The amorphous-crystalline transition in Si n H 2 m nanoclusters

Silicon nanocrystals (NCs) have great potential for applications in optoelectronics, photovoltaics and biomedicine. The photo-physical characteristics of these particles strongly depend on whether they are crystalline or amorphous. This structural order is sensitive to the synthesis details. To unde...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 13; no. 45; pp. 19181 - 19189
Main Authors Bushlanova, Natalia, Baturin, Vladimir, Lepeshkin, Sergey, Uspenskii, Yurii
Format Journal Article
LanguageEnglish
Published 25.11.2021
Online AccessGet full text

Cover

Loading…
Abstract Silicon nanocrystals (NCs) have great potential for applications in optoelectronics, photovoltaics and biomedicine. The photo-physical characteristics of these particles strongly depend on whether they are crystalline or amorphous. This structural order is sensitive to the synthesis details. To understand the morphology of hydrogen-passivated silicon clusters and find how it depends on the passivation degree, we calculated the optimal structures of Si n H 2 m clusters with n ≤ 21 and 2 m ≤ 30. We found that as the hydrogen amount increases, clusters run through three structural types: (i) amorphous clusters with dangling bonds (DBs), (ii) amorphous clusters without DBs at intermediate passivation, and (iii) crystalline clusters. We describe a mechanism which removes dangling bonds in the amorphous clusters of the second type and shows its key importance for cluster structure formation. The crystalline lattice (diamond or lonsdaleite) is found to emerge when all broken bonds at the NC surface are passivated. We constructed the phase P – T diagram of Si–H clusters, compared it with the available experimental data and discussed the transfer of our results to large Si nanoparticles.
AbstractList Silicon nanocrystals (NCs) have great potential for applications in optoelectronics, photovoltaics and biomedicine. The photo-physical characteristics of these particles strongly depend on whether they are crystalline or amorphous. This structural order is sensitive to the synthesis details. To understand the morphology of hydrogen-passivated silicon clusters and find how it depends on the passivation degree, we calculated the optimal structures of Si n H 2 m clusters with n ≤ 21 and 2 m ≤ 30. We found that as the hydrogen amount increases, clusters run through three structural types: (i) amorphous clusters with dangling bonds (DBs), (ii) amorphous clusters without DBs at intermediate passivation, and (iii) crystalline clusters. We describe a mechanism which removes dangling bonds in the amorphous clusters of the second type and shows its key importance for cluster structure formation. The crystalline lattice (diamond or lonsdaleite) is found to emerge when all broken bonds at the NC surface are passivated. We constructed the phase P – T diagram of Si–H clusters, compared it with the available experimental data and discussed the transfer of our results to large Si nanoparticles.
Author Baturin, Vladimir
Uspenskii, Yurii
Bushlanova, Natalia
Lepeshkin, Sergey
Author_xml – sequence: 1
  givenname: Natalia
  surname: Bushlanova
  fullname: Bushlanova, Natalia
  organization: I. E. Tamm Theory Department, Lebedev Physical Institute, Russian Academy of Sciences, Leninskii prosp. 53, Moscow, 119991, Russia
– sequence: 2
  givenname: Vladimir
  orcidid: 0000-0001-9624-8104
  surname: Baturin
  fullname: Baturin, Vladimir
  organization: I. E. Tamm Theory Department, Lebedev Physical Institute, Russian Academy of Sciences, Leninskii prosp. 53, Moscow, 119991, Russia
– sequence: 3
  givenname: Sergey
  surname: Lepeshkin
  fullname: Lepeshkin, Sergey
  organization: I. E. Tamm Theory Department, Lebedev Physical Institute, Russian Academy of Sciences, Leninskii prosp. 53, Moscow, 119991, Russia
– sequence: 4
  givenname: Yurii
  surname: Uspenskii
  fullname: Uspenskii, Yurii
  organization: I. E. Tamm Theory Department, Lebedev Physical Institute, Russian Academy of Sciences, Leninskii prosp. 53, Moscow, 119991, Russia
BookMark eNpFj8FKAzEURYNUsK1u_IKshdGXvEzSWYlUa6VFQWc_ZDIJjcwkJZku-vdWFF3de8_iwpmRSYjBEnLN4JYBVneP7PUdSlni5oxMOQgoEBWf_HUpLsgs508AWaHEKbmvd5bqIab9Lh5yYdIxj7rvfbB0TDpkP_oYqA_0w9NA15TTgQYdoukPebQpX5Jzp_tsr35zTurVU71cF9u355flw7YwSm6K1khe6pLLFvUCoEMneevwtFsmWOlQddJ1vFKLyroTQ95xVEIJXSlQTOKc3PzcmhRzTtY1--QHnY4Ng-bbvPk3xy_BiEvz
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c01753
crossref_primary_10_1021_acs_jpclett_2c02098
crossref_primary_10_1039_D3NR04478E
crossref_primary_10_1039_D2NR06523A
crossref_primary_10_1039_D3NR05166H
crossref_primary_10_1039_D3NR02044D
Cites_doi 10.1021/jp2018023
10.1016/j.mser.2019.06.001
10.1038/nmat4526
10.1126/science.271.5251.933
10.1063/1.4993584
10.1038/nphoton.2017.5
10.1021/nn506223h
10.1063/1.464913
10.1021/acs.chemmater.8b03074
10.1103/PhysRevB.80.115407
10.1209/0295-5075/106/37002
10.1021/ja00299a024
10.1039/D0CP05139J
10.1021/ml1002844
10.1021/acs.nanolett.8b02816
10.1021/jp905748j
10.1103/PhysRevLett.77.3865
10.1038/nmat2398
10.1002/qua.25609
10.1038/s41598-016-0001-8
10.1038/nnano.2013.65
10.1016/j.solmat.2011.06.010
10.1021/acsami.7b16980
10.1016/j.cpc.2011.01.013
10.1021/acsnano.5b01594
10.1021/acs.jpclett.8b03510
10.1021/nn1018945
10.1063/1.2210788
10.1021/acsnano.6b03113
10.1021/acs.jpclett.7b03299
10.1021/nl050066y
10.1103/PhysRevB.50.17953
10.1063/1.444267
10.1002/adfm.201100784
10.1016/j.cpc.2012.12.009
10.1103/PhysRevB.37.785
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1039/D1NR05653K
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 19189
ExternalDocumentID 10_1039_D1NR05653K
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
ID FETCH-LOGICAL-c76K-bc625a526b3a800d3f62bf326bb1415f37d6fd29789efbb132d237474a9707163
ISSN 2040-3364
IngestDate Fri Aug 23 00:28:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c76K-bc625a526b3a800d3f62bf326bb1415f37d6fd29789efbb132d237474a9707163
ORCID 0000-0001-9624-8104
PageCount 9
ParticipantIDs crossref_primary_10_1039_D1NR05653K
PublicationCentury 2000
PublicationDate 2021-11-25
PublicationDateYYYYMMDD 2021-11-25
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-25
  day: 25
PublicationDecade 2020
PublicationTitle Nanoscale
PublicationYear 2021
References Ni (D1NR05653K/cit2) 2019; 138
Greben (D1NR05653K/cit12) 2017; 122
Perdew (D1NR05653K/cit29) 1996; 77
Anthony (D1NR05653K/cit16) 2011; 21
Lyakhov (D1NR05653K/cit26) 2013; 184
Kislitsyn (D1NR05653K/cit18) 2018; 9
Liu (D1NR05653K/cit1) 2018; 10
Jurbergs (D1NR05653K/cit13) 2006; 88
Singh (D1NR05653K/cit24) 2008; 20
Cassidy (D1NR05653K/cit9) 2013; 8
Li (D1NR05653K/cit21) 2016; 6
Park (D1NR05653K/cit5) 2009; 8
Pi (D1NR05653K/cit3) 2011; 95
Pandolfi (D1NR05653K/cit36) 2018; 18
Thiessen (D1NR05653K/cit17) 2019; 31
Lepeshkin (D1NR05653K/cit25) 2018; 10
Francl (D1NR05653K/cit33) 1982; 77
Baturin (D1NR05653K/cit39) 2020; 22
Björkman (D1NR05653K/cit30) 2011; 182
Tu (D1NR05653K/cit7) 2011; 2
Blöchl (D1NR05653K/cit28) 1994; 50
Boles (D1NR05653K/cit19) 2016; 15
Li (D1NR05653K/cit14) 2016; 10
Joo (D1NR05653K/cit6) 2015; 9
Meinardi (D1NR05653K/cit4) 2017; 11
Mangolini (D1NR05653K/cit38) 2005; 5
Baturin (D1NR05653K/cit20) 2014; 106
Demishev (D1NR05653K/cit35) 1996; 82
Holm (D1NR05653K/cit37) 2009; 113
Becke (D1NR05653K/cit31) 1993; 98
Erogbogbo (D1NR05653K/cit8) 2011; 5
Anthony (D1NR05653K/cit15) 2009; 80
Dewar (D1NR05653K/cit27) 1985; 107
Lee (D1NR05653K/cit32) 1988; 37
Kovalenko (D1NR05653K/cit11) 2015; 9
Adamczyk (D1NR05653K/cit23) 2011; 115
Alivisatos (D1NR05653K/cit10) 1996; 271
Gordeychuk (D1NR05653K/cit22) 2018; 118
References_xml – volume: 115
  start-page: 8969
  year: 2011
  ident: D1NR05653K/cit23
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp2018023
  contributor:
    fullname: Adamczyk
– volume: 138
  start-page: 85
  year: 2019
  ident: D1NR05653K/cit2
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/j.mser.2019.06.001
  contributor:
    fullname: Ni
– volume: 15
  start-page: 141
  year: 2016
