angiosperm radiation revisited, an ecological explanation for Darwin's 'abominable mystery'
One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms...
Saved in:
Published in | Ecology letters Vol. 12; no. 9; pp. 865 - 872 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.09.2009
Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models. |
---|---|
AbstractList | One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models. [PUBLICATION ABSTRACT] One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models. One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models.One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models. AbstractOne of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models. |
Author | Scheffer, Marten Berendse, Frank |
Author_xml | – sequence: 1 fullname: Berendse, Frank – sequence: 2 fullname: Scheffer, Marten |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21846598$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19572916$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1v0zAYhSM0xD7gL0CEBL2hxV-xYySQUFcGUgcSMEDi4pXjOsUltYudru2_x1m7ArsZuYit-DlH8XnPcXbgvDNZlmM0wOl5PhtgxnEfEVYOCEJygDBlZLC-kx3tDw72e_rtMDuOcYYQJlLge9khloUgEvOj7LtyU-vjwoR5HtTEqtZ6lwdzaaNtzeRZrlxutG_81GrV5Ga9aJTbQrUP-akKK-t6Me-pys-tU1Vj8vkmtiZsevezu7VqonmwW0-yizejz8O3_fGHs3fD1-O-FgKRvua0ruoJY5pUBaeY12aiSF3RymgmtTClRhVTEtGykkrWquQFE1KKoi4NZoaeZC-2vis1Nc669AKngrYRvLLQ2CqosIHVMoBrumWxrCLQEhUlSuJXW3H6ODcTbVwbVAOLYOedqDP498TZHzD1l0CEEKQQyeDpziD4X0sTW5jbqE2TcjJ-GYELjkrK0a0g45QzydmtIEFCcsRJAh_fAGd-GVzKOjGUc4oKmqCHf19wf7PrDiTgyQ5QMc24Dsp10V1zBJeMF7L8k5QOPsZgatC2vapCysU2gBF05YQZdL2DroPQlROuygnrZFDeMNj_y-3Sl7sR28Zs_lsHo_Go2yV9f6u3qZrrvV6Fn2k-VBTw9f0ZnLOPxfmXIYbTxD_a8rXyoKYh5XHxiSRXhHnKlRX0N1ebFiM |
CitedBy_id | crossref_primary_10_1098_rspb_2017_1223 crossref_primary_10_1111_1365_2745_70026 crossref_primary_10_1111_j_1469_8137_2011_03912_x crossref_primary_10_1016_j_gloplacha_2022_103858 crossref_primary_10_1016_j_jgg_2012_02_008 crossref_primary_10_1016_j_tree_2013_05_019 crossref_primary_10_1890_11_0870_1 crossref_primary_10_1016_j_ympev_2020_106734 crossref_primary_10_1111_syen_12357 crossref_primary_10_1111_nph_13491 crossref_primary_10_1111_cla_12521 crossref_primary_10_3389_fevo_2023_1062764 crossref_primary_10_1016_j_revpalbo_2024_105189 crossref_primary_10_1111_cla_12124 crossref_primary_10_1038_s41598_019_42827_1 crossref_primary_10_1111_jbi_13206 crossref_primary_10_4081_ejh_2024_4027 crossref_primary_10_1111_ecog_06775 crossref_primary_10_1016_j_scitotenv_2023_162961 crossref_primary_10_1093_aob_mcae080 crossref_primary_10_1002_ajb2_1592 crossref_primary_10_1111_j_1469_8137_2012_04079_x crossref_primary_10_1890_13_1825_1 crossref_primary_10_1111_eea_12348 crossref_primary_10_1038_s41559_023_02251_1 crossref_primary_10_1086_665819 crossref_primary_10_1111_oik_05360 crossref_primary_10_3389_fpls_2016_00263 crossref_primary_10_1111_1365_2435_12601 crossref_primary_10_1016_j_tree_2020_04_004 crossref_primary_10_1111_pala_12444 crossref_primary_10_1126_science_1207525 crossref_primary_10_1002_ece3_4499 crossref_primary_10_1016_j_biosystems_2025_105444 crossref_primary_10_1038_s42003_024_06250_1 crossref_primary_10_2517_1342_8144_15_2_100 crossref_primary_10_1111_1442_1984_12112 crossref_primary_10_1002_ece3_70320 crossref_primary_10_1016_j_gloplacha_2021_103477 crossref_primary_10_1007_s11284_012_0937_5 crossref_primary_10_1007_s10021_022_00766_5 crossref_primary_10_1111_nph_13367 crossref_primary_10_1155_2014_384912 crossref_primary_10_1086_713445 crossref_primary_10_1007_s12549_019_00406_2 crossref_primary_10_1146_annurev_environ_102511_084654 crossref_primary_10_1093_plphys_kiae051 crossref_primary_10_3390_life13040922 crossref_primary_10_1098_rspb_2018_2076 crossref_primary_10_1086_666005 crossref_primary_10_1371_journal_pone_0173090 crossref_primary_10_1111_j_1461_0248_2010_01455_x crossref_primary_10_18476_pale_v15_a6 crossref_primary_10_1111_pce_12761 crossref_primary_10_1111_oik_10567 crossref_primary_10_1038_s41559_019_0834_1 crossref_primary_10_1111_j_1469_8137_2011_03862_x crossref_primary_10_1016_j_tree_2022_07_008 crossref_primary_10_1111_j_1469_8137_2010_03418_x crossref_primary_10_1111_nph_16850 crossref_primary_10_1016_j_watres_2024_121575 crossref_primary_10_1111_j_1461_0248_2009_01410_x crossref_primary_10_1093_zoolinnean_zlac096 crossref_primary_10_1016_j_apmt_2022_101471 crossref_primary_10_1098_rstb_2020_0118 crossref_primary_10_1111_j_1461_0248_2012_01782_x crossref_primary_10_3389_fpls_2023_1128227 crossref_primary_10_1640_0002_8444_112_1_17 crossref_primary_10_1007_s00267_015_0491_3 crossref_primary_10_1111_jipb_13609 crossref_primary_10_1098_rspb_2014_1470 crossref_primary_10_1007_s11258_021_01208_3 crossref_primary_10_1007_s11258_023_01391_5 crossref_primary_10_1016_j_ecolmodel_2015_08_022 crossref_primary_10_1017_S0016756819000761 crossref_primary_10_7717_peerj_4580 crossref_primary_10_1016_j_biocon_2015_06_019 crossref_primary_10_1038_s41598_023_42571_7 crossref_primary_10_3390_plants10040652 crossref_primary_10_1093_evolut_qpad053 crossref_primary_10_1002_cplx_20323 crossref_primary_10_1111_ele_12323 crossref_primary_10_1038_s41467_022_30037_9 crossref_primary_10_1016_j_tree_2013_06_001 crossref_primary_10_1144_SP378_1 crossref_primary_10_1002_ecm_1292 crossref_primary_10_1890_11_1906_1 crossref_primary_10_1007_s00435_022_00565_5 crossref_primary_10_1111_1365_2745_12192 crossref_primary_10_1111_brv_12153 crossref_primary_10_1007_s11104_014_2033_9 crossref_primary_10_1111_nph_13274 crossref_primary_10_1111_geb_12634 crossref_primary_10_1038_s41467_024_45155_9 crossref_primary_10_1093_aob_mcx109 crossref_primary_10_1093_aob_mcw018 crossref_primary_10_1002_ece3_70019 crossref_primary_10_1038_ncomms2217 crossref_primary_10_1007_s11676_023_01685_4 crossref_primary_10_1016_j_tree_2020_12_003 crossref_primary_10_1016_j_cretres_2020_104532 crossref_primary_10_3389_fpls_2020_00212 crossref_primary_10_1098_rspb_2011_0559 crossref_primary_10_1111_syen_12441 crossref_primary_10_1111_j_1654_1103_2012_01387_x crossref_primary_10_1111_jbi_13472 crossref_primary_10_3389_fpls_2024_1402946 crossref_primary_10_1016_j_cretres_2021_105088 crossref_primary_10_1111_nph_13559 crossref_primary_10_1017_pab_2018_44 crossref_primary_10_1111_syen_12602 |
