angiosperm radiation revisited, an ecological explanation for Darwin's 'abominable mystery'

One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 12; no. 9; pp. 865 - 872
Main Authors Berendse, Frank, Scheffer, Marten
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.09.2009
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models.
AbstractList One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models. [PUBLICATION ABSTRACT]
One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models.
One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models.One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models.
AbstractOne of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models.
Author Scheffer, Marten
Berendse, Frank
Author_xml – sequence: 1
  fullname: Berendse, Frank
– sequence: 2
  fullname: Scheffer, Marten
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21846598$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19572916$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAYhSM0xD7gL0CEBL2hxV-xYySQUFcGUgcSMEDi4pXjOsUltYudru2_x1m7ArsZuYit-DlH8XnPcXbgvDNZlmM0wOl5PhtgxnEfEVYOCEJygDBlZLC-kx3tDw72e_rtMDuOcYYQJlLge9khloUgEvOj7LtyU-vjwoR5HtTEqtZ6lwdzaaNtzeRZrlxutG_81GrV5Ga9aJTbQrUP-akKK-t6Me-pys-tU1Vj8vkmtiZsevezu7VqonmwW0-yizejz8O3_fGHs3fD1-O-FgKRvua0ruoJY5pUBaeY12aiSF3RymgmtTClRhVTEtGykkrWquQFE1KKoi4NZoaeZC-2vis1Nc669AKngrYRvLLQ2CqosIHVMoBrumWxrCLQEhUlSuJXW3H6ODcTbVwbVAOLYOedqDP498TZHzD1l0CEEKQQyeDpziD4X0sTW5jbqE2TcjJ-GYELjkrK0a0g45QzydmtIEFCcsRJAh_fAGd-GVzKOjGUc4oKmqCHf19wf7PrDiTgyQ5QMc24Dsp10V1zBJeMF7L8k5QOPsZgatC2vapCysU2gBF05YQZdL2DroPQlROuygnrZFDeMNj_y-3Sl7sR28Zs_lsHo_Go2yV9f6u3qZrrvV6Fn2k-VBTw9f0ZnLOPxfmXIYbTxD_a8rXyoKYh5XHxiSRXhHnKlRX0N1ebFiM
CitedBy_id crossref_primary_10_1098_rspb_2017_1223
crossref_primary_10_1111_1365_2745_70026
crossref_primary_10_1111_j_1469_8137_2011_03912_x
crossref_primary_10_1016_j_gloplacha_2022_103858
crossref_primary_10_1016_j_jgg_2012_02_008
crossref_primary_10_1016_j_tree_2013_05_019
crossref_primary_10_1890_11_0870_1
crossref_primary_10_1016_j_ympev_2020_106734
crossref_primary_10_1111_syen_12357
crossref_primary_10_1111_nph_13491
crossref_primary_10_1111_cla_12521
crossref_primary_10_3389_fevo_2023_1062764
crossref_primary_10_1016_j_revpalbo_2024_105189
crossref_primary_10_1111_cla_12124
crossref_primary_10_1038_s41598_019_42827_1
crossref_primary_10_1111_jbi_13206
crossref_primary_10_4081_ejh_2024_4027
crossref_primary_10_1111_ecog_06775
crossref_primary_10_1016_j_scitotenv_2023_162961
crossref_primary_10_1093_aob_mcae080
crossref_primary_10_1002_ajb2_1592
crossref_primary_10_1111_j_1469_8137_2012_04079_x
crossref_primary_10_1890_13_1825_1
crossref_primary_10_1111_eea_12348
crossref_primary_10_1038_s41559_023_02251_1
crossref_primary_10_1086_665819
crossref_primary_10_1111_oik_05360
crossref_primary_10_3389_fpls_2016_00263
crossref_primary_10_1111_1365_2435_12601
crossref_primary_10_1016_j_tree_2020_04_004
crossref_primary_10_1111_pala_12444
crossref_primary_10_1126_science_1207525
crossref_primary_10_1002_ece3_4499
crossref_primary_10_1016_j_biosystems_2025_105444
crossref_primary_10_1038_s42003_024_06250_1
crossref_primary_10_2517_1342_8144_15_2_100
crossref_primary_10_1111_1442_1984_12112
crossref_primary_10_1002_ece3_70320
crossref_primary_10_1016_j_gloplacha_2021_103477
crossref_primary_10_1007_s11284_012_0937_5
crossref_primary_10_1007_s10021_022_00766_5
crossref_primary_10_1111_nph_13367
crossref_primary_10_1155_2014_384912
crossref_primary_10_1086_713445
crossref_primary_10_1007_s12549_019_00406_2
crossref_primary_10_1146_annurev_environ_102511_084654
crossref_primary_10_1093_plphys_kiae051
crossref_primary_10_3390_life13040922
crossref_primary_10_1098_rspb_2018_2076
crossref_primary_10_1086_666005
crossref_primary_10_1371_journal_pone_0173090
crossref_primary_10_1111_j_1461_0248_2010_01455_x
crossref_primary_10_18476_pale_v15_a6
crossref_primary_10_1111_pce_12761
crossref_primary_10_1111_oik_10567
crossref_primary_10_1038_s41559_019_0834_1
crossref_primary_10_1111_j_1469_8137_2011_03862_x
crossref_primary_10_1016_j_tree_2022_07_008
crossref_primary_10_1111_j_1469_8137_2010_03418_x
crossref_primary_10_1111_nph_16850
crossref_primary_10_1016_j_watres_2024_121575
crossref_primary_10_1111_j_1461_0248_2009_01410_x
crossref_primary_10_1093_zoolinnean_zlac096
crossref_primary_10_1016_j_apmt_2022_101471
crossref_primary_10_1098_rstb_2020_0118
crossref_primary_10_1111_j_1461_0248_2012_01782_x
crossref_primary_10_3389_fpls_2023_1128227
crossref_primary_10_1640_0002_8444_112_1_17
crossref_primary_10_1007_s00267_015_0491_3
crossref_primary_10_1111_jipb_13609
crossref_primary_10_1098_rspb_2014_1470
crossref_primary_10_1007_s11258_021_01208_3
crossref_primary_10_1007_s11258_023_01391_5
crossref_primary_10_1016_j_ecolmodel_2015_08_022
crossref_primary_10_1017_S0016756819000761
crossref_primary_10_7717_peerj_4580
crossref_primary_10_1016_j_biocon_2015_06_019
crossref_primary_10_1038_s41598_023_42571_7
crossref_primary_10_3390_plants10040652
crossref_primary_10_1093_evolut_qpad053
crossref_primary_10_1002_cplx_20323
crossref_primary_10_1111_ele_12323
crossref_primary_10_1038_s41467_022_30037_9
crossref_primary_10_1016_j_tree_2013_06_001
crossref_primary_10_1144_SP378_1
crossref_primary_10_1002_ecm_1292
crossref_primary_10_1890_11_1906_1
crossref_primary_10_1007_s00435_022_00565_5
crossref_primary_10_1111_1365_2745_12192
crossref_primary_10_1111_brv_12153
crossref_primary_10_1007_s11104_014_2033_9
crossref_primary_10_1111_nph_13274
crossref_primary_10_1111_geb_12634
crossref_primary_10_1038_s41467_024_45155_9
crossref_primary_10_1093_aob_mcx109
crossref_primary_10_1093_aob_mcw018
crossref_primary_10_1002_ece3_70019
crossref_primary_10_1038_ncomms2217
crossref_primary_10_1007_s11676_023_01685_4
crossref_primary_10_1016_j_tree_2020_12_003
crossref_primary_10_1016_j_cretres_2020_104532
crossref_primary_10_3389_fpls_2020_00212
crossref_primary_10_1098_rspb_2011_0559
crossref_primary_10_1111_syen_12441
crossref_primary_10_1111_j_1654_1103_2012_01387_x
crossref_primary_10_1111_jbi_13472
crossref_primary_10_3389_fpls_2024_1402946
crossref_primary_10_1016_j_cretres_2021_105088
crossref_primary_10_1111_nph_13559
crossref_primary_10_1017_pab_2018_44
crossref_primary_10_1111_syen_12602
Cites_doi 10.1007/3-540-27675-0_5
10.2307/2261121
10.1007/BF00000785
10.1017/S0094837300015840
10.1023/A:1005935823525
10.1007/s10021-004-0274-9
10.1007/978-4-431-65918-1_13
10.1046/j.1469-8137.2003.00667.x
10.1111/j.1654-1103.2004.tb02266.x
10.1126/science.206.4414.20
10.3732/ajb.0800060
10.1007/BF00043031
10.1126/science.1134853
10.1017/S1464793101005735
10.1038/374027a0
10.2307/2261398
10.1016/j.tree.2003.09.002
10.1002/(SICI)1099-1646(199901/06)15:1/3<43::AID-RRR535>3.0.CO;2-Q
10.2136/sssaj2000.641371x
10.1016/0168-9452(85)90075-5
10.1038/274661a0
10.1111/j.1461-0248.2008.01219.x
10.1073/pnas.0308127100
10.1016/j.ecolmodel.2004.12.001
10.3732/ajb.0800150
10.1006/cres.1996.0003
10.1016/j.palwor.2008.10.002
10.2307/1939130
10.1017/S009483730002131X
10.1007/BF02860849
10.3732/ajb.0800126
10.1111/plb.1997.46.2.117
10.1007/BF02858880
10.1126/science.196.4290.622
10.1016/0038-0717(94)00183-2
10.2307/3546273
10.1666/0094-8373(2004)030<0082:DADANI>2.0.CO;2
10.1139/b85-171
10.1016/S0169-5347(96)10055-0
10.1111/j.1365-2664.2004.00870.x
10.1007/BF00047389
10.1139/b93-019
10.1086/317580
10.1016/j.palaeo.2005.07.006
10.1016/S0034-6667(03)00092-7
10.1016/0169-5347(95)90007-1
10.1146/annurev.earth.26.1.379
10.1016/0034-6667(82)90038-0
10.1111/j.1095-8312.1989.tb00492.x
ContentType Journal Article
Copyright 2009 Blackwell Publishing Ltd/CNRS
2009 INIST-CNRS
Journal compilation © 2009 Blackwell Publishing Ltd/CNRS
Wageningen University & Research
Copyright_xml – notice: 2009 Blackwell Publishing Ltd/CNRS
– notice: 2009 INIST-CNRS
– notice: Journal compilation © 2009 Blackwell Publishing Ltd/CNRS
– notice: Wageningen University & Research
DBID FBQ
BSCLL
24P
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7ST
SOI
7S9
L.6
7X8
5PM
QVL
DOI 10.1111/j.1461-0248.2009.01342.x
DatabaseName AGRIS
Istex
Wiley Online Library Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Entomology Abstracts
MEDLINE
MEDLINE - Academic
CrossRef

Ecology Abstracts


AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
EndPage 872
ExternalDocumentID oai_library_wur_nl_wurpubs_380580
PMC2777257
1833404941
19572916
21846598
10_1111_j_1461_0248_2009_01342_x
ELE1342
ark_67375_WNG_M4R5MVC1_D
US201301666345
Genre article
Journal Article
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
24P
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7ST
SOI
7S9
L.6
7X8
5PM
-
02
0R
1AW
31
3N
AAPBV
GA
HZ
IA
KM
NF
P4A
PQEST
QVL
RIG
UNR
WT
Y3
ID FETCH-LOGICAL-c7702-c63fbfd44c2b56316feda2fb3bec49c7e8c0b4a9038b9a9fa865479975f8e14e3
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Fri Feb 05 18:08:06 EST 2021
Thu Aug 21 13:59:43 EDT 2025
Fri Jul 11 13:30:44 EDT 2025
Fri Jul 11 05:21:40 EDT 2025
Fri Jul 11 16:41:34 EDT 2025
Fri Jul 25 11:07:31 EDT 2025
Thu Apr 03 07:10:25 EDT 2025
Mon Jul 21 09:15:42 EDT 2025
Tue Jul 01 02:29:35 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Wed Jan 22 16:44:32 EST 2025
Wed Oct 30 09:54:48 EDT 2024
Wed Dec 27 19:20:19 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Heathland and moor
heathlands
gymnosperms
Biological evolution
Ecology
Cretaceous
Peat bog
Adaptive radiation
plant-soil feedbacks
Stagnant water
Angiospermae
Gymnospermae
bogs
evolutionary radiation
Spermatophyta
Plant marsh community
Soil plant relation
Angiosperms
Language English
License CC BY 4.0
Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7702-c63fbfd44c2b56316feda2fb3bec49c7e8c0b4a9038b9a9fa865479975f8e14e3
Notes http://dx.doi.org/10.1111/j.1461-0248.2009.01342.x
ark:/67375/WNG-M4R5MVC1-D
istex:E1F5450BA67B0305587011B197E5CC6E019EFCB5
ArticleID:ELE1342
http://www3.interscience.wiley.com/authorresources/onlineopen.html
Re‐use of this article is permitted in accordance with the Terms and Conditions set out at
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Ecology Letters (2009) 12: 865–872
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2009.01342.x
PMID 19572916
PQID 203663053
PQPubID 32390
PageCount 8
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_380580
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2777257
proquest_miscellaneous_67608360
proquest_miscellaneous_46364964
proquest_miscellaneous_20796062
proquest_journals_203663053
pubmed_primary_19572916
pascalfrancis_primary_21846598
crossref_citationtrail_10_1111_j_1461_0248_2009_01342_x
crossref_primary_10_1111_j_1461_0248_2009_01342_x
wiley_primary_10_1111_j_1461_0248_2009_01342_x_ELE1342
istex_primary_ark_67375_WNG_M4R5MVC1_D
fao_agris_US201301666345
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate September 2009
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: September 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References Tomassen, H.B.M., Smolders, A.J.P., Limpens, J., Lamers, L.P.M. & Roelofs, J.G.M. (2004). Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition levels? J. Appl. Ecol., 41, 139-150.
Magallón, S. & Castillo, A. (2009). Angiosperm diversification through time. Am. J. Bot., 96(1), 349-365.
Mohr, B. & Rydin, C. (2002). Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil). Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe, 5, 335-344.
Matson, P.A.. & Boone, R.D. (1984). Natural disturbance and nitrogen mineralization: wave-form dieback of mountain hemlock in the Oregon Cascades. Ecology, 65, 1511-1516.
Berendse, F. (1994a). Competition between plant populations at low and high nutrient supplies. Oikos, 71, 253-260.
Hickey, L.J. & Doyle, J.A. (1977). Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev., 43, 3-104.
Bond, W.J. (1989). The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Lin. Soc., 36, 227-249.
Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O. et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett., 11, 1065-1071.
Doyle, J.A. (2001). Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms. Palaeobotanist, 50, 167-188.
Grime, J.P., Hodgson, J.P. & Hunt, R. (2007). Comparative Plant Ecology: A Functional Approach to Common British Species, 2nd edn. Castlepoint Press, Dalbeattie.
Verhoeven, J.T.A. & Liefveld, W.M. (1997). The ecological significance of organochemical compounds in Sphagnum. Act. Bot. Neerl., 46, 117-130.
Crane, P.R., Friis, E.M. & Pedersen, K.R. (1995). The origin and early diversification of angiosperms. Nature, 374, 27-33.
Berendse, F. (1994b). Litter decomposability - a neglected component of plant fitness. J. Ecol., 82, 187-190.
Feild, T.S., Arens, N.C., Doyle, J.A., Dawson, T.E. & Donoghue, M.J. (2004). Dark and disturbed: a new image of early angiosperm ecology. Paleobiology, 30, 82-107.
Van Breemen, N. (1995). How sphagnum bogs down other plants. Trends Ecol. Evol., 10, 270-275.
Van Vuuren, M.M.I., Berendse, F. & De Visser, W. (1993). Species and site differences in the decomposition of litters and roots from wet heathlands. Can. J. Bot., 71, 167-173.
Bakker, R.T. (1978). Dinosaur feeding behaviour and the origin of flowering plants. Nature, 274, 661-663.
Limpens, J., Berendse, F. & Klees, H. (2003). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol., 157, 339-347.
Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S. et al. (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
Doyle, J.A. & Donoghue, M.J. (1993). Phylogenies and angiosperm diversification. Paleobiology, 19, 141-167.
Friis, E.M., Pedersen, K.R. & Crane, P.R. (2006). Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 232, 251-293.
Scheffer, M., Carpenter, S.R., Foley, J.A., Folke, C. & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591-596.
Crepet, W.L. & Niklas, K.J. (2009). Darwin's second "abominable mystery": Why are there so many angiosperm species? Am. J. Bot., 96, 366-381.
Alvin, K.L. (1982). Cheirolepidiaceae: biology, structure and paleoecology. Rev. Paleobot. Palyn., 37, 55-70.
Mohr, B.A.R. & Eklund, H. (2003). Araripia florifera, a magnoliid angiosperm from the lower Cretaceous Crato Formation (Brazil). Rev. Paleobot. Palynol., 126, 279-292.
Barrett, P.M. & Willis, K.J. (2001). Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biol. Rev., 76, 411-447.
Limpens, J., Berendse, F. & Klees, H. (2004). How P affects the impact of N deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7, 793-804.
Berendse, F. (1990). Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J. Ecol., 78, 413-427.
Berendse, F. (1998). Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry, 42, 73-88.
Kristensen, H.L., McCarty, G.W. & Meisinger, J.J. (2000). Effects of soil structure disturbance on mineralization of organic soil nitrogen. Soil Sci. Soc. Am. J., 64, 371-378.
Verhoeven, J.T.A., Koerselman, W. & Meuleman, A.F.M. (1996). Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. TREE, 11, 494-497.
Aerts, R. & Berendse, F. (1988). The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio, 76, 63-69.
Sun, G., Dilcher, D.L. & Zheng, S. (2008). A review of recent advances in the study of early angiosperms from northeastern China. Paleoworld, 17, 166-171.
Hill, C.R. (1996). A plant with flower-like organs from the Wealden of the Weald (Lower Cretaceous), southern England. Cret. Res., 17, 27-38.
Bartsch, I. & Moore, T.R. (1985). A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Quebec. Can. J. Bot., 63, 1241-1248.
Doyle, J.A., Endress, P.K. & Upchurch, G.R. Jr (2008). Early Cretaceous monocots: a phylogenetic evaluation. Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 64, 59-87.
Davies, J.T., Barraclough, T.G., Chase, M.W., Soltis, P.S., Soltis, D.E. & Savolainen, V. (2004). Darwin's abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl Acad. Sci. USA, 101, 1904-1909.
Axelrod, D.I. (1970). Mesozoic paleogeography and early angiosperm history. Bot. Rev., 36, 277-319.
Scheffer, M. & Carpenter, S.R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. TREE, 18, 648-656.
Wing, S.L. & Boucher, L.D. (1998). Ecological aspects of the Cretaceous flowering plant radiation. Ann. Rev. Earth Planet Sci., 26, 379-421.
Stewart, W.N. & Rothwell, G.W. (1993). Paleobotany and the Evolution of Plants, 2nd edn. Cambridge University Press, Cambridge.
Grime, J.P. (2002). Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd edn. John Wiley & Sons Ltd, Chichester.
Lupia, R., Lidgard, S. & Crane, P.R. (1999). Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology, 25, 305-340.
Friedman, W.E. (2009). The meaning of Darwin's "abominable mystery". Am. J. Bot., 96, 5-21.
Van Nes, E.H. & Scheffer, M. (2005). A strategy to improve the contribution of complex simulation models to ecological theory. Ecol. Model., 185, 153-164.
Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A. et al. (2004). The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci., 15, 295-304.
Regal, P.J. (1977). Ecology and evolution of flowering plant dominance. Science, 196, 622-629.
Berg, B., Berg, M., Bottner, P., Box, E., Breymeyer, A., Calvo de Anta, R. et al. (1993). Litter mass loss in pine forests of Europe and eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry, 20, 127-153.
Müller, P.E. (1879). Studier över Skovjord, som bidrag til skordyrkningens theori. I. Om bögemuld od bögermor paa sand og ler. Tidsskr. Skovbrug, 3, 1-124.
Mulcahy, D.L. (1979). The rise of the angiosperms: a genecological factor. Science, 206, 20-23.
Verhoeven, J.T.A. & Toth, E.. (1995). Decomposition of Carex and Sphagnum litter in fens: effects of litter quality and inhibition by living tissue homogenates. Soil Biol. Biochem., 27, 271-275.
Mohr, B.A.R. & Friis, E.M. (2000). Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report. Int. J. Plant Sci. Suppl., 161, S155-S167.
Heil, G. & Diemont, W.H. (1984). Raised nutrient levels change heathland into grassland. Vegetatio, 53, 113-120.
2001; 50
1984; 65
2004; 7
1993; 20
1997; 46
1988; 76
1976
1985; 63
2003; 18
1995; 374
2003; 157
1998; 42
1970; 36
2004; 30
2005; 181
1984; 53
2009; 96
2005; 185
1990
1995; 27
1993; 71
2000; 161
1981
2008; 64
2003; 126
1989; 36
2001; 413
2004; 101
1998; 26
2004; 41
1982; 37
1990; 78
1994b; 82
1996; 17
2002; 5
1979; 206
1995; 10
2000; 64
1999; 25
2008; 17
1978; 274
1997
2007
1995
2008; 11
1977; 43
1993
2002
2006; 232
1996; 11
1993; 19
1879; 3
2007; 315
2004; 15
1994a; 71
1977; 196
2001; 76
e_1_2_8_28_1
e_1_2_8_26_1
e_1_2_8_49_1
Müller P.E. (e_1_2_8_43_1) 1879; 3
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_45_1
Mohr B. (e_1_2_8_41_1) 2002; 5
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Doyle J.A. (e_1_2_8_23_1) 1976
Grime J.P. (e_1_2_8_29_1) 2007
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Stewart W.N. (e_1_2_8_52_1) 1993
e_1_2_8_25_1
e_1_2_8_46_1
Retallack G. (e_1_2_8_47_1) 1981
e_1_2_8_27_1
e_1_2_8_48_1
Doyle J.A. (e_1_2_8_24_1) 2008; 64
De Smidt J.T. (e_1_2_8_50_1) 1995
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_58_1
Crane P.R. (e_1_2_8_16_1) 1990
Doyle J.A. (e_1_2_8_21_1) 2001; 50
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
References_xml – reference: Bakker, R.T. (1978). Dinosaur feeding behaviour and the origin of flowering plants. Nature, 274, 661-663.
– reference: Friedman, W.E. (2009). The meaning of Darwin's "abominable mystery". Am. J. Bot., 96, 5-21.
– reference: Bartsch, I. & Moore, T.R. (1985). A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Quebec. Can. J. Bot., 63, 1241-1248.
– reference: Feild, T.S., Arens, N.C., Doyle, J.A., Dawson, T.E. & Donoghue, M.J. (2004). Dark and disturbed: a new image of early angiosperm ecology. Paleobiology, 30, 82-107.
– reference: Van Breemen, N. (1995). How sphagnum bogs down other plants. Trends Ecol. Evol., 10, 270-275.
– reference: Bond, W.J. (1989). The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Lin. Soc., 36, 227-249.
– reference: Mulcahy, D.L. (1979). The rise of the angiosperms: a genecological factor. Science, 206, 20-23.
– reference: Müller, P.E. (1879). Studier över Skovjord, som bidrag til skordyrkningens theori. I. Om bögemuld od bögermor paa sand og ler. Tidsskr. Skovbrug, 3, 1-124.
– reference: Matson, P.A.. & Boone, R.D. (1984). Natural disturbance and nitrogen mineralization: wave-form dieback of mountain hemlock in the Oregon Cascades. Ecology, 65, 1511-1516.
– reference: Barrett, P.M. & Willis, K.J. (2001). Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biol. Rev., 76, 411-447.
– reference: Berendse, F. (1994a). Competition between plant populations at low and high nutrient supplies. Oikos, 71, 253-260.
– reference: Verhoeven, J.T.A., Koerselman, W. & Meuleman, A.F.M. (1996). Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. TREE, 11, 494-497.
– reference: Doyle, J.A., Endress, P.K. & Upchurch, G.R. Jr (2008). Early Cretaceous monocots: a phylogenetic evaluation. Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 64, 59-87.
– reference: Mohr, B.A.R. & Eklund, H. (2003). Araripia florifera, a magnoliid angiosperm from the lower Cretaceous Crato Formation (Brazil). Rev. Paleobot. Palynol., 126, 279-292.
– reference: Stewart, W.N. & Rothwell, G.W. (1993). Paleobotany and the Evolution of Plants, 2nd edn. Cambridge University Press, Cambridge.
– reference: Berendse, F. (1990). Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J. Ecol., 78, 413-427.
– reference: Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A. et al. (2004). The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci., 15, 295-304.
– reference: Grime, J.P., Hodgson, J.P. & Hunt, R. (2007). Comparative Plant Ecology: A Functional Approach to Common British Species, 2nd edn. Castlepoint Press, Dalbeattie.
– reference: Van Nes, E.H. & Scheffer, M. (2005). A strategy to improve the contribution of complex simulation models to ecological theory. Ecol. Model., 185, 153-164.
– reference: Heil, G. & Diemont, W.H. (1984). Raised nutrient levels change heathland into grassland. Vegetatio, 53, 113-120.
– reference: Tomassen, H.B.M., Smolders, A.J.P., Limpens, J., Lamers, L.P.M. & Roelofs, J.G.M. (2004). Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition levels? J. Appl. Ecol., 41, 139-150.
– reference: Mohr, B.A.R. & Friis, E.M. (2000). Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report. Int. J. Plant Sci. Suppl., 161, S155-S167.
– reference: Doyle, J.A. & Donoghue, M.J. (1993). Phylogenies and angiosperm diversification. Paleobiology, 19, 141-167.
– reference: Scheffer, M., Carpenter, S.R., Foley, J.A., Folke, C. & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591-596.
– reference: Wing, S.L. & Boucher, L.D. (1998). Ecological aspects of the Cretaceous flowering plant radiation. Ann. Rev. Earth Planet Sci., 26, 379-421.
– reference: Friis, E.M., Pedersen, K.R. & Crane, P.R. (2006). Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 232, 251-293.
– reference: Kristensen, H.L., McCarty, G.W. & Meisinger, J.J. (2000). Effects of soil structure disturbance on mineralization of organic soil nitrogen. Soil Sci. Soc. Am. J., 64, 371-378.
– reference: Scheffer, M. & Carpenter, S.R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. TREE, 18, 648-656.
– reference: Alvin, K.L. (1982). Cheirolepidiaceae: biology, structure and paleoecology. Rev. Paleobot. Palyn., 37, 55-70.
– reference: Van Vuuren, M.M.I., Berendse, F. & De Visser, W. (1993). Species and site differences in the decomposition of litters and roots from wet heathlands. Can. J. Bot., 71, 167-173.
– reference: Berg, B., Berg, M., Bottner, P., Box, E., Breymeyer, A., Calvo de Anta, R. et al. (1993). Litter mass loss in pine forests of Europe and eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry, 20, 127-153.
– reference: Doyle, J.A. (2001). Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms. Palaeobotanist, 50, 167-188.
– reference: Limpens, J., Berendse, F. & Klees, H. (2004). How P affects the impact of N deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7, 793-804.
– reference: Hickey, L.J. & Doyle, J.A. (1977). Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev., 43, 3-104.
– reference: Crane, P.R., Friis, E.M. & Pedersen, K.R. (1995). The origin and early diversification of angiosperms. Nature, 374, 27-33.
– reference: Hill, C.R. (1996). A plant with flower-like organs from the Wealden of the Weald (Lower Cretaceous), southern England. Cret. Res., 17, 27-38.
– reference: Crepet, W.L. & Niklas, K.J. (2009). Darwin's second "abominable mystery": Why are there so many angiosperm species? Am. J. Bot., 96, 366-381.
– reference: Magallón, S. & Castillo, A. (2009). Angiosperm diversification through time. Am. J. Bot., 96(1), 349-365.
– reference: Grime, J.P. (2002). Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd edn. John Wiley & Sons Ltd, Chichester.
– reference: Berendse, F. (1994b). Litter decomposability - a neglected component of plant fitness. J. Ecol., 82, 187-190.
– reference: Lupia, R., Lidgard, S. & Crane, P.R. (1999). Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology, 25, 305-340.
– reference: Axelrod, D.I. (1970). Mesozoic paleogeography and early angiosperm history. Bot. Rev., 36, 277-319.
– reference: Davies, J.T., Barraclough, T.G., Chase, M.W., Soltis, P.S., Soltis, D.E. & Savolainen, V. (2004). Darwin's abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl Acad. Sci. USA, 101, 1904-1909.
– reference: Sun, G., Dilcher, D.L. & Zheng, S. (2008). A review of recent advances in the study of early angiosperms from northeastern China. Paleoworld, 17, 166-171.
– reference: Mohr, B. & Rydin, C. (2002). Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil). Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe, 5, 335-344.
– reference: Aerts, R. & Berendse, F. (1988). The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio, 76, 63-69.
– reference: Regal, P.J. (1977). Ecology and evolution of flowering plant dominance. Science, 196, 622-629.
– reference: Verhoeven, J.T.A. & Liefveld, W.M. (1997). The ecological significance of organochemical compounds in Sphagnum. Act. Bot. Neerl., 46, 117-130.
– reference: Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O. et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett., 11, 1065-1071.
– reference: Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S. et al. (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
– reference: Limpens, J., Berendse, F. & Klees, H. (2003). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol., 157, 339-347.
– reference: Berendse, F. (1998). Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry, 42, 73-88.
– reference: Verhoeven, J.T.A. & Toth, E.. (1995). Decomposition of Carex and Sphagnum litter in fens: effects of litter quality and inhibition by living tissue homogenates. Soil Biol. Biochem., 27, 271-275.
– volume: 232
  start-page: 251
  year: 2006
  end-page: 293
  article-title: Cretaceous angiosperm flowers: innovation and evolution in plant reproduction
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 274
  start-page: 661
  year: 1978
  end-page: 663
  article-title: Dinosaur feeding behaviour and the origin of flowering plants
  publication-title: Nature
– volume: 96
  start-page: 5
  year: 2009
  end-page: 21
  article-title: The meaning of Darwin’s “abominable mystery”
  publication-title: Am. J. Bot.
– start-page: 34
  year: 1995
  end-page: 45
– volume: 161
  start-page: S155
  year: 2000
  end-page: S167
  article-title: Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report
  publication-title: Int. J. Plant Sci. Suppl.
– volume: 18
  start-page: 648
  year: 2003
  end-page: 656
  article-title: Catastrophic regime shifts in ecosystems: linking theory to observation
  publication-title: TREE
– volume: 374
  start-page: 27
  year: 1995
  end-page: 33
  article-title: The origin and early diversification of angiosperms
  publication-title: Nature
– volume: 181
  start-page: 89
  year: 2005
  end-page: 116
– volume: 43
  start-page: 3
  year: 1977
  end-page: 104
  article-title: Early Cretaceous fossil evidence for angiosperm evolution
  publication-title: Bot. Rev.
– volume: 3
  start-page: 1
  year: 1879
  end-page: 124
  article-title: Studier över Skovjord, som bidrag til skordyrkningens theori. I. Om bögemuld od bögermor paa sand og ler
  publication-title: Tidsskr. Skovbrug
– volume: 19
  start-page: 141
  year: 1993
  end-page: 167
  article-title: Phylogenies and angiosperm diversification
  publication-title: Paleobiology
– volume: 185
  start-page: 153
  year: 2005
  end-page: 164
  article-title: A strategy to improve the contribution of complex simulation models to ecological theory
  publication-title: Ecol. Model.
– volume: 11
  start-page: 494
  year: 1996
  end-page: 497
  article-title: Nitrogen‐ or phosphorus‐limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes
  publication-title: TREE
– volume: 50
  start-page: 167
  year: 2001
  end-page: 188
  article-title: Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms
  publication-title: Palaeobotanist
– volume: 7
  start-page: 793
  year: 2004
  end-page: 804
  article-title: How P affects the impact of N deposition on and vascular plants in bogs
  publication-title: Ecosystems
– volume: 20
  start-page: 127
  year: 1993
  end-page: 153
  article-title: Litter mass loss in pine forests of Europe and eastern United States as compared to actual evapotranspiration on a European scale
  publication-title: Biogeochemistry
– volume: 46
  start-page: 117
  year: 1997
  end-page: 130
  article-title: The ecological significance of organochemical compounds in
  publication-title: Act. Bot. Neerl.
– volume: 78
  start-page: 413
  year: 1990
  end-page: 427
  article-title: Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems
  publication-title: J. Ecol.
– volume: 315
  start-page: 361
  year: 2007
  end-page: 364
  article-title: Global‐scale similarities in nitrogen release patterns during long‐term decomposition
  publication-title: Science
– volume: 10
  start-page: 270
  year: 1995
  end-page: 275
  article-title: How sphagnum bogs down other plants
  publication-title: Trends Ecol. Evol.
– volume: 64
  start-page: 371
  year: 2000
  end-page: 378
  article-title: Effects of soil structure disturbance on mineralization of organic soil nitrogen
  publication-title: Soil Sci. Soc. Am. J.
– volume: 196
  start-page: 622
  year: 1977
  end-page: 629
  article-title: Ecology and evolution of flowering plant dominance
  publication-title: Science
– year: 1993
– volume: 82
  start-page: 187
  year: 1994b
  end-page: 190
  article-title: Litter decomposability – a neglected component of plant fitness
  publication-title: J. Ecol.
– volume: 27
  start-page: 271
  year: 1995
  end-page: 275
  article-title: Decomposition of and litter in fens: effects of litter quality and inhibition by living tissue homogenates
  publication-title: Soil Biol. Biochem.
– start-page: 269
  year: 1997
  end-page: 290
– start-page: 27
  year: 1981
  end-page: 77
– volume: 36
  start-page: 277
  year: 1970
  end-page: 319
  article-title: Mesozoic paleogeography and early angiosperm history
  publication-title: Bot. Rev.
– volume: 42
  start-page: 73
  year: 1998
  end-page: 88
  article-title: Effects of dominant plant species on soils during succession in nutrient‐poor ecosystems
  publication-title: Biogeochemistry
– volume: 11
  start-page: 1065
  year: 2008
  end-page: 1071
  article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  publication-title: Ecol. Lett.
– volume: 5
  start-page: 335
  year: 2002
  end-page: 344
  article-title: n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil)
  publication-title: Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe
– volume: 96
  start-page: 366
  year: 2009
  end-page: 381
  article-title: Darwin’s second “abominable mystery”: Why are there so many angiosperm species?
  publication-title: Am. J. Bot.
– year: 2007
– volume: 96
  start-page: 349
  issue: 1
  year: 2009
  end-page: 365
  article-title: Angiosperm diversification through time
  publication-title: Am. J. Bot.
– volume: 157
  start-page: 339
  year: 2003
  end-page: 347
  article-title: N deposition affects N availability in interstitial water, growth of and invasion of vascular plants in bog vegetation
  publication-title: New Phytol.
– volume: 36
  start-page: 227
  year: 1989
  end-page: 249
  article-title: The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence
  publication-title: Biol. J. Lin. Soc.
– volume: 25
  start-page: 305
  year: 1999
  end-page: 340
  article-title: Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation
  publication-title: Paleobiology
– volume: 71
  start-page: 167
  year: 1993
  end-page: 173
  article-title: Species and site differences in the decomposition of litters and roots from wet heathlands
  publication-title: Can. J. Bot.
– volume: 37
  start-page: 55
  year: 1982
  end-page: 70
  article-title: Cheirolepidiaceae: biology, structure and paleoecology
  publication-title: Rev. Paleobot. Palyn.
– volume: 413
  start-page: 591
  year: 2001
  end-page: 596
  article-title: Catastrophic shifts in ecosystems
  publication-title: Nature
– volume: 76
  start-page: 63
  year: 1988
  end-page: 69
  article-title: The effect of increased nutrient availability on vegetation dynamics in wet heathlands
  publication-title: Vegetatio
– volume: 64
  start-page: 59
  year: 2008
  end-page: 87
  article-title: Early Cretaceous monocots: a phylogenetic evaluation
  publication-title: Acta Musei Nationalis Pragae, Series B, Historia Naturalis
– volume: 17
  start-page: 166
  year: 2008
  end-page: 171
  article-title: A review of recent advances in the study of early angiosperms from northeastern China
  publication-title: Paleoworld
– volume: 41
  start-page: 139
  year: 2004
  end-page: 150
  article-title: Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition levels?
  publication-title: J. Appl. Ecol.
– volume: 26
  start-page: 379
  year: 1998
  end-page: 421
  article-title: Ecological aspects of the Cretaceous flowering plant radiation
  publication-title: Ann. Rev. Earth Planet Sci.
– volume: 65
  start-page: 1511
  year: 1984
  end-page: 1516
  article-title: Natural disturbance and nitrogen mineralization: wave‐form dieback of mountain hemlock in the Oregon Cascades
  publication-title: Ecology
– volume: 30
  start-page: 82
  year: 2004
  end-page: 107
  article-title: Dark and disturbed: a new image of early angiosperm ecology
  publication-title: Paleobiology
– volume: 53
  start-page: 113
  year: 1984
  end-page: 120
  article-title: Raised nutrient levels change heathland into grassland
  publication-title: Vegetatio
– year: 2002
– volume: 101
  start-page: 1904
  year: 2004
  end-page: 1909
  article-title: Darwin’s abominable mystery: Insights from a supertree of the angiosperms
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 17
  start-page: 27
  year: 1996
  end-page: 38
  article-title: A plant with flower‐like organs from the Wealden of the Weald (Lower Cretaceous), southern England
  publication-title: Cret. Res.
– volume: 76
  start-page: 411
  year: 2001
  end-page: 447
  article-title: Did dinosaurs invent flowers? Dinosaur–angiosperm coevolution revisited
  publication-title: Biol. Rev.
– volume: 71
  start-page: 253
  year: 1994a
  end-page: 260
  article-title: Competition between plant populations at low and high nutrient supplies
  publication-title: Oikos
– start-page: 377
  year: 1990
  end-page: 407
– start-page: 139
  year: 1976
  end-page: 206
– volume: 126
  start-page: 279
  year: 2003
  end-page: 292
  article-title: , a magnoliid angiosperm from the lower Cretaceous Crato Formation (Brazil)
  publication-title: Rev. Paleobot. Palynol.
– volume: 206
  start-page: 20
  year: 1979
  end-page: 23
  article-title: The rise of the angiosperms: a genecological factor
  publication-title: Science
– volume: 63
  start-page: 1241
  year: 1985
  end-page: 1248
  article-title: A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Quebec
  publication-title: Can. J. Bot.
– volume: 15
  start-page: 295
  year: 2004
  end-page: 304
  article-title: The plant traits that drive ecosystems: evidence from three continents
  publication-title: J. Veg. Sci.
– volume: 3
  start-page: 1
  year: 1879
  ident: e_1_2_8_43_1
  article-title: Studier över Skovjord, som bidrag til skordyrkningens theori. I. Om bögemuld od bögermor paa sand og ler
  publication-title: Tidsskr. Skovbrug
– ident: e_1_2_8_51_1
  doi: 10.1007/3-540-27675-0_5
– ident: e_1_2_8_8_1
  doi: 10.2307/2261121
– start-page: 377
  volume-title: Major Evolutionary Radiations
  year: 1990
  ident: e_1_2_8_16_1
– ident: e_1_2_8_12_1
  doi: 10.1007/BF00000785
– ident: e_1_2_8_22_1
  doi: 10.1017/S0094837300015840
– volume-title: Comparative Plant Ecology: A Functional Approach to Common British Species
  year: 2007
  ident: e_1_2_8_29_1
– ident: e_1_2_8_11_1
  doi: 10.1023/A:1005935823525
– volume: 50
  start-page: 167
  year: 2001
  ident: e_1_2_8_21_1
  article-title: Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms
  publication-title: Palaeobotanist
– ident: e_1_2_8_35_1
  doi: 10.1007/s10021-004-0274-9
– ident: e_1_2_8_60_1
  doi: 10.1007/978-4-431-65918-1_13
– ident: e_1_2_8_34_1
  doi: 10.1046/j.1469-8137.2003.00667.x
– volume-title: Paleobotany and the Evolution of Plants
  year: 1993
  ident: e_1_2_8_52_1
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1654-1103.2004.tb02266.x
– ident: e_1_2_8_42_1
  doi: 10.1126/science.206.4414.20
– ident: e_1_2_8_37_1
  doi: 10.3732/ajb.0800060
– ident: e_1_2_8_30_1
  doi: 10.1007/BF00043031
– ident: e_1_2_8_45_1
  doi: 10.1126/science.1134853
– ident: e_1_2_8_6_1
  doi: 10.1017/S1464793101005735
– ident: e_1_2_8_17_1
  doi: 10.1038/374027a0
– ident: e_1_2_8_10_1
  doi: 10.2307/2261398
– ident: e_1_2_8_48_1
  doi: 10.1016/j.tree.2003.09.002
– ident: e_1_2_8_49_1
  doi: 10.1002/(SICI)1099-1646(199901/06)15:1/3<43::AID-RRR535>3.0.CO;2-Q
– ident: e_1_2_8_33_1
  doi: 10.2136/sssaj2000.641371x
– ident: e_1_2_8_28_1
  doi: 10.1016/0168-9452(85)90075-5
– ident: e_1_2_8_5_1
  doi: 10.1038/274661a0
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.0308127100
– ident: e_1_2_8_44_1
  doi: 10.1016/j.ecolmodel.2004.12.001
– ident: e_1_2_8_26_1
  doi: 10.3732/ajb.0800150
– ident: e_1_2_8_32_1
  doi: 10.1006/cres.1996.0003
– start-page: 27
  volume-title: Paleobotany, Paleoecology and Evolution
  year: 1981
  ident: e_1_2_8_47_1
– ident: e_1_2_8_53_1
  doi: 10.1016/j.palwor.2008.10.002
– ident: e_1_2_8_38_1
  doi: 10.2307/1939130
– ident: e_1_2_8_36_1
  doi: 10.1017/S009483730002131X
– ident: e_1_2_8_31_1
  doi: 10.1007/BF02860849
– ident: e_1_2_8_18_1
  doi: 10.3732/ajb.0800126
– ident: e_1_2_8_56_1
  doi: 10.1111/plb.1997.46.2.117
– ident: e_1_2_8_4_1
  doi: 10.1007/BF02858880
– ident: e_1_2_8_46_1
  doi: 10.1126/science.196.4290.622
– ident: e_1_2_8_57_1
  doi: 10.1016/0038-0717(94)00183-2
– ident: e_1_2_8_9_1
  doi: 10.2307/3546273
– ident: e_1_2_8_25_1
  doi: 10.1666/0094-8373(2004)030<0082:DADANI>2.0.CO;2
– ident: e_1_2_8_7_1
  doi: 10.1139/b85-171
– volume: 5
  start-page: 335
  year: 2002
  ident: e_1_2_8_41_1
  article-title: Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil)
  publication-title: Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe
– ident: e_1_2_8_58_1
  doi: 10.1016/S0169-5347(96)10055-0
– start-page: 34
  volume-title: Heaths and Moorland: Cultural Landscapes
  year: 1995
  ident: e_1_2_8_50_1
– ident: e_1_2_8_54_1
  doi: 10.1111/j.1365-2664.2004.00870.x
– ident: e_1_2_8_2_1
  doi: 10.1007/BF00047389
– ident: e_1_2_8_55_1
  doi: 10.1139/b93-019
– ident: e_1_2_8_40_1
  doi: 10.1086/317580
– start-page: 139
  volume-title: Origin and early evolution of angiosperms
  year: 1976
  ident: e_1_2_8_23_1
– volume: 64
  start-page: 59
  year: 2008
  ident: e_1_2_8_24_1
  article-title: Early Cretaceous monocots: a phylogenetic evaluation
  publication-title: Acta Musei Nationalis Pragae, Series B, Historia Naturalis
– ident: e_1_2_8_27_1
  doi: 10.1016/j.palaeo.2005.07.006
– ident: e_1_2_8_39_1
  doi: 10.1016/S0034-6667(03)00092-7
– ident: e_1_2_8_14_1
  doi: 10.1016/0169-5347(95)90007-1
– ident: e_1_2_8_59_1
  doi: 10.1146/annurev.earth.26.1.379
– ident: e_1_2_8_3_1
  doi: 10.1016/0034-6667(82)90038-0
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1095-8312.1989.tb00492.x
SSID ssj0012971
Score 2.331337
Snippet One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to...
AbstractOne of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms...
SourceID wageningen
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 865
SubjectTerms Angiospermae
Angiosperms
Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
bogs
Coniferophyta
crato formation brazil
Cretaceous
decomposition
diversification
Ecology
Ecosystem
ecosystems
Evolutionary biology
evolutionary radiation
Ferns
ferns and fern allies
Flowering plants
Fossils
Fundamental and applied biological sciences. Psychology
Growth rate
gymnosperms
heathlands
Ideas and s
Litter
litter quality
Magnoliophyta
Magnoliopsida
Magnoliopsida - physiology
n deposition
nitrogen mineralization
Nutrient release
Paleobotany
physiology
Plant cytology, morphology, systematics, chorology and evolution
Plant ecology
Plant evolution
plant-soil feedbacks
Prehistoric era
simulation models
Soil nutrients
sphagnum
Synecology
Terrestrial ecosystems
vascular plants
Vegetation
wet heathlands
Wetlands
Title angiosperm radiation revisited, an ecological explanation for Darwin's 'abominable mystery'
URI https://api.istex.fr/ark:/67375/WNG-M4R5MVC1-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2009.01342.x
https://www.ncbi.nlm.nih.gov/pubmed/19572916
https://www.proquest.com/docview/203663053
https://www.proquest.com/docview/20796062
https://www.proquest.com/docview/46364964
https://www.proquest.com/docview/67608360
https://pubmed.ncbi.nlm.nih.gov/PMC2777257
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F380580
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfYJKS98B8WBiUPiCdaNbEdJ49o65gQndCg0DfLTp1taptOSau1PO1jwNfbJ-HOTjNlbNKEeGok-6zqfHe-851_R8hbqrtChdmozUa822Y8jNva0FE7SuNYM7x5C_Bxcv8wOhiwT0M-rOqf8C2Mw4eoL9xQM6y9RgVXuryu5BAKh7ZCC2EnA8rCDvqTWLqF_tFRjSQFp5qLvRwJHTaLem5cqHFSbWRqBv4rsn6J9ZOqBBZmrvfFTc7p3zWWW-dgIHL7YqrpCNuTbP8hGa954ApYxp3FXHfSn9fgIf8Pkx6RB5XD639wEvqY3DP5E3LftcBcwVfPwmavnhINEuur_PjUgpdP_QJRE1Bs_MK-gAfX-D2M-yZd22vfLM8myl1n-uB8-3sK8YwvL36X_uXFLxDvqXsa5k8Rr7pYPSOD_d633YN21QGinQoBpjqNaKazEWNpqHlEgygzI5AsTUHyWJIKE6ddzVTSpbFOVJKpGHspJ4ngWWwCZuhzspnPcrNN_NgoDaLHBY0RIscoOKVDPJkNxJxaGI-I9W7LtIJHxy4dE9kIkwKJvMTmnYm0vJRLjwQ15ZmDCLkDzTYIlFTHYMnl4GuI-WNM4FLGPfLOSlm9lirGWH0nuPxx-FH22RHvf98N5J5HWg0xrAkwao94EntkZy2XsrJMpcTEcwRGnnrkTT0KJgXzRCo3swVOERjXhrfPQJQ5lkTs9hmRiBD3vOuRF04PrliTcAjogggY3tCQegICnjdH8tMTC3weCogFufAIvdIlmWPPrdJSVRohzxeFzCf4A-uUEnacx_BPIqspd94j2fvcw6-X_0q4Q7Zc7hErEl-RzXmxMK_BhZ3rFtkI2ZeWNVF_AFibj3g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLe2IcQu_IeFwZYDcKJVE9txcuCA1o6OtT2MFXbz7NQZ09p06h-15bSPAZ-Fr8Jpn4T3nDZTxiZNSDtwSqTYluPn3_N79vPvEfKa6opQftIpsQ6vlBj3w5I2tFMK4jDUDHfePLyc3GwF9Tb7dMAPlsivxV2YjB8i33BDZFh9jQDHDenLKAdf2LchWsg76VHml6fzCMtdM5uA_zZ8v1MFYb_x_e3a_la9NE8xUIqFAF0QBzTRSYex2Nc8oF6QmA50XVP4NRbFwoRxRTMVVWioIxUlKsRkvVEkeBIajxkK7S6TO5hQHIn7q3s5dxWso5m3l_WRHhTDiK7seWFtXE5UHyxmFPYUIzbVEISWZNk2rjKH_47qXJ2ASkrtHa2i6W3Xzu0H5Pdi1LOQmZPyeKTL8fdLhJT_qVgekvtzm979kIHwEVky6WNyN8vyOYO3mmUGnz0hGkDpqvTo2PKz99wBEkMgMtyBveQP1v87-O6aeLEkuWZ62lXZjq0L_oVbVUjZfH72c-ien_0ABPey229uDym5B7OnpH0rv_qMrKT91KwRNzRKA7q4oCGyABkFhoiPxocBt1oL4xCxmF4ynjPAYyKSrix4gp5E2WF-0kha2cmpQ7y85mnGgnKDOmswg6U6gsVKtj_7eESOZ9SUcYe8tdM6b0sNTjDAUHD5tfVRNtkeb37Z8mTVIRuFeZ9XwI2JgEehQ9YXQJBz5TuUeLYewDpGHbKZfwWtiUdhKjX9MRYR6Lr715dAIj0WBez6EoEIkNq94pDnGfAuhibi4LN6AQx4AZJ5AeR0L35Jj79ZbndfgLvLhUPoBXhlimnFhrbWHIJyMh7ItIsPaGcoQeI8hJ4EFpo3lpGsNWr49uJfK26Se_X9ZkM2dlq762Q1O2rFAMyXZGU0GJtXYLGP9IbVjC45vG3M_wEYg-5v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF61RaBeEP81hdYH4ERQvD9e-8ABNQktbaIKCPS2rO11qUicyG6U5NbHgFfhcfokzKwTV4ZWqpB6iqX90WZndnZmZ-YbQl6wqCk1TZMGT0SzwQUNGpFhScOPgyDi-PLmYXJyt-fv9vmHI3G0Qn4vc2FKfIjqwQ1PhpXXeMDHSfr3IQdTmNoILYSd9Binb2aLAMt9M5-C-Va83WsBrV9S2ml_3tltLCoMNGIpQRTEPkujNOE8ppHwmeenJoGVRwz-GQ9jaYK4GXEdNlkQhTpMdYC1esNQijQwHjcM5l0lt9DXiOFklB9WHgwalsZeuUZ2VI8iunTltatxNdUjUJiR1jMM2NQF0Cwti21cpg3_G9S5PgWJlNkUrbrmba_Ozj1yd6Hzuu9KJr1PVkz2gNwuq2DO4attkbPnD0kETOvq7PjE4pcP3RyBE5Bz3NwmwYN2_BraXRMvRbZrZuOBLl80XdC_3ZZGSOPzs1-Fe372Ezh8WGaHuUOErM7nj0j_Rkj0mKxlo8xsEDcwOgLuE5IFiJJjNFzUFC9nA2ZnJI1D5HL_VbxASMdCHQNVs5Q8hZTD-p2hspRTM4d41chxiRJyjTEbQGKlj0GYq_4nii5k9OEyLhzyytK9mkvnPzAATwr1tfdedflH0f2y46mWQ7ZqjFENQMPdF2HgkM0lp6iFcCoU-p59kPPMIdtVK0gVdBXpzIwm2EWiaUuv7oFAczz0-dU9fOkj9HnTIU9KzrzYmlCATef5sOE1nq06IOZ5vSU7-W6xz6kEc1BIh7AL7lYZlt0q7KiF5FDTSa6yAf7APIUCiosAVuLbY3BtGqn2QRu_nv7vwG1y57DVUQd7vf1Nsl56IjE-8RlZO80n5jkotKfRlpUcLvl206LqD9l5qYE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+angiosperm+radiation+revisited%2C+an+ecological+explanation+for+Darwin%E2%80%99s+%E2%80%98abominable+mystery&rft.jtitle=Ecology+letters&rft.au=Berendse%2C+Frank&rft.au=Scheffer%2C+Marten&rft.date=2009-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=12&rft.issue=9&rft.spage=865&rft.epage=872&rft_id=info:doi/10.1111%2Fj.1461-0248.2009.01342.x&rft_id=info%3Apmid%2F19572916&rft.externalDocID=PMC2777257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon