Amygdalar nuclei and hippocampal subfields on MRI: Test-retest reliability of automated volumetry across different MRI sites and vendors

The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we asses...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage Vol. 218; p. 116932
Main Authors Quattrini, Giulia, Pievani, Michela, Jovicich, Jorge, Aiello, Marco, Bargalló, Núria, Barkhof, Frederik, Bartres-Faz, David, Beltramello, Alberto, Pizzini, Francesca B., Blin, Olivier, Bordet, Regis, Caulo, Massimo, Constantinides, Manos, Didic, Mira, Drevelegas, Antonios, Ferretti, Antonio, Fiedler, Ute, Floridi, Piero, Gros-Dagnac, Hélène, Hensch, Tilman, Hoffmann, Karl-Titus, Kuijer, Joost P., Lopes, Renaud, Marra, Camillo, Müller, Bernhard W., Nobili, Flavio, Parnetti, Lucilla, Payoux, Pierre, Picco, Agnese, Ranjeva, Jean-Philippe, Roccatagliata, Luca, Rossini, Paolo M., Salvatore, Marco, Schonknecht, Peter, Schott, Björn H., Sein, Julien, Soricelli, Andrea, Tarducci, Roberto, Tsolaki, Magda, Visser, Pieter J., Wiltfang, Jens, Richardson, Jill C., Frisoni, Giovanni B., Marizzoni, Moira
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2020
Elsevier BV
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1–90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. Significant MRI site and vendor effects (p ​< ​.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman’s r correlations >0.43, p ​< ​1.39E-36). In particular, volumes larger than 200 ​mm3 (for amygdalar nuclei) and 300 ​mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε ​< ​5% and DICE ​> ​0.80). Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials. •Differences in MRI site/vendor had a limited effect on volume reproducibility.•Differences in MRI site/vendor had an extensive effect on spatial accuracy.•Reliability is good for larger amygdalar and hippocampal structures.•Automated volumetry is reliable in multicenter MRI studies.
AbstractList Background: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. Methods: Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1–90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. Results: Significant MRI site and vendor effects (p ​< ​.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman’s r correlations >0.43, p ​< ​1.39E-36). In particular, volumes larger than 200 ​mm3 (for amygdalar nuclei) and 300 ​mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε ​< ​5% and DICE ​> ​0.80). Conclusion: Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.
BackgroundThe amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.MethodsSixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1–90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session.ResultsSignificant MRI site and vendor effects (p ​< ​.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman’s r correlations >0.43, p ​< ​1.39E-36). In particular, volumes larger than 200 ​mm3 (for amygdalar nuclei) and 300 ​mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε ​< ​5% and DICE ​> ​0.80).ConclusionOur results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.
The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. Significant MRI site and vendor effects (p ​< ​.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p ​< ​1.39E-36). In particular, volumes larger than 200 ​mm (for amygdalar nuclei) and 300 ​mm (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε ​< ​5% and DICE ​> ​0.80). Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.
The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1–90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. Significant MRI site and vendor effects (p ​< ​.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman’s r correlations >0.43, p ​< ​1.39E-36). In particular, volumes larger than 200 ​mm3 (for amygdalar nuclei) and 300 ​mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε ​< ​5% and DICE ​> ​0.80). Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials. •Differences in MRI site/vendor had a limited effect on volume reproducibility.•Differences in MRI site/vendor had an extensive effect on spatial accuracy.•Reliability is good for larger amygdalar and hippocampal structures.•Automated volumetry is reliable in multicenter MRI studies.
Background: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.Methods: Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session.Results: Significant MRI site and vendor effects (p ​< ​.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p ​< ​1.39E-36). In particular, volumes larger than 200 ​mm3 (for amygdalar nuclei) and 300 ​mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε ​< ​5% and DICE ​> ​0.80).Conclusion: Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.
The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.BACKGROUNDThe amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session.METHODSSixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session.Significant MRI site and vendor effects (p ​< ​.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p ​< ​1.39E-36). In particular, volumes larger than 200 ​mm3 (for amygdalar nuclei) and 300 ​mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε ​< ​5% and DICE ​> ​0.80).RESULTSSignificant MRI site and vendor effects (p ​< ​.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p ​< ​1.39E-36). In particular, volumes larger than 200 ​mm3 (for amygdalar nuclei) and 300 ​mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε ​< ​5% and DICE ​> ​0.80).Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.CONCLUSIONOur results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.