Cites_doi | 10.1007/3-540-27675-0_5 10.2307/2261121 10.1007/BF00000785 10.1017/S0094837300015840 10.1023/A:1005935823525 10.1007/s10021-004-0274-9 10.1007/978-4-431-65918-1_13 10.1046/j.1469-8137.2003.00667.x 10.1111/j.1654-1103.2004.tb02266.x 10.1126/science.206.4414.20 10.3732/ajb.0800060 10.1007/BF00043031 10.1126/science.1134853 10.1017/S1464793101005735 10.1038/374027a0 10.2307/2261398 10.1016/j.tree.2003.09.002 10.1002/(SICI)1099-1646(199901/06)15:1/3<43::AID-RRR535>3.0.CO;2-Q 10.2136/sssaj2000.641371x 10.1016/0168-9452(85)90075-5 10.1038/274661a0 10.1111/j.1461-0248.2008.01219.x 10.1073/pnas.0308127100 10.1016/j.ecolmodel.2004.12.001 10.3732/ajb.0800150 10.1006/cres.1996.0003 10.1016/j.palwor.2008.10.002 10.2307/1939130 10.1017/S009483730002131X 10.1007/BF02860849 10.3732/ajb.0800126 10.1111/plb.1997.46.2.117 10.1007/BF02858880 10.1126/science.196.4290.622 10.1016/0038-0717(94)00183-2 10.2307/3546273 10.1666/0094-8373(2004)030<0082:DADANI>2.0.CO;2 10.1139/b85-171 10.1016/S0169-5347(96)10055-0 10.1111/j.1365-2664.2004.00870.x 10.1007/BF00047389 10.1139/b93-019 10.1086/317580 10.1016/j.palaeo.2005.07.006 10.1016/S0034-6667(03)00092-7 10.1016/0169-5347(95)90007-1 10.1146/annurev.earth.26.1.379 10.1016/0034-6667(82)90038-0 10.1111/j.1095-8312.1989.tb00492.x |
ContentType | Journal Article |
Copyright | 2009 Blackwell Publishing Ltd/CNRS 2009 INIST-CNRS Journal compilation © 2009 Blackwell Publishing Ltd/CNRS Wageningen University & Research |
Copyright_xml | – notice: 2009 Blackwell Publishing Ltd/CNRS – notice: 2009 INIST-CNRS – notice: Journal compilation © 2009 Blackwell Publishing Ltd/CNRS – notice: Wageningen University & Research |
DBID | FBQ BSCLL 24P AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7ST SOI 7S9 L.6 7X8 5PM QVL |
DOI | 10.1111/j.1461-0248.2009.01342.x |
DatabaseName | AGRIS Istex Wiley Online Library Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environment Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE MEDLINE - Academic CrossRef Ecology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
EndPage | 872 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_380580 PMC2777257 1833404941 19572916 21846598 10_1111_j_1461_0248_2009_01342_x ELE1342 ark_67375_WNG_M4R5MVC1_D US201301666345 |
Genre | article Journal Article Feature |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABTAH ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG 24P AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7ST SOI 7S9 L.6 7X8 5PM - 02 0R 1AW 31 3N AAPBV GA HZ IA KM NF P4A PQEST QVL RIG UNR WT Y3 |
ID | FETCH-LOGICAL-c7702-c63fbfd44c2b56316feda2fb3bec49c7e8c0b4a9038b9a9fa865479975f8e14e3 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Fri Feb 05 18:08:06 EST 2021 Thu Aug 21 13:59:43 EDT 2025 Fri Jul 11 13:30:44 EDT 2025 Fri Jul 11 05:21:40 EDT 2025 Fri Jul 11 16:41:34 EDT 2025 Fri Jul 25 11:07:31 EDT 2025 Thu Apr 03 07:10:25 EDT 2025 Mon Jul 21 09:15:42 EDT 2025 Tue Jul 01 02:29:35 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 Wed Jan 22 16:44:32 EST 2025 Wed Oct 30 09:54:48 EDT 2024 Wed Dec 27 19:20:19 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Heathland and moor heathlands gymnosperms Biological evolution Ecology Cretaceous Peat bog Adaptive radiation plant-soil feedbacks Stagnant water Angiospermae Gymnospermae bogs evolutionary radiation Spermatophyta Plant marsh community Soil plant relation Angiosperms |
Language | English |
License | CC BY 4.0 Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c7702-c63fbfd44c2b56316feda2fb3bec49c7e8c0b4a9038b9a9fa865479975f8e14e3 |
Notes | http://dx.doi.org/10.1111/j.1461-0248.2009.01342.x ark:/67375/WNG-M4R5MVC1-D istex:E1F5450BA67B0305587011B197E5CC6E019EFCB5 ArticleID:ELE1342 http://www3.interscience.wiley.com/authorresources/onlineopen.html Re‐use of this article is permitted in accordance with the Terms and Conditions set out at SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Ecology Letters (2009) 12: 865–872 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2009.01342.x |
PMID | 19572916 |
PQID | 203663053 |
PQPubID | 32390 |
PageCount | 8 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_380580 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2777257 proquest_miscellaneous_67608360 proquest_miscellaneous_46364964 proquest_miscellaneous_20796062 proquest_journals_203663053 pubmed_primary_19572916 pascalfrancis_primary_21846598 crossref_citationtrail_10_1111_j_1461_0248_2009_01342_x crossref_primary_10_1111_j_1461_0248_2009_01342_x wiley_primary_10_1111_j_1461_0248_2009_01342_x_ELE1342 istex_primary_ark_67375_WNG_M4R5MVC1_D fao_agris_US201301666345 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | September 2009 |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: September 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell |
References | Tomassen, H.B.M., Smolders, A.J.P., Limpens, J., Lamers, L.P.M. & Roelofs, J.G.M. (2004). Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition levels? J. Appl. Ecol., 41, 139-150. Magallón, S. & Castillo, A. (2009). Angiosperm diversification through time. Am. J. Bot., 96(1), 349-365. Mohr, B. & Rydin, C. (2002). Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil). Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe, 5, 335-344. Matson, P.A.. & Boone, R.D. (1984). Natural disturbance and nitrogen mineralization: wave-form dieback of mountain hemlock in the Oregon Cascades. Ecology, 65, 1511-1516. Berendse, F. (1994a). Competition between plant populations at low and high nutrient supplies. Oikos, 71, 253-260. Hickey, L.J. & Doyle, J.A. (1977). Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev., 43, 3-104. Bond, W.J. (1989). The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Lin. Soc., 36, 227-249. Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O. et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett., 11, 1065-1071. Doyle, J.A. (2001). Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms. Palaeobotanist, 50, 167-188. Grime, J.P., Hodgson, J.P. & Hunt, R. (2007). Comparative Plant Ecology: A Functional Approach to Common British Species, 2nd edn. Castlepoint Press, Dalbeattie. Verhoeven, J.T.A. & Liefveld, W.M. (1997). The ecological significance of organochemical compounds in Sphagnum. Act. Bot. Neerl., 46, 117-130. Crane, P.R., Friis, E.M. & Pedersen, K.R. (1995). The origin and early diversification of angiosperms. Nature, 374, 27-33. Berendse, F. (1994b). Litter decomposability - a neglected component of plant fitness. J. Ecol., 82, 187-190. Feild, T.S., Arens, N.C., Doyle, J.A., Dawson, T.E. & Donoghue, M.J. (2004). Dark and disturbed: a new image of early angiosperm ecology. Paleobiology, 30, 82-107. Van Breemen, N. (1995). How sphagnum bogs down other plants. Trends Ecol. Evol., 10, 270-275. Van Vuuren, M.M.I., Berendse, F. & De Visser, W. (1993). Species and site differences in the decomposition of litters and roots from wet heathlands. Can. J. Bot., 71, 167-173. Bakker, R.T. (1978). Dinosaur feeding behaviour and the origin of flowering plants. Nature, 274, 661-663. Limpens, J., Berendse, F. & Klees, H. (2003). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol., 157, 339-347. Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S. et al. (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364. Doyle, J.A. & Donoghue, M.J. (1993). Phylogenies and angiosperm diversification. Paleobiology, 19, 141-167. Friis, E.M., Pedersen, K.R. & Crane, P.R. (2006). Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 232, 251-293. Scheffer, M., Carpenter, S.R., Foley, J.A., Folke, C. & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591-596. Crepet, W.L. & Niklas, K.J. (2009). Darwin's second "abominable mystery": Why are there so many angiosperm species? Am. J. Bot., 96, 366-381. Alvin, K.L. (1982). Cheirolepidiaceae: biology, structure and paleoecology. Rev. Paleobot. Palyn., 37, 55-70. Mohr, B.A.R. & Eklund, H. (2003). Araripia florifera, a magnoliid angiosperm from the lower Cretaceous Crato Formation (Brazil). Rev. Paleobot. Palynol., 126, 279-292. Barrett, P.M. & Willis, K.J. (2001). Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biol. Rev., 76, 411-447. Limpens, J., Berendse, F. & Klees, H. (2004). How P affects the impact of N deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7, 793-804. Berendse, F. (1990). Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J. Ecol., 78, 413-427. Berendse, F. (1998). Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry, 42, 73-88. Kristensen, H.L., McCarty, G.W. & Meisinger, J.J. (2000). Effects of soil structure disturbance on mineralization of organic soil nitrogen. Soil Sci. Soc. Am. J., 64, 371-378. Verhoeven, J.T.A., Koerselman, W. & Meuleman, A.F.M. (1996). Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. TREE, 11, 494-497. Aerts, R. & Berendse, F. (1988). The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio, 76, 63-69. Sun, G., Dilcher, D.L. & Zheng, S. (2008). A review of recent advances in the study of early angiosperms from northeastern China. Paleoworld, 17, 166-171. Hill, C.R. (1996). A plant with flower-like organs from the Wealden of the Weald (Lower Cretaceous), southern England. Cret. Res., 17, 27-38. Bartsch, I. & Moore, T.R. (1985). A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Quebec. Can. J. Bot., 63, 1241-1248. Doyle, J.A., Endress, P.K. & Upchurch, G.R. Jr (2008). Early Cretaceous monocots: a phylogenetic evaluation. Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 64, 59-87. Davies, J.T., Barraclough, T.G., Chase, M.W., Soltis, P.S., Soltis, D.E. & Savolainen, V. (2004). Darwin's abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl Acad. Sci. USA, 101, 1904-1909. Axelrod, D.I. (1970). Mesozoic paleogeography and early angiosperm history. Bot. Rev., 36, 277-319. Scheffer, M. & Carpenter, S.R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. TREE, 18, 648-656. Wing, S.L. & Boucher, L.D. (1998). Ecological aspects of the Cretaceous flowering plant radiation. Ann. Rev. Earth Planet Sci., 26, 379-421. Stewart, W.N. & Rothwell, G.W. (1993). Paleobotany and the Evolution of Plants, 2nd edn. Cambridge University Press, Cambridge. Grime, J.P. (2002). Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd edn. John Wiley & Sons Ltd, Chichester. Lupia, R., Lidgard, S. & Crane, P.R. (1999). Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology, 25, 305-340. Friedman, W.E. (2009). The meaning of Darwin's "abominable mystery". Am. J. Bot., 96, 5-21. Van Nes, E.H. & Scheffer, M. (2005). A strategy to improve the contribution of complex simulation models to ecological theory. Ecol. Model., 185, 153-164. Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A. et al. (2004). The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci., 15, 295-304. Regal, P.J. (1977). Ecology and evolution of flowering plant dominance. Science, 196, 622-629. Berg, B., Berg, M., Bottner, P., Box, E., Breymeyer, A., Calvo de Anta, R. et al. (1993). Litter mass loss in pine forests of Europe and eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry, 20, 127-153. Müller, P.E. (1879). Studier över Skovjord, som bidrag til skordyrkningens theori. I. Om bögemuld od bögermor paa sand og ler. Tidsskr. Skovbrug, 3, 1-124. Mulcahy, D.L. (1979). The rise of the angiosperms: a genecological factor. Science, 206, 20-23. Verhoeven, J.T.A. & Toth, E.. (1995). Decomposition of Carex and Sphagnum litter in fens: effects of litter quality and inhibition by living tissue homogenates. Soil Biol. Biochem., 27, 271-275. Mohr, B.A.R. & Friis, E.M. (2000). Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report. Int. J. Plant Sci. Suppl., 161, S155-S167. Heil, G. & Diemont, W.H. (1984). Raised nutrient levels change heathland into grassland. Vegetatio, 53, 113-120. 2001; 50 1984; 65 2004; 7 1993; 20 1997; 46 1988; 76 1976 1985; 63 2003; 18 1995; 374 2003; 157 1998; 42 1970; 36 2004; 30 2005; 181 1984; 53 2009; 96 2005; 185 1990 1995; 27 1993; 71 2000; 161 1981 2008; 64 2003; 126 1989; 36 2001; 413 2004; 101 1998; 26 2004; 41 1982; 37 1990; 78 1994b; 82 1996; 17 2002; 5 1979; 206 1995; 10 2000; 64 1999; 25 2008; 17 1978; 274 1997 2007 1995 2008; 11 1977; 43 1993 2002 2006; 232 1996; 11 1993; 19 1879; 3 2007; 315 2004; 15 1994a; 71 1977; 196 2001; 76 e_1_2_8_28_1 e_1_2_8_26_1 e_1_2_8_49_1 Müller P.E. (e_1_2_8_43_1) 1879; 3 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_45_1 Mohr B. (e_1_2_8_41_1) 2002; 5 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Doyle J.A. (e_1_2_8_23_1) 1976 Grime J.P. (e_1_2_8_29_1) 2007 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 Stewart W.N. (e_1_2_8_52_1) 1993 e_1_2_8_25_1 e_1_2_8_46_1 Retallack G. (e_1_2_8_47_1) 1981 e_1_2_8_27_1 e_1_2_8_48_1 Doyle J.A. (e_1_2_8_24_1) 2008; 64 De Smidt J.T. (e_1_2_8_50_1) 1995 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 e_1_2_8_58_1 Crane P.R. (e_1_2_8_16_1) 1990 Doyle J.A. (e_1_2_8_21_1) 2001; 50 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 |
References_xml | – reference: Bakker, R.T. (1978). Dinosaur feeding behaviour and the origin of flowering plants. Nature, 274, 661-663. – reference: Friedman, W.E. (2009). The meaning of Darwin's "abominable mystery". Am. J. Bot., 96, 5-21. – reference: Bartsch, I. & Moore, T.R. (1985). A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Quebec. Can. J. Bot., 63, 1241-1248. – reference: Feild, T.S., Arens, N.C., Doyle, J.A., Dawson, T.E. & Donoghue, M.J. (2004). Dark and disturbed: a new image of early angiosperm ecology. Paleobiology, 30, 82-107. – reference: Van Breemen, N. (1995). How sphagnum bogs down other plants. Trends Ecol. Evol., 10, 270-275. – reference: Bond, W.J. (1989). The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Lin. Soc., 36, 227-249. – reference: Mulcahy, D.L. (1979). The rise of the angiosperms: a genecological factor. Science, 206, 20-23. – reference: Müller, P.E. (1879). Studier över Skovjord, som bidrag til skordyrkningens theori. I. Om bögemuld od bögermor paa sand og ler. Tidsskr. Skovbrug, 3, 1-124. – reference: Matson, P.A.. & Boone, R.D. (1984). Natural disturbance and nitrogen mineralization: wave-form dieback of mountain hemlock in the Oregon Cascades. Ecology, 65, 1511-1516. – reference: Barrett, P.M. & Willis, K.J. (2001). Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biol. Rev., 76, 411-447. – reference: Berendse, F. (1994a). Competition between plant populations at low and high nutrient supplies. Oikos, 71, 253-260. – reference: Verhoeven, J.T.A., Koerselman, W. & Meuleman, A.F.M. (1996). Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. TREE, 11, 494-497. – reference: Doyle, J.A., Endress, P.K. & Upchurch, G.R. Jr (2008). Early Cretaceous monocots: a phylogenetic evaluation. Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 64, 59-87. – reference: Mohr, B.A.R. & Eklund, H. (2003). Araripia florifera, a magnoliid angiosperm from the lower Cretaceous Crato Formation (Brazil). Rev. Paleobot. Palynol., 126, 279-292. – reference: Stewart, W.N. & Rothwell, G.W. (1993). Paleobotany and the Evolution of Plants, 2nd edn. Cambridge University Press, Cambridge. – reference: Berendse, F. (1990). Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J. Ecol., 78, 413-427. – reference: Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A. et al. (2004). The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci., 15, 295-304. – reference: Grime, J.P., Hodgson, J.P. & Hunt, R. (2007). Comparative Plant Ecology: A Functional Approach to Common British Species, 2nd edn. Castlepoint Press, Dalbeattie. – reference: Van Nes, E.H. & Scheffer, M. (2005). A strategy to improve the contribution of complex simulation models to ecological theory. Ecol. Model., 185, 153-164. – reference: Heil, G. & Diemont, W.H. (1984). Raised nutrient levels change heathland into grassland. Vegetatio, 53, 113-120. – reference: Tomassen, H.B.M., Smolders, A.J.P., Limpens, J., Lamers, L.P.M. & Roelofs, J.G.M. (2004). Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition levels? J. Appl. Ecol., 41, 139-150. – reference: Mohr, B.A.R. & Friis, E.M. (2000). Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report. Int. J. Plant Sci. Suppl., 161, S155-S167. – reference: Doyle, J.A. & Donoghue, M.J. (1993). Phylogenies and angiosperm diversification. Paleobiology, 19, 141-167. – reference: Scheffer, M., Carpenter, S.R., Foley, J.A., Folke, C. & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591-596. – reference: Wing, S.L. & Boucher, L.D. (1998). Ecological aspects of the Cretaceous flowering plant radiation. Ann. Rev. Earth Planet Sci., 26, 379-421. – reference: Friis, E.M., Pedersen, K.R. & Crane, P.R. (2006). Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 232, 251-293. – reference: Kristensen, H.L., McCarty, G.W. & Meisinger, J.J. (2000). Effects of soil structure disturbance on mineralization of organic soil nitrogen. Soil Sci. Soc. Am. J., 64, 371-378. – reference: Scheffer, M. & Carpenter, S.R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. TREE, 18, 648-656. – reference: Alvin, K.L. (1982). Cheirolepidiaceae: biology, structure and paleoecology. Rev. Paleobot. Palyn., 37, 55-70. – reference: Van Vuuren, M.M.I., Berendse, F. & De Visser, W. (1993). Species and site differences in the decomposition of litters and roots from wet heathlands. Can. J. Bot., 71, 167-173. – reference: Berg, B., Berg, M., Bottner, P., Box, E., Breymeyer, A., Calvo de Anta, R. et al. (1993). Litter mass loss in pine forests of Europe and eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry, 20, 127-153. – reference: Doyle, J.A. (2001). Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms. Palaeobotanist, 50, 167-188. – reference: Limpens, J., Berendse, F. & Klees, H. (2004). How P affects the impact of N deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7, 793-804. – reference: Hickey, L.J. & Doyle, J.A. (1977). Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev., 43, 3-104. – reference: Crane, P.R., Friis, E.M. & Pedersen, K.R. (1995). The origin and early diversification of angiosperms. Nature, 374, 27-33. – reference: Hill, C.R. (1996). A plant with flower-like organs from the Wealden of the Weald (Lower Cretaceous), southern England. Cret. Res., 17, 27-38. – reference: Crepet, W.L. & Niklas, K.J. (2009). Darwin's second "abominable mystery": Why are there so many angiosperm species? Am. J. Bot., 96, 366-381. – reference: Magallón, S. & Castillo, A. (2009). Angiosperm diversification through time. Am. J. Bot., 96(1), 349-365. – reference: Grime, J.P. (2002). Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd edn. John Wiley & Sons Ltd, Chichester. – reference: Berendse, F. (1994b). Litter decomposability - a neglected component of plant fitness. J. Ecol., 82, 187-190. – reference: Lupia, R., Lidgard, S. & Crane, P.R. (1999). Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology, 25, 305-340. – reference: Axelrod, D.I. (1970). Mesozoic paleogeography and early angiosperm history. Bot. Rev., 36, 277-319. – reference: Davies, J.T., Barraclough, T.G., Chase, M.W., Soltis, P.S., Soltis, D.E. & Savolainen, V. (2004). Darwin's abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl Acad. Sci. USA, 101, 1904-1909. – reference: Sun, G., Dilcher, D.L. & Zheng, S. (2008). A review of recent advances in the study of early angiosperms from northeastern China. Paleoworld, 17, 166-171. – reference: Mohr, B. & Rydin, C. (2002). Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil). Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe, 5, 335-344. – reference: Aerts, R. & Berendse, F. (1988). The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio, 76, 63-69. – reference: Regal, P.J. (1977). Ecology and evolution of flowering plant dominance. Science, 196, 622-629. – reference: Verhoeven, J.T.A. & Liefveld, W.M. (1997). The ecological significance of organochemical compounds in Sphagnum. Act. Bot. Neerl., 46, 117-130. – reference: Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O. et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett., 11, 1065-1071. – reference: Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S. et al. (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364. – reference: Limpens, J., Berendse, F. & Klees, H. (2003). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol., 157, 339-347. – reference: Berendse, F. (1998). Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry, 42, 73-88. – reference: Verhoeven, J.T.A. & Toth, E.. (1995). Decomposition of Carex and Sphagnum litter in fens: effects of litter quality and inhibition by living tissue homogenates. Soil Biol. Biochem., 27, 271-275. – volume: 232 start-page: 251 year: 2006 end-page: 293 article-title: Cretaceous angiosperm flowers: innovation and evolution in plant reproduction publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 274 start-page: 661 year: 1978 end-page: 663 article-title: Dinosaur feeding behaviour and the origin of flowering plants publication-title: Nature – volume: 96 start-page: 5 year: 2009 end-page: 21 article-title: The meaning of Darwin’s “abominable mystery” publication-title: Am. J. Bot. – start-page: 34 year: 1995 end-page: 45 – volume: 161 start-page: S155 year: 2000 end-page: S167 article-title: Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report publication-title: Int. J. Plant Sci. Suppl. – volume: 18 start-page: 648 year: 2003 end-page: 656 article-title: Catastrophic regime shifts in ecosystems: linking theory to observation publication-title: TREE – volume: 374 start-page: 27 year: 1995 end-page: 33 article-title: The origin and early diversification of angiosperms publication-title: Nature – volume: 181 start-page: 89 year: 2005 end-page: 116 – volume: 43 start-page: 3 year: 1977 end-page: 104 article-title: Early Cretaceous fossil evidence for angiosperm evolution publication-title: Bot. Rev. – volume: 3 start-page: 1 year: 1879 end-page: 124 article-title: Studier över Skovjord, som bidrag til skordyrkningens theori. I. Om bögemuld od bögermor paa sand og ler publication-title: Tidsskr. Skovbrug – volume: 19 start-page: 141 year: 1993 end-page: 167 article-title: Phylogenies and angiosperm diversification publication-title: Paleobiology – volume: 185 start-page: 153 year: 2005 end-page: 164 article-title: A strategy to improve the contribution of complex simulation models to ecological theory publication-title: Ecol. Model. – volume: 11 start-page: 494 year: 1996 end-page: 497 article-title: Nitrogen‐ or phosphorus‐limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes publication-title: TREE – volume: 50 start-page: 167 year: 2001 end-page: 188 article-title: Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms publication-title: Palaeobotanist – volume: 7 start-page: 793 year: 2004 end-page: 804 article-title: How P affects the impact of N deposition on and vascular plants in bogs publication-title: Ecosystems – volume: 20 start-page: 127 year: 1993 end-page: 153 article-title: Litter mass loss in pine forests of Europe and eastern United States as compared to actual evapotranspiration on a European scale publication-title: Biogeochemistry – volume: 46 start-page: 117 year: 1997 end-page: 130 article-title: The ecological significance of organochemical compounds in publication-title: Act. Bot. Neerl. – volume: 78 start-page: 413 year: 1990 end-page: 427 article-title: Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems publication-title: J. Ecol. – volume: 315 start-page: 361 year: 2007 end-page: 364 article-title: Global‐scale similarities in nitrogen release patterns during long‐term decomposition publication-title: Science – volume: 10 start-page: 270 year: 1995 end-page: 275 article-title: How sphagnum bogs down other plants publication-title: Trends Ecol. Evol. – volume: 64 start-page: 371 year: 2000 end-page: 378 article-title: Effects of soil structure disturbance on mineralization of organic soil nitrogen publication-title: Soil Sci. Soc. Am. J. – volume: 196 start-page: 622 year: 1977 end-page: 629 article-title: Ecology and evolution of flowering plant dominance publication-title: Science – year: 1993 – volume: 82 start-page: 187 year: 1994b end-page: 190 article-title: Litter decomposability – a neglected component of plant fitness publication-title: J. Ecol. – volume: 27 start-page: 271 year: 1995 end-page: 275 article-title: Decomposition of and litter in fens: effects of litter quality and inhibition by living tissue homogenates publication-title: Soil Biol. Biochem. – start-page: 269 year: 1997 end-page: 290 – start-page: 27 year: 1981 end-page: 77 – volume: 36 start-page: 277 year: 1970 end-page: 319 article-title: Mesozoic paleogeography and early angiosperm history publication-title: Bot. Rev. – volume: 42 start-page: 73 year: 1998 end-page: 88 article-title: Effects of dominant plant species on soils during succession in nutrient‐poor ecosystems publication-title: Biogeochemistry – volume: 11 start-page: 1065 year: 2008 end-page: 1071 article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide publication-title: Ecol. Lett. – volume: 5 start-page: 335 year: 2002 end-page: 344 article-title: n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil) publication-title: Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe – volume: 96 start-page: 366 year: 2009 end-page: 381 article-title: Darwin’s second “abominable mystery”: Why are there so many angiosperm species? publication-title: Am. J. Bot. – year: 2007 – volume: 96 start-page: 349 issue: 1 year: 2009 end-page: 365 article-title: Angiosperm diversification through time publication-title: Am. J. Bot. – volume: 157 start-page: 339 year: 2003 end-page: 347 article-title: N deposition affects N availability in interstitial water, growth of and invasion of vascular plants in bog vegetation publication-title: New Phytol. – volume: 36 start-page: 227 year: 1989 end-page: 249 article-title: The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence publication-title: Biol. J. Lin. Soc. – volume: 25 start-page: 305 year: 1999 end-page: 340 article-title: Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation publication-title: Paleobiology – volume: 71 start-page: 167 year: 1993 end-page: 173 article-title: Species and site differences in the decomposition of litters and roots from wet heathlands publication-title: Can. J. Bot. – volume: 37 start-page: 55 year: 1982 end-page: 70 article-title: Cheirolepidiaceae: biology, structure and paleoecology publication-title: Rev. Paleobot. Palyn. – volume: 413 start-page: 591 year: 2001 end-page: 596 article-title: Catastrophic shifts in ecosystems publication-title: Nature – volume: 76 start-page: 63 year: 1988 end-page: 69 article-title: The effect of increased nutrient availability on vegetation dynamics in wet heathlands publication-title: Vegetatio – volume: 64 start-page: 59 year: 2008 end-page: 87 article-title: Early Cretaceous monocots: a phylogenetic evaluation publication-title: Acta Musei Nationalis Pragae, Series B, Historia Naturalis – volume: 17 start-page: 166 year: 2008 end-page: 171 article-title: A review of recent advances in the study of early angiosperms from northeastern China publication-title: Paleoworld – volume: 41 start-page: 139 year: 2004 end-page: 150 article-title: Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition levels? publication-title: J. Appl. Ecol. – volume: 26 start-page: 379 year: 1998 end-page: 421 article-title: Ecological aspects of the Cretaceous flowering plant radiation publication-title: Ann. Rev. Earth Planet Sci. – volume: 65 start-page: 1511 year: 1984 end-page: 1516 article-title: Natural disturbance and nitrogen mineralization: wave‐form dieback of mountain hemlock in the Oregon Cascades publication-title: Ecology – volume: 30 start-page: 82 year: 2004 end-page: 107 article-title: Dark and disturbed: a new image of early angiosperm ecology publication-title: Paleobiology – volume: 53 start-page: 113 year: 1984 end-page: 120 article-title: Raised nutrient levels change heathland into grassland publication-title: Vegetatio – year: 2002 – volume: 101 start-page: 1904 year: 2004 end-page: 1909 article-title: Darwin’s abominable mystery: Insights from a supertree of the angiosperms publication-title: Proc. Natl Acad. Sci. USA – volume: 17 start-page: 27 year: 1996 end-page: 38 article-title: A plant with flower‐like organs from the Wealden of the Weald (Lower Cretaceous), southern England publication-title: Cret. Res. – volume: 76 start-page: 411 year: 2001 end-page: 447 article-title: Did dinosaurs invent flowers? Dinosaur–angiosperm coevolution revisited publication-title: Biol. Rev. – volume: 71 start-page: 253 year: 1994a end-page: 260 article-title: Competition between plant populations at low and high nutrient supplies publication-title: Oikos – start-page: 377 year: 1990 end-page: 407 – start-page: 139 year: 1976 end-page: 206 – volume: 126 start-page: 279 year: 2003 end-page: 292 article-title: , a magnoliid angiosperm from the lower Cretaceous Crato Formation (Brazil) publication-title: Rev. Paleobot. Palynol. – volume: 206 start-page: 20 year: 1979 end-page: 23 article-title: The rise of the angiosperms: a genecological factor publication-title: Science – volume: 63 start-page: 1241 year: 1985 end-page: 1248 article-title: A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Quebec publication-title: Can. J. Bot. – volume: 15 start-page: 295 year: 2004 end-page: 304 article-title: The plant traits that drive ecosystems: evidence from three continents publication-title: J. Veg. Sci. – volume: 3 start-page: 1 year: 1879 ident: e_1_2_8_43_1 article-title: Studier över Skovjord, som bidrag til skordyrkningens theori. I. Om bögemuld od bögermor paa sand og ler publication-title: Tidsskr. Skovbrug – ident: e_1_2_8_51_1 doi: 10.1007/3-540-27675-0_5 – ident: e_1_2_8_8_1 doi: 10.2307/2261121 – start-page: 377 volume-title: Major Evolutionary Radiations year: 1990 ident: e_1_2_8_16_1 – ident: e_1_2_8_12_1 doi: 10.1007/BF00000785 – ident: e_1_2_8_22_1 doi: 10.1017/S0094837300015840 – volume-title: Comparative Plant Ecology: A Functional Approach to Common British Species year: 2007 ident: e_1_2_8_29_1 – ident: e_1_2_8_11_1 doi: 10.1023/A:1005935823525 – volume: 50 start-page: 167 year: 2001 ident: e_1_2_8_21_1 article-title: Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms publication-title: Palaeobotanist – ident: e_1_2_8_35_1 doi: 10.1007/s10021-004-0274-9 – ident: e_1_2_8_60_1 doi: 10.1007/978-4-431-65918-1_13 – ident: e_1_2_8_34_1 doi: 10.1046/j.1469-8137.2003.00667.x – volume-title: Paleobotany and the Evolution of Plants year: 1993 ident: e_1_2_8_52_1 – ident: e_1_2_8_20_1 doi: 10.1111/j.1654-1103.2004.tb02266.x – ident: e_1_2_8_42_1 doi: 10.1126/science.206.4414.20 – ident: e_1_2_8_37_1 doi: 10.3732/ajb.0800060 – ident: e_1_2_8_30_1 doi: 10.1007/BF00043031 – ident: e_1_2_8_45_1 doi: 10.1126/science.1134853 – ident: e_1_2_8_6_1 doi: 10.1017/S1464793101005735 – ident: e_1_2_8_17_1 doi: 10.1038/374027a0 – ident: e_1_2_8_10_1 doi: 10.2307/2261398 – ident: e_1_2_8_48_1 doi: 10.1016/j.tree.2003.09.002 – ident: e_1_2_8_49_1 doi: 10.1002/(SICI)1099-1646(199901/06)15:1/3<43::AID-RRR535>3.0.CO;2-Q – ident: e_1_2_8_33_1 doi: 10.2136/sssaj2000.641371x – ident: e_1_2_8_28_1 doi: 10.1016/0168-9452(85)90075-5 – ident: e_1_2_8_5_1 doi: 10.1038/274661a0 – ident: e_1_2_8_15_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_8_19_1 doi: 10.1073/pnas.0308127100 – ident: e_1_2_8_44_1 doi: 10.1016/j.ecolmodel.2004.12.001 – ident: e_1_2_8_26_1 doi: 10.3732/ajb.0800150 – ident: e_1_2_8_32_1 doi: 10.1006/cres.1996.0003 – start-page: 27 volume-title: Paleobotany, Paleoecology and Evolution year: 1981 ident: e_1_2_8_47_1 – ident: e_1_2_8_53_1 doi: 10.1016/j.palwor.2008.10.002 – ident: e_1_2_8_38_1 doi: 10.2307/1939130 – ident: e_1_2_8_36_1 doi: 10.1017/S009483730002131X – ident: e_1_2_8_31_1 doi: 10.1007/BF02860849 – ident: e_1_2_8_18_1 doi: 10.3732/ajb.0800126 – ident: e_1_2_8_56_1 doi: 10.1111/plb.1997.46.2.117 – ident: e_1_2_8_4_1 doi: 10.1007/BF02858880 – ident: e_1_2_8_46_1 doi: 10.1126/science.196.4290.622 – ident: e_1_2_8_57_1 doi: 10.1016/0038-0717(94)00183-2 – ident: e_1_2_8_9_1 doi: 10.2307/3546273 – ident: e_1_2_8_25_1 doi: 10.1666/0094-8373(2004)030<0082:DADANI>2.0.CO;2 – ident: e_1_2_8_7_1 doi: 10.1139/b85-171 – volume: 5 start-page: 335 year: 2002 ident: e_1_2_8_41_1 article-title: Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil) publication-title: Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe – ident: e_1_2_8_58_1 doi: 10.1016/S0169-5347(96)10055-0 – start-page: 34 volume-title: Heaths and Moorland: Cultural Landscapes year: 1995 ident: e_1_2_8_50_1 – ident: e_1_2_8_54_1 doi: 10.1111/j.1365-2664.2004.00870.x – ident: e_1_2_8_2_1 doi: 10.1007/BF00047389 – ident: e_1_2_8_55_1 doi: 10.1139/b93-019 – ident: e_1_2_8_40_1 doi: 10.1086/317580 – start-page: 139 volume-title: Origin and early evolution of angiosperms year: 1976 ident: e_1_2_8_23_1 – volume: 64 start-page: 59 year: 2008 ident: e_1_2_8_24_1 article-title: Early Cretaceous monocots: a phylogenetic evaluation publication-title: Acta Musei Nationalis Pragae, Series B, Historia Naturalis – ident: e_1_2_8_27_1 doi: 10.1016/j.palaeo.2005.07.006 – ident: e_1_2_8_39_1 doi: 10.1016/S0034-6667(03)00092-7 – ident: e_1_2_8_14_1 doi: 10.1016/0169-5347(95)90007-1 – ident: e_1_2_8_59_1 doi: 10.1146/annurev.earth.26.1.379 – ident: e_1_2_8_3_1 doi: 10.1016/0034-6667(82)90038-0 – ident: e_1_2_8_13_1 doi: 10.1111/j.1095-8312.1989.tb00492.x |