  ident: D1NR05653K/cit19
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4526
  contributor:
    fullname: Boles
– volume: 271
  start-page: 933
  year: 1996
  ident: D1NR05653K/cit10
  publication-title: Science
  doi: 10.1126/science.271.5251.933
  contributor:
    fullname: Alivisatos
– volume: 122
  start-page: 034304
  year: 2017
  ident: D1NR05653K/cit12
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4993584
  contributor:
    fullname: Greben
– volume: 11
  start-page: 177
  year: 2017
  ident: D1NR05653K/cit4
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2017.5
  contributor:
    fullname: Meinardi
– volume: 9
  start-page: 1012
  year: 2015
  ident: D1NR05653K/cit11
  publication-title: ACS Nano
  doi: 10.1021/nn506223h
  contributor:
    fullname: Kovalenko
– volume: 98
  start-page: 5648
  year: 1993
  ident: D1NR05653K/cit31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
  contributor:
    fullname: Becke
– volume: 31
  start-page: 678
  year: 2019
  ident: D1NR05653K/cit17
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03074
  contributor:
    fullname: Thiessen
– volume: 80
  start-page: 115407
  year: 2009
  ident: D1NR05653K/cit15
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.80.115407
  contributor:
    fullname: Anthony
– volume: 106
  start-page: 37002
  year: 2014
  ident: D1NR05653K/cit20
  publication-title: EPL
  doi: 10.1209/0295-5075/106/37002
  contributor:
    fullname: Baturin
– volume: 107
  start-page: 3902
  year: 1985
  ident: D1NR05653K/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00299a024
  contributor:
    fullname: Dewar
– volume: 22
  start-page: 26299
  year: 2020
  ident: D1NR05653K/cit39
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP05139J
  contributor:
    fullname: Baturin
– volume: 2
  start-page: 285
  year: 2011
  ident: D1NR05653K/cit7
  publication-title: ACS Med. Chem. Lett.
  doi: 10.1021/ml1002844
  contributor:
    fullname: Tu
– volume: 18
  start-page: 5989
  year: 2018
  ident: D1NR05653K/cit36
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02816
  contributor:
    fullname: Pandolfi
– volume: 113
  start-page: 15955
  year: 2009
  ident: D1NR05653K/cit37
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp905748j
  contributor:
    fullname: Holm
– volume: 77
  start-page: 3865
  year: 1996
  ident: D1NR05653K/cit29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Perdew
– volume: 8
  start-page: 331
  year: 2009
  ident: D1NR05653K/cit5
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2398
  contributor:
    fullname: Park
– volume: 118
  start-page: e25609
  year: 2018
  ident: D1NR05653K/cit22
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25609
  contributor:
    fullname: Gordeychuk
– volume: 6
  start-page: 1
  year: 2016
  ident: D1NR05653K/cit21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0001-8
  contributor:
    fullname: Li
– volume: 8
  start-page: 363
  year: 2013
  ident: D1NR05653K/cit9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.65
  contributor:
    fullname: Cassidy
– volume: 95
  start-page: 2941
  year: 2011
  ident: D1NR05653K/cit3
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2011.06.010
  contributor:
    fullname: Pi
– volume: 10
  start-page: 5959
  year: 2018
  ident: D1NR05653K/cit1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16980
  contributor:
    fullname: Liu
– volume: 182
  start-page: 1183
  year: 2011
  ident: D1NR05653K/cit30
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.01.013
  contributor:
    fullname: Björkman
– volume: 9
  start-page: 6233
  year: 2015
  ident: D1NR05653K/cit6
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01594
  contributor:
    fullname: Joo
– volume: 10
  start-page: 102
  year: 2018
  ident: D1NR05653K/cit25
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03510
  contributor:
    fullname: Lepeshkin
– volume: 82
  start-page: 1159
  year: 1996
  ident: D1NR05653K/cit35
  publication-title: J. Exp. Theor. Phys.
  contributor:
    fullname: Demishev
– volume: 5
  start-page: 413
  year: 2011
  ident: D1NR05653K/cit8
  publication-title: ACS Nano
  doi: 10.1021/nn1018945
  contributor:
    fullname: Erogbogbo
– volume: 88
  start-page: 233116
  year: 2006
  ident: D1NR05653K/cit13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2210788
  contributor:
    fullname: Jurbergs
– volume: 10
  start-page: 8385
  year: 2016
  ident: D1NR05653K/cit14
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03113
  contributor:
    fullname: Li
– volume: 9
  start-page: 710
  year: 2018
  ident: D1NR05653K/cit18
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b03299
  contributor:
    fullname: Kislitsyn
– volume: 5
  start-page: 655
  year: 2005
  ident: D1NR05653K/cit38
  publication-title: Nano Lett.
  doi: 10.1021/nl050066y
  contributor:
    fullname: Mangolini
– volume: 50
  start-page: 17953
  year: 1994
  ident: D1NR05653K/cit28
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: Blöchl
– volume: 77
  start-page: 3654
  year: 1982
  ident: D1NR05653K/cit33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444267
  contributor:
    fullname: Francl
– volume: 20
  start-page: 045226
  year: 2008
  ident: D1NR05653K/cit24
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Singh
– volume: 21
  start-page: 4042
  year: 2011
  ident: D1NR05653K/cit16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100784
  contributor:
    fullname: Anthony
– volume: 184
  start-page: 1172
  year: 2013
  ident: D1NR05653K/cit26
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.12.009
  contributor:
    fullname: Lyakhov
– volume: 37
  start-page: 785
  year: 1988
  ident: D1NR05653K/cit32
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.37.785
  contributor:
    fullname: Lee
SSID ssj0069363
Score 2.4074645
Snippet Silicon nanocrystals (NCs) have great potential for applications in optoelectronics, photovoltaics and biomedicine. The photo-physical characteristics of these...
SourceID crossref
SourceType Aggregation Database
StartPage 19181
Title The amorphous-crystalline transition in Si n H 2 m nanoclusters
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6VcGkPqE8BpWilcrMM8e56HZ8QlNKooRyaQOEU7VNYSpwIJ4f21zMbv5Y2B8rFcUa2JXtGM9_sznyD0AFgYq1I14YUfkOmIxEKJk3IpUhVDG7TSrc08OOS96_Y95v4pl3KXnWXLOSh-rO2r-Q5WgUZ6NV1yf6HZpuHggDOQb9wBA3D8ck6FtMZfCrI30N1_xug3mSFGxcuBGV1IeMwC_KgH5BgGuQin6nJ0tEjFD4wBS87K0Bf7Sb7sribCDcytXTCjimxTd4dHWjJPnA9ETqbZk2N74WZm-KuGvI1dL2dzaL9VTE3bk72qoDgFh6Q-WsOJHLNd2V_cumaiKtDpLTkHz80vix57FupZ0Ms9jwl5InlrJYq7Lr_6Vqf3qWOEvUsuvwJYC2mgzZy1bv1fwW0psxwtcFO03F77wbaJOCRwBVungxOv_2qgzYHmStGaF6sZrKl6VF7t4ddPBAyeo22quwBn5Sm8Aa9MPlb9MrjlHyHjsEo8FqjwK1R4CzHwwznuI8JnmLfKN6j0fnX0Zd-WE3JCFXCB6FUkMGKmHBJBYB_TS0n0gIolzICcGZpornVJE16qbEgo0QTCjkkE2kC8JLTD6iTz3KzjTDTiVSxZollitk4kqorhBsH0JM81VG8gz7Xrz-el1wo438_8e6TrvqIXraGtYc6i_ul-QTwbiH3K9U8AFHST5U
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+amorphous-crystalline+transition+in+Si+n+H+2+m+nanoclusters&rft.jtitle=Nanoscale&rft.au=Bushlanova%2C+Natalia&rft.au=Baturin%2C+Vladimir&rft.au=Lepeshkin%2C+Sergey&rft.au=Uspenskii%2C+Yurii&rft.date=2021-11-25&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=13&rft.issue=45&rft.spage=19181&rft.epage=19189&rft_id=info:doi/10.1039%2FD1NR05653K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1NR05653K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon