E1229
  year: 2012
  end-page: E1233
  ident: bb0110
  article-title: Increase in brown adipose tissue activity after weight loss in morbidly obese subjects
  publication-title: J Clin Endocrinol Metab
– volume: 5
  start-page: 15
  year: 2004
  end-page: 23
  ident: bb0120
  article-title: Growth hormone and igf-1
  publication-title: Rev Endocr Metab Disord
– year: 2012
  ident: bb0025
  article-title: Effects of physical exercise on inflammatory markers of atherosclerosis
  publication-title: Curr Pharm Des
– volume: 15
  start-page: 239
  year: 2008
  end-page: 246
  ident: bb0015
  article-title: Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis
  publication-title: Eur J Cardiovasc Prev Rehabil
– volume: 481
  start-page: 463
  year: 2012
  end-page: 468
  ident: bb0050
  article-title: A pgc1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis
  publication-title: Nature
– year: 2012
  ident: 10.1016/j.metabol.2012.09.002_bb0025
  article-title: Effects of physical exercise on inflammatory markers of atherosclerosis
  publication-title: Curr Pharm Des
  doi: 10.2174/138161212802481192
– volume: 96
  start-page: 3416
  issue: 11
  year: 2011
  ident: 10.1016/j.metabol.2012.09.002_bb0080
  article-title: Energy deprivation alters in a leptin- and cortisol-independent manner circulating levels of activin a and follistatin but not myostatin in healthy males
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2011-1665
– volume: 82
  start-page: 1
  year: 2012
  ident: 10.1016/j.metabol.2012.09.002_bb0005
  article-title: Prevalence of obesity in the United States, 2009–2010
  publication-title: NCHS Data Brief
– volume: 88
  start-page: 4848
  issue: 10
  year: 2003
  ident: 10.1016/j.metabol.2012.09.002_bb0070
  article-title: Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2003-030519
– volume: 25
  start-page: 426
  issue: 3
  year: 2004
  ident: 10.1016/j.metabol.2012.09.002_bb0115
  article-title: Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin
  publication-title: Endocr Rev
  doi: 10.1210/er.2002-0029
– volume: 96
  start-page: 3750
  issue: 12
  year: 2011
  ident: 10.1016/j.metabol.2012.09.002_bb0085
  article-title: Short-term energy deprivation alters activin a and follistatin but not inhibin b levels of lean healthy women in a leptin-independent manner
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2011-1453
– volume: 8
  start-page: 457
  issue: 8
  year: 2012
  ident: 10.1016/j.metabol.2012.09.002_bb0030
  article-title: Muscles, exercise and obesity: skeletal muscle as a secretory organ
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2012.49
– volume: 117
  start-page: 3463
  issue: 11
  year: 2007
  ident: 10.1016/j.metabol.2012.09.002_bb0045
  article-title: Abnormal glucose homeostasis in skeletal muscle-specific pgc-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk
  publication-title: J Clin Invest
  doi: 10.1172/JCI31785
– volume: 121
  start-page: 96
  issue: 1
  year: 2011
  ident: 10.1016/j.metabol.2012.09.002_bb0055
  article-title: Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
  publication-title: J Clin Invest
  doi: 10.1172/JCI44271
– volume: 162
  start-page: 515
  issue: 3
  year: 2010
  ident: 10.1016/j.metabol.2012.09.002_bb0105
  article-title: Gene expression of ppargamma and pgc-1alpha in human omental and subcutaneous adipose tissues is related to insulin resistance markers and mediates beneficial effects of physical training
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-09-0767
– volume: 344
  start-page: 1343
  issue: 18
  year: 2001
  ident: 10.1016/j.metabol.2012.09.002_bb0010
  article-title: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200105033441801
– volume: 53
  start-page: 1643
  issue: 7
  year: 2004
  ident: 10.1016/j.metabol.2012.09.002_bb0040
  article-title: Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.7.1643
– volume: 15
  start-page: 692
  issue: 5
  year: 2005
  ident: 10.1016/j.metabol.2012.09.002_bb0095
  article-title: Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin, adiponectin and resistin
  publication-title: Obes Surg
  doi: 10.1381/0960892053923789
– volume: 97
  start-page: E1229
  issue: 7
  year: 2012
  ident: 10.1016/j.metabol.2012.09.002_bb0110
  article-title: Increase in brown adipose tissue activity after weight loss in morbidly obese subjects
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2012-1289
– volume: 14
  start-page: 783
  issue: 6
  year: 2004
  ident: 10.1016/j.metabol.2012.09.002_bb0090
  article-title: Ghrelin, leptin and insulin levels after restrictive surgery: a 2-year follow-up study
  publication-title: Obes Surg
  doi: 10.1381/0960892041590980
– volume: 481
  start-page: 463
  issue: 7382
  year: 2012
  ident: 10.1016/j.metabol.2012.09.002_bb0050
  article-title: A pgc1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis
  publication-title: Nature
  doi: 10.1038/nature10777
– volume: 5
  start-page: 15
  issue: 1
  year: 2004
  ident: 10.1016/j.metabol.2012.09.002_bb0120
  article-title: Growth hormone and igf-1
  publication-title: Rev Endocr Metab Disord
  doi: 10.1023/B:REMD.0000016121.58762.6d
– volume: 92
  start-page: 157
  issue: 1
  year: 2012
  ident: 10.1016/j.metabol.2012.09.002_bb0020
  article-title: Physical activity and exercise in the regulation of human adipose tissue physiology
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00012.2011
– volume: 587
  start-page: 5559
  issue: Pt 23
  year: 2009
  ident: 10.1016/j.metabol.2012.09.002_bb0035
  article-title: The diseasome of physical inactivity — and the role of myokines in muscle–fat cross talk
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2009.179515
– volume: 15
  start-page: 239
  issue: 3
  year: 2008
  ident: 10.1016/j.metabol.2012.09.002_bb0015
  article-title: Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis
  publication-title: Eur J Cardiovasc Prev Rehabil
  doi: 10.1097/HJR.0b013e3282f55e09
– volume: 11
  start-page: 248
  issue: 4
  year: 2010
  ident: 10.1016/j.metabol.2012.09.002_bb0060
  article-title: Human brown adipose tissue
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2010.03.008
– volume: 488
  start-page: E9
  issue: 7413
  year: 2012
  ident: 10.1016/j.metabol.2012.09.002_bb0065
  article-title: Is irisin a human exercise gene?
  publication-title: Nature
  doi: 10.1038/nature11364
– volume: 29
  start-page: 1167
  issue: 11
  year: 2011
  ident: 10.1016/j.metabol.2012.09.002_bb0075
  article-title: Muscle metabolism and performance improvement after two training programmes of sprint running differing in rest interval duration
  publication-title: J Sports Sci
  doi: 10.1080/02640414.2011.583672
– volume: 1
  start-page: 257
  issue: 3
  year: 1998
  ident: 10.1016/j.metabol.2012.09.002_bb0125
  article-title: Growth hormone and insulin-like growth factor-i as anabolic agents
  publication-title: Curr Opin Clin Nutr Metab Care
  doi: 10.1097/00075197-199805000-00004
– volume: 4
  start-page: 196
  issue: 3
  year: 2012
  ident: 10.1016/j.metabol.2012.09.002_bb0150
  article-title: Irisin: a new potential hormonal target for the treatment of obesity and type 2 diabetes
  publication-title: J Diabetes
  doi: 10.1111/j.1753-0407.2012.00194.x
– volume: 15
  start-page: 277
  issue: 3
  year: 2012
  ident: 10.1016/j.metabol.2012.09.002_bb0100
  article-title: Irisin, turning up the heat
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2012.02.010
– volume: 46
  start-page: 685
  issue: 8
  year: 2011
  ident: 10.1016/j.metabol.2012.09.002_bb0130
  article-title: Estradiol treatment, physical activity, and muscle function in ovarian-senescent mice
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2011.04.006
– volume: 32
  start-page: 120
  issue: 2
  year: 2008
  ident: 10.1016/j.metabol.2012.09.002_bb0140
  article-title: Skeletal muscle and bone: effect of sex steroids and aging
  publication-title: Adv Physiol Educ
  doi: 10.1152/advan.90111.2008
– volume: 7
  start-page: 271
  issue: 3
  year: 2004
  ident: 10.1016/j.metabol.2012.09.002_bb0135
  article-title: Testosterone action on skeletal muscle
  publication-title: Curr Opin Clin Nutr Metab Care
  doi: 10.1097/00075197-200405000-00006
– volume: 88
  start-page: 1379
  issue: 4
  year: 2008
  ident: 10.1016/j.metabol.2012.09.002_bb0145
  article-title: Muscle as an endocrine organ: focus on muscle-derived interleukin-6
  publication-title: Physiol Rev
  doi: 10.1152/physrev.90100.2007
– reference: 11333990 - N Engl J Med. 2001 May 3;344(18):1343-50
– reference: 19966034 - Eur J Endocrinol. 2010 Mar;162(3):515-23
– reference: 18525377 - Eur J Cardiovasc Prev Rehabil. 2008 Jun;15(3):239-46
– reference: 22535970 - J Clin Endocrinol Metab. 2012 Jul;97(7):E1229-33
– reference: 20374955 - Cell Metab. 2010 Apr 7;11(4):248-52
– reference: 14557464 - J Clin Endocrinol Metab. 2003 Oct;88(10):4848-56
– reference: 21123942 - J Clin Invest. 2011 Jan;121(1):96-105
– reference: 22390642 - Curr Pharm Des. 2012;18(28):4326-49
– reference: 22405065 - Cell Metab. 2012 Mar 7;15(3):277-8
– reference: 22932392 - Nature. 2012 Aug 30;488(7413):E9-10; discussion E10-1
– reference: 15220185 - Diabetes. 2004 Jul;53(7):1643-8
– reference: 14966386 - Rev Endocr Metab Disord. 2004 Mar;5(1):15-23
– reference: 22372821 - J Diabetes. 2012 Sep;4(3):196
– reference: 22237023 - Nature. 2012 Jan 26;481(7382):463-8
– reference: 22617494 - NCHS Data Brief. 2012 Jan;(82):1-8
– reference: 18923185 - Physiol Rev. 2008 Oct;88(4):1379-406
– reference: 21917874 - J Clin Endocrinol Metab. 2011 Dec;96(12):3750-8
– reference: 22473333 - Nat Rev Endocrinol. 2012 Aug;8(8):457-65
– reference: 15180951 - Endocr Rev. 2004 Jun;25(3):426-57
– reference: 22298655 - Physiol Rev. 2012 Jan;92(1):157-91
– reference: 21777153 - J Sports Sci. 2011 Aug;29(11):1167-74
– reference: 15318982 - Obes Surg. 2004 Jun-Jul;14(6):783-7
– reference: 19752112 - J Physiol. 2009 Dec 1;587(Pt 23):5559-68
– reference: 21865351 - J Clin Endocrinol Metab. 2011 Nov;96(11):3416-23
– reference: 15075918 - Curr Opin Clin Nutr Metab Care. 2004 May;7(3):271-7
– reference: 15946462 - Obes Surg. 2005 May;15(5):692-9
– reference: 10565358 - Curr Opin Clin Nutr Metab Care. 1998 May;1(3):257-62
– reference: 21570459 - Exp Gerontol. 2011 Aug;46(8):685-93
– reference: 18539850 - Adv Physiol Educ. 2008 Jun;32(2):120-6
– reference: 17932564 - J Clin Invest. 2007 Nov;117(11):3463-74
SSID ssj0007786
Score 2.5881608
Snippet In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified...
Abstract Objective In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as...
Objective: In mouse, PGC1-[alpha] overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a...
OBJECTIVE: In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1725
SubjectTerms adenosine triphosphate
Adenosine Triphosphate - blood
Adiponectin
Adult
Age
Athletes
ATP
Bariatric Surgery
Biological and medical sciences
Biomarkers - blood
blood serum
Body mass
Body Mass Index
Cholesterol
correlation
Cross-Sectional Studies
Endocrinology & Metabolism
Exercise
Feeding. Feeding behavior
Female
Fibronectins - blood
Fibronectins - genetics
Fibronectins - metabolism
FNDC5
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation
genes
ghrelin
Glucose
Glycolysis
Hormones
Hormones - blood
Humans
Insulin
Insulin-like growth factor I
Irisin
Lipolysis
Male
males
Membrane proteins
messenger RNA
Metabolism
Metabolites
mice
Middle Aged
middle-aged adults
mRNA
muscle tissues
Muscles
Obesity
Obesity, Morbid - blood
Obesity, Morbid - surgery
Physical training
physiological regulation
Regression analysis
RNA, Messenger - blood
Running
subcutaneous fat
Surgery
tissue distribution
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Weight Loss
women
Title FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0026049512003320
https://www.clinicalkey.es/playcontent/1-s2.0-S0026049512003320
https://dx.doi.org/10.1016/j.metabol.2012.09.002
https://www.ncbi.nlm.nih.gov/pubmed/23018146
https://www.proquest.com/docview/1197485166
https://www.proquest.com/docview/1323807670
https://www.proquest.com/docview/1733554100
https://pubmed.ncbi.nlm.nih.gov/PMC3614417
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWi0BICMHyKo_KSFzT5mkn3KpC1YK2QoiV9mbFiQ1ZbdOqScXuhR_Gr2PGcVIKVRch9dCmM05ij8ff2PMg5E2qAsl1qBwv0AwMlCR2UjBTnASrprFAhTLBaOTTOZuehR_Oo_MjMm5jYdCt0ur-RqcbbW2vDG1vDldFgTG-gMUB33voXxX4aLeHIUcpH_zYunlgfrTGzQMsZ6DeRvEMLwYLVUNX4wkEbgkm3e7KnvXp3iqtoNd0U-5iHx79063yt3Vq8oDctwCTjpp3eEiOVHlCbjclJ69PyJ1Te5j-iPyczN-NI5qWOS1gqhclhY-p2Ve9pbMB_bRGUqzGQ5eaZsU6M6W-yq80w1jH0ibcrZANBHmzME2tAI4vUvN1Bo0sPs9HVF1Zd9vSXD_c1Lrx2lW0XtLvZuOWXkJPGc62QNRjcjZ5_2U8dWwpByfj3KtB57qeTpNY-1LrVOWgKXLOOMsBnspca8ANGeaaiyLQDwCpElhEAXtyLmOtpSuDJ-S4XJbqGaFShmjQu1ke61BrFacY-8tcXwK4DZTbI2E7gCKzec6x3MalaB3aLoQdd4HjLtxEwLj3yKBjWzWJPm5iYK10iDaKFfSugKXoJka-j1FVVntUwhMVEIu_JLxH4o5zZ5L8y037OwLcvaPPTKWiqEdetxItQMPgsVFaquUGnsYDmxOAOWMHaAIfKxcw7h6g4QGCW88FmqfNTNk-RYCJ40K4A9-ZQx0BZkHf_acsvpls6AFuaXj8-f_3zQtyF381TkovyXG93qhXADVr2Te6pE9ujWYfp_NfQPKAsg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELemTjwkhGC8ymMYia9p87QTvlWFqmVrhNAm7ZsVJzZkWtOqSQX8a_x13CVORqHqEFI_VMmdk5zt8-_sexDyNlGe5NpXluNpBgZKFFoJmClWhFXTmKd8GWE08jxm03P_40VwcUDGbSwMulUa3d_o9FpbmytDI83hKs8xxhewOOB7B_2rPBfs9kPMThX0yOFodjKNO4WMKdIaTw8wnoHhOpBneDlYqAqkjYcQuCsYdRssO5aoe6ukBMHppuLFLkj6p2flb0vV5AG5bzAmHTWf8ZAcqOKI3GqqTv44Irfn5jz9Efk5id-PA5oUGc1htucFhV9dtq98R2cD-mmNpFiQhy41TfN1Wlf7Kr7QFMMdC5Nzt0Q2GMubRd3UChD5Iqn_zqCRxed4RNV343Fb1Nf3N7VuHHcVrZb0W713S69AUjVnWyPqMTmffDgbTy1TzcFKOXcqULu2o5Mo1K7UOlEZKIuMM84yQKgy0xqgQ4rp5oIAVASgqgjWUYCfnMtQa2lL7wnpFctCPSNUSh9tejvNQu1rrcIEw3-Z7UrAt56y-8RvO1CkJtU5Vty4Eq1P26Uw_S6w34UdCej3Phl0bKsm18dNDKwdHaINZAXVK2A1uomR72JUpVEgpXBECcTir0HeJ2HHuTVP_uWhx1sDuPtGl9XFioI-edOOaAFKBk-OkkItN_A2DpidgM0Z20PjuVi8gHF7Dw33EN86NtA8bWbK9Vt4mDvOhyfwrTnUEWAi9O07Rf61Toju4a6Gw5__v2xekzvTs_mpOJ3FJy_IXbzT-Cy9JL1qvVGvAHlW8tholl8m9oNj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FNDC5+and+irisin+in+humans%3A+I.+Predictors+of+circulating+concentrations+in+serum+and+plasma+and+II.+mRNA+expression+and+circulating+concentrations+in+response+to+weight+loss+and+exercise&rft.jtitle=Metabolism%2C+clinical+and+experimental&rft.au=JOO+YOUNG+HUH&rft.au=PANAGIOTOU%2C+Grigorios&rft.au=MOUGIOS%2C+Vassilis&rft.au=BRINKOETTER%2C+Mary&rft.date=2012-12-01&rft.pub=Elsevier&rft.issn=0026-0495&rft.volume=61&rft.issue=12&rft.spage=1725&rft.epage=1738&rft_id=info:doi/10.1016%2Fj.metabol.2012.09.002&rft.externalDBID=n%2Fa&rft.externalDocID=26673725
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00260495%2FS0026049511X00239%2Fcov150h.gif