SSID | ssj0012971 |
Score | 2.331337 |
Snippet | One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to... AbstractOne of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms... |
SourceID | wageningen pubmedcentral proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 865 |
SubjectTerms | Angiospermae Angiosperms Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences bogs Coniferophyta crato formation brazil Cretaceous decomposition diversification Ecology Ecosystem ecosystems Evolutionary biology evolutionary radiation Ferns ferns and fern allies Flowering plants Fossils Fundamental and applied biological sciences. Psychology Growth rate gymnosperms heathlands Ideas and s Litter litter quality Magnoliophyta Magnoliopsida Magnoliopsida - physiology n deposition nitrogen mineralization Nutrient release Paleobotany physiology Plant cytology, morphology, systematics, chorology and evolution Plant ecology Plant evolution plant-soil feedbacks Prehistoric era simulation models Soil nutrients sphagnum Synecology Terrestrial ecosystems vascular plants Vegetation wet heathlands Wetlands |
Title | angiosperm radiation revisited, an ecological explanation for Darwin's 'abominable mystery' |
URI | https://api.istex.fr/ark:/67375/WNG-M4R5MVC1-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2009.01342.x https://www.ncbi.nlm.nih.gov/pubmed/19572916 https://www.proquest.com/docview/203663053 https://www.proquest.com/docview/20796062 https://www.proquest.com/docview/46364964 https://www.proquest.com/docview/67608360 https://pubmed.ncbi.nlm.nih.gov/PMC2777257 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F380580 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfYJKS98B8WBiUPiCdaNbEdJ49o65gQndCg0DfLTp1taptOSau1PO1jwNfbJ-HOTjNlbNKEeGok-6zqfHe-851_R8hbqrtChdmozUa822Y8jNva0FE7SuNYM7x5C_Bxcv8wOhiwT0M-rOqf8C2Mw4eoL9xQM6y9RgVXuryu5BAKh7ZCC2EnA8rCDvqTWLqF_tFRjSQFp5qLvRwJHTaLem5cqHFSbWRqBv4rsn6J9ZOqBBZmrvfFTc7p3zWWW-dgIHL7YqrpCNuTbP8hGa954ApYxp3FXHfSn9fgIf8Pkx6RB5XD639wEvqY3DP5E3LftcBcwVfPwmavnhINEuur_PjUgpdP_QJRE1Bs_MK-gAfX-D2M-yZd22vfLM8myl1n-uB8-3sK8YwvL36X_uXFLxDvqXsa5k8Rr7pYPSOD_d633YN21QGinQoBpjqNaKazEWNpqHlEgygzI5AsTUHyWJIKE6ddzVTSpbFOVJKpGHspJ4ngWWwCZuhzspnPcrNN_NgoDaLHBY0RIscoOKVDPJkNxJxaGI-I9W7LtIJHxy4dE9kIkwKJvMTmnYm0vJRLjwQ15ZmDCLkDzTYIlFTHYMnl4GuI-WNM4FLGPfLOSlm9lirGWH0nuPxx-FH22RHvf98N5J5HWg0xrAkwao94EntkZy2XsrJMpcTEcwRGnnrkTT0KJgXzRCo3swVOERjXhrfPQJQ5lkTs9hmRiBD3vOuRF04PrliTcAjogggY3tCQegICnjdH8tMTC3weCogFufAIvdIlmWPPrdJSVRohzxeFzCf4A-uUEnacx_BPIqspd94j2fvcw6-X_0q4Q7Zc7hErEl-RzXmxMK_BhZ3rFtkI2ZeWNVF_AFibj3g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLe2IcQu_IeFwZYDcKJVE9txcuCA1o6OtT2MFXbz7NQZ09p06h-15bSPAZ-Fr8Jpn4T3nDZTxiZNSDtwSqTYluPn3_N79vPvEfKa6opQftIpsQ6vlBj3w5I2tFMK4jDUDHfePLyc3GwF9Tb7dMAPlsivxV2YjB8i33BDZFh9jQDHDenLKAdf2LchWsg76VHml6fzCMtdM5uA_zZ8v1MFYb_x_e3a_la9NE8xUIqFAF0QBzTRSYex2Nc8oF6QmA50XVP4NRbFwoRxRTMVVWioIxUlKsRkvVEkeBIajxkK7S6TO5hQHIn7q3s5dxWso5m3l_WRHhTDiK7seWFtXE5UHyxmFPYUIzbVEISWZNk2rjKH_47qXJ2ASkrtHa2i6W3Xzu0H5Pdi1LOQmZPyeKTL8fdLhJT_qVgekvtzm979kIHwEVky6WNyN8vyOYO3mmUGnz0hGkDpqvTo2PKz99wBEkMgMtyBveQP1v87-O6aeLEkuWZ62lXZjq0L_oVbVUjZfH72c-ien_0ABPey229uDym5B7OnpH0rv_qMrKT91KwRNzRKA7q4oCGyABkFhoiPxocBt1oL4xCxmF4ynjPAYyKSrix4gp5E2WF-0kha2cmpQ7y85mnGgnKDOmswg6U6gsVKtj_7eESOZ9SUcYe8tdM6b0sNTjDAUHD5tfVRNtkeb37Z8mTVIRuFeZ9XwI2JgEehQ9YXQJBz5TuUeLYewDpGHbKZfwWtiUdhKjX9MRYR6Lr715dAIj0WBez6EoEIkNq94pDnGfAuhibi4LN6AQx4AZJ5AeR0L35Jj79ZbndfgLvLhUPoBXhlimnFhrbWHIJyMh7ItIsPaGcoQeI8hJ4EFpo3lpGsNWr49uJfK26Se_X9ZkM2dlq762Q1O2rFAMyXZGU0GJtXYLGP9IbVjC45vG3M_wEYg-5v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF61RaBeEP81hdYH4ERQvD9e-8ABNQktbaIKCPS2rO11qUicyG6U5NbHgFfhcfokzKwTV4ZWqpB6iqX90WZndnZmZ-YbQl6wqCk1TZMGT0SzwQUNGpFhScOPgyDi-PLmYXJyt-fv9vmHI3G0Qn4vc2FKfIjqwQ1PhpXXeMDHSfr3IQdTmNoILYSd9Binb2aLAMt9M5-C-Va83WsBrV9S2ml_3tltLCoMNGIpQRTEPkujNOE8ppHwmeenJoGVRwz-GQ9jaYK4GXEdNlkQhTpMdYC1esNQijQwHjcM5l0lt9DXiOFklB9WHgwalsZeuUZ2VI8iunTltatxNdUjUJiR1jMM2NQF0Cwti21cpg3_G9S5PgWJlNkUrbrmba_Ozj1yd6Hzuu9KJr1PVkz2gNwuq2DO4attkbPnD0kETOvq7PjE4pcP3RyBE5Bz3NwmwYN2_BraXRMvRbZrZuOBLl80XdC_3ZZGSOPzs1-Fe372Ezh8WGaHuUOErM7nj0j_Rkj0mKxlo8xsEDcwOgLuE5IFiJJjNFzUFC9nA2ZnJI1D5HL_VbxASMdCHQNVs5Q8hZTD-p2hspRTM4d41chxiRJyjTEbQGKlj0GYq_4nii5k9OEyLhzyytK9mkvnPzAATwr1tfdedflH0f2y46mWQ7ZqjFENQMPdF2HgkM0lp6iFcCoU-p59kPPMIdtVK0gVdBXpzIwm2EWiaUuv7oFAczz0-dU9fOkj9HnTIU9KzrzYmlCATef5sOE1nq06IOZ5vSU7-W6xz6kEc1BIh7AL7lYZlt0q7KiF5FDTSa6yAf7APIUCiosAVuLbY3BtGqn2QRu_nv7vwG1y57DVUQd7vf1Nsl56IjE-8RlZO80n5jkotKfRlpUcLvl206LqD9l5qYE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+angiosperm+radiation+revisited%2C+an+ecological+explanation+for+Darwin%E2%80%99s+%E2%80%98abominable+mystery&rft.jtitle=Ecology+letters&rft.au=Berendse%2C+Frank&rft.au=Scheffer%2C+Marten&rft.date=2009-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=12&rft.issue=9&rft.spage=865&rft.epage=872&rft_id=info:doi/10.1111%2Fj.1461-0248.2009.01342.x&rft_id=info%3Apmid%2F19572916&rft.externalDocID=PMC2777257 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |