Amygdalar nuclei and hippocampal subfields on MRI: Test-retest reliability of automated volumetry across different MRI sites and vendors
The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we asses...
Saved in:
Published in | NeuroImage Vol. 218; p. 116932 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2020
Elsevier BV Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.
Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1–90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session.
Significant MRI site and vendor effects (p < .05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman’s r correlations >0.43, p < 1.39E-36). In particular, volumes larger than 200 mm3 (for amygdalar nuclei) and 300 mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε < 5% and DICE > 0.80).
Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.
•Differences in MRI site/vendor had a limited effect on volume reproducibility.•Differences in MRI site/vendor had an extensive effect on spatial accuracy.•Reliability is good for larger amygdalar and hippocampal structures.•Automated volumetry is reliable in multicenter MRI studies. |
---|---|
AbstractList | Background: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. Methods: Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1–90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. Results: Significant MRI site and vendor effects (p < .05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman’s r correlations >0.43, p < 1.39E-36). In particular, volumes larger than 200 mm3 (for amygdalar nuclei) and 300 mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε < 5% and DICE > 0.80). Conclusion: Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials. BackgroundThe amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.MethodsSixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1–90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session.ResultsSignificant MRI site and vendor effects (p < .05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman’s r correlations >0.43, p < 1.39E-36). In particular, volumes larger than 200 mm3 (for amygdalar nuclei) and 300 mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε < 5% and DICE > 0.80).ConclusionOur results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials. The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. Significant MRI site and vendor effects (p < .05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p < 1.39E-36). In particular, volumes larger than 200 mm (for amygdalar nuclei) and 300 mm (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε < 5% and DICE > 0.80). Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials. The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1–90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. Significant MRI site and vendor effects (p < .05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman’s r correlations >0.43, p < 1.39E-36). In particular, volumes larger than 200 mm3 (for amygdalar nuclei) and 300 mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε < 5% and DICE > 0.80). Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials. •Differences in MRI site/vendor had a limited effect on volume reproducibility.•Differences in MRI site/vendor had an extensive effect on spatial accuracy.•Reliability is good for larger amygdalar and hippocampal structures.•Automated volumetry is reliable in multicenter MRI studies. Background: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.Methods: Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session.Results: Significant MRI site and vendor effects (p < .05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p < 1.39E-36). In particular, volumes larger than 200 mm3 (for amygdalar nuclei) and 300 mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε < 5% and DICE > 0.80).Conclusion: Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials. The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.BACKGROUNDThe amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session.METHODSSixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session.Significant MRI site and vendor effects (p < .05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p < 1.39E-36). In particular, volumes larger than 200 mm3 (for amygdalar nuclei) and 300 mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε < 5% and DICE > 0.80).RESULTSSignificant MRI site and vendor effects (p < .05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p < 1.39E-36). In particular, volumes larger than 200 mm3 (for amygdalar nuclei) and 300 mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε < 5% and DICE > 0.80).Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.CONCLUSIONOur results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials. |
ArticleNumber | 116932 |
Author | Richardson, Jill C. Marizzoni, Moira Picco, Agnese Bartres-Faz, David Drevelegas, Antonios Müller, Bernhard W. Floridi, Piero Schonknecht, Peter Marra, Camillo Nobili, Flavio Payoux, Pierre Schott, Björn H. Ranjeva, Jean-Philippe Jovicich, Jorge Hensch, Tilman Barkhof, Frederik Tsolaki, Magda Blin, Olivier Pizzini, Francesca B. Quattrini, Giulia Bordet, Regis Didic, Mira Gros-Dagnac, Hélène Sein, Julien Tarducci, Roberto Frisoni, Giovanni B. Caulo, Massimo Ferretti, Antonio Kuijer, Joost P. Rossini, Paolo M. Salvatore, Marco Roccatagliata, Luca Hoffmann, Karl-Titus Visser, Pieter J. Soricelli, Andrea Pievani, Michela Aiello, Marco Fiedler, Ute Parnetti, Lucilla Lopes, Renaud Bargalló, Núria Wiltfang, Jens Constantinides, Manos Beltramello, Alberto |
Author_xml | – sequence: 1 givenname: Giulia orcidid: 0000-0002-3750-710X surname: Quattrini fullname: Quattrini, Giulia email: gquattrini@fatebenefratelli.eu organization: Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy – sequence: 2 givenname: Michela orcidid: 0000-0002-1794-8987 surname: Pievani fullname: Pievani, Michela organization: Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy – sequence: 3 givenname: Jorge surname: Jovicich fullname: Jovicich, Jorge organization: Center for Mind Brain Sciences, University of Trento, Trento, Italy – sequence: 4 givenname: Marco surname: Aiello fullname: Aiello, Marco organization: IRCCS SDN, Napoli, Italy – sequence: 5 givenname: Núria surname: Bargalló fullname: Bargalló, Núria organization: Department of Neuroradiology and Image Research Platform, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain – sequence: 6 givenname: Frederik orcidid: 0000-0003-3543-3706 surname: Barkhof fullname: Barkhof, Frederik organization: Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands – sequence: 7 givenname: David surname: Bartres-Faz fullname: Bartres-Faz, David organization: Department of Medicine and Health Sciences, Faculty of Medicine, Universitat de Barcelona and IDIBAPS, Barcelona, Spain – sequence: 8 givenname: Alberto surname: Beltramello fullname: Beltramello, Alberto organization: Department of Radiology, IRCCS “Sacro Cuore-Don Calabria”, Negrar, Verona, Italy – sequence: 9 givenname: Francesca B. orcidid: 0000-0002-6285-0989 surname: Pizzini fullname: Pizzini, Francesca B. organization: Radiology, Department of Diagnostic and Public Health, University of Verona, Verona, Italy – sequence: 10 givenname: Olivier surname: Blin fullname: Blin, Olivier organization: Aix-Marseille University, UMR-INSERM 1106, Service de Pharmacologie Clinique, APHM, Marseille, France – sequence: 11 givenname: Regis surname: Bordet fullname: Bordet, Regis organization: Aix-Marseille Université, INSERM U 1106, 13005, Marseille, France – sequence: 12 givenname: Massimo surname: Caulo fullname: Caulo, Massimo organization: University “G. d’Annunzio” of Chieti, Chieti, Italy – sequence: 13 givenname: Manos surname: Constantinides fullname: Constantinides, Manos organization: Interbalkan Medical Centre of Thessaloniki, Thessaloniki, Greece – sequence: 14 givenname: Mira surname: Didic fullname: Didic, Mira organization: Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, 13005, Marseille, France – sequence: 15 givenname: Antonios surname: Drevelegas fullname: Drevelegas, Antonios organization: Interbalkan Medical Centre of Thessaloniki, Thessaloniki, Greece – sequence: 16 givenname: Antonio surname: Ferretti fullname: Ferretti, Antonio organization: University “G. d’Annunzio” of Chieti, Chieti, Italy – sequence: 17 givenname: Ute surname: Fiedler fullname: Fiedler, Ute organization: Institutes and Clinics of the University Duisburg-Essen, Essen, Germany – sequence: 18 givenname: Piero surname: Floridi fullname: Floridi, Piero organization: Perugia General Hospital, Neuroradiology Unit, Perugia, Italy – sequence: 19 givenname: Hélène surname: Gros-Dagnac fullname: Gros-Dagnac, Hélène organization: ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France – sequence: 20 givenname: Tilman orcidid: 0000-0003-2696-6017 surname: Hensch fullname: Hensch, Tilman organization: Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany – sequence: 21 givenname: Karl-Titus surname: Hoffmann fullname: Hoffmann, Karl-Titus organization: Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany – sequence: 22 givenname: Joost P. orcidid: 0000-0002-4181-0427 surname: Kuijer fullname: Kuijer, Joost P. organization: Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands – sequence: 23 givenname: Renaud surname: Lopes fullname: Lopes, Renaud organization: INSERM U1171, Neuroradiology Department, University Hospital, Lille, France – sequence: 24 givenname: Camillo surname: Marra fullname: Marra, Camillo organization: Catholic University, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy – sequence: 25 givenname: Bernhard W. surname: Müller fullname: Müller, Bernhard W. organization: LVR-Hospital Essen, Department for Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Germany – sequence: 26 givenname: Flavio surname: Nobili fullname: Nobili, Flavio organization: Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy – sequence: 27 givenname: Lucilla surname: Parnetti fullname: Parnetti, Lucilla organization: Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy – sequence: 28 givenname: Pierre surname: Payoux fullname: Payoux, Pierre organization: ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France – sequence: 29 givenname: Agnese surname: Picco fullname: Picco, Agnese organization: Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy – sequence: 30 givenname: Jean-Philippe surname: Ranjeva fullname: Ranjeva, Jean-Philippe organization: CRMBM-CEMEREM, UMR 7339, Aix-Marseille University, CNRS, Marseille, France – sequence: 31 givenname: Luca surname: Roccatagliata fullname: Roccatagliata, Luca organization: IRCCS, Ospedale Policlinico San Martino, Genova, Italy – sequence: 32 givenname: Paolo M. surname: Rossini fullname: Rossini, Paolo M. organization: Dept. Neuroscience & Rehabilitation, IRCCS San Raffaele-Pisana, Rome, Italy – sequence: 33 givenname: Marco surname: Salvatore fullname: Salvatore, Marco organization: IRCCS SDN, Napoli, Italy – sequence: 34 givenname: Peter surname: Schonknecht fullname: Schonknecht, Peter organization: Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany – sequence: 35 givenname: Björn H. surname: Schott fullname: Schott, Björn H. organization: Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Göttingen, Germany – sequence: 36 givenname: Julien orcidid: 0000-0003-1767-5330 surname: Sein fullname: Sein, Julien organization: CRMBM-CEMEREM, UMR 7339, Aix-Marseille University, CNRS, Marseille, France – sequence: 37 givenname: Andrea surname: Soricelli fullname: Soricelli, Andrea organization: IRCCS SDN, Napoli, Italy – sequence: 38 givenname: Roberto orcidid: 0000-0003-3539-7856 surname: Tarducci fullname: Tarducci, Roberto organization: Perugia General Hospital, Medical Physics Unit, Perugia, Italy – sequence: 39 givenname: Magda surname: Tsolaki fullname: Tsolaki, Magda organization: Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 40 givenname: Pieter J. surname: Visser fullname: Visser, Pieter J. organization: Department of Neurology, Alzheimer Centre, VU Medical Centre, Amsterdam, Netherlands – sequence: 41 givenname: Jens surname: Wiltfang fullname: Wiltfang, Jens organization: Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Göttingen, Germany – sequence: 42 givenname: Jill C. surname: Richardson fullname: Richardson, Jill C. organization: Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, United Kingdom – sequence: 43 givenname: Giovanni B. surname: Frisoni fullname: Frisoni, Giovanni B. organization: Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy – sequence: 44 givenname: Moira orcidid: 0000-0003-3749-2988 surname: Marizzoni fullname: Marizzoni, Moira organization: Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy |
BackLink | https://cir.nii.ac.jp/crid/1871428067786748032$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/32416226$$D View this record in MEDLINE/PubMed https://amu.hal.science/hal-03500798$$DView record in HAL http://kipublications.ki.se/Default.aspx?queryparsed=id:144353263$$DView record from Swedish Publication Index |
BookMark | eNqNks1u1DAQgCNURH_gFZAlOMAhxXa8ic0BUSqglRYhoXK2HHvceuvEi50s2jfgsXE2W1B7qiLZ1uSbb6SZOS4O-tBDUSCCTwkm9bvVaQ9jDK5T13BKMc1hUouKPimOCBaLUiwaejC9F1XJCRGHxXFKK4yxIIw_Kw4rykhNaX1U_DnrttdGeRVRP2oPDqneoBu3XgeturXyKI2tdeBNQqFH335cvkdXkIYywpAvFME71Trvhi0KFqlxCJ0awKBN8GMHQ9wipWNICRlnLUToh0mCksvpu1ob6E2I6Xnx1Cqf4MX-Pil-fvl8dX5RLr9_vTw_W5a6qflQtsYahltD60qD1kThhjeEC0otIQugWDW2EsxyamD6aQhV3JiWWcpaZZvqpLicvSaolVzH3MO4lUE5uQuEeC1VHFxuhWStbpUQ2uKGMKhb0dRWcGYWSlOtKWRXObvSb1iP7T3bPnSbX9nUEMpw5t_O_I3y9-CLs6WcYrhaYNwIviGZfTOz6xh-jbnVsnNJg_eqhzAmmX35Y9mc0VcP0FUYY5-7mCkqcHYynqmXe2psOzD_6t_tQgY-zMBuXhGs1G5Qgwv9EJXzkmA5LZ9cyf_LJ6flk_PyZQF_ILir8YjU13Nq71wuO50kz5VRjuum4XXDON5hn2YM8oZsHESZtINeg3ER9JBH6B5T6-MDifa5olb-FraPU_wFtt8bpg |
CitedBy_id | crossref_primary_10_1007_s00702_023_02638_1 crossref_primary_10_1016_j_nsa_2023_103921 crossref_primary_10_1016_j_bpsc_2022_04_008 crossref_primary_10_1017_S0033291722003609 crossref_primary_10_1016_j_biopsych_2023_06_022 crossref_primary_10_1186_s40708_023_00189_5 crossref_primary_10_1192_bjp_2023_143 crossref_primary_10_3390_medicina58040480 crossref_primary_10_1016_j_clinph_2021_10_012 crossref_primary_10_1016_j_bpsgos_2023_07_001 crossref_primary_10_1002_hbm_25326 crossref_primary_10_1186_s10194_024_01888_y crossref_primary_10_1016_j_neuroimage_2021_118076 crossref_primary_10_1093_cercor_bhab223 crossref_primary_10_1093_schbul_sbad091 crossref_primary_10_1089_neur_2022_0020 crossref_primary_10_1002_hbm_26299 crossref_primary_10_1002_dev_22333 crossref_primary_10_1212_NXG_0000000000000591 crossref_primary_10_1002_brb3_2274 crossref_primary_10_1038_s41598_023_34645_3 crossref_primary_10_3233_NHA_220190 crossref_primary_10_1002_hbm_26392 crossref_primary_10_1093_scan_nsac006 crossref_primary_10_1016_j_therap_2020_12_008 crossref_primary_10_1017_S0033291724000394 crossref_primary_10_3389_fnins_2021_656808 crossref_primary_10_1093_schbul_sbaa192 crossref_primary_10_1016_j_neurobiolaging_2020_11_002 crossref_primary_10_1038_s41598_024_54370_9 crossref_primary_10_1002_hbm_25559 crossref_primary_10_1038_s41380_024_02874_1 |
Cites_doi | 10.1016/j.brainres.2019.03.023 10.1038/nrn3785 10.1016/j.neuroimage.2015.01.004 10.1007/s00429-005-0025-5 10.1016/j.jagp.2014.01.006 10.1016/0361-9230(83)90171-5 10.1016/j.neuroimage.2014.04.054 10.1001/archpsyc.57.12.1115 10.1016/j.jad.2014.05.045 10.1016/j.cortex.2014.06.010 10.1016/j.brainres.2014.10.069 10.1037/0033-2909.86.2.420 10.1002/hbm.22856 10.1212/WNL.0000000000001171 10.1016/j.neuroimage.2017.04.046 10.1016/0197-2456(90)90005-M 10.1017/S1041610212001469 10.1002/hipo.22705 10.1007/s00234-008-0383-9 10.1016/j.neuroimage.2016.10.027 10.1186/s12880-015-0068-x 10.1016/S0197-2456(98)00037-3 10.1186/1471-2202-8-103 10.1006/nimg.1998.0396 10.1007/s10334-015-0518-z 10.1038/mp.2016.262 10.1016/S1076-6332(03)00671-8 10.1016/j.neuroimage.2014.06.075 10.1016/j.neuroimage.2009.02.010 10.1016/j.cub.2015.10.049 10.1002/hbm.23289 10.1002/hipo.20615 10.1016/j.tics.2013.03.005 10.1016/j.neubiorev.2013.07.001 10.1016/j.nicl.2017.12.036 10.3389/fnins.2016.00558 10.1007/s00441-018-2862-6 10.1016/j.neuroimage.2006.02.051 10.1016/j.neuroimage.2010.03.033 10.1001/jamapsychiatry.2014.1087 10.1002/hbm.23948 10.3389/fncir.2017.00086 10.1006/nimg.1998.0395 10.1038/nature14188 10.1016/j.neuroimage.2013.05.007 10.1002/hipo.10020 10.1016/j.cortex.2013.12.005 10.1093/brain/awn280 10.1016/j.neuroimage.2008.10.037 10.1016/j.neuroimage.2009.05.019 10.1109/42.363096 10.1016/j.neurobiolaging.2008.01.010 10.1192/bjp.2018.224 10.3389/fnins.2017.00258 10.1016/S0896-6273(02)00569-X 10.1212/WNL.0b013e31820d62d9 10.1002/cne.23786 10.1002/hipo.22797 10.1007/BF02289730 10.3389/fnagi.2014.00261 10.1002/hbm.22859 10.1037/1040-3590.6.4.284 10.1002/cne.23416 10.1016/j.jneumeth.2015.05.024 10.1371/journal.pone.0071354 10.1016/j.neuroimage.2015.04.042 10.1016/j.neuroimage.2008.12.033 10.1016/j.neuroimage.2012.02.084 10.1016/j.pscychresns.2011.12.004 10.1016/S0140-6736(15)00461-4 10.1016/j.neuroimage.2014.01.058 10.1111/bdi.12516 10.1038/nn.4414 10.1371/journal.pone.0207163 10.1016/j.neuroimage.2016.07.020 10.1016/j.biopsych.2017.10.006 10.1016/j.neuroimage.2012.10.071 10.1038/s12276-018-0063-8 10.1016/j.pscychresns.2010.12.015 10.1016/j.neurobiolaging.2007.02.002 10.1016/j.neubiorev.2015.08.017 10.1016/j.pscychresns.2016.02.006 10.1016/j.schres.2014.03.030 10.1016/j.neuroimage.2020.116563 10.1002/hbm.20973 10.1152/physrev.00002.2003 10.1155/2015/450341 10.1016/j.neuroimage.2010.07.020 |
ContentType | Journal Article |
Contributor | Marizzoni, Moira Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig VU University Medical Center Amsterdam Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire Lille (CHRU Lille) Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - AP-HM] (CEMEREM) ; Centre de résonance magnétique biologique et médicale (CRMBM) ; Assistance Publique - Hôpitaux de Marseille (APHM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Assistance Publique - Hôpitaux de Marseille (APHM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)- Hôpital de la Timone [CHU - APHM] (TIMONE) University "G. d'Annunzio" of Chieti-Pescara [Chieti] Universität Duisburg-Essen = University of Duisburg-Essen [Essen] Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE) ; Saint John of God Clinical Research Centre Aristotle |
Contributor_xml | – sequence: 1 fullname: Centro San Giovanni di Dio, Fatebenefratelli, Brescia (IRCCS) ; Università degli Studi di Brescia = University of Brescia (UniBs) – sequence: 2 fullname: Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE) ; Saint John of God Clinical Research Centre – sequence: 3 fullname: Università degli Studi di Trento = University of Trento (UNITN) – sequence: 4 fullname: IRCCS SDN Napoli – sequence: 5 fullname: Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – sequence: 6 fullname: VU University Medical Center [Amsterdam] – sequence: 7 fullname: UCL Queen Square Institute of Neurology ; University College of London [London] (UCL) – sequence: 8 fullname: Clinical and experimental neuroimmunology [IDIBAPS] ; Institut d'Investigacions Biomèdiques August Pi i Sunyer – sequence: 9 fullname: Department of Radiology, IRCCS "Sacro Cuore-Don Calabria", Negrar, Verona – sequence: 10 fullname: Università degli studi di Verona = University of Verona (UNIVR) – sequence: 11 fullname: Institut de Neurosciences des Systèmes (INS) ; Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM) – sequence: 12 fullname: Universita' degli Studi "G. d'Annunzio" Chieti-Pescara (UNICH) – sequence: 13 fullname: Interbalkan Medical Center of Thessaloniki – sequence: 14 fullname: Universität Duisburg-Essen = University of Duisburg-Essen [Essen] – sequence: 16 fullname: Toulouse NeuroImaging Center (ToNIC) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Toulouse Mind & Brain Institut (TMBI) ; Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT) – sequence: 17 fullname: Leipzig University / Universität Leipzig – sequence: 18 fullname: Department of Radiology and Nuclear Medicine [Amsterdam] ; VU University Medical Center [Amsterdam] – sequence: 19 fullname: Lille Neurosciences & Cognition - U 1172 (LilNCog) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [CHU Lille] (CHRU Lille) – sequence: 20 fullname: Department of Psychiatry and Psychotherapy, Faculty of Medicine ; Universität Duisburg-Essen = University of Duisburg-Essen [Essen] – sequence: 22 fullname: Università degli Studi di Perugia = University of Perugia (UNIPG) – sequence: 24 fullname: Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - APHM] (CEMEREM) ; Hôpital de la Timone [CHU - APHM] (TIMONE)-Centre de résonance magnétique biologique et médicale (CRMBM) ; Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS) – sequence: 25 fullname: Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS San Raffaele Pisana) – sequence: 26 fullname: University Medical Center Göttingen (UMG) – sequence: 27 fullname: Leibniz Institute for Neurobiology [Magdeburg] (LIN) – sequence: 28 fullname: Deutsches Zentrum für Neurodegenerative Erkrankungen [Ulm] (DZNE) ; German Research Center for Neurodegenerative Diseases - Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) – sequence: 29 fullname: Aristotle University of Thessaloniki – sequence: 30 fullname: Maastricht University [Maastricht] – sequence: 31 fullname: Universidade de Aveiro – sequence: 32 fullname: GlaxoSmithKline [Stevenage, UK] (GSK) ; GlaxoSmithKline [Headquarters, London, UK] (GSK) – sequence: 33 fullname: Laboratory of Neuroimaging of aging, Memory clinic and LANVIE ; Geneva University Hospital and Geneva University – sequence: 34 fullname: Quattrini, Giulia – sequence: 35 fullname: Pievani, Michela – sequence: 36 fullname: Jovicich, Jorge – sequence: 37 fullname: Aiello, Marco – sequence: 38 fullname: Bargalló, Núria – sequence: 39 fullname: Barkhof, Frederik – sequence: 40 fullname: Bartres-Faz, David – sequence: 41 fullname: Beltramello, Alberto – sequence: 42 fullname: Pizzini, Francesca B – sequence: 43 fullname: Marizzoni, Moira – sequence: 44 fullname: Centro San Giovanni di Dio, Fatebenefratelli, Brescia (IRCCS) ; Università degli Studi di Brescia [Brescia] – sequence: 45 fullname: Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31, 38068, Rovereto, TN, Italy – sequence: 46 fullname: Department of Neuroradiology and Image Research Platform, Hospital Clínic de Barcelona, IDIBAPS, Barcelona – sequence: 47 fullname: Institute of Neurology, Queen Square, London ; Institute of Neurology, Queen Square, London – sequence: 48 fullname: Department of Medicine and Health Sciences, Faculty of Medicine, Universitat de Barcelona and IDIBAPS, Barcelona – sequence: 49 fullname: Radiology, Department of Diagnostic and Public Health, University of Verona, Verona – sequence: 50 fullname: Centre investigation clinique - Unité de pharmacologie clinique et d'évaluations thérapeutiques (CIC-UPCET) ; Assistance Publique - Hôpitaux de Marseille (APHM) – sequence: 51 fullname: Institut de Neurosciences des Systèmes (INS) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Aix Marseille Université (AMU) – sequence: 52 fullname: Lille Neurosciences & Cognition - U 1172 (LilNCog (ex-JPARC)) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille) – sequence: 53 fullname: University "G. d'Annunzio" of Chieti-Pescara [Chieti] – sequence: 54 fullname: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen – sequence: 55 fullname: Neuroradiology Unit, Perugia General Hospital, Perugia – sequence: 56 fullname: Toulouse Neuro Imaging Center (ToNIC) ; Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hôpital Purpan [Toulouse] ; CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse] – sequence: 57 fullname: Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig – sequence: 58 fullname: Department of Neuroradiology, University Hospital Leipzig – sequence: 59 fullname: LVR-Hospital Essen, Department for Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen – sequence: 60 fullname: Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, 16132 Genova – sequence: 61 fullname: Section of Neurology, Department of Medicine, University of Perugia, Perugia – sequence: 63 fullname: Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - AP-HM] (CEMEREM) ; Centre de résonance magnétique biologique et médicale (CRMBM) ; Assistance Publique - Hôpitaux de Marseille (APHM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Assistance Publique - Hôpitaux de Marseille (APHM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)- Hôpital de la Timone [CHU - APHM] (TIMONE) – sequence: 64 fullname: IRCCS, Ospedale Policlinico San Martino, Genova, Italy; Department of Health Science (DISSAL), University of Genoa, Genoa – sequence: 65 fullname: Dept. Neuroscience & Rehabilitation, IRCCS San Raffaele-Pisana, Rome – sequence: 66 fullname: Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Göttingen – sequence: 67 fullname: Leibniz Institute for Neurobiology, Magdeburg – sequence: 68 fullname: Center for Neurodegenerative Diseases (DZNE), Goettingen – sequence: 70 fullname: Department of Neurology, Alzheimer Centre, VU Medical Centre, Amsterdam, Netherlands; Maastricht University, Maastricht – sequence: 71 fullname: Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro – sequence: 72 fullname: German Center for Neurodegenerative Diseases (DZNE), Goettingen – sequence: 73 fullname: Università degli Studi di Trento (UNITN) – sequence: 74 fullname: Lille Neurosciences & Cognition - U 1172 (LilNCog) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille) – sequence: 76 fullname: Georg-August-University = Georg-August-Universität Göttingen – sequence: 77 fullname: Centro San Giovanni di Dio, Fatebenefratelli, Brescia (IRCCS) – sequence: 78 fullname: Università degli Studi di Brescia = University of Brescia (UniBs) – sequence: 79 fullname: Department of Radiology and Nuclear Medicine Amsterdam – sequence: 80 fullname: VU University Medical Center Amsterdam – sequence: 81 fullname: Institute of Neurology, Queen Square, London – sequence: 82 fullname: Centre investigation clinique - Unité de pharmacologie clinique et d'évaluations thérapeutiques (CIC-UPCET) – sequence: 84 fullname: Institut de Neurosciences des Systèmes (INS) – sequence: 85 fullname: Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM) – sequence: 86 fullname: Lille Neurosciences & Cognition - U 1172 (LilNCog) – sequence: 87 fullname: Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire Lille (CHRU Lille) – sequence: 88 fullname: University "G. d'Annunzio" of Chieti-Pescara Chieti – sequence: 89 fullname: Toulouse NeuroImaging Center (ToNIC) – sequence: 90 fullname: Université Toulouse III - Paul Sabatier (UT3) – sequence: 91 fullname: Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Toulouse Mind & Brain Institut (TMBI) – sequence: 92 fullname: Université Toulouse - Jean Jaurès (UT2J) – sequence: 93 fullname: Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) – sequence: 94 fullname: Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J) – sequence: 95 fullname: Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) – sequence: 96 fullname: Université de Toulouse (UT) – sequence: 97 fullname: Department of Psychiatry and Psychotherapy, Faculty of Medicine – sequence: 99 fullname: Centre de résonance magnétique biologique et médicale (CRMBM) – sequence: 100 fullname: Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS) – sequence: 101 fullname: Centre d'Exploration Métabolique par Résonance Magnétique Hôpital de la Timone - APHM (CEMEREM) – sequence: 102 fullname: Hôpital de la Timone CHU - APHM (TIMONE)-Centre de résonance magnétique biologique et médicale (CRMBM) – sequence: 103 fullname: Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS) – sequence: 104 fullname: Leibniz Institute for Neurobiology Magdeburg (LIN) – sequence: 105 fullname: GlaxoSmithKline Stevenage, UK (GSK) – sequence: 106 fullname: GlaxoSmithKline Headquarters, London, UK (GSK) – sequence: 107 fullname: Laboratory of Neuroimaging of aging, Memory clinic and LANVIE – sequence: 108 fullname: Geneva University Hospital and Geneva University |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. 2020. The Authors Attribution |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2020. The Authors – notice: Attribution |
CorporateAuthor | PharmaCog Consortium |
CorporateAuthor_xml | – name: PharmaCog Consortium |
DBID | 6I. AAFTH RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.1016/j.neuroimage.2020.116932 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Test-retest reliability of automated volumetry across different MRI sites and vendors |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_4bcba99cf0714e6b976f984d5ac2cc2e oai_swepub_ki_se_471240 oai_HAL_hal_03500798v1 32416226 10_1016_j_neuroimage_2020_116932 S1053811920304183 |
Genre | Research Support, Non-U.S. Gov't Multicenter Study Journal Article |
GrantInformation_xml | – fundername: Department of Health |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AGRNS ALIPV RYH AAYXX CITATION 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC VOOES ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c768t-bdfd40bd263cecc1a078718922f115e20a7f394f82de1a07d12a8ddb4f24baf73 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:05:13 EDT 2025 Thu Jul 03 05:18:39 EDT 2025 Fri Jun 27 06:31:17 EDT 2025 Fri Jul 11 02:50:55 EDT 2025 Wed Aug 13 05:01:02 EDT 2025 Wed Feb 19 02:29:24 EST 2025 Tue Jul 01 03:02:13 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 Thu Jun 26 23:58:48 EDT 2025 Fri Feb 23 02:46:38 EST 2024 Tue Aug 26 18:33:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reliability analysis Hippocampal subfields FreeSurfer Amygdalar nuclei Multicenter MRI study |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c768t-bdfd40bd263cecc1a078718922f115e20a7f394f82de1a07d12a8ddb4f24baf73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6285-0989 0000-0002-1794-8987 0000-0002-4181-0427 0000-0003-3749-2988 0000-0002-3750-710X 0000-0003-1767-5330 0000-0003-3539-7856 0000-0003-2696-6017 0000-0003-3543-3706 0000-0001-8008-9727 0000-0002-2072-8010 0000-0002-3758-6231 0000-0001-8029-3947 0000-0001-7011-7667 0000-0001-9734-7702 0000-0002-3676-0664 0000-0001-5722-3967 0000-0002-3750-710x 0000-0001-6564-3187 0000-0002-8237-4481 0000-0002-6419-1753 0000-0002-9573-1417 0000-0003-2665-534x 0000-0001-9811-0897 0000-0001-9504-7503 0000-0002-1374-1620 0000-0001-8073-102X 0000-0003-3916-6422 0000-0003-0142-0931 0000-0003-1492-5330 0000-0001-7075-7082 0000-0001-7067-536X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811920304183 |
PMID | 32416226 |
PQID | 2429050048 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4bcba99cf0714e6b976f984d5ac2cc2e swepub_primary_oai_swepub_ki_se_471240 hal_primary_oai_HAL_hal_03500798v1 proquest_miscellaneous_2404044471 proquest_journals_2429050048 pubmed_primary_32416226 crossref_citationtrail_10_1016_j_neuroimage_2020_116932 crossref_primary_10_1016_j_neuroimage_2020_116932 nii_cinii_1871428067786748032 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_116932 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_116932 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier BV Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV – name: Elsevier Limited – name: Elsevier |
References | Fischl (bib28) 2012; vol. 62 Wassum, Izquierdo (bib83) 2015; 57 Konrad, Ukas, Nebel, Arolt, Toga, Narr (bib51) 2009; 47 Cavedo, Boccardi, Ganzola, Canu, Beltramello, Caltagirone, Thompson, Frisoni (bib16) 2011; 76 Catani, Dell’Acqua, De Schotten (bib15) 2013; 37 Dale, Fischl, Sereno (bib19) 1999; 9 Leal, Noche, Murray, Yassa (bib53) 2017; 27 Heimer, De Olmos, Alheid, Pearson, Sakamoto, Shinoda, Marksteiner, Switzer (bib37) 1999 Janak, Tye (bib43) 2015; 517 Shrout, Fleiss (bib74) 1979; 86 Cullen, Westlund, Klimes-Dougan, Mueller, Houri, Eberly, Lim (bib17) 2014; 71 Amunts, Kedo, Kindler, Pieperhoff, Mohlberg, Shah, Habel, Schneider, Zilles (bib2) 2005; 210 Zou, Warfield, Bharatha, Tempany, Kaus, Haker, Wells, Jolesz, Kikinis (bib94) 2004; 11 Zarei, Beckmann, Binnewijzend, Schoonheim, Oghabian, Sanz-Arigita, Scheltens, Matthews, Barkhof (bib91) 2013; 66 Ding, Van Hoesen (bib23) 2015; 523 Iglesias, Augustinack, Nguyen, Player, Player, Wright, Roy, Frosch, McKee, Wald (bib40) 2015; 115 Prestia, Boccardi, Galluzzi, Cavedo, Adorni, Soricelli, Bonetti, Geroldi, Giannakopoulos, Thompson (bib64) 2011; 192 Schmahl, Berne, Krause, Kleindienst, Valerius, Vermetten, Bohus (bib73) 2009; 34 Driessen, Herrmann, Stahl, Zwaan, Meier, Hill, Osterheider, Petersen (bib26) 2000; 57 Morey, Petty, Xu, Hayes, Wagner, Lewis, LaBar, Styner, McCarthy (bib57) 2009; 45 Yang, Wang (bib89) 2017; 11 Feher (bib27) 2017 Grimm, Pohlack, Cacciaglia, Winkelmann, Plichta, Demirakca, Flor (bib34) 2015; 253 Helms (bib38) 2016; 29 Rolls (bib68) 2015; 62 Dupont, Plummer (bib25) 1998; 19 Backhausen, Herting, Buse, Roessner, Smolka, Vetter (bib4) 2016; 10 Fischl, Sereno, Dale (bib30) 1999; 9 Frankó, Joly, Alzheimer’s Disease Neuroimaging Initiative (bib31) 2013; 8 Asami, Nakamura, Takaishi, Yoshida, Yoshimi, Whitford, Hirayasu (bib3) 2018; 13 Howard, Eichenbaum (bib39) 2015; 1621 Zijdenbos, Dawant, Margolin, Palmer (bib93) 1994; 13 Kemppainen, Jolkkonen, Pitkänen (bib48) 2002; 12 Kim, Pignatelli, Xu, Itohara, Tonegawa (bib49) 2016; 19 Wisse, Biessels, Geerlings (bib86) 2014; 6 Yushkevich, Amaral, Augustinack, Bender, Bernstein, Boccardi, Bocchetta, Burggren, Carr, Chakravarty (bib90) 2015; 111 Bartsch, Schott, Behr (bib8) 2019; 2019 Mueller, Yushkevich, Das, Wang, Van Leemput, Iglesias, Alpert, Mezher, Ng, Paz (bib58) 2018; 17 Iglesias, Van Leemput, Augustinack, Insausti, Fischl, Reuter (bib41) 2016; 141 Tae, Kim, Lee, Nam, Kim (bib76) 2008; 50 Bouchard, Malykhin, Martin, Hanstock, Emery, Fisher, Camicioli (bib11) 2008; 29 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, Van Der Kouwe, Killiany, Kennedy, Klaveness (bib29) 2002; 33 Jovicich, Marizzoni, Sala-Llonch, Bosch, Bartrés-Faz, Arnold, Benninghoff, Wiltfang, Roccatagliata, Nobili (bib46) 2013; 83 Cao, Passos, Mwangi, Amaral-Silva, Tannous, Wu, Zunta-Soares, Soares (bib14) 2017; 22 Krabbe, Gründemann, Lüthi (bib52) 2018; 83 Poppenk, Evensmoen, Moscovitch, Nadel (bib62) 2013; 17 Morey, Selgrade, Wagner, Huettel, Wang, McCarthy (bib56) 2010; 31 Rajaratnam (bib65) 1960; 25 Rossi, Lanfredi, Pievani, Boccardi, Beneduce, Rillosi, Giannakopoulos, Thompson, Rossi, Frisoni (bib70) 2012; 203 Viviani, Pracht, Brenner, Beschoner, Stingl, Stöcker (bib82) 2017; 11 Murray, Brosch, Sander (bib60) 2014; 60 Ganzola, Maziade, Duchesne (bib33) 2014; 156 Amaral, Park, Devenyi, Lynn, Pipitone, Winterburn, Chavez, Schira, Lobaugh, Voineskos (bib1) 2018; 170 Dewey, Hana, Russell, Price, McCaffrey, Harezlak, Sem, Anyanwu, Guttmann, Navia (bib21) 2010; 51 Van Leemput, Bakkour, Benner, Wiggins, Wald, Augustinack, Dickerson, Golland, Fischl (bib81) 2009; 19 Taha, Hanbury (bib77) 2015; 15 Frisoni, Ganzola, Canu, Rüb, Pizzini, Alessandrini, Zoccatelli, Beltramello, Caltagirone, Thompson (bib32) 2008; 131 Montagrin, Saiote, Schiller (bib55) 2018; 28 Cicchetti (bib18) 1994; 6 Bang, Spina, Miller (bib6) 2015; 386 Barnes, Bartlett, van de Pol, Laura, Loy, Scahill, Frost, Thompson, Fox (bib7) 2009; 30 Jovicich, Marizzoni, Bosch, Bartrés-Faz, Arnold, Benninghoff, Wiltfang, Roccatagliata, Picco, Nobili (bib47) 2014; 101 Braak, Braak (bib12) 1983; 11 Tyszka, Pauli (bib78) 2016; 37 Weniger, Lange, Sachsse, Irle (bib84) 2009; 34 Despotović, Goossens, Philips (bib20) 2015 Janiri, Sani, Rossi, Piras, Iorio, Banaj, Giuseppin, Spinazzola, Maggiora, Ambrosi (bib44) 2017; 19 Brown, Pierce, Clark, Fischl, Iglesias, Milberg, McGlinchey, Salat (bib13) 2020; 210 Marizzoni, Antelmi, Bosch, Bartrés-Faz, Müller, Wiltfang, Fiedler, Roccatagliata, Picco, Nobili (bib54) 2015; 36 Mulder, de Jong, Knol, van Schijndel, Cover, Visser, Barkhof, Vrenken, Alzheimer’s Disease Neuroimaging Initiative (bib59) 2014; 92 Wijeratne, Sachdev, Wen, Piguet, Lipnicki, Malhi, Mitchell, Sachdev (bib85) 2013; 25 Prestia, Cavedo, Boccardi, Muscio, Adorni, Geroldi, Bonetti, Thompson, Frisoni (bib63) 2015; 23 Dupont, Plummer (bib24) 1990; 11 Iscan, Jin, Kendrick, Szeglin, Lu, Trivedi, Fava, McGrath, Weissman, Kurian (bib42) 2015; 36 Benarroch (bib9) 2015; 84 Zhong, Xu, Qin, Zeng, Hu, Shen (bib92) 2019; 1715 Knierim (bib50) 2015; 25 Rich, Cho, Tang, Savic, Krystal, Wang, Xu, Anticevic (bib69) 2016; 250 Sah, Faber, Lopez de Armentia, Power (bib71) 2003; 83 Han, Jovicich, Salat, van der Kouwe, Quinn, Czanner, Busa, Pacheco, Albert, Killiany, Maguire, Rosas, Makris, Dale, Dickerson, Fischl (bib36) 2006; 32 Pipitone, Park, Winterburn, Lett, Lerch, Pruessner, Lepage, Voineskos, Chakravarty, Alzheimer’s Disease Neuroimaging Initiative (bib61) 2014; 101 Benson, Willis, Ketter, Speer, Kimbrell, Herscovitch, George, Post (bib10) 2014; 168 Ding (bib22) 2013; 521 Gryglewski, Baldinger-Melich, Seiger, Godbersen, Michenthaler, Klöbl, Spurny, Kautzky, Vanicek, Kasper (bib35) 2019; 214 Saygin, Kliemann, Iglesias, van der Kouwe, André, Boyd, Reuter, Stevens, Van Leemput, McKee, Frosch (bib72) 2017; 155 Jovicich, Czanner, Han, Salat, van der Kouwe, Quinn, Pacheco, Albert, Killiany, Blacker, Maguire, Rosas, Makris, Gollub, Dale, Dickerson, Fischl (bib45) 2009; 46 Reuter, Rosas, Fischl (bib66) 2010; 53 Wonderlick, Ziegler, Hosseini-Varnamkhasti, Locascio, Bakkour, van der Kouwe, Triantafyllou, Corkin, Dickerson (bib87) 2009; 44 Worker, Dima, Combes, Crum, Streffer, Einstein, Mehta, Barker, Cr Williams, O’daly (bib88) 2018; 39 Zuo, Anderson, Bellec, Birn, Biswal, Blautzik, Breitner, Buckner, Calhoun, Castellanos (bib95) 2014; 1 Reuter, Schmansky, Rosas, Fischl (bib67) 2012; 61 Ubeda-Bañon, Novejarque, Mohedano-Moriano, Pro-Sistiaga, de la Rosa-Prieto, Insausti, Martinez-Garcia, Lanuza, Martinez-Marcos (bib79) 2007; 8 van den Burg, Stoop (bib80) 2019; 375 Babaev, Chatain, Krueger-Burg (bib5) 2018; 50 Strange, Witter, Lein, Moser (bib75) 2014; 15 Janiri (10.1016/j.neuroimage.2020.116932_bib44) 2017; 19 Feher (10.1016/j.neuroimage.2020.116932_bib27) 2017 Prestia (10.1016/j.neuroimage.2020.116932_bib63) 2015; 23 Wonderlick (10.1016/j.neuroimage.2020.116932_bib87) 2009; 44 Zou (10.1016/j.neuroimage.2020.116932_bib94) 2004; 11 Cao (10.1016/j.neuroimage.2020.116932_bib14) 2017; 22 Worker (10.1016/j.neuroimage.2020.116932_bib88) 2018; 39 Amaral (10.1016/j.neuroimage.2020.116932_bib1) 2018; 170 Braak (10.1016/j.neuroimage.2020.116932_bib12) 1983; 11 Asami (10.1016/j.neuroimage.2020.116932_bib3) 2018; 13 Yang (10.1016/j.neuroimage.2020.116932_bib89) 2017; 11 Bouchard (10.1016/j.neuroimage.2020.116932_bib11) 2008; 29 Reuter (10.1016/j.neuroimage.2020.116932_bib67) 2012; 61 Ganzola (10.1016/j.neuroimage.2020.116932_bib33) 2014; 156 Viviani (10.1016/j.neuroimage.2020.116932_bib82) 2017; 11 Zuo (10.1016/j.neuroimage.2020.116932_bib95) 2014; 1 Konrad (10.1016/j.neuroimage.2020.116932_bib51) 2009; 47 Murray (10.1016/j.neuroimage.2020.116932_bib60) 2014; 60 Frankó (10.1016/j.neuroimage.2020.116932_bib31) 2013; 8 Jovicich (10.1016/j.neuroimage.2020.116932_bib45) 2009; 46 Poppenk (10.1016/j.neuroimage.2020.116932_bib62) 2013; 17 Yushkevich (10.1016/j.neuroimage.2020.116932_bib90) 2015; 111 Bang (10.1016/j.neuroimage.2020.116932_bib6) 2015; 386 Dupont (10.1016/j.neuroimage.2020.116932_bib25) 1998; 19 Frisoni (10.1016/j.neuroimage.2020.116932_bib32) 2008; 131 Gryglewski (10.1016/j.neuroimage.2020.116932_bib35) 2019; 214 Rajaratnam (10.1016/j.neuroimage.2020.116932_bib65) 1960; 25 Rolls (10.1016/j.neuroimage.2020.116932_bib68) 2015; 62 van den Burg (10.1016/j.neuroimage.2020.116932_bib80) 2019; 375 Zijdenbos (10.1016/j.neuroimage.2020.116932_bib93) 1994; 13 Grimm (10.1016/j.neuroimage.2020.116932_bib34) 2015; 253 Shrout (10.1016/j.neuroimage.2020.116932_bib74) 1979; 86 Cullen (10.1016/j.neuroimage.2020.116932_bib17) 2014; 71 Jovicich (10.1016/j.neuroimage.2020.116932_bib47) 2014; 101 Jovicich (10.1016/j.neuroimage.2020.116932_bib46) 2013; 83 Backhausen (10.1016/j.neuroimage.2020.116932_bib4) 2016; 10 Zarei (10.1016/j.neuroimage.2020.116932_bib91) 2013; 66 Ding (10.1016/j.neuroimage.2020.116932_bib23) 2015; 523 Han (10.1016/j.neuroimage.2020.116932_bib36) 2006; 32 Iglesias (10.1016/j.neuroimage.2020.116932_bib41) 2016; 141 Leal (10.1016/j.neuroimage.2020.116932_bib53) 2017; 27 Janak (10.1016/j.neuroimage.2020.116932_bib43) 2015; 517 Marizzoni (10.1016/j.neuroimage.2020.116932_bib54) 2015; 36 Zhong (10.1016/j.neuroimage.2020.116932_bib92) 2019; 1715 Amunts (10.1016/j.neuroimage.2020.116932_bib2) 2005; 210 Helms (10.1016/j.neuroimage.2020.116932_bib38) 2016; 29 Howard (10.1016/j.neuroimage.2020.116932_bib39) 2015; 1621 Morey (10.1016/j.neuroimage.2020.116932_bib56) 2010; 31 Krabbe (10.1016/j.neuroimage.2020.116932_bib52) 2018; 83 Tae (10.1016/j.neuroimage.2020.116932_bib76) 2008; 50 Pipitone (10.1016/j.neuroimage.2020.116932_bib61) 2014; 101 Weniger (10.1016/j.neuroimage.2020.116932_bib84) 2009; 34 Mulder (10.1016/j.neuroimage.2020.116932_bib59) 2014; 92 Wassum (10.1016/j.neuroimage.2020.116932_bib83) 2015; 57 Brown (10.1016/j.neuroimage.2020.116932_bib13) 2020; 210 Montagrin (10.1016/j.neuroimage.2020.116932_bib55) 2018; 28 Benson (10.1016/j.neuroimage.2020.116932_bib10) 2014; 168 Dale (10.1016/j.neuroimage.2020.116932_bib19) 1999; 9 Iscan (10.1016/j.neuroimage.2020.116932_bib42) 2015; 36 Bartsch (10.1016/j.neuroimage.2020.116932_bib8) 2019; 2019 Taha (10.1016/j.neuroimage.2020.116932_bib77) 2015; 15 Ubeda-Bañon (10.1016/j.neuroimage.2020.116932_bib79) 2007; 8 Schmahl (10.1016/j.neuroimage.2020.116932_bib73) 2009; 34 Morey (10.1016/j.neuroimage.2020.116932_bib57) 2009; 45 Rossi (10.1016/j.neuroimage.2020.116932_bib70) 2012; 203 Heimer (10.1016/j.neuroimage.2020.116932_bib37) 1999 Kemppainen (10.1016/j.neuroimage.2020.116932_bib48) 2002; 12 Ding (10.1016/j.neuroimage.2020.116932_bib22) 2013; 521 Rich (10.1016/j.neuroimage.2020.116932_bib69) 2016; 250 Dupont (10.1016/j.neuroimage.2020.116932_bib24) 1990; 11 Prestia (10.1016/j.neuroimage.2020.116932_bib64) 2011; 192 Despotović (10.1016/j.neuroimage.2020.116932_bib20) 2015 Van Leemput (10.1016/j.neuroimage.2020.116932_bib81) 2009; 19 Barnes (10.1016/j.neuroimage.2020.116932_bib7) 2009; 30 Benarroch (10.1016/j.neuroimage.2020.116932_bib9) 2015; 84 Fischl (10.1016/j.neuroimage.2020.116932_bib28) 2012; vol. 62 Wijeratne (10.1016/j.neuroimage.2020.116932_bib85) 2013; 25 Reuter (10.1016/j.neuroimage.2020.116932_bib66) 2010; 53 Wisse (10.1016/j.neuroimage.2020.116932_bib86) 2014; 6 Fischl (10.1016/j.neuroimage.2020.116932_bib29) 2002; 33 Knierim (10.1016/j.neuroimage.2020.116932_bib50) 2015; 25 Sah (10.1016/j.neuroimage.2020.116932_bib71) 2003; 83 Strange (10.1016/j.neuroimage.2020.116932_bib75) 2014; 15 Tyszka (10.1016/j.neuroimage.2020.116932_bib78) 2016; 37 Catani (10.1016/j.neuroimage.2020.116932_bib15) 2013; 37 Cavedo (10.1016/j.neuroimage.2020.116932_bib16) 2011; 76 Fischl (10.1016/j.neuroimage.2020.116932_bib30) 1999; 9 Iglesias (10.1016/j.neuroimage.2020.116932_bib40) 2015; 115 Babaev (10.1016/j.neuroimage.2020.116932_bib5) 2018; 50 Cicchetti (10.1016/j.neuroimage.2020.116932_bib18) 1994; 6 Dewey (10.1016/j.neuroimage.2020.116932_bib21) 2010; 51 Kim (10.1016/j.neuroimage.2020.116932_bib49) 2016; 19 Driessen (10.1016/j.neuroimage.2020.116932_bib26) 2000; 57 Saygin (10.1016/j.neuroimage.2020.116932_bib72) 2017; 155 Mueller (10.1016/j.neuroimage.2020.116932_bib58) 2018; 17 |
References_xml | – volume: 84 start-page: 313 year: 2015 end-page: 324 ident: bib9 article-title: The amygdala: functional organization and involvement in neurologic disorders publication-title: Neurology – volume: 253 start-page: 254 year: 2015 end-page: 261 ident: bib34 article-title: Amygdalar and hippocampal volume: a comparison between manual segmentation, freesurfer and VBM publication-title: J. Neurosci. Methods – volume: 11 start-page: 349 year: 1983 end-page: 365 ident: bib12 article-title: Neuronal types in the basolateral amygdaloid nuclei of man publication-title: Brain Res. Bull. – volume: 111 start-page: 526 year: 2015 end-page: 541 ident: bib90 article-title: Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol publication-title: Neuroimage – volume: 25 start-page: R1116 year: 2015 end-page: R1121 ident: bib50 article-title: The hippocampus publication-title: Curr. Biol. – start-page: 427 year: 2017 end-page: 439 ident: bib27 article-title: 4.6 - the Chemical Senses – volume: 83 start-page: 472 year: 2013 end-page: 484 ident: bib46 article-title: Brain morphometry reproducibility in multi-center 3 T MRI studies: a comparison of cross-sectional and longitudinal segmentations publication-title: Neuroimage – volume: 83 start-page: 800 year: 2018 end-page: 809 ident: bib52 article-title: Amygdala inhibitory circuits regulate associative fear conditioning publication-title: Biol. Psychiatr. – volume: 1621 start-page: 345 year: 2015 end-page: 354 ident: bib39 article-title: Time and space in the hippocampus publication-title: Brain Res. – volume: 36 start-page: 3472 year: 2015 end-page: 3485 ident: bib42 article-title: Test–retest reliability of FreeSurfer measurements within and between sites: effects of visual approval process publication-title: Hum. Brain Mapp. – volume: 12 start-page: 735 year: 2002 end-page: 755 ident: bib48 article-title: Projections from the posterior cortical nucleus of the amygdala to the hippocampal formation and parahippocampal region in rat publication-title: Hippocampus – volume: 76 start-page: 727 year: 2011 end-page: 733 ident: bib16 article-title: Local amygdala structural differences with 3T MRI in patients with alzheimer disease publication-title: Neurology – volume: 11 start-page: 258 year: 2017 ident: bib82 article-title: Multimodal MEMPRAGE, FLAIR, and R2∗ segmentation to resolve dura and vessels from cortical gray matter publication-title: Front. Neurosci. – volume: 203 start-page: 132 year: 2012 end-page: 138 ident: bib70 article-title: Volumetric and topographic differences in hippocampal subdivisions in borderline personality and bipolar disorders publication-title: Psychiatr. Res. Neuroimaging – volume: 141 start-page: 542 year: 2016 end-page: 555 ident: bib41 article-title: Alzheimer’s Disease Neuroimaging Initiative, 2016. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases publication-title: Neuroimage – volume: 17 start-page: 1006 year: 2018 end-page: 1018 ident: bib58 article-title: Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2 publication-title: Neuroimage: Clinic – volume: 6 start-page: 261 year: 2014 ident: bib86 article-title: A critical appraisal of the hippocampal subfield segmentation package in FreeSurfer publication-title: Front. Aging Neurosci. – volume: 11 start-page: 116 year: 1990 end-page: 128 ident: bib24 article-title: Power and sample size calculations: a review and computer program. Control publication-title: Clin. Trials – volume: 15 start-page: 29 year: 2015 ident: bib77 article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool publication-title: BMC Med. Imag. – volume: 37 start-page: 1724 year: 2013 end-page: 1737 ident: bib15 article-title: A revised limbic system model for memory, emotion and behaviour publication-title: Neurosci. Biobehav. Rev. – volume: 6 start-page: 284 year: 1994 ident: bib18 article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology publication-title: Psychol. Assess. – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bib19 article-title: Cortical surface-based analysis: I. segmentation and surface reconstruction publication-title: Neuroimage – volume: 210 start-page: 116563 year: 2020 ident: bib13 article-title: Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners publication-title: Neuroimage – volume: 214 start-page: 159 year: 2019 end-page: 167 ident: bib35 article-title: Structural changes in amygdala nuclei, hippocampal subfields and cortical thickness following electroconvulsive therapy in treatment-resistant depression: longitudinal analysis publication-title: Br. J. Psychiatr. – volume: 47 start-page: 1185 year: 2009 end-page: 1195 ident: bib51 article-title: Defining the human hippocampus in cerebral magnetic resonance imaging- an overview of current segmentation protocols publication-title: Neuroimage – volume: 51 start-page: 1334 year: 2010 end-page: 1344 ident: bib21 article-title: Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study publication-title: Neuroimage – volume: 210 start-page: 343 year: 2005 end-page: 352 ident: bib2 article-title: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps publication-title: Anat. Embryol. – volume: 11 start-page: 178 year: 2004 end-page: 189 ident: bib94 article-title: Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports publication-title: Acad. Radiol. – volume: 57 start-page: 271 year: 2015 end-page: 283 ident: bib83 article-title: The basolateral amygdala in reward learning and addiction publication-title: Neurosci. Biobehav. Rev. – volume: 10 start-page: 558 year: 2016 ident: bib4 article-title: Quality control of structural MRI images applied using FreeSurfer—a hands-on workflow to rate motion artifacts publication-title: Front. Neurosci. – volume: 30 start-page: 1711 year: 2009 end-page: 1723 ident: bib7 article-title: A meta-analysis of hippocampal atrophy rates in alzheimer’s disease publication-title: Neurobiol. Aging – volume: vol. 62 start-page: 774 year: 2012 end-page: 781 ident: bib28 article-title: FreeSurfer. Neuroimage – volume: 11 start-page: 86 year: 2017 ident: bib89 article-title: From structure to behavior in basolateral amygdala-hippocampus circuits publication-title: Front. Neural Circ. – volume: 62 start-page: 119 year: 2015 end-page: 157 ident: bib68 article-title: Limbic systems for emotion and for memory, but no single limbic system publication-title: Cortex – volume: 1 start-page: 140049 year: 2014 ident: bib95 article-title: An open science resource for establishing reliability and reproducibility in functional connectomics – volume: 168 start-page: 243 year: 2014 end-page: 253 ident: bib10 article-title: Differential abnormalities of functional connectivity of the amygdala and hippocampus in unipolar and bipolar affective disorders publication-title: J. Affect. Disord. – volume: 17 start-page: 230 year: 2013 end-page: 240 ident: bib62 article-title: Long-axis specialization of the human hippocampus publication-title: Trends Cognit. Sci. – volume: 23 start-page: 47 year: 2015 end-page: 58 ident: bib63 article-title: Hippocampal and amygdalar local structural differences in elderly patients with schizophrenia publication-title: Am. J. Geriatr. Psychiatr. – volume: 13 start-page: 716 year: 1994 end-page: 724 ident: bib93 article-title: Morphometric analysis of white matter lesions in MR images: method and validation publication-title: IEEE Trans. Med. Imag. – volume: 50 start-page: 569 year: 2008 ident: bib76 article-title: Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder publication-title: Neuroradiology – volume: 31 start-page: 1751 year: 2010 end-page: 1762 ident: bib56 article-title: Scan–rescan reliability of subcortical brain volumes derived from automated segmentation publication-title: Hum. Brain Mapp. – volume: 155 start-page: 370 year: 2017 end-page: 382 ident: bib72 article-title: High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas publication-title: Neuroimage – volume: 101 start-page: 390 year: 2014 end-page: 403 ident: bib47 article-title: Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects publication-title: Neuroimage – volume: 8 year: 2013 ident: bib31 article-title: Evaluating Alzheimer’s disease progression using rate of regional hippocampal atrophy publication-title: PloS One – volume: 36 start-page: 3516 year: 2015 end-page: 3527 ident: bib54 article-title: Longitudinal reproducibility of automatically segmented hippocampal subfields: A multisite E uropean 3T study on healthy elderly publication-title: Hum. Brain Mapp. – volume: 61 start-page: 1402 year: 2012 end-page: 1418 ident: bib67 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage – volume: 34 start-page: 383 year: 2009 end-page: 388 ident: bib84 article-title: Reduced amygdala and hippocampus size in trauma-exposed women with borderline personality disorder and without posttraumatic stress disorder publication-title: J. Psychiatry Neurosci. – volume: 19 start-page: 1636 year: 2016 ident: bib49 article-title: Antagonistic negative and positive neurons of the basolateral amygdala publication-title: Nat. Neurosci. – volume: 46 start-page: 177 year: 2009 end-page: 192 ident: bib45 article-title: MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths publication-title: Neuroimage – volume: 45 start-page: 855 year: 2009 end-page: 866 ident: bib57 article-title: A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes publication-title: Neuroimage – volume: 131 start-page: 3266 year: 2008 end-page: 3276 ident: bib32 article-title: Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla publication-title: Brain – volume: 115 start-page: 117 year: 2015 end-page: 137 ident: bib40 article-title: A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI publication-title: Neuroimage – volume: 34 start-page: 289 year: 2009 end-page: 295 ident: bib73 article-title: Hippocampus and amygdala volumes in patients with borderline personality disorder with or without posttraumatic stress disorder publication-title: J. Psychiatry Neurosci. – volume: 170 start-page: 132 year: 2018 end-page: 150 ident: bib1 article-title: Manual segmentation of the fornix, fimbria, and alveus on high-resolution 3T MRI: application via fully-automated mapping of the human memory circuit white and grey matter in healthy and pathological aging publication-title: Neuroimage – volume: 101 start-page: 494 year: 2014 end-page: 512 ident: bib61 article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates publication-title: Neuroimage – volume: 250 start-page: 50 year: 2016 end-page: 60 ident: bib69 article-title: Amygdala volume is reduced in early course schizophrenia publication-title: Psychiatr. Res. Neuroimaging – volume: 8 start-page: 103 year: 2007 ident: bib79 article-title: Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli publication-title: BMC Neurosci. – volume: 50 start-page: 1 year: 2018 end-page: 16 ident: bib5 article-title: Inhibition in the amygdala anxiety circuitry publication-title: Exp. Mol. Med. – volume: 375 start-page: 93 year: 2019 end-page: 101 ident: bib80 article-title: Neuropeptide signalling in the central nucleus of the amygdala publication-title: Cell Tissue Res. – volume: 192 start-page: 77 year: 2011 end-page: 83 ident: bib64 article-title: Hippocampal and amygdalar volume changes in elderly patients with alzheimer’s disease and schizophrenia publication-title: Psychiatr. Res. Neuroimaging – volume: 83 start-page: 803 year: 2003 end-page: 834 ident: bib71 article-title: The amygdaloid complex: anatomy and physiology publication-title: Physiol. Rev. – volume: 517 start-page: 284 year: 2015 ident: bib43 article-title: From circuits to behaviour in the amygdala publication-title: Nature – volume: 19 start-page: 549 year: 2009 end-page: 557 ident: bib81 article-title: Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI publication-title: Hippocampus – volume: 53 start-page: 1181 year: 2010 end-page: 1196 ident: bib66 article-title: Highly accurate inverse consistent registration: a robust approach publication-title: Neuroimage – volume: 92 start-page: 169 year: 2014 end-page: 181 ident: bib59 article-title: Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST publication-title: Neuroimage – volume: 25 start-page: 54 year: 2013 end-page: 60 ident: bib85 article-title: Hippocampal and amygdala volumes in an older bipolar disorder sample publication-title: Int. Psychogeriatr. – volume: 60 start-page: 10 year: 2014 end-page: 33 ident: bib60 article-title: The functional profile of the human amygdala in affective processing: insights from intracranial recordings publication-title: Cortex – volume: 29 start-page: 1027 year: 2008 end-page: 1039 ident: bib11 article-title: Age and dementia-associated atrophy predominates in the hippocampal head and amygdala in Parkinson’s disease publication-title: Neurobiol. Aging – volume: 37 start-page: 3979 year: 2016 end-page: 3998 ident: bib78 article-title: In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template publication-title: Hum. Brain Mapp. – volume: 32 start-page: 180 year: 2006 end-page: 194 ident: bib36 article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer publication-title: Neuroimage – volume: 523 start-page: 2233 year: 2015 end-page: 2253 ident: bib23 article-title: Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of cyto-and chemoarchitecture publication-title: J. Comp. Neurol. – volume: 57 start-page: 1115 year: 2000 end-page: 1122 ident: bib26 article-title: Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization publication-title: Arch. Gen. Psychiatr. – volume: 39 start-page: 1743 year: 2018 end-page: 1754 ident: bib88 article-title: Test–retest reliability and longitudinal analysis of automated hippocampal subregion volumes in healthy ageing and A lzheimer’s disease populations publication-title: Hum. Brain Mapp. – volume: 13 year: 2018 ident: bib3 article-title: Smaller volumes in the lateral and basal nuclei of the amygdala in patients with panic disorder publication-title: PloS One – volume: 29 start-page: 111 year: 2016 end-page: 124 ident: bib38 article-title: Segmentation of human brain using structural MRI publication-title: Magnetic Reson. Mater. Phys. Biol. Med. – volume: 19 start-page: 353 year: 2017 end-page: 362 ident: bib44 article-title: Amygdala and hippocampus volumes are differently affected by childhood trauma in patients with bipolar disorders and healthy controls publication-title: Bipolar Disord. – volume: 44 start-page: 1324 year: 2009 end-page: 1333 ident: bib87 article-title: Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging publication-title: Neuroimage – volume: 86 start-page: 420 year: 1979 ident: bib74 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. – volume: 15 start-page: 655 year: 2014 end-page: 669 ident: bib75 article-title: Functional organization of the hippocampal longitudinal axis publication-title: Nat. Rev. Neurosci. – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: bib30 article-title: Cortical surface-based analysis II: inflation, flattening, and surface-based coordinate system publication-title: Neuroimage – volume: 22 start-page: 1352 year: 2017 ident: bib14 article-title: Hippocampal subfield volumes in mood disorders publication-title: Mol. Psychiatr. – volume: 156 start-page: 76 year: 2014 end-page: 86 ident: bib33 article-title: Hippocampus and amygdala volumes in children and young adults at high-risk of schizophrenia: research synthesis publication-title: Schizophr. Res. – volume: 2019 year: 2019 ident: bib8 article-title: Hippocampal dysfunction in schizophrenia and aberrant hippocampal synaptic plasticity in rodent model psychosis: a selective review publication-title: Pharmacopsychiatry – volume: 66 start-page: 28 year: 2013 end-page: 35 ident: bib91 article-title: Functional segmentation of the hippocampus in the healthy human brain and in alzheimer’s disease publication-title: Neuroimage – volume: 521 start-page: 4145 year: 2013 end-page: 4162 ident: bib22 article-title: Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent publication-title: J. Comp. Neurol. – year: 2015 ident: bib20 article-title: MRI segmentation of the human brain: challenges, methods, and applications publication-title: Comput. Math. Methods Med. – year: 1999 ident: bib37 article-title: The Human Basal Forebrain Part II the Primate Nervous System, Part III – volume: 25 start-page: 261 year: 1960 end-page: 271 ident: bib65 article-title: Reliability formulas for independent decision data when reliability data are matched publication-title: Psychometrika – volume: 386 start-page: 1672 year: 2015 end-page: 1682 ident: bib6 article-title: Frontotemporal dementia publication-title: Lancet – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bib29 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 1715 start-page: 165 year: 2019 end-page: 175 ident: bib92 article-title: Functional parcellation of the hippocampus from resting-state dynamic functional connectivity publication-title: Brain Res. – volume: 19 start-page: 589 year: 1998 end-page: 601 ident: bib25 article-title: Power and sample size calculations for studies involving linear regression publication-title: Contr. Clin. Trials – volume: 71 start-page: 1138 year: 2014 end-page: 1147 ident: bib17 article-title: Abnormal amygdala resting-state functional connectivity in adolescent depression publication-title: JAMA Psychiatry – volume: 28 start-page: 672 year: 2018 end-page: 679 ident: bib55 article-title: The social hippocampus publication-title: Hippocampus – volume: 27 start-page: 464 year: 2017 end-page: 476 ident: bib53 article-title: Disruption of amygdala–entorhinal–hippocampal network in late-life depression publication-title: Hippocampus – volume: 1715 start-page: 165 year: 2019 ident: 10.1016/j.neuroimage.2020.116932_bib92 article-title: Functional parcellation of the hippocampus from resting-state dynamic functional connectivity publication-title: Brain Res. doi: 10.1016/j.brainres.2019.03.023 – volume: 15 start-page: 655 year: 2014 ident: 10.1016/j.neuroimage.2020.116932_bib75 article-title: Functional organization of the hippocampal longitudinal axis publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3785 – volume: 111 start-page: 526 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib90 article-title: Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.004 – volume: 210 start-page: 343 year: 2005 ident: 10.1016/j.neuroimage.2020.116932_bib2 article-title: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps publication-title: Anat. Embryol. doi: 10.1007/s00429-005-0025-5 – volume: 23 start-page: 47 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib63 article-title: Hippocampal and amygdalar local structural differences in elderly patients with schizophrenia publication-title: Am. J. Geriatr. Psychiatr. doi: 10.1016/j.jagp.2014.01.006 – volume: 11 start-page: 349 year: 1983 ident: 10.1016/j.neuroimage.2020.116932_bib12 article-title: Neuronal types in the basolateral amygdaloid nuclei of man publication-title: Brain Res. Bull. doi: 10.1016/0361-9230(83)90171-5 – volume: 101 start-page: 494 year: 2014 ident: 10.1016/j.neuroimage.2020.116932_bib61 article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.054 – volume: 57 start-page: 1115 year: 2000 ident: 10.1016/j.neuroimage.2020.116932_bib26 article-title: Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization publication-title: Arch. Gen. Psychiatr. doi: 10.1001/archpsyc.57.12.1115 – volume: 168 start-page: 243 year: 2014 ident: 10.1016/j.neuroimage.2020.116932_bib10 article-title: Differential abnormalities of functional connectivity of the amygdala and hippocampus in unipolar and bipolar affective disorders publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2014.05.045 – volume: 60 start-page: 10 year: 2014 ident: 10.1016/j.neuroimage.2020.116932_bib60 article-title: The functional profile of the human amygdala in affective processing: insights from intracranial recordings publication-title: Cortex doi: 10.1016/j.cortex.2014.06.010 – volume: 34 start-page: 289 year: 2009 ident: 10.1016/j.neuroimage.2020.116932_bib73 article-title: Hippocampus and amygdala volumes in patients with borderline personality disorder with or without posttraumatic stress disorder publication-title: J. Psychiatry Neurosci. – volume: 1621 start-page: 345 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib39 article-title: Time and space in the hippocampus publication-title: Brain Res. doi: 10.1016/j.brainres.2014.10.069 – volume: 86 start-page: 420 year: 1979 ident: 10.1016/j.neuroimage.2020.116932_bib74 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. doi: 10.1037/0033-2909.86.2.420 – volume: 36 start-page: 3472 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib42 article-title: Test–retest reliability of FreeSurfer measurements within and between sites: effects of visual approval process publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22856 – volume: 84 start-page: 313 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib9 article-title: The amygdala: functional organization and involvement in neurologic disorders publication-title: Neurology doi: 10.1212/WNL.0000000000001171 – volume: 155 start-page: 370 year: 2017 ident: 10.1016/j.neuroimage.2020.116932_bib72 article-title: High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.046 – volume: 11 start-page: 116 year: 1990 ident: 10.1016/j.neuroimage.2020.116932_bib24 article-title: Power and sample size calculations: a review and computer program. Control publication-title: Clin. Trials doi: 10.1016/0197-2456(90)90005-M – volume: 25 start-page: 54 year: 2013 ident: 10.1016/j.neuroimage.2020.116932_bib85 article-title: Hippocampal and amygdala volumes in an older bipolar disorder sample publication-title: Int. Psychogeriatr. doi: 10.1017/S1041610212001469 – volume: 27 start-page: 464 year: 2017 ident: 10.1016/j.neuroimage.2020.116932_bib53 article-title: Disruption of amygdala–entorhinal–hippocampal network in late-life depression publication-title: Hippocampus doi: 10.1002/hipo.22705 – volume: 50 start-page: 569 year: 2008 ident: 10.1016/j.neuroimage.2020.116932_bib76 article-title: Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder publication-title: Neuroradiology doi: 10.1007/s00234-008-0383-9 – volume: 170 start-page: 132 year: 2018 ident: 10.1016/j.neuroimage.2020.116932_bib1 article-title: Manual segmentation of the fornix, fimbria, and alveus on high-resolution 3T MRI: application via fully-automated mapping of the human memory circuit white and grey matter in healthy and pathological aging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.027 – volume: 15 start-page: 29 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib77 article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool publication-title: BMC Med. Imag. doi: 10.1186/s12880-015-0068-x – volume: 19 start-page: 589 year: 1998 ident: 10.1016/j.neuroimage.2020.116932_bib25 article-title: Power and sample size calculations for studies involving linear regression publication-title: Contr. Clin. Trials doi: 10.1016/S0197-2456(98)00037-3 – volume: 8 start-page: 103 year: 2007 ident: 10.1016/j.neuroimage.2020.116932_bib79 article-title: Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli publication-title: BMC Neurosci. doi: 10.1186/1471-2202-8-103 – volume: 9 start-page: 195 year: 1999 ident: 10.1016/j.neuroimage.2020.116932_bib30 article-title: Cortical surface-based analysis II: inflation, flattening, and surface-based coordinate system publication-title: Neuroimage doi: 10.1006/nimg.1998.0396 – volume: 29 start-page: 111 year: 2016 ident: 10.1016/j.neuroimage.2020.116932_bib38 article-title: Segmentation of human brain using structural MRI publication-title: Magnetic Reson. Mater. Phys. Biol. Med. doi: 10.1007/s10334-015-0518-z – volume: 22 start-page: 1352 year: 2017 ident: 10.1016/j.neuroimage.2020.116932_bib14 article-title: Hippocampal subfield volumes in mood disorders publication-title: Mol. Psychiatr. doi: 10.1038/mp.2016.262 – volume: 11 start-page: 178 year: 2004 ident: 10.1016/j.neuroimage.2020.116932_bib94 article-title: Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports publication-title: Acad. Radiol. doi: 10.1016/S1076-6332(03)00671-8 – volume: 101 start-page: 390 year: 2014 ident: 10.1016/j.neuroimage.2020.116932_bib47 article-title: Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.075 – volume: 46 start-page: 177 year: 2009 ident: 10.1016/j.neuroimage.2020.116932_bib45 article-title: MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.010 – volume: 25 start-page: R1116 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib50 article-title: The hippocampus publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.10.049 – volume: 37 start-page: 3979 year: 2016 ident: 10.1016/j.neuroimage.2020.116932_bib78 article-title: In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23289 – volume: 19 start-page: 549 year: 2009 ident: 10.1016/j.neuroimage.2020.116932_bib81 article-title: Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI publication-title: Hippocampus doi: 10.1002/hipo.20615 – volume: 17 start-page: 230 year: 2013 ident: 10.1016/j.neuroimage.2020.116932_bib62 article-title: Long-axis specialization of the human hippocampus publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2013.03.005 – volume: 37 start-page: 1724 year: 2013 ident: 10.1016/j.neuroimage.2020.116932_bib15 article-title: A revised limbic system model for memory, emotion and behaviour publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2013.07.001 – volume: 17 start-page: 1006 year: 2018 ident: 10.1016/j.neuroimage.2020.116932_bib58 article-title: Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2 publication-title: Neuroimage: Clinic doi: 10.1016/j.nicl.2017.12.036 – volume: 10 start-page: 558 year: 2016 ident: 10.1016/j.neuroimage.2020.116932_bib4 article-title: Quality control of structural MRI images applied using FreeSurfer—a hands-on workflow to rate motion artifacts publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00558 – volume: 375 start-page: 93 year: 2019 ident: 10.1016/j.neuroimage.2020.116932_bib80 article-title: Neuropeptide signalling in the central nucleus of the amygdala publication-title: Cell Tissue Res. doi: 10.1007/s00441-018-2862-6 – volume: 32 start-page: 180 year: 2006 ident: 10.1016/j.neuroimage.2020.116932_bib36 article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.02.051 – volume: 51 start-page: 1334 year: 2010 ident: 10.1016/j.neuroimage.2020.116932_bib21 article-title: Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.033 – volume: 71 start-page: 1138 year: 2014 ident: 10.1016/j.neuroimage.2020.116932_bib17 article-title: Abnormal amygdala resting-state functional connectivity in adolescent depression publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2014.1087 – start-page: 427 year: 2017 ident: 10.1016/j.neuroimage.2020.116932_bib27 – volume: 39 start-page: 1743 year: 2018 ident: 10.1016/j.neuroimage.2020.116932_bib88 article-title: Test–retest reliability and longitudinal analysis of automated hippocampal subregion volumes in healthy ageing and A lzheimer’s disease populations publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23948 – volume: 11 start-page: 86 year: 2017 ident: 10.1016/j.neuroimage.2020.116932_bib89 article-title: From structure to behavior in basolateral amygdala-hippocampus circuits publication-title: Front. Neural Circ. doi: 10.3389/fncir.2017.00086 – volume: 9 start-page: 179 year: 1999 ident: 10.1016/j.neuroimage.2020.116932_bib19 article-title: Cortical surface-based analysis: I. segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 517 start-page: 284 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib43 article-title: From circuits to behaviour in the amygdala publication-title: Nature doi: 10.1038/nature14188 – volume: 83 start-page: 472 year: 2013 ident: 10.1016/j.neuroimage.2020.116932_bib46 article-title: Brain morphometry reproducibility in multi-center 3 T MRI studies: a comparison of cross-sectional and longitudinal segmentations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.007 – volume: 12 start-page: 735 year: 2002 ident: 10.1016/j.neuroimage.2020.116932_bib48 article-title: Projections from the posterior cortical nucleus of the amygdala to the hippocampal formation and parahippocampal region in rat publication-title: Hippocampus doi: 10.1002/hipo.10020 – volume: 62 start-page: 119 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib68 article-title: Limbic systems for emotion and for memory, but no single limbic system publication-title: Cortex doi: 10.1016/j.cortex.2013.12.005 – volume: 131 start-page: 3266 year: 2008 ident: 10.1016/j.neuroimage.2020.116932_bib32 article-title: Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla publication-title: Brain doi: 10.1093/brain/awn280 – volume: 44 start-page: 1324 year: 2009 ident: 10.1016/j.neuroimage.2020.116932_bib87 article-title: Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.037 – year: 1999 ident: 10.1016/j.neuroimage.2020.116932_bib37 – volume: 47 start-page: 1185 year: 2009 ident: 10.1016/j.neuroimage.2020.116932_bib51 article-title: Defining the human hippocampus in cerebral magnetic resonance imaging- an overview of current segmentation protocols publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.019 – volume: 13 start-page: 716 year: 1994 ident: 10.1016/j.neuroimage.2020.116932_bib93 article-title: Morphometric analysis of white matter lesions in MR images: method and validation publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.363096 – volume: 1 start-page: 140049 year: 2014 ident: 10.1016/j.neuroimage.2020.116932_bib95 article-title: An open science resource for establishing reliability and reproducibility in functional connectomics – volume: 30 start-page: 1711 year: 2009 ident: 10.1016/j.neuroimage.2020.116932_bib7 article-title: A meta-analysis of hippocampal atrophy rates in alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2008.01.010 – volume: 214 start-page: 159 year: 2019 ident: 10.1016/j.neuroimage.2020.116932_bib35 article-title: Structural changes in amygdala nuclei, hippocampal subfields and cortical thickness following electroconvulsive therapy in treatment-resistant depression: longitudinal analysis publication-title: Br. J. Psychiatr. doi: 10.1192/bjp.2018.224 – volume: 11 start-page: 258 year: 2017 ident: 10.1016/j.neuroimage.2020.116932_bib82 article-title: Multimodal MEMPRAGE, FLAIR, and R2∗ segmentation to resolve dura and vessels from cortical gray matter publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00258 – volume: 33 start-page: 341 year: 2002 ident: 10.1016/j.neuroimage.2020.116932_bib29 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 76 start-page: 727 year: 2011 ident: 10.1016/j.neuroimage.2020.116932_bib16 article-title: Local amygdala structural differences with 3T MRI in patients with alzheimer disease publication-title: Neurology doi: 10.1212/WNL.0b013e31820d62d9 – volume: 523 start-page: 2233 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib23 article-title: Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of cyto-and chemoarchitecture publication-title: J. Comp. Neurol. doi: 10.1002/cne.23786 – volume: 28 start-page: 672 year: 2018 ident: 10.1016/j.neuroimage.2020.116932_bib55 article-title: The social hippocampus publication-title: Hippocampus doi: 10.1002/hipo.22797 – volume: 25 start-page: 261 year: 1960 ident: 10.1016/j.neuroimage.2020.116932_bib65 article-title: Reliability formulas for independent decision data when reliability data are matched publication-title: Psychometrika doi: 10.1007/BF02289730 – volume: 6 start-page: 261 year: 2014 ident: 10.1016/j.neuroimage.2020.116932_bib86 article-title: A critical appraisal of the hippocampal subfield segmentation package in FreeSurfer publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2014.00261 – volume: 36 start-page: 3516 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib54 article-title: Longitudinal reproducibility of automatically segmented hippocampal subfields: A multisite E uropean 3T study on healthy elderly publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22859 – volume: 6 start-page: 284 year: 1994 ident: 10.1016/j.neuroimage.2020.116932_bib18 article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology publication-title: Psychol. Assess. doi: 10.1037/1040-3590.6.4.284 – volume: 521 start-page: 4145 year: 2013 ident: 10.1016/j.neuroimage.2020.116932_bib22 article-title: Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent publication-title: J. Comp. Neurol. doi: 10.1002/cne.23416 – volume: 253 start-page: 254 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib34 article-title: Amygdalar and hippocampal volume: a comparison between manual segmentation, freesurfer and VBM publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.05.024 – volume: 8 year: 2013 ident: 10.1016/j.neuroimage.2020.116932_bib31 article-title: Evaluating Alzheimer’s disease progression using rate of regional hippocampal atrophy publication-title: PloS One doi: 10.1371/journal.pone.0071354 – volume: 115 start-page: 117 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib40 article-title: A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.04.042 – volume: 45 start-page: 855 year: 2009 ident: 10.1016/j.neuroimage.2020.116932_bib57 article-title: A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.033 – volume: 61 start-page: 1402 year: 2012 ident: 10.1016/j.neuroimage.2020.116932_bib67 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.084 – volume: 203 start-page: 132 year: 2012 ident: 10.1016/j.neuroimage.2020.116932_bib70 article-title: Volumetric and topographic differences in hippocampal subdivisions in borderline personality and bipolar disorders publication-title: Psychiatr. Res. Neuroimaging doi: 10.1016/j.pscychresns.2011.12.004 – volume: 386 start-page: 1672 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib6 article-title: Frontotemporal dementia publication-title: Lancet doi: 10.1016/S0140-6736(15)00461-4 – volume: 2019 year: 2019 ident: 10.1016/j.neuroimage.2020.116932_bib8 article-title: Hippocampal dysfunction in schizophrenia and aberrant hippocampal synaptic plasticity in rodent model psychosis: a selective review publication-title: Pharmacopsychiatry – volume: 92 start-page: 169 year: 2014 ident: 10.1016/j.neuroimage.2020.116932_bib59 article-title: Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.058 – volume: 19 start-page: 353 year: 2017 ident: 10.1016/j.neuroimage.2020.116932_bib44 article-title: Amygdala and hippocampus volumes are differently affected by childhood trauma in patients with bipolar disorders and healthy controls publication-title: Bipolar Disord. doi: 10.1111/bdi.12516 – volume: 19 start-page: 1636 year: 2016 ident: 10.1016/j.neuroimage.2020.116932_bib49 article-title: Antagonistic negative and positive neurons of the basolateral amygdala publication-title: Nat. Neurosci. doi: 10.1038/nn.4414 – volume: 13 year: 2018 ident: 10.1016/j.neuroimage.2020.116932_bib3 article-title: Smaller volumes in the lateral and basal nuclei of the amygdala in patients with panic disorder publication-title: PloS One doi: 10.1371/journal.pone.0207163 – volume: 141 start-page: 542 year: 2016 ident: 10.1016/j.neuroimage.2020.116932_bib41 article-title: Alzheimer’s Disease Neuroimaging Initiative, 2016. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.07.020 – volume: 83 start-page: 800 year: 2018 ident: 10.1016/j.neuroimage.2020.116932_bib52 article-title: Amygdala inhibitory circuits regulate associative fear conditioning publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2017.10.006 – volume: 66 start-page: 28 year: 2013 ident: 10.1016/j.neuroimage.2020.116932_bib91 article-title: Functional segmentation of the hippocampus in the healthy human brain and in alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.10.071 – volume: 50 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2020.116932_bib5 article-title: Inhibition in the amygdala anxiety circuitry publication-title: Exp. Mol. Med. doi: 10.1038/s12276-018-0063-8 – volume: vol. 62 start-page: 774 year: 2012 ident: 10.1016/j.neuroimage.2020.116932_bib28 – volume: 192 start-page: 77 year: 2011 ident: 10.1016/j.neuroimage.2020.116932_bib64 article-title: Hippocampal and amygdalar volume changes in elderly patients with alzheimer’s disease and schizophrenia publication-title: Psychiatr. Res. Neuroimaging doi: 10.1016/j.pscychresns.2010.12.015 – volume: 29 start-page: 1027 year: 2008 ident: 10.1016/j.neuroimage.2020.116932_bib11 article-title: Age and dementia-associated atrophy predominates in the hippocampal head and amygdala in Parkinson’s disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2007.02.002 – volume: 57 start-page: 271 year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib83 article-title: The basolateral amygdala in reward learning and addiction publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2015.08.017 – volume: 34 start-page: 383 year: 2009 ident: 10.1016/j.neuroimage.2020.116932_bib84 article-title: Reduced amygdala and hippocampus size in trauma-exposed women with borderline personality disorder and without posttraumatic stress disorder publication-title: J. Psychiatry Neurosci. – volume: 250 start-page: 50 year: 2016 ident: 10.1016/j.neuroimage.2020.116932_bib69 article-title: Amygdala volume is reduced in early course schizophrenia publication-title: Psychiatr. Res. Neuroimaging doi: 10.1016/j.pscychresns.2016.02.006 – volume: 156 start-page: 76 year: 2014 ident: 10.1016/j.neuroimage.2020.116932_bib33 article-title: Hippocampus and amygdala volumes in children and young adults at high-risk of schizophrenia: research synthesis publication-title: Schizophr. Res. doi: 10.1016/j.schres.2014.03.030 – volume: 210 start-page: 116563 year: 2020 ident: 10.1016/j.neuroimage.2020.116932_bib13 article-title: Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116563 – volume: 31 start-page: 1751 year: 2010 ident: 10.1016/j.neuroimage.2020.116932_bib56 article-title: Scan–rescan reliability of subcortical brain volumes derived from automated segmentation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20973 – volume: 83 start-page: 803 year: 2003 ident: 10.1016/j.neuroimage.2020.116932_bib71 article-title: The amygdaloid complex: anatomy and physiology publication-title: Physiol. Rev. doi: 10.1152/physrev.00002.2003 – year: 2015 ident: 10.1016/j.neuroimage.2020.116932_bib20 article-title: MRI segmentation of the human brain: challenges, methods, and applications publication-title: Comput. Math. Methods Med. doi: 10.1155/2015/450341 – volume: 53 start-page: 1181 year: 2010 ident: 10.1016/j.neuroimage.2020.116932_bib66 article-title: Highly accurate inverse consistent registration: a robust approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.020 |
SSID | ssj0009148 ssib001088192 ssib057766155 ssib044495972 ssib042110531 ssib001197117 |
Score | 2.499056 |
Snippet | The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of... BackgroundThe amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and... Background: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation... |
SourceID | doaj swepub hal proquest pubmed crossref nii elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116932 |
SubjectTerms | [SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging Adult Aged ALZHEIMERS-DISEASE Amygdala Amygdala - anatomy & histology Amygdalar nuclei Amygdalar nuclei; FreeSurfer; Hippocampal subfields; Multicenter MRI study; Reliability analysis Amygdalar nuclei; Hippocampal subfields; Multicenter MRI study; FreeSurfer; Reliability analysis anatomy & histology [Amygdala] anatomy & histology [Hippocampus] Automation Behavior Bioengineering BORDERLINE PERSONALITY-DISORDER Cognition ELDERLY-PATIENTS Female FreeSurfer FUNCTIONAL-ORGANIZATION Hippocampal subfields Hippocampus Hippocampus - anatomy & histology HUMAN BRAIN Humans Image processing Image Processing, Computer-Assisted Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - standards Imaging info:eu-repo/classification/ddc/616.8 Life Sciences Magnetic Resonance Imaging Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Male MANUAL SEGMENTATION Medical imaging Medizin Memory MESH: Adult MESH: Aged MESH: Amygdala / anatomy & histology MESH: Female MESH: Hippocampus / anatomy & histology MESH: Humans MESH: Image Processing, Computer-Assisted / methods MESH: Image Processing, Computer-Assisted / standards MESH: Magnetic Resonance Imaging / methods MESH: Magnetic Resonance Imaging / standards MESH: Male MESH: Middle Aged MESH: Neuroimaging / methods MESH: Neuroimaging / standards MESH: Reproducibility of Results MESH: Software methods [Image Processing, Computer-Assisted] methods [Magnetic Resonance Imaging] methods [Neuroimaging] METHODS FREESURFER Middle Aged Multicenter MRI study Neuroimaging Neuroimaging - methods Neuroimaging - standards Neurosciences. Biological psychiatry. Neuropsychiatry Nuclei RC321-571 Regulation Reliability analysis Reproducibility of Results SAMPLE-SIZE CALCULATIONS Segmentation Software standards [Image Processing, Computer-Assisted] standards [Magnetic Resonance Imaging] standards [Neuroimaging] STRUCTURAL DIFFERENCES Studies SURFACE-BASED ANALYSIS |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoD4gL4k1oiwxC3CISr_MwnBZEtSCWA2ql3iw7tmlgm6ySbKX9B_xsZuIksAiJPXCJIjt-xDOe-RxPPhPyggnmXM51GHG4cG1MKAobh7G1NsmVErnB7x3Lz-ninH-8SC5-O-oLY8I8PbAfuFdcF1oJUTj808amGtynEzk3iSpYUTCL1hd83riYGul2AeUPcTs-mqtnhyyvYI7CmpChpUjFjO04o56zf8cnHVxicORBVZZ_w59_kIv2Dun0Drk9IEk6929wl9yw1T1ycznsld8nP-ZX269GwcqVVkhaXFJVGXpZrtfgvsAIrGi70X0AW0vrii6_fHhNz6DlsMFvsR1t7Kr0JN5bWjuqNl0N6NYa6g1a12yp6l-LjoesdFgJxe3otm8L7Kipm_YBOT99f_ZuEQ7nLoQFLD66UBtneKQNS2cFSDhWACPAhQnGHOBHyyKVuZngLmfGYqaJmcqN0dwxrpXLZg_JYVVX9jGhiWGQ7WwOq07OkJ3QRi7XcQaq4FjhApKNApDFQEqOZ2Os5Bh99k3-Ep1E0UkvuoDEU8m1J-bYo8xblPH0PFJr9wmgcHJQOPkvhQuIGDVEjn-vgr2Fiso9OvBmKjsgHI9c9iz9HBRyp_eL-SeJabg_HGUiv44DcgL6CoOJ1xjkxnHvHFkCM55HWMnxqMlyMFetBJwmogSteUCeTdlgaHD3SFW23uAzYO85BzATkEd-BkxdAVQepwDkA_LST4mdTg5J3-EOhjcDRBk9-R-SOCK3cHR8xN8xOeyajT0BiNjpp701-AkboWYs priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLe2HRAXxDeBDRmEuIUmrtPEcCoTU0GUA2zSbpYd21ugS6o0ReqFM38278VOpyIOk7hErb_j9_zez3nPz4S8YoI5V3AdJxweXBsTi9KmcWqtzQqlRGHwe8f8y2R2xj-dZ-d75Hg4C4NulUH2e5neS-uQMgqzOVpW1egbIANQN4BQ0LoHnIkn2HmOXP7m17Wbh0i5Pw6XjWMsHbx5vI9XHzOyuoKVCztFhvJjIsZsR0X1kfx3NNX-JbpM7tdV9S9U-lfI0V5NndwldwK-pFP_CvfInq3vk1vzYEF_QH5PrzYXRsF-ltYYyriiqjb0slouQamBaFjQ1Vr3bm0r2tR0_vXjW3oKPcctfqHtaGsXlQ_tvaGNo2rdNYB5raFezHXthqr-tehw9UqHjVA0Uq_6vkC6mqZdPSRnJx9Oj2dxuI0hLmFL0sXaOMMTbdhkXALdUwXgAhSbYMwBqrQsUbkbC-4KZixmmpSpwhjNHeNauXz8iBzUTW2fEJoZBtnOFrAX5QxjFtrEFTrNgUEcK11E8oEAsgyhyvHGjIUcfNK-y2vSSSSd9KSLSLqtufThOm5Q5z3SeFseA273CU17IQPHSa5LrYQoHR74shMNKM6JgptMlawsmY2IGDhEDmdaQQpDQ9UNBvBuW3eH929Y-yUw5M7oZ9PPEtPQapzkoviZRuQI-BUmE58p0I2jRR1jB-a8SLCRw4GTZRBiKwnoTSQZyviIvNhmg_hBm5KqbbPGMqAFOKw76OKxXwHboQBWTycA7yPy2i-JnUGGpB_wC6Y3B5yZPP2viXhGbuM_7wB4SA66dm2PADF2-nkvEv4AQ0VpaQ priority: 102 providerName: Elsevier |
Title | Amygdalar nuclei and hippocampal subfields on MRI: Test-retest reliability of automated volumetry across different MRI sites and vendors |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811920304183 https://dx.doi.org/10.1016/j.neuroimage.2020.116932 https://cir.nii.ac.jp/crid/1871428067786748032 https://www.ncbi.nlm.nih.gov/pubmed/32416226 https://www.proquest.com/docview/2429050048 https://www.proquest.com/docview/2404044471 https://amu.hal.science/hal-03500798 http://kipublications.ki.se/Default.aspx?queryparsed=id:144353263 https://doaj.org/article/4bcba99cf0714e6b976f984d5ac2cc2e |
Volume | 218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfoJiEuiO8FtsogxC2QuE6TwAF1qFMHtELTJu0W2bG9BbqkJClSLzvzZ_Ne4rQqQqiXtPJXHL-vn-3nZ0Jes5gZE3HpehweXCrlxqn2XV9rHURCxJHC9Y7pbDi54J8vg0u74FZZt8pOJzaKWhUprpG_A1MSewEy3MfFTxdvjcLdVXuFRo_sY-gydOkKL8NN0F2ft0fhgoEbQQHrydP6dzXxIrMbkFqYJTLUHcN4wLbMUxPFf8tK9a7RXbKXZ9m_EOlf4UYbE3XygNy32JKOWmZ4SO7o_BG5O7W754_J79HN6koJmMvSHMMYZ1Tkil5niwUYNFALc1otZePSVtEip9Oz0_f0HN7slrg6W9NSz7M2rPeKFoaKZV0A3tWKtiquLldUNJ9Fu2tXamyE4hBWzbtAs6qirJ6Qi5Px-aeJa29icFOYjtSuVEZxTyo2HKRAc18AsACjFjNmAFFq5onQDGJuIqY0ZiqfiUgpyQ3jUphw8JTs5UWuDwgNFINsoyOYh3KG8Qq1ZyLph8AchqXGIWFHgCS1Ycrxtox50vmjfU82pEuQdElLOof465qLNlTHDnWOkcbr8hhsu0koyqvEym7CZSpFHKcGD3vpoQQEZ-KIq0CkLE2ZdkjccUjSnWcFDQwNZTt04MO6rsU8LZbZsfYrYMit3k9GXxNMwx1jL4yjX75DjoBfYTDx6QPdOO6mY9zAkEceNnLYcXJiFViVbMTNIS_X2aB6cD9J5LpYYhmwAJwDvHHIs1YC1l0BnO4PAdo75E0rEludtEk_4B8MbwgY03v-_168IPfwu1vvvkOyV5dLfQRwsJZ90nt76_cbye-T_dHpl8kMfo_Hs29n_WaJBZ7T2_EfNrxkdQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfWTgJeEP8JbGAQ8BaRuE4TgxDqYFPL2gpNnbS34MT2FuiSkqagfgM-DZ-Ru_xpVYRQX_YSVXbsXH3n393Z5zMhL5hgxgQ8sh0ODx4pZYtYu7artfYCKUWgcL1jNO72T_mnM-9sh_xuzsJgWGWDiSVQqyzGNfLXoEqE46HAvZ99t_HWKNxdba7QqMTiWC9_gss2fzf4CPx9ydjR4eRD365vFbBjMK0LO1JGcSdSrNuJgX5XgpIEgBaMGbCONHOkbzqCm4ApjZXKZTJQKuKG8UgavwP9tsgu74Ar0ya7B4fjzyfrNL8urw7feR07cF1Rxw5VEWVlhsrkEnAC_FKGaNUVHbahEMt7Azb0YusCAzRbaZL8ywb-K8FpqRSPbpGbtTVLe5X43SY7Or1Dro3q_fq75FfvcnmuJHjPNMXEyQmVqaIXyWwGKhSAaErni6gMopvTLKWjk8EbOoEv2zmuBxc019OkSiS-pJmhclFkYGFrRStQLfIlleXfos1FLwV2QpFp8_JbgOUqy-f3yOmVcOk-aadZqh8S6ikG1UYH4PlyhhkStWOCyPVBHA2LjUX8hgFhXCdGx_s5pmETAfc1XLMuRNaFFess4q5azqrkIFu0OUAer97H9N5lQZafhzVahDyKIylEbPB4me5GYDMaEXDlyZjFMdMWEY2EhM0JWsB86CjZgoC3q7a1lVVZT1u2fg4CuUF9vzcMsQz3qB1fBD9ci-yDvMJg4tMFvnHcv8dMhT4PHOxkr5HksIbMebie4BZ5tqoGsMMdLJnqbIHvgM7hHAwqizyoZsCKFPAM3C44ExZ5VU2JDSLrom_wC4bXB6vWefR_Kp6S6_3JaBgOB-Pjx-QGjkEVW7hH2kW-0PtgjBbRkxoBKPly1aDzB2otnZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfWIU28IP4T2MAg4C1a7DhNDEKoMKqVrRNCm9S34MT2FuiS0qagfgM-E5-Ou_xpVYRQX_YSRXHsOL7z7-7s8x0hz7nk1kYicT0BF5Fo7crUMJcZY4JIKRlpXO8YnnQPz8THUTDaIr_bszDoVtliYgXUukhxjXwfRIn0AmS4fdu4RXw66L-dfHcxgxTutLbpNGoWOTKLn2C-zd4MDoDWLzjvfzh9f-g2GQbcFNTs0k201cJLNO_6KfwLUyAwAawl5xY0JcM9FVpfChtxbbBQM64irRNhuUiUDX1ot0OuhX7AcI6Fo3AV8JeJ-hhe4LsRY7LxIqp9y6pYldklIAZYqBxxqyt9viYaqwwCaxKyc4Gump08y_6lDf8V6rQSj_2b5Eaj19JezYi3yJbJb5OdYbNzf4f86l0uzrUCO5rmGEI5oyrX9CKbTECYAiSN6WyeVO50M1rkdPh58IqewpfdKa4Ml3RqxlkdUnxBC0vVvCxA1zaa1vBaThdUVb9F25QvJTZCkWSz6luA6rqYzu6Ssyuh0T2ynRe5eUBooDkUWxOBDSw4xko0no0SFgJjWp5ah4QtAeK0CZGOmTrGcesL9zVekS5G0sU16RzCljUndZiQDeq8Qxov38dA39WDYnoeN7gRiyRNlJSpxYNmppuA9mhlJHSgUp6m3DhEthwSt2dpAf2hoWyDDrxe1m30rVqP2rD2M2DItd4f9o5jfIa71V4oox_MIXvArzCYeGVAN4E7-RizMBSRh43stpwcN-A5i1dT3SFPl8UAe7iXpXJTzPEdkD5CgGrlkPv1DFh2BWwE1gWzwiEv6ymx1snm0Te4g-ENQb_1Hv6_F0_IDkBNfDw4OXpEruMQ1E6Gu2S7nM7NHmilZfK4mv6UfLlqvPkD58WgZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amygdalar+nuclei+and+hippocampal+subfields+on+MRI%3A+Test-retest+reliability+of+automated+volumetry+across+different+MRI+sites+and+vendors&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Quattrini%2C+Giulia&rft.au=Pievani%2C+Michela&rft.au=Jovicich%2C+Jorge&rft.au=Aiello%2C+Marco&rft.date=2020-09-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=218&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.116932&rft.externalDocID=S1053811920304183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |