FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise
In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercis...
Saved in:
Published in | Metabolism, clinical and experimental Vol. 61; no. 12; pp. 1725 - 1738 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
01.12.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans.
A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8week period.
Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6months after bariatric surgery. Circulating irisin levels were significantly upregulated 30min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle.
Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects. |
---|---|
AbstractList | Abstract Objective In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. Materials/Methods A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8 week period. Results Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6 months after bariatric surgery. Circulating irisin levels were significantly upregulated 30 min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. Conclusions Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects. In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8week period. Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6months after bariatric surgery. Circulating irisin levels were significantly upregulated 30min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects. In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans.OBJECTIVEIn mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans.A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8 week period.MATERIALS/METHODSA. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8 week period.Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6 months after bariatric surgery. Circulating irisin levels were significantly upregulated 30 min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle.RESULTSTissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6 months after bariatric surgery. Circulating irisin levels were significantly upregulated 30 min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle.Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects.CONCLUSIONSSimilar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects. OBJECTIVE: In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. MATERIALS/METHODS: A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8week period. RESULTS: Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6months after bariatric surgery. Circulating irisin levels were significantly upregulated 30min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. CONCLUSIONS: Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects. In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8 week period. Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6 months after bariatric surgery. Circulating irisin levels were significantly upregulated 30 min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects. Objective: In mouse, PGC1-[alpha] overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. Materials/Methods: A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8 week period. Results: Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6 months after bariatric surgery. Circulating irisin levels were significantly upregulated 30 min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. Conclusions: Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects. |
Author | Vamvini, Maria T. Panagiotou, Grigorios Mougios, Vassilis Brinkoetter, Mary Schneider, Benjamin E. Huh, Joo Young Mantzoros, Christos S. |
AuthorAffiliation | a Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA c Division of Minimally Invasive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA d Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA b Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece |
AuthorAffiliation_xml | – name: b Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece – name: c Division of Minimally Invasive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA – name: d Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA – name: a Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA |
Author_xml | – sequence: 1 givenname: Joo Young surname: Huh fullname: Huh, Joo Young organization: Division of Endocrinology, Diabetes, and Metabolism, BethIsrael Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 2 givenname: Grigorios surname: Panagiotou fullname: Panagiotou, Grigorios organization: Division of Endocrinology, Diabetes, and Metabolism, BethIsrael Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 3 givenname: Vassilis surname: Mougios fullname: Mougios, Vassilis organization: Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece – sequence: 4 givenname: Mary surname: Brinkoetter fullname: Brinkoetter, Mary organization: Division of Endocrinology, Diabetes, and Metabolism, BethIsrael Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 5 givenname: Maria T. surname: Vamvini fullname: Vamvini, Maria T. organization: Division of Endocrinology, Diabetes, and Metabolism, BethIsrael Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 6 givenname: Benjamin E. surname: Schneider fullname: Schneider, Benjamin E. organization: Division of Minimally Invasive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA – sequence: 7 givenname: Christos S. surname: Mantzoros fullname: Mantzoros, Christos S. email: cmantzor@bidmc.harvard.edu organization: Division of Endocrinology, Diabetes, and Metabolism, BethIsrael Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26673725$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23018146$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk91u0zAYhiM0xH7gEkA-QeKkwXYSOwFtaCoMKk0D8XNsOc7n1iWxi52M7da4Opy242cSdFKk2M7zvvns7_VhsmedhSR5THBKMGHPl2kHvaxdm1JMaIqrFGN6LzkgRUYnJcN4LzmIK2yC86rYTw5DWGKMOS_Zg2SfZpiUJGcHyY-zi9fTAknbIONNMBbFZzF00oYXaJaiDx4ao3rnA3IaKePV0Mre2DlSziqwvY8zZ8MoC-CHbm21amXo5Ho4iybdx4tTBFcrDyFEeL3-f6tIruIQUO_QdzDzRY9aF8JaCVfglQnwMLmvZRvg0fZ9lHw5e_N5-m5y_v7tbHp6PlGck35Scky0rEpNa60lNDktGs44a6qK1I3WWUkUJaQqCl7lnPIKM04qynldal3jOjtKTja-q6HuoNlU2oqVN53018JJI_7-Ys1CzN2lyBjJc8KjwbOtgXffBgi96ExQ0LbSghuCiEhWFDnBeDea0azEsfw7oKTieVkQxiL65M8d_Cr9JgYReLoFZFCy1V7aeMK_OcZ4xmkRuZcbTvnYDQ9aKNOvuxY3blpBsBjDKZZiG04xhlPgSsQoRnVxS33zg126VxsdxC5fGvAiKAMxMo3xoHrROLPT4eSWg2qNNXGrX-EawtIN3sYICSJC1IhP48UZ7w2hsScZHQ_7-N8GdyjgJyRiLPY |
CitedBy_id | crossref_primary_10_1016_j_metabol_2020_154280 crossref_primary_10_3389_fcvm_2023_1235953 crossref_primary_10_2174_1389557523666230411105506 crossref_primary_10_3390_cells10061479 crossref_primary_10_1016_j_vph_2019_106579 crossref_primary_10_1016_j_exger_2015_07_006 crossref_primary_10_1007_s12017_021_08666_y crossref_primary_10_1155_2021_6572342 crossref_primary_10_1111_ahe_12371 crossref_primary_10_2527_jas_2016_1036 crossref_primary_10_23736_S0022_4707_20_10738_2 crossref_primary_10_3389_fphar_2020_582484 crossref_primary_10_4103_epj_epj_50_20 crossref_primary_10_1016_j_jdiacomp_2013_04_002 crossref_primary_10_3923_rjog_2018_36_40 crossref_primary_10_14341_probl13138 crossref_primary_10_1186_1476_511X_14_2 crossref_primary_10_1177_17455057241302559 crossref_primary_10_1111_apha_12274 crossref_primary_10_1007_s11033_021_07109_y crossref_primary_10_1016_j_arteri_2013_11_002 crossref_primary_10_1016_j_cyto_2021_155708 crossref_primary_10_3389_fonc_2021_746040 crossref_primary_10_1016_j_metabol_2014_01_005 crossref_primary_10_1371_journal_pone_0166225 crossref_primary_10_1016_j_metabol_2014_01_006 crossref_primary_10_1038_s41598_017_16602_z crossref_primary_10_1016_j_redox_2025_103527 crossref_primary_10_1371_journal_pone_0110680 crossref_primary_10_1186_s40200_016_0239_5 crossref_primary_10_1042_BCJ20170241 crossref_primary_10_1038_ijo_2014_166 crossref_primary_10_3892_ijmm_2023_5235 crossref_primary_10_1530_EJE_15_1217 crossref_primary_10_1186_s12931_019_1033_y crossref_primary_10_1038_ijo_2013_158 crossref_primary_10_1007_s12020_014_0170_9 crossref_primary_10_4103_2347_9906_184171 crossref_primary_10_3390_cells8030232 crossref_primary_10_5812_asjsm_35205 crossref_primary_10_3390_life12122139 crossref_primary_10_1371_journal_pone_0146605 crossref_primary_10_15406_jnhfe_2015_03_00101 crossref_primary_10_1007_s12020_022_03050_7 crossref_primary_10_1111_dme_12731 crossref_primary_10_2147_OTT_S245178 crossref_primary_10_1139_apnm_2015_0464 crossref_primary_10_1007_s40618_018_0902_4 crossref_primary_10_1007_s13596_019_00364_2 crossref_primary_10_4081_ejtm_2024_12693 crossref_primary_10_2147_DDDT_S279318 crossref_primary_10_1186_s12872_021_02380_0 crossref_primary_10_3389_fcell_2020_585644 crossref_primary_10_3390_ijms22168520 crossref_primary_10_1002_iub_1209 crossref_primary_10_1007_s42978_022_00164_2 crossref_primary_10_3390_ijms18010008 crossref_primary_10_1016_j_metabol_2015_09_001 crossref_primary_10_1007_s00595_021_02339_w crossref_primary_10_1186_s12890_015_0035_x crossref_primary_10_1249_MSS_0000000000000286 crossref_primary_10_1007_s12020_018_1550_3 crossref_primary_10_1186_s40798_023_00596_2 crossref_primary_10_3390_jcm7110407 crossref_primary_10_1210_jc_2018_01440 crossref_primary_10_1530_JOE_14_0189 crossref_primary_10_17656_jsmc_10160 crossref_primary_10_26442_20751753_2022_12_202036 crossref_primary_10_3389_fendo_2019_00549 crossref_primary_10_3389_fphys_2019_00871 crossref_primary_10_3389_fphys_2020_00923 crossref_primary_10_3390_jcm14030793 crossref_primary_10_1016_j_gene_2018_09_024 crossref_primary_10_1155_2018_7816806 crossref_primary_10_1097_MD_0000000000019235 crossref_primary_10_1016_j_jdiacomp_2013_03_002 crossref_primary_10_1186_s12944_016_0263_y crossref_primary_10_3390_medicina56060274 crossref_primary_10_1016_j_metabol_2014_10_024 crossref_primary_10_1111_bph_14802 crossref_primary_10_1007_s40618_015_0403_7 crossref_primary_10_1155_2018_7628957 crossref_primary_10_1016_j_mce_2013_04_017 crossref_primary_10_1007_s00360_016_1036_7 crossref_primary_10_12677_ACM_2022_121012 crossref_primary_10_1080_17461391_2018_1506504 crossref_primary_10_1210_er_2012_1041 crossref_primary_10_24985_kjss_2017_28_2_285 crossref_primary_10_1249_MSS_0000000000002242 crossref_primary_10_1016_j_lfs_2024_123088 crossref_primary_10_1016_j_jtherbio_2021_103067 crossref_primary_10_1113_jphysiol_2013_265371 crossref_primary_10_3389_fendo_2019_00524 crossref_primary_10_4239_wjd_v11_i5_165 crossref_primary_10_1515_hmbci_2022_0009 crossref_primary_10_1016_j_clinbiochem_2015_07_098 crossref_primary_10_1111_avj_12436 crossref_primary_10_1210_clinem_dgab921 crossref_primary_10_1016_j_bbadis_2013_05_011 crossref_primary_10_3390_antiox13010126 crossref_primary_10_1111_bph_13732 crossref_primary_10_1007_s12020_021_02738_6 crossref_primary_10_1002_jcp_27037 crossref_primary_10_3390_healthcare9111438 crossref_primary_10_1016_j_sjbs_2020_10_061 crossref_primary_10_3390_ijerph19106153 crossref_primary_10_1016_j_ygcen_2024_114515 crossref_primary_10_1371_journal_pone_0181461 crossref_primary_10_1111_jfbc_12264 crossref_primary_10_1016_j_metabol_2013_05_021 crossref_primary_10_1161_HYPERTENSIONAHA_123_22353 crossref_primary_10_36899_JAPS_2024_3_0765 crossref_primary_10_1155_2014_857270 crossref_primary_10_3389_fendo_2021_653179 crossref_primary_10_1016_j_clnu_2024_07_024 crossref_primary_10_3109_09513590_2015_1065482 crossref_primary_10_1016_j_neuroscience_2022_07_018 crossref_primary_10_1016_j_metabol_2013_05_019 crossref_primary_10_1096_fj_201700983RR crossref_primary_10_1002_jcsm_12006 crossref_primary_10_1016_j_cyto_2013_11_009 crossref_primary_10_1530_EJE_13_0276 crossref_primary_10_1016_j_celrep_2015_10_069 crossref_primary_10_1186_s13098_017_0302_5 crossref_primary_10_1556_2060_2020_00037 crossref_primary_10_1371_journal_pone_0064025 crossref_primary_10_1111_apha_12421 crossref_primary_10_3390_cells13030277 crossref_primary_10_62347_PZDM1736 crossref_primary_10_3389_fendo_2022_879066 crossref_primary_10_1080_02640414_2018_1530056 crossref_primary_10_1038_s41440_023_01508_3 crossref_primary_10_1016_j_metabol_2013_04_007 crossref_primary_10_1139_apnm_2024_0091 crossref_primary_10_1016_j_metabol_2013_04_008 crossref_primary_10_34172_jsums_2021_03 crossref_primary_10_1111_apha_13766 crossref_primary_10_3390_ijms241512440 crossref_primary_10_1155_jdr_6624919 crossref_primary_10_3803_EnM_2020_658 crossref_primary_10_1016_j_peptides_2014_01_016 crossref_primary_10_1080_10641963_2021_2018601 crossref_primary_10_1016_j_cellsig_2015_04_010 crossref_primary_10_3390_ijms21144977 crossref_primary_10_1371_journal_pone_0181259 crossref_primary_10_3390_jcm9092797 crossref_primary_10_1089_acm_2020_0104 crossref_primary_10_1089_ther_2019_0001 crossref_primary_10_1111_apha_12686 crossref_primary_10_1002_dmrr_2660 crossref_primary_10_5812_ijp_63642 crossref_primary_10_1186_s40064_016_2869_y crossref_primary_10_3109_14767058_2016_1142967 crossref_primary_10_1016_j_biochi_2021_06_016 crossref_primary_10_1055_a_1284_5428 crossref_primary_10_3389_fphar_2019_00548 crossref_primary_10_1007_s13300_019_0588_4 crossref_primary_10_1002_mnfr_201300126 crossref_primary_10_1016_j_brainresbull_2022_07_007 crossref_primary_10_54393_pbmj_v6i07_905 crossref_primary_10_12688_f1000research_11107_2 crossref_primary_10_12688_f1000research_11107_1 crossref_primary_10_31680_gaunjss_1119354 crossref_primary_10_1097_MD_0000000000003742 crossref_primary_10_33549_physiolres_932997 crossref_primary_10_1155_2018_3296535 crossref_primary_10_1007_s13105_021_00825_w crossref_primary_10_3109_01443615_2016_1174200 crossref_primary_10_3389_fendo_2022_946982 crossref_primary_10_1016_j_jhep_2013_04_030 crossref_primary_10_1016_j_scispo_2016_07_005 crossref_primary_10_2337_db13_1586 crossref_primary_10_1016_j_livres_2020_03_001 crossref_primary_10_1016_j_biocel_2016_07_022 crossref_primary_10_1515_revneuro_2024_0147 crossref_primary_10_3389_fncel_2014_00170 crossref_primary_10_1371_journal_pone_0088060 crossref_primary_10_1111_dth_13272 crossref_primary_10_1155_2013_746281 crossref_primary_10_1007_s00198_014_2673_x crossref_primary_10_1016_j_numecd_2019_09_025 crossref_primary_10_1016_j_cyto_2021_155553 crossref_primary_10_1016_j_metabol_2015_07_019 crossref_primary_10_2337_db13_1106 crossref_primary_10_1016_j_neulet_2021_136261 crossref_primary_10_1007_s12291_022_01083_3 crossref_primary_10_3390_app12125837 crossref_primary_10_3390_ijms21228848 crossref_primary_10_58962_HSR_2024_10_1_27_38 crossref_primary_10_1101_gad_211649_112 crossref_primary_10_3390_metabo13090979 crossref_primary_10_1016_j_peptides_2019_01_004 crossref_primary_10_1080_14767058_2018_1454422 crossref_primary_10_3390_jcm9103158 crossref_primary_10_1016_j_aehs_2024_08_001 crossref_primary_10_1016_j_peptides_2016_12_014 crossref_primary_10_4093_dmj_2016_40_5_386 crossref_primary_10_4103_MJBL_MJBL_52_22 crossref_primary_10_1507_endocrj_EJ17_0260 crossref_primary_10_2147_DMSO_S249090 crossref_primary_10_1080_13813455_2021_1894178 crossref_primary_10_1089_thy_2016_0098 crossref_primary_10_1016_j_metabol_2015_07_020 crossref_primary_10_3390_genes13081368 crossref_primary_10_1007_s12265_022_10310_4 crossref_primary_10_1007_s11695_022_06426_w crossref_primary_10_1016_j_freeradbiomed_2016_02_018 crossref_primary_10_1080_13813455_2020_1829649 crossref_primary_10_1371_journal_pone_0160364 crossref_primary_10_3389_fendo_2024_1388717 crossref_primary_10_3390_genes13091612 crossref_primary_10_1371_journal_pone_0102483 crossref_primary_10_3390_healthcare8040378 crossref_primary_10_1016_j_tips_2013_04_004 crossref_primary_10_1016_j_ijbiomac_2021_02_181 crossref_primary_10_17343_sdutfd_718412 crossref_primary_10_1111_cen_13805 crossref_primary_10_1590_2359_3997000000270 crossref_primary_10_1002_jcla_22077 crossref_primary_10_1530_JOE_15_0026 crossref_primary_10_3389_fendo_2022_918467 crossref_primary_10_36899_japs_2024_5_0809 crossref_primary_10_1016_j_scispo_2023_10_005 crossref_primary_10_1038_s41598_020_57855_5 crossref_primary_10_1002_jcp_27541 crossref_primary_10_18632_oncotarget_21636 crossref_primary_10_1186_s12958_021_00702_7 crossref_primary_10_1016_j_tips_2015_08_014 crossref_primary_10_1016_j_biopha_2023_115347 crossref_primary_10_4161_adip_27370 crossref_primary_10_15857_ksep_2016_25_3_174 crossref_primary_10_4070_kcj_2016_0079 crossref_primary_10_1111_cen_13800 crossref_primary_10_2196_50030 crossref_primary_10_3390_ijms242316870 crossref_primary_10_1007_s00424_015_1701_9 crossref_primary_10_2174_1389203723666220629163524 crossref_primary_10_1016_j_acthis_2019_02_001 crossref_primary_10_1016_j_peptides_2018_03_018 crossref_primary_10_1155_2019_1932503 crossref_primary_10_3390_genes12050755 crossref_primary_10_1038_ijo_2017_255 crossref_primary_10_1016_j_cryobiol_2015_10_143 crossref_primary_10_3389_fphys_2020_00025 crossref_primary_10_3390_biomedicines10092253 crossref_primary_10_1186_1741_7015_11_235 crossref_primary_10_1111_jdi_13249 crossref_primary_10_1016_j_bbr_2022_114008 crossref_primary_10_1016_j_metabol_2014_04_001 crossref_primary_10_14814_phy2_12419 crossref_primary_10_3390_nu11102368 crossref_primary_10_1007_s40618_014_0078_5 crossref_primary_10_1016_j_numecd_2018_04_009 crossref_primary_10_1007_s11695_019_03998_y crossref_primary_10_35864_evmd_954977 crossref_primary_10_1111_1440_1681_12439 crossref_primary_10_1007_s00421_020_04332_6 crossref_primary_10_1016_j_nicl_2023_103555 crossref_primary_10_1016_j_transproceed_2018_02_169 crossref_primary_10_1007_s00403_022_02378_4 crossref_primary_10_1124_jpet_124_002238 crossref_primary_10_7759_cureus_46483 crossref_primary_10_1016_j_metabol_2017_10_011 crossref_primary_10_25048_tudod_1516025 crossref_primary_10_1080_17461391_2018_1478452 crossref_primary_10_1016_j_metabol_2013_09_003 crossref_primary_10_2147_CIA_S308893 crossref_primary_10_1590_2359_3997000000077 crossref_primary_10_1186_s40246_022_00383_2 crossref_primary_10_3390_ani10122268 crossref_primary_10_3390_biom14070768 crossref_primary_10_1016_j_metabol_2016_02_006 crossref_primary_10_1016_j_brainres_2024_149192 crossref_primary_10_1016_j_bbrc_2019_10_077 crossref_primary_10_24880_maeuvfd_1202455 crossref_primary_10_1007_s10571_014_0053_x crossref_primary_10_4161_adip_26082 crossref_primary_10_1007_s12662_024_00984_0 crossref_primary_10_1007_s13105_015_0433_9 crossref_primary_10_1016_j_bmcl_2013_12_016 crossref_primary_10_1186_s12944_016_0224_5 crossref_primary_10_1038_s41598_024_61415_6 crossref_primary_10_1152_ajpendo_00308_2013 crossref_primary_10_1007_s13679_014_0091_1 crossref_primary_10_1038_nrendo_2013_230 crossref_primary_10_3390_foods10102318 crossref_primary_10_1016_j_pupt_2017_10_011 crossref_primary_10_1111_nyas_12009 crossref_primary_10_3390_ijerph18031261 crossref_primary_10_1016_j_imr_2014_09_007 crossref_primary_10_1016_j_neulet_2017_02_066 crossref_primary_10_1515_hmbci_2019_0009 crossref_primary_10_1016_j_ando_2014_05_005 crossref_primary_10_1002_jcb_30565 crossref_primary_10_1007_s40487_022_00194_4 crossref_primary_10_1155_2019_6737318 crossref_primary_10_1155_2015_359159 crossref_primary_10_34172_ddj_1633 crossref_primary_10_1590_1678_4685_jbn_3802 crossref_primary_10_3389_fphar_2024_1461995 crossref_primary_10_1530_EC_21_0625 crossref_primary_10_1007_s12020_022_03010_1 crossref_primary_10_1371_journal_pone_0060563 crossref_primary_10_1016_j_neuropharm_2024_109986 crossref_primary_10_5812_asjsm_68943 crossref_primary_10_3389_fendo_2022_989135 crossref_primary_10_1007_s11010_025_05225_y crossref_primary_10_14814_phy2_13539 crossref_primary_10_1016_j_biopha_2019_109452 crossref_primary_10_1007_s10549_021_06111_z crossref_primary_10_4103_1687_4625_195886 crossref_primary_10_1016_j_metabol_2019_01_013 crossref_primary_10_1097_JP9_0000000000000039 crossref_primary_10_1371_journal_pone_0100218 crossref_primary_10_1111_eci_12468 crossref_primary_10_1007_s13105_015_0400_5 crossref_primary_10_1038_nrendo_2013_204 crossref_primary_10_1007_s00592_014_0576_0 crossref_primary_10_1038_s41598_024_76658_6 crossref_primary_10_1080_00015458_2018_1534393 crossref_primary_10_1016_j_arr_2022_101680 crossref_primary_10_3390_ijms151223163 crossref_primary_10_1007_s11357_023_01025_8 crossref_primary_10_1155_2015_924131 crossref_primary_10_1155_2017_9414525 crossref_primary_10_1111_sms_12904 crossref_primary_10_3390_biomedicines10102529 crossref_primary_10_1590_2175_8239_jbn_2019_0051 crossref_primary_10_1016_j_obmed_2015_12_002 crossref_primary_10_1074_jbc_M114_617399 crossref_primary_10_14814_phy2_13319 crossref_primary_10_1210_endocr_bqac208 crossref_primary_10_1096_fj_201801754RR crossref_primary_10_21215_kjfp_2022_12_5_311 crossref_primary_10_1089_lap_2021_0558 crossref_primary_10_3389_fphys_2021_620608 crossref_primary_10_1038_srep08889 crossref_primary_10_1016_j_advms_2025_01_010 crossref_primary_10_1590_s1677_5538_ibju_2017_0404 crossref_primary_10_1159_000487689 crossref_primary_10_1210_jc_2013_3669 crossref_primary_10_14814_phy2_12262 crossref_primary_10_12677_OJNS_2021_91018 crossref_primary_10_1002_oby_21029 crossref_primary_10_1111_cen_12582 crossref_primary_10_1371_journal_pone_0073680 crossref_primary_10_1016_j_metabol_2013_09_013 crossref_primary_10_1152_physiol_00019_2013 crossref_primary_10_3390_ijerph18189797 crossref_primary_10_3390_jcm12010369 crossref_primary_10_1186_s12944_019_1128_y crossref_primary_10_1016_j_imr_2018_01_007 crossref_primary_10_1155_2021_6656671 crossref_primary_10_1159_000517529 crossref_primary_10_1016_j_molmet_2020_01_016 crossref_primary_10_2478_enr_2024_0013 crossref_primary_10_31362_patd_1102543 crossref_primary_10_3389_fphys_2020_562895 crossref_primary_10_1007_s00018_016_2420_x crossref_primary_10_23736_S0393_3660_22_04790_8 crossref_primary_10_1007_s13105_015_0402_3 crossref_primary_10_1016_j_cyto_2016_12_018 crossref_primary_10_1371_journal_pone_0121367 crossref_primary_10_3390_ijms22084052 crossref_primary_10_2147_IJGM_S483793 crossref_primary_10_1016_j_diabres_2013_12_025 crossref_primary_10_3389_fphys_2017_00171 crossref_primary_10_3390_biology11070999 crossref_primary_10_1038_nrendo_2016_221 crossref_primary_10_3390_biom11020286 crossref_primary_10_4161_21623945_2014_964075 crossref_primary_10_1080_1354750X_2018_1485056 crossref_primary_10_1016_j_cmet_2013_09_008 crossref_primary_10_1016_j_dib_2018_10_028 crossref_primary_10_1097_MCO_0b013e328363bc65 crossref_primary_10_1177_1010428319892790 crossref_primary_10_3390_ijms21207587 crossref_primary_10_14341_probl12779 crossref_primary_10_3390_biom14030291 crossref_primary_10_1186_s12872_016_0239_x crossref_primary_10_3390_ijms23020690 crossref_primary_10_52881_gsbdergi_861600 crossref_primary_10_1016_j_bbr_2021_113472 crossref_primary_10_1016_j_lfs_2020_118954 crossref_primary_10_3389_fphys_2020_596896 crossref_primary_10_1016_j_tice_2025_102829 crossref_primary_10_1111_cen_12383 crossref_primary_10_1155_2023_5810157 crossref_primary_10_1371_journal_pone_0136864 crossref_primary_10_1016_j_critrevonc_2022_103578 crossref_primary_10_1007_s41999_022_00635_3 crossref_primary_10_1093_lifemeta_loae006 crossref_primary_10_1371_journal_pone_0131171 crossref_primary_10_1016_j_ebiom_2016_02_041 crossref_primary_10_1210_jc_2013_2373 crossref_primary_10_1016_j_scispo_2017_11_002 crossref_primary_10_1016_j_arr_2015_05_001 crossref_primary_10_1186_s12974_018_1177_6 crossref_primary_10_2147_NDT_S290148 crossref_primary_10_1515_cclm_2017_0674 crossref_primary_10_14341_probl13250 crossref_primary_10_1159_000521265 crossref_primary_10_1371_journal_pone_0120354 crossref_primary_10_1016_j_metabol_2018_01_013 crossref_primary_10_3389_fendo_2019_00621 crossref_primary_10_1038_s41598_020_74588_7 crossref_primary_10_3390_nu13051459 crossref_primary_10_1186_s41043_024_00730_0 crossref_primary_10_1002_tox_24027 crossref_primary_10_1155_2019_6561726 crossref_primary_10_1210_jc_2013_4127 crossref_primary_10_1016_j_jare_2024_11_031 crossref_primary_10_1371_journal_pone_0176137 crossref_primary_10_3390_ijms22041530 crossref_primary_10_1515_med_2020_0215 crossref_primary_10_3390_ijms252111418 crossref_primary_10_1096_fj_14_263699 crossref_primary_10_1016_j_amjms_2021_02_020 crossref_primary_10_2478_pjst_2020_0023 crossref_primary_10_26477_jbcd_v36i1_3587 crossref_primary_10_1016_j_arr_2022_101829 crossref_primary_10_1007_s13304_024_01866_8 crossref_primary_10_1016_j_repbio_2017_05_011 crossref_primary_10_1016_j_peptides_2012_11_014 crossref_primary_10_1038_s41585_021_00476_y crossref_primary_10_1371_journal_pone_0189254 crossref_primary_10_1007_s11357_014_9620_9 crossref_primary_10_1177_1933719117711264 crossref_primary_10_1371_journal_pone_0165229 crossref_primary_10_1002_iub_1511 crossref_primary_10_1016_j_gene_2014_08_045 crossref_primary_10_1016_j_jhep_2018_10_021 crossref_primary_10_1016_j_jot_2023_09_007 crossref_primary_10_3390_ijms19123727 crossref_primary_10_1038_s41598_021_87974_6 crossref_primary_10_1016_j_currproblcancer_2019_100529 crossref_primary_10_7759_cureus_41475 crossref_primary_10_3803_EnM_2015_30_3_235 crossref_primary_10_1007_s12264_022_00914_w crossref_primary_10_2217_clp_13_71 crossref_primary_10_1074_jbc_M113_516641 crossref_primary_10_14814_phy2_70167 crossref_primary_10_1371_journal_pone_0154319 crossref_primary_10_1155_2020_1897027 crossref_primary_10_1002_fsn3_4321 crossref_primary_10_1007_s40519_018_0491_4 crossref_primary_10_3389_fphys_2021_564963 crossref_primary_10_1186_s12885_015_1898_1 crossref_primary_10_3109_0886022X_2016_1172918 crossref_primary_10_1007_s40618_021_01529_0 crossref_primary_10_1016_j_drudis_2022_03_019 crossref_primary_10_51539_biotech_1180314 crossref_primary_10_1007_s40618_020_01432_0 crossref_primary_10_33549_physiolres_934896 crossref_primary_10_3390_metabo13020270 crossref_primary_10_1016_j_arr_2022_101637 crossref_primary_10_1016_j_jneuroim_2016_08_007 crossref_primary_10_1093_stmcls_sxab010 crossref_primary_10_3803_EnM_2016_31_3_361 crossref_primary_10_7717_peerj_18413 crossref_primary_10_3389_fphys_2024_1410068 crossref_primary_10_1186_s13098_019_0458_2 crossref_primary_10_1210_endrev_bnab003 crossref_primary_10_3390_app11157120 crossref_primary_10_1371_journal_pone_0201499 crossref_primary_10_1007_s00408_016_9870_7 crossref_primary_10_1016_j_gene_2020_145018 crossref_primary_10_3389_fphys_2019_00522 crossref_primary_10_1210_clinem_dgaa720 crossref_primary_10_1016_j_diabres_2018_03_046 crossref_primary_10_1016_j_mce_2016_09_030 crossref_primary_10_1007_s00210_023_02726_9 crossref_primary_10_3390_ijerph16040660 crossref_primary_10_1016_j_gene_2018_01_097 crossref_primary_10_3389_fendo_2017_00320 crossref_primary_10_1186_s12902_019_0479_8 crossref_primary_10_1016_j_domaniend_2023_106787 crossref_primary_10_1111_resp_12963 crossref_primary_10_1111_eci_12196 crossref_primary_10_1515_hmbci_2017_0054 crossref_primary_10_1007_s11095_025_03834_2 crossref_primary_10_1016_j_arr_2022_101611 crossref_primary_10_1007_s13410_019_00717_2 crossref_primary_10_1007_s12272_017_0994_y crossref_primary_10_1016_j_cca_2021_08_022 crossref_primary_10_3389_fendo_2025_1554617 crossref_primary_10_21070_acopen_8_2023_7844 crossref_primary_10_1111_febs_12619 crossref_primary_10_1371_journal_pone_0109957 crossref_primary_10_1080_14767058_2020_1793315 crossref_primary_10_1159_000543214 crossref_primary_10_14218_JCTH_2017_00013 crossref_primary_10_18229_kocatepetip_1138553 crossref_primary_10_1016_j_jbspin_2017_03_011 crossref_primary_10_1016_j_ygcen_2017_06_027 crossref_primary_10_3389_fphys_2022_935772 crossref_primary_10_1016_j_metabol_2015_05_010 crossref_primary_10_1371_journal_pone_0210320 crossref_primary_10_3920_CEP220047 crossref_primary_10_1002_dmrr_2767 crossref_primary_10_1530_EJE_14_0204 crossref_primary_10_1007_s11357_022_00692_3 crossref_primary_10_1080_13813455_2019_1673432 crossref_primary_10_1186_s12902_016_0123_9 crossref_primary_10_1053_j_jrn_2020_05_005 crossref_primary_10_23736_S0393_3660_22_04972_5 crossref_primary_10_2478_ahem_2022_0031 crossref_primary_10_1080_14767058_2019_1667322 crossref_primary_10_1371_journal_pone_0090696 crossref_primary_10_1177_10998004221142580 crossref_primary_10_1002_ajhb_22493 crossref_primary_10_1016_j_metabol_2015_05_005 crossref_primary_10_1155_2015_620919 crossref_primary_10_1016_j_metabol_2023_155711 crossref_primary_10_1038_s41401_020_00557_5 crossref_primary_10_1016_j_jdiacomp_2013_09_011 crossref_primary_10_1089_cbr_2019_2933 crossref_primary_10_1016_j_heliyon_2022_e12352 crossref_primary_10_1002_oby_20739 crossref_primary_10_3390_ijms23094759 crossref_primary_10_1016_j_metabol_2015_12_006 crossref_primary_10_1016_j_gene_2017_05_010 crossref_primary_10_3390_ijerph18116042 crossref_primary_10_1111_ggi_13030 crossref_primary_10_1002_jcp_25857 crossref_primary_10_1016_j_metabol_2014_06_001 crossref_primary_10_1080_09546634_2016_1254327 crossref_primary_10_1007_s11357_014_9733_1 crossref_primary_10_4155_fmc_2017_0035 crossref_primary_10_1055_a_0723_3749 crossref_primary_10_33689_spormetre_657420 crossref_primary_10_1534_g3_117_044651 crossref_primary_10_1080_14767058_2019_1597843 crossref_primary_10_53886_gga_e0000151_PT crossref_primary_10_29235_1814_6023_2021_18_4_402_412 crossref_primary_10_3390_ijms21249408 crossref_primary_10_1007_s11695_023_06764_3 crossref_primary_10_3390_biology10111207 crossref_primary_10_1016_j_mehy_2016_02_020 crossref_primary_10_1016_j_scispo_2022_08_004 crossref_primary_10_1016_j_metabol_2013_10_011 crossref_primary_10_1155_2013_320724 crossref_primary_10_3390_jcdd9090305 crossref_primary_10_1155_2020_8818191 crossref_primary_10_1186_s12933_015_0319_8 crossref_primary_10_1016_j_neuroscience_2013_02_050 crossref_primary_10_1038_ijo_2014_42 crossref_primary_10_1093_qjmed_hcw074 crossref_primary_10_1016_j_amjmed_2014_04_025 crossref_primary_10_1016_j_jbc_2022_101679 crossref_primary_10_1515_enr_2017_0001 crossref_primary_10_1007_s00125_014_3224_x crossref_primary_10_1016_j_peptides_2013_09_011 crossref_primary_10_1113_EP088220 crossref_primary_10_3390_ijms20246159 crossref_primary_10_1016_j_metabol_2013_10_005 crossref_primary_10_1161_CIRCRESAHA_118_314129 crossref_primary_10_12677_ACM_2023_13122830 crossref_primary_10_1111_jfbc_13493 crossref_primary_10_1016_j_biopha_2017_03_070 crossref_primary_10_3390_molecules25153329 crossref_primary_10_1016_j_amolm_2025_100068 crossref_primary_10_1007_s12020_024_04139_x crossref_primary_10_21673_anadoluklin_349294 crossref_primary_10_3389_fendo_2023_1151184 crossref_primary_10_3892_mmr_2018_9743 crossref_primary_10_1016_j_jdiacomp_2016_07_019 crossref_primary_10_1016_j_arcmed_2019_05_009 crossref_primary_10_3390_nu12030742 crossref_primary_10_1210_jc_2014_1367 crossref_primary_10_1139_apnm_2017_0614 crossref_primary_10_1155_2022_8235809 crossref_primary_10_1515_jbcpp_2018_0090 crossref_primary_10_3389_fneur_2018_00818 crossref_primary_10_3390_biomedicines10020258 crossref_primary_10_3920_CEP210031 crossref_primary_10_1038_boneres_2016_56 crossref_primary_10_1002_biof_2054 crossref_primary_10_1186_1758_5996_6_133 crossref_primary_10_3390_nu16234231 crossref_primary_10_1016_j_physbeh_2017_07_004 crossref_primary_10_1089_met_2016_0109 crossref_primary_10_1016_j_phrs_2024_107480 crossref_primary_10_3389_fendo_2023_1326851 crossref_primary_10_1016_j_metabol_2013_11_012 crossref_primary_10_2174_1871529X19666190918144727 crossref_primary_10_1371_journal_pone_0072858 crossref_primary_10_1016_j_appet_2015_03_003 crossref_primary_10_1002_lsm_23839 crossref_primary_10_3389_fnagi_2021_649929 crossref_primary_10_1097_MEG_0000000000002461 crossref_primary_10_1038_srep29898 crossref_primary_10_4103_jpdtsm_jpdtsm_91_23 crossref_primary_10_1002_edm2_403 crossref_primary_10_1016_j_metabol_2013_11_009 crossref_primary_10_1016_j_peptides_2014_03_021 crossref_primary_10_1016_j_npep_2018_05_002 crossref_primary_10_1210_me_2015_1292 crossref_primary_10_1016_j_cellsig_2020_109805 crossref_primary_10_3920_CEP200050 crossref_primary_10_1016_j_mce_2015_05_036 crossref_primary_10_1016_j_metabol_2015_06_005 crossref_primary_10_1530_EC_22_0028 crossref_primary_10_3390_ijms252413480 crossref_primary_10_1038_srep18732 crossref_primary_10_3390_jcm12010062 crossref_primary_10_1038_ijo_2016_110 crossref_primary_10_1186_s13104_025_07118_1 crossref_primary_10_12680_balneo_2021_473 crossref_primary_10_1152_ajpendo_00034_2020 crossref_primary_10_3390_biology11030392 crossref_primary_10_1590_2359_3997000000166 crossref_primary_10_1590_1806_9282_20211210 crossref_primary_10_1016_j_jchemneu_2018_02_010 crossref_primary_10_1515_hmbci_2020_0007 crossref_primary_10_3389_fphys_2019_00042 crossref_primary_10_1111_cen_12627 crossref_primary_10_1186_s12933_017_0627_2 crossref_primary_10_3390_ijerph18052476 crossref_primary_10_1007_s40618_018_0899_8 crossref_primary_10_1113_jphysiol_2013_264655 crossref_primary_10_1007_s10072_021_05652_x crossref_primary_10_5507_ag_2018_007 crossref_primary_10_1007_s12020_017_1476_1 crossref_primary_10_1001_jamasurg_2019_0424 crossref_primary_10_1016_j_metabol_2013_02_002 crossref_primary_10_1016_j_jnim_2015_10_001 crossref_primary_10_1177_03000605211018422 crossref_primary_10_5812_ijem_142746 crossref_primary_10_3390_jcm11071831 crossref_primary_10_1556_OH_2014_29959 crossref_primary_10_1038_srep23067 crossref_primary_10_1016_j_peptides_2014_03_003 crossref_primary_10_1016_j_metabol_2013_02_012 crossref_primary_10_1016_j_domaniend_2020_106576 crossref_primary_10_1038_nutd_2014_7 crossref_primary_10_1155_2014_261545 crossref_primary_10_1007_s12020_015_0607_9 crossref_primary_10_1002_dev_70017 crossref_primary_10_3390_biom11020322 crossref_primary_10_1080_13813455_2019_1635622 crossref_primary_10_3109_09513590_2014_920006 crossref_primary_10_1016_j_cmet_2013_12_017 crossref_primary_10_1371_journal_pone_0124100 crossref_primary_10_3390_jcm9041150 crossref_primary_10_3390_molecules28041950 crossref_primary_10_3389_fpsyt_2022_967683 crossref_primary_10_3389_fphys_2021_746049 crossref_primary_10_1016_j_archger_2018_01_006 crossref_primary_10_1016_j_metabol_2023_155597 crossref_primary_10_1007_s12262_024_04257_w crossref_primary_10_3390_ijms24098171 crossref_primary_10_3389_fvets_2022_960778 crossref_primary_10_3389_fphys_2021_736244 crossref_primary_10_53886_gga_e0000151_EN crossref_primary_10_1155_2017_1039161 crossref_primary_10_20960_nh_03852 crossref_primary_10_1016_j_metabol_2013_12_007 crossref_primary_10_1016_j_ijbiomac_2015_12_049 crossref_primary_10_1016_j_lfs_2024_122894 crossref_primary_10_1016_j_jocd_2019_05_002 crossref_primary_10_1016_j_peptides_2014_04_002 crossref_primary_10_1155_2021_4717349 crossref_primary_10_1016_j_peptides_2014_09_014 crossref_primary_10_15857_ksep_2014_23_4_357 crossref_primary_10_1007_s12020_022_02981_5 crossref_primary_10_1016_j_gene_2014_12_010 crossref_primary_10_1016_j_peptides_2019_170182 crossref_primary_10_3390_life13122285 crossref_primary_10_3389_fimmu_2023_1224335 crossref_primary_10_3389_fneur_2023_1187666 crossref_primary_10_3390_app11125579 crossref_primary_10_1007_s00421_014_2922_x crossref_primary_10_1016_j_neulet_2016_02_046 crossref_primary_10_15857_ksep_2024_00472 crossref_primary_10_3389_fphys_2018_01782 crossref_primary_10_1515_labmed_2017_0042 crossref_primary_10_1111_resp_12513 crossref_primary_10_1186_s12944_019_0960_4 crossref_primary_10_7868_S0301179818040057 crossref_primary_10_1038_ijo_2014_101 crossref_primary_10_1242_jeb_198424 crossref_primary_10_5812_asjsm_13025 crossref_primary_10_3389_fphys_2018_01307 crossref_primary_10_1152_ajpendo_00297_2015 crossref_primary_10_1038_s41598_021_82288_z crossref_primary_10_1371_journal_pone_0170690 crossref_primary_10_1016_j_bbrc_2019_08_112 crossref_primary_10_1016_j_diabres_2018_05_038 crossref_primary_10_1210_jc_2012_2749 crossref_primary_10_20463_jenb_2018_0011 crossref_primary_10_3390_ijms25021213 crossref_primary_10_1007_s11357_023_00770_0 crossref_primary_10_1016_j_peptides_2013_11_024 crossref_primary_10_1155_2017_2628968 crossref_primary_10_1620_tjem_233_135 crossref_primary_10_1155_2014_902186 crossref_primary_10_1111_cen_13527 crossref_primary_10_1016_j_ejcb_2015_04_002 crossref_primary_10_1186_s12894_024_01404_z crossref_primary_10_3389_fphar_2020_00769 crossref_primary_10_1016_j_isci_2022_104135 crossref_primary_10_1016_j_tem_2022_06_003 crossref_primary_10_1111_cen_12672 crossref_primary_10_1016_j_ygcen_2020_113647 crossref_primary_10_1016_j_aquaculture_2021_736648 crossref_primary_10_1093_pm_pnx294 crossref_primary_10_1111_eci_12324 crossref_primary_10_1111_jdi_13517 crossref_primary_10_1016_j_jhazmat_2024_133997 crossref_primary_10_1111_cen_13555 crossref_primary_10_1139_apnm_2020_1087 crossref_primary_10_3748_wjg_v31_i7_100039 crossref_primary_10_7717_peerj_605 crossref_primary_10_1371_journal_pone_0094463 crossref_primary_10_1016_j_arr_2022_101780 crossref_primary_10_1016_j_clnu_2015_03_022 crossref_primary_10_1080_0886022X_2016_1194163 crossref_primary_10_1186_s13578_020_00413_3 crossref_primary_10_1590_0004_282x_anp_2020_0520 crossref_primary_10_1016_j_lfs_2018_11_062 crossref_primary_10_1038_srep30820 crossref_primary_10_1038_ijo_2015_130 crossref_primary_10_1007_s12072_023_10523_y crossref_primary_10_1016_j_metabol_2015_01_001 crossref_primary_10_2147_IJGM_S403564 crossref_primary_10_3390_ijerph192214925 crossref_primary_10_1371_journal_pone_0094235 crossref_primary_10_3390_ijms222011229 crossref_primary_10_1159_000505666 crossref_primary_10_1080_13813455_2020_1722706 crossref_primary_10_1186_s12882_015_0009_5 crossref_primary_10_3109_10408363_2015_1023429 crossref_primary_10_1016_j_jesf_2020_06_004 crossref_primary_10_1016_j_ejphar_2022_175476 crossref_primary_10_1113_jphysiol_2013_263707 crossref_primary_10_1042_CS20150009 crossref_primary_10_4103_jesnt_jesnt_24_22 crossref_primary_10_1007_s12020_016_0913_x crossref_primary_10_1016_j_bbadis_2015_06_017 crossref_primary_10_7600_jspfsm_63_91 crossref_primary_10_1016_j_tjog_2019_01_027 crossref_primary_10_1038_s41467_017_01131_0 crossref_primary_10_1038_ijo_2015_199 crossref_primary_10_4162_nrp_2014_8_2_177 crossref_primary_10_1007_s00424_020_02367_4 crossref_primary_10_1016_j_ghir_2015_12_008 crossref_primary_10_1016_j_metabol_2017_05_002 crossref_primary_10_1016_j_cellsig_2022_110300 crossref_primary_10_1016_j_metabol_2017_05_007 crossref_primary_10_1186_s13098_022_00922_w crossref_primary_10_1007_s40279_014_0293_4 crossref_primary_10_1038_s12276_022_00811_2 crossref_primary_10_1002_mco2_70030 crossref_primary_10_1007_s40519_017_0431_8 crossref_primary_10_1016_j_gene_2015_06_022 crossref_primary_10_1155_2019_7356187 crossref_primary_10_1186_s13098_015_0019_2 crossref_primary_10_1074_jbc_M114_591008 crossref_primary_10_1590_2359_3997000000129 crossref_primary_10_3390_ijms21020592 crossref_primary_10_1089_dna_2017_4067 crossref_primary_10_1007_s12020_018_1814_y crossref_primary_10_1007_s00394_016_1268_z crossref_primary_10_1016_j_jshs_2024_04_005 crossref_primary_10_3390_ijms24076551 crossref_primary_10_3390_nu14112289 crossref_primary_10_1016_j_tvjl_2024_106161 crossref_primary_10_1080_13813455_2020_1716018 crossref_primary_10_1016_j_metabol_2015_02_009 crossref_primary_10_1016_j_theriogenology_2021_06_011 crossref_primary_10_1016_j_peptides_2014_07_021 crossref_primary_10_3803_EnM_2022_1412 crossref_primary_10_1002_jcp_29613 crossref_primary_10_1186_s13098_024_01452_3 crossref_primary_10_1042_CS20130426 crossref_primary_10_1007_s11845_019_02020_9 |
Cites_doi | 10.2174/138161212802481192 10.1210/jc.2011-1665 10.1210/jc.2003-030519 10.1210/er.2002-0029 10.1210/jc.2011-1453 10.1038/nrendo.2012.49 10.1172/JCI31785 10.1172/JCI44271 10.1530/EJE-09-0767 10.1056/NEJM200105033441801 10.2337/diabetes.53.7.1643 10.1381/0960892053923789 10.1210/jc.2012-1289 10.1381/0960892041590980 10.1038/nature10777 10.1023/B:REMD.0000016121.58762.6d 10.1152/physrev.00012.2011 10.1113/jphysiol.2009.179515 10.1097/HJR.0b013e3282f55e09 10.1016/j.cmet.2010.03.008 10.1038/nature11364 10.1080/02640414.2011.583672 10.1097/00075197-199805000-00004 10.1111/j.1753-0407.2012.00194.x 10.1016/j.cmet.2012.02.010 10.1016/j.exger.2011.04.006 10.1152/advan.90111.2008 10.1097/00075197-200405000-00006 10.1152/physrev.90100.2007 |
ContentType | Journal Article |
Copyright | 2012 2014 INIST-CNRS Published by Elsevier Inc. |
Copyright_xml | – notice: 2012 – notice: 2014 INIST-CNRS – notice: Published by Elsevier Inc. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TM 7S9 L.6 5PM |
DOI | 10.1016/j.metabol.2012.09.002 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE Nucleic Acids Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1532-8600 |
EndPage | 1738 |
ExternalDocumentID | PMC3614417 23018146 26673725 10_1016_j_metabol_2012_09_002 S0026049512003320 1_s2_0_S0026049512003320 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: K24 DK081913 – fundername: NIDDK NIH HHS grantid: R01 DK058785 – fundername: NIDDK NIH HHS grantid: R56 DK058785 – fundername: NIDDK NIH HHS grantid: R01 DK079929 – fundername: CSRD VA grantid: I01 CX000422 – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: R56 DK058785 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: R01 DK079929 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: R01 DK058785 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: K24 DK081913 || DK |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYJJ AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACIEU ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AEVXI AFFNX AFJKZ AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HX~ HZ~ IHE J1W J5H K-O KOM L7B LZ1 M29 M41 MO0 MVM N9A O-L O9- OAUVE OB0 OHT ON- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSU SSZ T5K UAP UHS WUQ X7M Z5R ZGI ~G- ~KM AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU DOVZS EFLBG G8K LCYCR ZA5 AAYXX AGRNS CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TM 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c771t-8701fa98f2bffaed425d7676d991bdff381c211955794727906719277b8ffb0b3 |
IEDL.DBID | .~1 |
ISSN | 0026-0495 1532-8600 |
IngestDate | Thu Aug 21 18:45:04 EDT 2025 Fri Jul 11 01:07:54 EDT 2025 Fri Jul 11 06:03:50 EDT 2025 Thu Jul 10 22:10:41 EDT 2025 Mon Jul 21 06:03:27 EDT 2025 Mon Jul 21 09:15:26 EDT 2025 Tue Jul 01 00:56:38 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Fri Feb 23 02:21:22 EST 2024 Sun Feb 23 10:20:06 EST 2025 Tue Aug 26 19:44:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | WHR FNDC5 GH Irisin PGC1-α Exercise IGFBP-3 Weight loss UCP1 IGF-1 PPARγ BMI body mass index waist-to-hip ratio uncoupling protein 1 insulin-like growth factor binding protein 3 PPARγ coactivator 1 alpha growth hormone insulin-like growth factor 1 peroxisome proliferator-activated receptor gamma Physical exercise Human Messenger RNA Prediction Serum Concentration Gene expression Endocrinology Blood plasma |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c771t-8701fa98f2bffaed425d7676d991bdff381c211955794727906719277b8ffb0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Authors contributed equally to this work. |
OpenAccessLink | http://www.metabolismjournal.com/article/S0026049512003320/pdf |
PMID | 23018146 |
PQID | 1197485166 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3614417 proquest_miscellaneous_1733554100 proquest_miscellaneous_1323807670 proquest_miscellaneous_1197485166 pubmed_primary_23018146 pascalfrancis_primary_26673725 crossref_citationtrail_10_1016_j_metabol_2012_09_002 crossref_primary_10_1016_j_metabol_2012_09_002 elsevier_sciencedirect_doi_10_1016_j_metabol_2012_09_002 elsevier_clinicalkeyesjournals_1_s2_0_S0026049512003320 elsevier_clinicalkey_doi_10_1016_j_metabol_2012_09_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | Metabolism, clinical and experimental |
PublicationTitleAlternate | Metabolism |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Nocon, Hiemann, Muller-Riemenschneider (bb0015) 2008; 15 Ruschke, Fishbein, Dietrich (bb0105) 2010; 162 Welle (bb0125) 1998; 1 Pedersen, Febbraio (bb0030) 2012; 8 Vamvini, Aronis, Chamberland (bb0080) 2011; 96 Pedersen (bb0035) 2009; 587 Vijgen, Bouvy, Teule (bb0110) 2012; 97 Handschin, Choi, Chin (bb0045) 2007; 117 Thompson, Karpe, Lafontan (bb0020) 2012; 92 Ballantyne, Gumbs, Modlin (bb0095) 2005; 15 Enerback (bb0060) 2010; 11 Ogden, Carroll, Kit (bb0005) 2012; 82 Sanchis-Gomar, Lippi, Mayero (bb0150) 2012; 4 Saraslanidis, Petridou, Bogdanis (bb0075) 2011; 29 Moragianni, Aronis, Chamberland (bb0085) 2011; 96 Nijhuis, Van Dielen, Buurman (bb0090) 2004; 14 Pedersen, Febbraio (bb0145) 2008; 88 Bostrom, Wu, Jedrychowski (bb0050) 2012; 481 Herbst, Bhasin (bb0135) 2004; 7 Lee, Chan, Yiannakouris (bb0070) 2003; 88 Pinto, Di Raimondo, Tuttolomondo (bb0025) 2012 Greising, Carey, Blackford (bb0130) 2011; 46 Tuomilehto, Lindstrom, Eriksson (bb0010) 2001; 344 Villarroya (bb0100) 2012; 15 Van Der Lely, Tschop, Heiman (bb0115) 2004; 25 Timmons, Baar, Davidsen (bb0065) 2012; 488 Brown (bb0140) 2008; 32 Seale, Conroe, Estall (bb0055) 2011; 121 Febbraio, Hiscock, Sacchetti (bb0040) 2004; 53 Salvatori (bb0120) 2004; 5 Thompson (10.1016/j.metabol.2012.09.002_bb0020) 2012; 92 Nocon (10.1016/j.metabol.2012.09.002_bb0015) 2008; 15 Nijhuis (10.1016/j.metabol.2012.09.002_bb0090) 2004; 14 Timmons (10.1016/j.metabol.2012.09.002_bb0065) 2012; 488 Ballantyne (10.1016/j.metabol.2012.09.002_bb0095) 2005; 15 Brown (10.1016/j.metabol.2012.09.002_bb0140) 2008; 32 Seale (10.1016/j.metabol.2012.09.002_bb0055) 2011; 121 Greising (10.1016/j.metabol.2012.09.002_bb0130) 2011; 46 Enerback (10.1016/j.metabol.2012.09.002_bb0060) 2010; 11 Saraslanidis (10.1016/j.metabol.2012.09.002_bb0075) 2011; 29 Welle (10.1016/j.metabol.2012.09.002_bb0125) 1998; 1 Ruschke (10.1016/j.metabol.2012.09.002_bb0105) 2010; 162 Tuomilehto (10.1016/j.metabol.2012.09.002_bb0010) 2001; 344 Bostrom (10.1016/j.metabol.2012.09.002_bb0050) 2012; 481 Lee (10.1016/j.metabol.2012.09.002_bb0070) 2003; 88 Febbraio (10.1016/j.metabol.2012.09.002_bb0040) 2004; 53 Sanchis-Gomar (10.1016/j.metabol.2012.09.002_bb0150) 2012; 4 Handschin (10.1016/j.metabol.2012.09.002_bb0045) 2007; 117 Moragianni (10.1016/j.metabol.2012.09.002_bb0085) 2011; 96 Van Der Lely (10.1016/j.metabol.2012.09.002_bb0115) 2004; 25 Vamvini (10.1016/j.metabol.2012.09.002_bb0080) 2011; 96 Pedersen (10.1016/j.metabol.2012.09.002_bb0035) 2009; 587 Salvatori (10.1016/j.metabol.2012.09.002_bb0120) 2004; 5 Herbst (10.1016/j.metabol.2012.09.002_bb0135) 2004; 7 Pedersen (10.1016/j.metabol.2012.09.002_bb0030) 2012; 8 Pedersen (10.1016/j.metabol.2012.09.002_bb0145) 2008; 88 Pinto (10.1016/j.metabol.2012.09.002_bb0025) 2012 Vijgen (10.1016/j.metabol.2012.09.002_bb0110) 2012; 97 Ogden (10.1016/j.metabol.2012.09.002_bb0005) 2012; 82 Villarroya (10.1016/j.metabol.2012.09.002_bb0100) 2012; 15 18539850 - Adv Physiol Educ. 2008 Jun;32(2):120-6 20374955 - Cell Metab. 2010 Apr 7;11(4):248-52 22405065 - Cell Metab. 2012 Mar 7;15(3):277-8 15318982 - Obes Surg. 2004 Jun-Jul;14(6):783-7 18525377 - Eur J Cardiovasc Prev Rehabil. 2008 Jun;15(3):239-46 15180951 - Endocr Rev. 2004 Jun;25(3):426-57 21917874 - J Clin Endocrinol Metab. 2011 Dec;96(12):3750-8 22473333 - Nat Rev Endocrinol. 2012 Aug;8(8):457-65 15946462 - Obes Surg. 2005 May;15(5):692-9 22535970 - J Clin Endocrinol Metab. 2012 Jul;97(7):E1229-33 21123942 - J Clin Invest. 2011 Jan;121(1):96-105 19752112 - J Physiol. 2009 Dec 1;587(Pt 23):5559-68 15220185 - Diabetes. 2004 Jul;53(7):1643-8 22390642 - Curr Pharm Des. 2012;18(28):4326-49 15075918 - Curr Opin Clin Nutr Metab Care. 2004 May;7(3):271-7 14557464 - J Clin Endocrinol Metab. 2003 Oct;88(10):4848-56 21777153 - J Sports Sci. 2011 Aug;29(11):1167-74 17932564 - J Clin Invest. 2007 Nov;117(11):3463-74 22237023 - Nature. 2012 Jan 26;481(7382):463-8 22617494 - NCHS Data Brief. 2012 Jan;(82):1-8 18923185 - Physiol Rev. 2008 Oct;88(4):1379-406 22932392 - Nature. 2012 Aug 30;488(7413):E9-10; discussion E10-1 22298655 - Physiol Rev. 2012 Jan;92(1):157-91 22372821 - J Diabetes. 2012 Sep;4(3):196 14966386 - Rev Endocr Metab Disord. 2004 Mar;5(1):15-23 21570459 - Exp Gerontol. 2011 Aug;46(8):685-93 21865351 - J Clin Endocrinol Metab. 2011 Nov;96(11):3416-23 19966034 - Eur J Endocrinol. 2010 Mar;162(3):515-23 11333990 - N Engl J Med. 2001 May 3;344(18):1343-50 10565358 - Curr Opin Clin Nutr Metab Care. 1998 May;1(3):257-62 |
References_xml | – volume: 15 start-page: 692 year: 2005 end-page: 699 ident: bb0095 article-title: Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin, adiponectin and resistin publication-title: Obes Surg – volume: 88 start-page: 1379 year: 2008 end-page: 1406 ident: bb0145 article-title: Muscle as an endocrine organ: focus on muscle-derived interleukin-6 publication-title: Physiol Rev – volume: 1 start-page: 257 year: 1998 end-page: 262 ident: bb0125 article-title: Growth hormone and insulin-like growth factor-i as anabolic agents publication-title: Curr Opin Clin Nutr Metab Care – volume: 14 start-page: 783 year: 2004 end-page: 787 ident: bb0090 article-title: Ghrelin, leptin and insulin levels after restrictive surgery: a 2-year follow-up study publication-title: Obes Surg – volume: 25 start-page: 426 year: 2004 end-page: 457 ident: bb0115 article-title: Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin publication-title: Endocr Rev – volume: 96 start-page: 3750 year: 2011 end-page: 3758 ident: bb0085 article-title: Short-term energy deprivation alters activin a and follistatin but not inhibin b levels of lean healthy women in a leptin-independent manner publication-title: J Clin Endocrinol Metab – volume: 4 start-page: 196 year: 2012 ident: bb0150 article-title: Irisin: a new potential hormonal target for the treatment of obesity and type 2 diabetes publication-title: J Diabetes – volume: 82 start-page: 1 year: 2012 end-page: 8 ident: bb0005 article-title: Prevalence of obesity in the United States, 2009–2010 publication-title: NCHS Data Brief – volume: 117 start-page: 3463 year: 2007 end-page: 3474 ident: bb0045 article-title: Abnormal glucose homeostasis in skeletal muscle-specific pgc-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk publication-title: J Clin Invest – volume: 29 start-page: 1167 year: 2011 end-page: 1174 ident: bb0075 article-title: Muscle metabolism and performance improvement after two training programmes of sprint running differing in rest interval duration publication-title: J Sports Sci – volume: 587 start-page: 5559 year: 2009 end-page: 5568 ident: bb0035 article-title: The diseasome of physical inactivity — and the role of myokines in muscle–fat cross talk publication-title: J Physiol – volume: 344 start-page: 1343 year: 2001 end-page: 1350 ident: bb0010 article-title: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance publication-title: N Engl J Med – volume: 32 start-page: 120 year: 2008 end-page: 126 ident: bb0140 article-title: Skeletal muscle and bone: effect of sex steroids and aging publication-title: Adv Physiol Educ – volume: 88 start-page: 4848 year: 2003 end-page: 4856 ident: bb0070 article-title: Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects publication-title: J Clin Endocrinol Metab – volume: 7 start-page: 271 year: 2004 end-page: 277 ident: bb0135 article-title: Testosterone action on skeletal muscle publication-title: Curr Opin Clin Nutr Metab Care – volume: 92 start-page: 157 year: 2012 end-page: 191 ident: bb0020 article-title: Physical activity and exercise in the regulation of human adipose tissue physiology publication-title: Physiol Rev – volume: 46 start-page: 685 year: 2011 end-page: 693 ident: bb0130 article-title: Estradiol treatment, physical activity, and muscle function in ovarian-senescent mice publication-title: Exp Gerontol – volume: 11 start-page: 248 year: 2010 end-page: 252 ident: bb0060 article-title: Human brown adipose tissue publication-title: Cell Metab – volume: 162 start-page: 515 year: 2010 end-page: 523 ident: bb0105 article-title: Gene expression of ppargamma and pgc-1alpha in human omental and subcutaneous adipose tissues is related to insulin resistance markers and mediates beneficial effects of physical training publication-title: Eur J Endocrinol – volume: 53 start-page: 1643 year: 2004 end-page: 1648 ident: bb0040 article-title: Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction publication-title: Diabetes – volume: 488 start-page: E9 year: 2012 end-page: E10 ident: bb0065 article-title: Is irisin a human exercise gene? publication-title: Nature – volume: 8 start-page: 457 year: 2012 end-page: 465 ident: bb0030 article-title: Muscles, exercise and obesity: skeletal muscle as a secretory organ publication-title: Nat Rev Endocrinol – volume: 15 start-page: 277 year: 2012 end-page: 278 ident: bb0100 article-title: Irisin, turning up the heat publication-title: Cell Metab – volume: 121 start-page: 96 year: 2011 end-page: 105 ident: bb0055 article-title: Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice publication-title: J Clin Invest – volume: 96 start-page: 3416 year: 2011 end-page: 3423 ident: bb0080 article-title: Energy deprivation alters in a leptin- and cortisol-independent manner circulating levels of activin a and follistatin but not myostatin in healthy males publication-title: J Clin Endocrinol Metab – volume: 97 start-page: E1229 year: 2012 end-page: E1233 ident: bb0110 article-title: Increase in brown adipose tissue activity after weight loss in morbidly obese subjects publication-title: J Clin Endocrinol Metab – volume: 5 start-page: 15 year: 2004 end-page: 23 ident: bb0120 article-title: Growth hormone and igf-1 publication-title: Rev Endocr Metab Disord – year: 2012 ident: bb0025 article-title: Effects of physical exercise on inflammatory markers of atherosclerosis publication-title: Curr Pharm Des – volume: 15 start-page: 239 year: 2008 end-page: 246 ident: bb0015 article-title: Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis publication-title: Eur J Cardiovasc Prev Rehabil – volume: 481 start-page: 463 year: 2012 end-page: 468 ident: bb0050 article-title: A pgc1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis publication-title: Nature – year: 2012 ident: 10.1016/j.metabol.2012.09.002_bb0025 article-title: Effects of physical exercise on inflammatory markers of atherosclerosis publication-title: Curr Pharm Des doi: 10.2174/138161212802481192 – volume: 96 start-page: 3416 issue: 11 year: 2011 ident: 10.1016/j.metabol.2012.09.002_bb0080 article-title: Energy deprivation alters in a leptin- and cortisol-independent manner circulating levels of activin a and follistatin but not myostatin in healthy males publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2011-1665 – volume: 82 start-page: 1 year: 2012 ident: 10.1016/j.metabol.2012.09.002_bb0005 article-title: Prevalence of obesity in the United States, 2009–2010 publication-title: NCHS Data Brief – volume: 88 start-page: 4848 issue: 10 year: 2003 ident: 10.1016/j.metabol.2012.09.002_bb0070 article-title: Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2003-030519 – volume: 25 start-page: 426 issue: 3 year: 2004 ident: 10.1016/j.metabol.2012.09.002_bb0115 article-title: Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin publication-title: Endocr Rev doi: 10.1210/er.2002-0029 – volume: 96 start-page: 3750 issue: 12 year: 2011 ident: 10.1016/j.metabol.2012.09.002_bb0085 article-title: Short-term energy deprivation alters activin a and follistatin but not inhibin b levels of lean healthy women in a leptin-independent manner publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2011-1453 – volume: 8 start-page: 457 issue: 8 year: 2012 ident: 10.1016/j.metabol.2012.09.002_bb0030 article-title: Muscles, exercise and obesity: skeletal muscle as a secretory organ publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2012.49 – volume: 117 start-page: 3463 issue: 11 year: 2007 ident: 10.1016/j.metabol.2012.09.002_bb0045 article-title: Abnormal glucose homeostasis in skeletal muscle-specific pgc-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk publication-title: J Clin Invest doi: 10.1172/JCI31785 – volume: 121 start-page: 96 issue: 1 year: 2011 ident: 10.1016/j.metabol.2012.09.002_bb0055 article-title: Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice publication-title: J Clin Invest doi: 10.1172/JCI44271 – volume: 162 start-page: 515 issue: 3 year: 2010 ident: 10.1016/j.metabol.2012.09.002_bb0105 article-title: Gene expression of ppargamma and pgc-1alpha in human omental and subcutaneous adipose tissues is related to insulin resistance markers and mediates beneficial effects of physical training publication-title: Eur J Endocrinol doi: 10.1530/EJE-09-0767 – volume: 344 start-page: 1343 issue: 18 year: 2001 ident: 10.1016/j.metabol.2012.09.002_bb0010 article-title: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance publication-title: N Engl J Med doi: 10.1056/NEJM200105033441801 – volume: 53 start-page: 1643 issue: 7 year: 2004 ident: 10.1016/j.metabol.2012.09.002_bb0040 article-title: Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction publication-title: Diabetes doi: 10.2337/diabetes.53.7.1643 – volume: 15 start-page: 692 issue: 5 year: 2005 ident: 10.1016/j.metabol.2012.09.002_bb0095 article-title: Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin, adiponectin and resistin publication-title: Obes Surg doi: 10.1381/0960892053923789 – volume: 97 start-page: E1229 issue: 7 year: 2012 ident: 10.1016/j.metabol.2012.09.002_bb0110 article-title: Increase in brown adipose tissue activity after weight loss in morbidly obese subjects publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2012-1289 – volume: 14 start-page: 783 issue: 6 year: 2004 ident: 10.1016/j.metabol.2012.09.002_bb0090 article-title: Ghrelin, leptin and insulin levels after restrictive surgery: a 2-year follow-up study publication-title: Obes Surg doi: 10.1381/0960892041590980 – volume: 481 start-page: 463 issue: 7382 year: 2012 ident: 10.1016/j.metabol.2012.09.002_bb0050 article-title: A pgc1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis publication-title: Nature doi: 10.1038/nature10777 – volume: 5 start-page: 15 issue: 1 year: 2004 ident: 10.1016/j.metabol.2012.09.002_bb0120 article-title: Growth hormone and igf-1 publication-title: Rev Endocr Metab Disord doi: 10.1023/B:REMD.0000016121.58762.6d – volume: 92 start-page: 157 issue: 1 year: 2012 ident: 10.1016/j.metabol.2012.09.002_bb0020 article-title: Physical activity and exercise in the regulation of human adipose tissue physiology publication-title: Physiol Rev doi: 10.1152/physrev.00012.2011 – volume: 587 start-page: 5559 issue: Pt 23 year: 2009 ident: 10.1016/j.metabol.2012.09.002_bb0035 article-title: The diseasome of physical inactivity — and the role of myokines in muscle–fat cross talk publication-title: J Physiol doi: 10.1113/jphysiol.2009.179515 – volume: 15 start-page: 239 issue: 3 year: 2008 ident: 10.1016/j.metabol.2012.09.002_bb0015 article-title: Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis publication-title: Eur J Cardiovasc Prev Rehabil doi: 10.1097/HJR.0b013e3282f55e09 – volume: 11 start-page: 248 issue: 4 year: 2010 ident: 10.1016/j.metabol.2012.09.002_bb0060 article-title: Human brown adipose tissue publication-title: Cell Metab doi: 10.1016/j.cmet.2010.03.008 – volume: 488 start-page: E9 issue: 7413 year: 2012 ident: 10.1016/j.metabol.2012.09.002_bb0065 article-title: Is irisin a human exercise gene? publication-title: Nature doi: 10.1038/nature11364 – volume: 29 start-page: 1167 issue: 11 year: 2011 ident: 10.1016/j.metabol.2012.09.002_bb0075 article-title: Muscle metabolism and performance improvement after two training programmes of sprint running differing in rest interval duration publication-title: J Sports Sci doi: 10.1080/02640414.2011.583672 – volume: 1 start-page: 257 issue: 3 year: 1998 ident: 10.1016/j.metabol.2012.09.002_bb0125 article-title: Growth hormone and insulin-like growth factor-i as anabolic agents publication-title: Curr Opin Clin Nutr Metab Care doi: 10.1097/00075197-199805000-00004 – volume: 4 start-page: 196 issue: 3 year: 2012 ident: 10.1016/j.metabol.2012.09.002_bb0150 article-title: Irisin: a new potential hormonal target for the treatment of obesity and type 2 diabetes publication-title: J Diabetes doi: 10.1111/j.1753-0407.2012.00194.x – volume: 15 start-page: 277 issue: 3 year: 2012 ident: 10.1016/j.metabol.2012.09.002_bb0100 article-title: Irisin, turning up the heat publication-title: Cell Metab doi: 10.1016/j.cmet.2012.02.010 – volume: 46 start-page: 685 issue: 8 year: 2011 ident: 10.1016/j.metabol.2012.09.002_bb0130 article-title: Estradiol treatment, physical activity, and muscle function in ovarian-senescent mice publication-title: Exp Gerontol doi: 10.1016/j.exger.2011.04.006 – volume: 32 start-page: 120 issue: 2 year: 2008 ident: 10.1016/j.metabol.2012.09.002_bb0140 article-title: Skeletal muscle and bone: effect of sex steroids and aging publication-title: Adv Physiol Educ doi: 10.1152/advan.90111.2008 – volume: 7 start-page: 271 issue: 3 year: 2004 ident: 10.1016/j.metabol.2012.09.002_bb0135 article-title: Testosterone action on skeletal muscle publication-title: Curr Opin Clin Nutr Metab Care doi: 10.1097/00075197-200405000-00006 – volume: 88 start-page: 1379 issue: 4 year: 2008 ident: 10.1016/j.metabol.2012.09.002_bb0145 article-title: Muscle as an endocrine organ: focus on muscle-derived interleukin-6 publication-title: Physiol Rev doi: 10.1152/physrev.90100.2007 – reference: 11333990 - N Engl J Med. 2001 May 3;344(18):1343-50 – reference: 19966034 - Eur J Endocrinol. 2010 Mar;162(3):515-23 – reference: 18525377 - Eur J Cardiovasc Prev Rehabil. 2008 Jun;15(3):239-46 – reference: 22535970 - J Clin Endocrinol Metab. 2012 Jul;97(7):E1229-33 – reference: 20374955 - Cell Metab. 2010 Apr 7;11(4):248-52 – reference: 14557464 - J Clin Endocrinol Metab. 2003 Oct;88(10):4848-56 – reference: 21123942 - J Clin Invest. 2011 Jan;121(1):96-105 – reference: 22390642 - Curr Pharm Des. 2012;18(28):4326-49 – reference: 22405065 - Cell Metab. 2012 Mar 7;15(3):277-8 – reference: 22932392 - Nature. 2012 Aug 30;488(7413):E9-10; discussion E10-1 – reference: 15220185 - Diabetes. 2004 Jul;53(7):1643-8 – reference: 14966386 - Rev Endocr Metab Disord. 2004 Mar;5(1):15-23 – reference: 22372821 - J Diabetes. 2012 Sep;4(3):196 – reference: 22237023 - Nature. 2012 Jan 26;481(7382):463-8 – reference: 22617494 - NCHS Data Brief. 2012 Jan;(82):1-8 – reference: 18923185 - Physiol Rev. 2008 Oct;88(4):1379-406 – reference: 21917874 - J Clin Endocrinol Metab. 2011 Dec;96(12):3750-8 – reference: 22473333 - Nat Rev Endocrinol. 2012 Aug;8(8):457-65 – reference: 15180951 - Endocr Rev. 2004 Jun;25(3):426-57 – reference: 22298655 - Physiol Rev. 2012 Jan;92(1):157-91 – reference: 21777153 - J Sports Sci. 2011 Aug;29(11):1167-74 – reference: 15318982 - Obes Surg. 2004 Jun-Jul;14(6):783-7 – reference: 19752112 - J Physiol. 2009 Dec 1;587(Pt 23):5559-68 – reference: 21865351 - J Clin Endocrinol Metab. 2011 Nov;96(11):3416-23 – reference: 15075918 - Curr Opin Clin Nutr Metab Care. 2004 May;7(3):271-7 – reference: 15946462 - Obes Surg. 2005 May;15(5):692-9 – reference: 10565358 - Curr Opin Clin Nutr Metab Care. 1998 May;1(3):257-62 – reference: 21570459 - Exp Gerontol. 2011 Aug;46(8):685-93 – reference: 18539850 - Adv Physiol Educ. 2008 Jun;32(2):120-6 – reference: 17932564 - J Clin Invest. 2007 Nov;117(11):3463-74 |
SSID | ssj0007786 |
Score | 2.5881608 |
Snippet | In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified... Abstract Objective In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as... Objective: In mouse, PGC1-[alpha] overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a... OBJECTIVE: In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1725 |
SubjectTerms | adenosine triphosphate Adenosine Triphosphate - blood Adiponectin Adult Age Athletes ATP Bariatric Surgery Biological and medical sciences Biomarkers - blood blood serum Body mass Body Mass Index Cholesterol correlation Cross-Sectional Studies Endocrinology & Metabolism Exercise Feeding. Feeding behavior Female Fibronectins - blood Fibronectins - genetics Fibronectins - metabolism FNDC5 Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation genes ghrelin Glucose Glycolysis Hormones Hormones - blood Humans Insulin Insulin-like growth factor I Irisin Lipolysis Male males Membrane proteins messenger RNA Metabolism Metabolites mice Middle Aged middle-aged adults mRNA muscle tissues Muscles Obesity Obesity, Morbid - blood Obesity, Morbid - surgery Physical training physiological regulation Regression analysis RNA, Messenger - blood Running subcutaneous fat Surgery tissue distribution Vertebrates: anatomy and physiology, studies on body, several organs or systems Weight Loss women |
Title | FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0026049512003320 https://www.clinicalkey.es/playcontent/1-s2.0-S0026049512003320 https://dx.doi.org/10.1016/j.metabol.2012.09.002 https://www.ncbi.nlm.nih.gov/pubmed/23018146 https://www.proquest.com/docview/1197485166 https://www.proquest.com/docview/1323807670 https://www.proquest.com/docview/1733554100 https://pubmed.ncbi.nlm.nih.gov/PMC3614417 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWi0BICMHyKo_KSFzT5mkn3KpC1YK2QoiV9mbFiQ1ZbdOqScXuhR_Gr2PGcVIKVRch9dCmM05ij8ff2PMg5E2qAsl1qBwv0AwMlCR2UjBTnASrprFAhTLBaOTTOZuehR_Oo_MjMm5jYdCt0ur-RqcbbW2vDG1vDldFgTG-gMUB33voXxX4aLeHIUcpH_zYunlgfrTGzQMsZ6DeRvEMLwYLVUNX4wkEbgkm3e7KnvXp3iqtoNd0U-5iHx79063yt3Vq8oDctwCTjpp3eEiOVHlCbjclJ69PyJ1Te5j-iPyczN-NI5qWOS1gqhclhY-p2Ve9pbMB_bRGUqzGQ5eaZsU6M6W-yq80w1jH0ibcrZANBHmzME2tAI4vUvN1Bo0sPs9HVF1Zd9vSXD_c1Lrx2lW0XtLvZuOWXkJPGc62QNRjcjZ5_2U8dWwpByfj3KtB57qeTpNY-1LrVOWgKXLOOMsBnspca8ANGeaaiyLQDwCpElhEAXtyLmOtpSuDJ-S4XJbqGaFShmjQu1ke61BrFacY-8tcXwK4DZTbI2E7gCKzec6x3MalaB3aLoQdd4HjLtxEwLj3yKBjWzWJPm5iYK10iDaKFfSugKXoJka-j1FVVntUwhMVEIu_JLxH4o5zZ5L8y037OwLcvaPPTKWiqEdetxItQMPgsVFaquUGnsYDmxOAOWMHaAIfKxcw7h6g4QGCW88FmqfNTNk-RYCJ40K4A9-ZQx0BZkHf_acsvpls6AFuaXj8-f_3zQtyF381TkovyXG93qhXADVr2Te6pE9ujWYfp_NfQPKAsg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELemTjwkhGC8ymMYia9p87QTvlWFqmVrhNAm7ZsVJzZkWtOqSQX8a_x13CVORqHqEFI_VMmdk5zt8-_sexDyNlGe5NpXluNpBgZKFFoJmClWhFXTmKd8GWE08jxm03P_40VwcUDGbSwMulUa3d_o9FpbmytDI83hKs8xxhewOOB7B_2rPBfs9kPMThX0yOFodjKNO4WMKdIaTw8wnoHhOpBneDlYqAqkjYcQuCsYdRssO5aoe6ukBMHppuLFLkj6p2flb0vV5AG5bzAmHTWf8ZAcqOKI3GqqTv44Irfn5jz9Efk5id-PA5oUGc1htucFhV9dtq98R2cD-mmNpFiQhy41TfN1Wlf7Kr7QFMMdC5Nzt0Q2GMubRd3UChD5Iqn_zqCRxed4RNV343Fb1Nf3N7VuHHcVrZb0W713S69AUjVnWyPqMTmffDgbTy1TzcFKOXcqULu2o5Mo1K7UOlEZKIuMM84yQKgy0xqgQ4rp5oIAVASgqgjWUYCfnMtQa2lL7wnpFctCPSNUSh9tejvNQu1rrcIEw3-Z7UrAt56y-8RvO1CkJtU5Vty4Eq1P26Uw_S6w34UdCej3Phl0bKsm18dNDKwdHaINZAXVK2A1uomR72JUpVEgpXBECcTir0HeJ2HHuTVP_uWhx1sDuPtGl9XFioI-edOOaAFKBk-OkkItN_A2DpidgM0Z20PjuVi8gHF7Dw33EN86NtA8bWbK9Vt4mDvOhyfwrTnUEWAi9O07Rf61Toju4a6Gw5__v2xekzvTs_mpOJ3FJy_IXbzT-Cy9JL1qvVGvAHlW8tholl8m9oNj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FNDC5+and+irisin+in+humans%3A+I.+Predictors+of+circulating+concentrations+in+serum+and+plasma+and+II.+mRNA+expression+and+circulating+concentrations+in+response+to+weight+loss+and+exercise&rft.jtitle=Metabolism%2C+clinical+and+experimental&rft.au=JOO+YOUNG+HUH&rft.au=PANAGIOTOU%2C+Grigorios&rft.au=MOUGIOS%2C+Vassilis&rft.au=BRINKOETTER%2C+Mary&rft.date=2012-12-01&rft.pub=Elsevier&rft.issn=0026-0495&rft.volume=61&rft.issue=12&rft.spage=1725&rft.epage=1738&rft_id=info:doi/10.1016%2Fj.metabol.2012.09.002&rft.externalDBID=n%2Fa&rft.externalDocID=26673725 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00260495%2FS0026049511X00239%2Fcov150h.gif |