ArticleNumber 116932
Author Richardson, Jill C.
Marizzoni, Moira
Picco, Agnese
Bartres-Faz, David
Drevelegas, Antonios
Müller, Bernhard W.
Floridi, Piero
Schonknecht, Peter
Marra, Camillo
Nobili, Flavio
Payoux, Pierre
Schott, Björn H.
Ranjeva, Jean-Philippe
Jovicich, Jorge
Hensch, Tilman
Barkhof, Frederik
Tsolaki, Magda
Blin, Olivier
Pizzini, Francesca B.
Quattrini, Giulia
Bordet, Regis
Didic, Mira
Gros-Dagnac, Hélène
Sein, Julien
Tarducci, Roberto
Frisoni, Giovanni B.
Caulo, Massimo
Ferretti, Antonio
Kuijer, Joost P.
Rossini, Paolo M.
Salvatore, Marco
Roccatagliata, Luca
Hoffmann, Karl-Titus
Visser, Pieter J.
Soricelli, Andrea
Pievani, Michela
Aiello, Marco
Fiedler, Ute
Parnetti, Lucilla
Lopes, Renaud
Bargalló, Núria
Wiltfang, Jens
Constantinides, Manos
Beltramello, Alberto
Author_xml – sequence: 1
  givenname: Giulia
  orcidid: 0000-0002-3750-710X
  surname: Quattrini
  fullname: Quattrini, Giulia
  email: gquattrini@fatebenefratelli.eu
  organization: Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
– sequence: 2
  givenname: Michela
  orcidid: 0000-0002-1794-8987
  surname: Pievani
  fullname: Pievani, Michela
  organization: Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
– sequence: 3
  givenname: Jorge
  surname: Jovicich
  fullname: Jovicich, Jorge
  organization: Center for Mind Brain Sciences, University of Trento, Trento, Italy
– sequence: 4
  givenname: Marco
  surname: Aiello
  fullname: Aiello, Marco
  organization: IRCCS SDN, Napoli, Italy
– sequence: 5
  givenname: Núria
  surname: Bargalló
  fullname: Bargalló, Núria
  organization: Department of Neuroradiology and Image Research Platform, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
– sequence: 6
  givenname: Frederik
  orcidid: 0000-0003-3543-3706
  surname: Barkhof
  fullname: Barkhof, Frederik
  organization: Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
– sequence: 7
  givenname: David
  surname: Bartres-Faz
  fullname: Bartres-Faz, David
  organization: Department of Medicine and Health Sciences, Faculty of Medicine, Universitat de Barcelona and IDIBAPS, Barcelona, Spain
– sequence: 8
  givenname: Alberto
  surname: Beltramello
  fullname: Beltramello, Alberto
  organization: Department of Radiology, IRCCS “Sacro Cuore-Don Calabria”, Negrar, Verona, Italy
– sequence: 9
  givenname: Francesca B.
  orcidid: 0000-0002-6285-0989
  surname: Pizzini
  fullname: Pizzini, Francesca B.
  organization: Radiology, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
– sequence: 10
  givenname: Olivier
  surname: Blin
  fullname: Blin, Olivier
  organization: Aix-Marseille University, UMR-INSERM 1106, Service de Pharmacologie Clinique, APHM, Marseille, France
– sequence: 11
  givenname: Regis
  surname: Bordet
  fullname: Bordet, Regis
  organization: Aix-Marseille Université, INSERM U 1106, 13005, Marseille, France
– sequence: 12
  givenname: Massimo
  surname: Caulo
  fullname: Caulo, Massimo
  organization: University “G. d’Annunzio” of Chieti, Chieti, Italy
– sequence: 13
  givenname: Manos
  surname: Constantinides
  fullname: Constantinides, Manos
  organization: Interbalkan Medical Centre of Thessaloniki, Thessaloniki, Greece
– sequence: 14
  givenname: Mira
  surname: Didic
  fullname: Didic, Mira
  organization: Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, 13005, Marseille, France
– sequence: 15
  givenname: Antonios
  surname: Drevelegas
  fullname: Drevelegas, Antonios
  organization: Interbalkan Medical Centre of Thessaloniki, Thessaloniki, Greece
– sequence: 16
  givenname: Antonio
  surname: Ferretti
  fullname: Ferretti, Antonio
  organization: University “G. d’Annunzio” of Chieti, Chieti, Italy
– sequence: 17
  givenname: Ute
  surname: Fiedler
  fullname: Fiedler, Ute
  organization: Institutes and Clinics of the University Duisburg-Essen, Essen, Germany
– sequence: 18
  givenname: Piero
  surname: Floridi
  fullname: Floridi, Piero
  organization: Perugia General Hospital, Neuroradiology Unit, Perugia, Italy
– sequence: 19
  givenname: Hélène
  surname: Gros-Dagnac
  fullname: Gros-Dagnac, Hélène
  organization: ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
– sequence: 20
  givenname: Tilman
  orcidid: 0000-0003-2696-6017
  surname: Hensch
  fullname: Hensch, Tilman
  organization: Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
– sequence: 21
  givenname: Karl-Titus
  surname: Hoffmann
  fullname: Hoffmann, Karl-Titus
  organization: Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
– sequence: 22
  givenname: Joost P.
  orcidid: 0000-0002-4181-0427
  surname: Kuijer
  fullname: Kuijer, Joost P.
  organization: Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
– sequence: 23
  givenname: Renaud
  surname: Lopes
  fullname: Lopes, Renaud
  organization: INSERM U1171, Neuroradiology Department, University Hospital, Lille, France
– sequence: 24
  givenname: Camillo
  surname: Marra
  fullname: Marra, Camillo
  organization: Catholic University, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
– sequence: 25
  givenname: Bernhard W.
  surname: Müller
  fullname: Müller, Bernhard W.
  organization: LVR-Hospital Essen, Department for Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Germany
– sequence: 26
  givenname: Flavio
  surname: Nobili
  fullname: Nobili, Flavio
  organization: Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
– sequence: 27
  givenname: Lucilla
  surname: Parnetti
  fullname: Parnetti, Lucilla
  organization: Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
– sequence: 28
  givenname: Pierre
  surname: Payoux
  fullname: Payoux, Pierre
  organization: ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
– sequence: 29
  givenname: Agnese
  surname: Picco
  fullname: Picco, Agnese
  organization: Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
– sequence: 30
  givenname: Jean-Philippe
  surname: Ranjeva
  fullname: Ranjeva, Jean-Philippe
  organization: CRMBM-CEMEREM, UMR 7339, Aix-Marseille University, CNRS, Marseille, France
– sequence: 31
  givenname: Luca
  surname: Roccatagliata
  fullname: Roccatagliata, Luca
  organization: IRCCS, Ospedale Policlinico San Martino, Genova, Italy
– sequence: 32
  givenname: Paolo M.
  surname: Rossini
  fullname: Rossini, Paolo M.
  organization: Dept. Neuroscience & Rehabilitation, IRCCS San Raffaele-Pisana, Rome, Italy
– sequence: 33
  givenname: Marco
  surname: Salvatore
  fullname: Salvatore, Marco
  organization: IRCCS SDN, Napoli, Italy
– sequence: 34
  givenname: Peter
  surname: Schonknecht
  fullname: Schonknecht, Peter
  organization: Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
– sequence: 35
  givenname: Björn H.
  surname: Schott
  fullname: Schott, Björn H.
  organization: Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Göttingen, Germany
– sequence: 36
  givenname: Julien
  orcidid: 0000-0003-1767-5330
  surname: Sein
  fullname: Sein, Julien
  organization: CRMBM-CEMEREM, UMR 7339, Aix-Marseille University, CNRS, Marseille, France
– sequence: 37
  givenname: Andrea
  surname: Soricelli
  fullname: Soricelli, Andrea
  organization: IRCCS SDN, Napoli, Italy
– sequence: 38
  givenname: Roberto
  orcidid: 0000-0003-3539-7856
  surname: Tarducci
  fullname: Tarducci, Roberto
  organization: Perugia General Hospital, Medical Physics Unit, Perugia, Italy
– sequence: 39
  givenname: Magda
  surname: Tsolaki
  fullname: Tsolaki, Magda
  organization: Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 40
  givenname: Pieter J.
  surname: Visser
  fullname: Visser, Pieter J.
  organization: Department of Neurology, Alzheimer Centre, VU Medical Centre, Amsterdam, Netherlands
– sequence: 41
  givenname: Jens
  surname: Wiltfang
  fullname: Wiltfang, Jens
  organization: Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Göttingen, Germany
– sequence: 42
  givenname: Jill C.
  surname: Richardson
  fullname: Richardson, Jill C.
  organization: Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, United Kingdom
– sequence: 43
  givenname: Giovanni B.
  surname: Frisoni
  fullname: Frisoni, Giovanni B.
  organization: Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
– sequence: 44
  givenname: Moira
  orcidid: 0000-0003-3749-2988
  surname: Marizzoni
  fullname: Marizzoni, Moira
  organization: Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
BackLink https://cir.nii.ac.jp/crid/1871428067786748032$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/32416226$$D View this record in MEDLINE/PubMed
https://amu.hal.science/hal-03500798$$DView record in HAL
http://kipublications.ki.se/Default.aspx?queryparsed=id:144353263$$DView record from Swedish Publication Index
BookMark eNqNks1u1DAQgCNURH_gFZAlOMAhxXa8ic0BUSqglRYhoXK2HHvceuvEi50s2jfgsXE2W1B7qiLZ1uSbb6SZOS4O-tBDUSCCTwkm9bvVaQ9jDK5T13BKMc1hUouKPimOCBaLUiwaejC9F1XJCRGHxXFKK4yxIIw_Kw4rykhNaX1U_DnrttdGeRVRP2oPDqneoBu3XgeturXyKI2tdeBNQqFH335cvkdXkIYywpAvFME71Trvhi0KFqlxCJ0awKBN8GMHQ9wipWNICRlnLUToh0mCksvpu1ob6E2I6Xnx1Cqf4MX-Pil-fvl8dX5RLr9_vTw_W5a6qflQtsYahltD60qD1kThhjeEC0otIQugWDW2EsxyamD6aQhV3JiWWcpaZZvqpLicvSaolVzH3MO4lUE5uQuEeC1VHFxuhWStbpUQ2uKGMKhb0dRWcGYWSlOtKWRXObvSb1iP7T3bPnSbX9nUEMpw5t_O_I3y9-CLs6WcYrhaYNwIviGZfTOz6xh-jbnVsnNJg_eqhzAmmX35Y9mc0VcP0FUYY5-7mCkqcHYynqmXe2psOzD_6t_tQgY-zMBuXhGs1G5Qgwv9EJXzkmA5LZ9cyf_LJ6flk_PyZQF_ILir8YjU13Nq71wuO50kz5VRjuum4XXDON5hn2YM8oZsHESZtINeg3ER9JBH6B5T6-MDifa5olb-FraPU_wFtt8bpg
CitedBy_id crossref_primary_10_1007_s00702_023_02638_1
crossref_primary_10_1016_j_nsa_2023_103921
crossref_primary_10_1016_j_bpsc_2022_04_008
crossref_primary_10_1017_S0033291722003609
crossref_primary_10_1016_j_biopsych_2023_06_022
crossref_primary_10_1186_s40708_023_00189_5
crossref_primary_10_1192_bjp_2023_143
crossref_primary_10_3390_medicina58040480
crossref_primary_10_1016_j_clinph_2021_10_012
crossref_primary_10_1016_j_bpsgos_2023_07_001
crossref_primary_10_1002_hbm_25326
crossref_primary_10_1186_s10194_024_01888_y
crossref_primary_10_1016_j_neuroimage_2021_118076
crossref_primary_10_1093_cercor_bhab223
crossref_primary_10_1093_schbul_sbad091
crossref_primary_10_1089_neur_2022_0020
crossref_primary_10_1002_hbm_26299
crossref_primary_10_1002_dev_22333
crossref_primary_10_1212_NXG_0000000000000591
crossref_primary_10_1002_brb3_2274
crossref_primary_10_1038_s41598_023_34645_3
crossref_primary_10_3233_NHA_220190
crossref_primary_10_1002_hbm_26392
crossref_primary_10_1093_scan_nsac006
crossref_primary_10_1016_j_therap_2020_12_008
crossref_primary_10_1017_S0033291724000394
crossref_primary_10_3389_fnins_2021_656808
crossref_primary_10_1093_schbul_sbaa192
crossref_primary_10_1016_j_neurobiolaging_2020_11_002
crossref_primary_10_1038_s41598_024_54370_9
crossref_primary_10_1002_hbm_25559
crossref_primary_10_1038_s41380_024_02874_1
Cites_doi 10.1016/j.brainres.2019.03.023
10.1038/nrn3785
10.1016/j.neuroimage.2015.01.004
10.1007/s00429-005-0025-5
10.1016/j.jagp.2014.01.006
10.1016/0361-9230(83)90171-5
10.1016/j.neuroimage.2014.04.054
10.1001/archpsyc.57.12.1115
10.1016/j.jad.2014.05.045
10.1016/j.cortex.2014.06.010
10.1016/j.brainres.2014.10.069
10.1037/0033-2909.86.2.420
10.1002/hbm.22856
10.1212/WNL.0000000000001171
10.1016/j.neuroimage.2017.04.046
10.1016/0197-2456(90)90005-M
10.1017/S1041610212001469
10.1002/hipo.22705
10.1007/s00234-008-0383-9
10.1016/j.neuroimage.2016.10.027
10.1186/s12880-015-0068-x
10.1016/S0197-2456(98)00037-3
10.1186/1471-2202-8-103
10.1006/nimg.1998.0396
10.1007/s10334-015-0518-z
10.1038/mp.2016.262
10.1016/S1076-6332(03)00671-8
10.1016/j.neuroimage.2014.06.075
10.1016/j.neuroimage.2009.02.010
10.1016/j.cub.2015.10.049
10.1002/hbm.23289
10.1002/hipo.20615
10.1016/j.tics.2013.03.005
10.1016/j.neubiorev.2013.07.001
10.1016/j.nicl.2017.12.036
10.3389/fnins.2016.00558
10.1007/s00441-018-2862-6
10.1016/j.neuroimage.2006.02.051
10.1016/j.neuroimage.2010.03.033
10.1001/jamapsychiatry.2014.1087
10.1002/hbm.23948
10.3389/fncir.2017.00086
10.1006/nimg.1998.0395
10.1038/nature14188
10.1016/j.neuroimage.2013.05.007
10.1002/hipo.10020
10.1016/j.cortex.2013.12.005
10.1093/brain/awn280
10.1016/j.neuroimage.2008.10.037
10.1016/j.neuroimage.2009.05.019
10.1109/42.363096
10.1016/j.neurobiolaging.2008.01.010
10.1192/bjp.2018.224
10.3389/fnins.2017.00258
10.1016/S0896-6273(02)00569-X
10.1212/WNL.0b013e31820d62d9
10.1002/cne.23786
10.1002/hipo.22797
10.1007/BF02289730
10.3389/fnagi.2014.00261
10.1002/hbm.22859
10.1037/1040-3590.6.4.284
10.1002/cne.23416
10.1016/j.jneumeth.2015.05.024
10.1371/journal.pone.0071354
10.1016/j.neuroimage.2015.04.042
10.1016/j.neuroimage.2008.12.033
10.1016/j.neuroimage.2012.02.084
10.1016/j.pscychresns.2011.12.004
10.1016/S0140-6736(15)00461-4
10.1016/j.neuroimage.2014.01.058
10.1111/bdi.12516
10.1038/nn.4414
10.1371/journal.pone.0207163
10.1016/j.neuroimage.2016.07.020
10.1016/j.biopsych.2017.10.006
10.1016/j.neuroimage.2012.10.071
10.1038/s12276-018-0063-8
10.1016/j.pscychresns.2010.12.015
10.1016/j.neurobiolaging.2007.02.002
10.1016/j.neubiorev.2015.08.017
10.1016/j.pscychresns.2016.02.006
10.1016/j.schres.2014.03.030
10.1016/j.neuroimage.2020.116563
10.1002/hbm.20973
10.1152/physrev.00002.2003
10.1155/2015/450341
10.1016/j.neuroimage.2010.07.020
ContentType Journal Article
Contributor Marizzoni, Moira
Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig
VU University Medical Center Amsterdam
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire Lille (CHRU Lille)
Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - AP-HM] (CEMEREM) ; Centre de résonance magnétique biologique et médicale (CRMBM) ; Assistance Publique - Hôpitaux de Marseille (APHM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Assistance Publique - Hôpitaux de Marseille (APHM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)- Hôpital de la Timone [CHU - APHM] (TIMONE)
University "G. d'Annunzio" of Chieti-Pescara [Chieti]
Universität Duisburg-Essen = University of Duisburg-Essen [Essen]
Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE) ; Saint John of God Clinical Research Centre
Aristotle
Contributor_xml – sequence: 1
  fullname: Centro San Giovanni di Dio, Fatebenefratelli, Brescia (IRCCS) ; Università degli Studi di Brescia = University of Brescia (UniBs)
– sequence: 2
  fullname: Laboratory of Alzheimer’s Neuroimaging and Epidemiology (LANE) ; Saint John of God Clinical Research Centre
– sequence: 3
  fullname: Università degli Studi di Trento = University of Trento (UNITN)
– sequence: 4
  fullname: IRCCS SDN Napoli
– sequence: 5
  fullname: Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)
– sequence: 6
  fullname: VU University Medical Center [Amsterdam]
– sequence: 7
  fullname: UCL Queen Square Institute of Neurology ; University College of London [London] (UCL)
– sequence: 8
  fullname: Clinical and experimental neuroimmunology [IDIBAPS] ; Institut d'Investigacions Biomèdiques August Pi i Sunyer
– sequence: 9
  fullname: Department of Radiology, IRCCS "Sacro Cuore-Don Calabria", Negrar, Verona
– sequence: 10
  fullname: Università degli studi di Verona = University of Verona (UNIVR)
– sequence: 11
  fullname: Institut de Neurosciences des Systèmes (INS) ; Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)
– sequence: 12
  fullname: Universita' degli Studi "G. d'Annunzio" Chieti-Pescara (UNICH)
– sequence: 13
  fullname: Interbalkan Medical Center of Thessaloniki
– sequence: 14
  fullname: Universität Duisburg-Essen = University of Duisburg-Essen [Essen]
– sequence: 16
  fullname: Toulouse NeuroImaging Center (ToNIC) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Toulouse Mind & Brain Institut (TMBI) ; Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)
– sequence: 17
  fullname: Leipzig University / Universität Leipzig
– sequence: 18
  fullname: Department of Radiology and Nuclear Medicine [Amsterdam] ; VU University Medical Center [Amsterdam]
– sequence: 19
  fullname: Lille Neurosciences & Cognition - U 1172 (LilNCog) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [CHU Lille] (CHRU Lille)
– sequence: 20
  fullname: Department of Psychiatry and Psychotherapy, Faculty of Medicine ; Universität Duisburg-Essen = University of Duisburg-Essen [Essen]
– sequence: 22
  fullname: Università degli Studi di Perugia = University of Perugia (UNIPG)
– sequence: 24
  fullname: Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - APHM] (CEMEREM) ; Hôpital de la Timone [CHU - APHM] (TIMONE)-Centre de résonance magnétique biologique et médicale (CRMBM) ; Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)
– sequence: 25
  fullname: Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS San Raffaele Pisana)
– sequence: 26
  fullname: University Medical Center Göttingen (UMG)
– sequence: 27
  fullname: Leibniz Institute for Neurobiology [Magdeburg] (LIN)
– sequence: 28
  fullname: Deutsches Zentrum für Neurodegenerative Erkrankungen [Ulm] (DZNE) ; German Research Center for Neurodegenerative Diseases - Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
– sequence: 29
  fullname: Aristotle University of Thessaloniki
– sequence: 30
  fullname: Maastricht University [Maastricht]
– sequence: 31
  fullname: Universidade de Aveiro
– sequence: 32
  fullname: GlaxoSmithKline [Stevenage, UK] (GSK) ; GlaxoSmithKline [Headquarters, London, UK] (GSK)
– sequence: 33
  fullname: Laboratory of Neuroimaging of aging, Memory clinic and LANVIE ; Geneva University Hospital and Geneva University
– sequence: 34
  fullname: Quattrini, Giulia
– sequence: 35
  fullname: Pievani, Michela
– sequence: 36
  fullname: Jovicich, Jorge
– sequence: 37
  fullname: Aiello, Marco
– sequence: 38
  fullname: Bargalló, Núria
– sequence: 39
  fullname: Barkhof, Frederik
– sequence: 40
  fullname: Bartres-Faz, David
– sequence: 41
  fullname: Beltramello, Alberto
– sequence: 42
  fullname: Pizzini, Francesca B
– sequence: 43
  fullname: Marizzoni, Moira
– sequence: 44
  fullname: Centro San Giovanni di Dio, Fatebenefratelli, Brescia (IRCCS) ; Università degli Studi di Brescia [Brescia]
– sequence: 45
  fullname: Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31, 38068, Rovereto, TN, Italy
– sequence: 46
  fullname: Department of Neuroradiology and Image Research Platform, Hospital Clínic de Barcelona, IDIBAPS, Barcelona
– sequence: 47
  fullname: Institute of Neurology, Queen Square, London ; Institute of Neurology, Queen Square, London
– sequence: 48
  fullname: Department of Medicine and Health Sciences, Faculty of Medicine, Universitat de Barcelona and IDIBAPS, Barcelona
– sequence: 49
  fullname: Radiology, Department of Diagnostic and Public Health, University of Verona, Verona
– sequence: 50
  fullname: Centre investigation clinique - Unité de pharmacologie clinique et d'évaluations thérapeutiques (CIC-UPCET) ; Assistance Publique - Hôpitaux de Marseille (APHM)
– sequence: 51
  fullname: Institut de Neurosciences des Systèmes (INS) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Aix Marseille Université (AMU)
– sequence: 52
  fullname: Lille Neurosciences & Cognition - U 1172 (LilNCog (ex-JPARC)) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)
– sequence: 53
  fullname: University "G. d'Annunzio" of Chieti-Pescara [Chieti]
– sequence: 54
  fullname: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen
– sequence: 55
  fullname: Neuroradiology Unit, Perugia General Hospital, Perugia
– sequence: 56
  fullname: Toulouse Neuro Imaging Center (ToNIC) ; Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hôpital Purpan [Toulouse] ; CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse]
– sequence: 57
  fullname: Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig
– sequence: 58
  fullname: Department of Neuroradiology, University Hospital Leipzig
– sequence: 59
  fullname: LVR-Hospital Essen, Department for Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen
– sequence: 60
  fullname: Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, 16132 Genova
– sequence: 61
  fullname: Section of Neurology, Department of Medicine, University of Perugia, Perugia
– sequence: 63
  fullname: Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - AP-HM] (CEMEREM) ; Centre de résonance magnétique biologique et médicale (CRMBM) ; Assistance Publique - Hôpitaux de Marseille (APHM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Assistance Publique - Hôpitaux de Marseille (APHM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)- Hôpital de la Timone [CHU - APHM] (TIMONE)
– sequence: 64
  fullname: IRCCS, Ospedale Policlinico San Martino, Genova, Italy; Department of Health Science (DISSAL), University of Genoa, Genoa
– sequence: 65
  fullname: Dept. Neuroscience & Rehabilitation, IRCCS San Raffaele-Pisana, Rome
– sequence: 66
  fullname: Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Göttingen
– sequence: 67
  fullname: Leibniz Institute for Neurobiology, Magdeburg
– sequence: 68
  fullname: Center for Neurodegenerative Diseases (DZNE), Goettingen
– sequence: 70
  fullname: Department of Neurology, Alzheimer Centre, VU Medical Centre, Amsterdam, Netherlands; Maastricht University, Maastricht
– sequence: 71
  fullname: Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro
– sequence: 72
  fullname: German Center for Neurodegenerative Diseases (DZNE), Goettingen
– sequence: 73
  fullname: Università degli Studi di Trento (UNITN)
– sequence: 74
  fullname: Lille Neurosciences & Cognition - U 1172 (LilNCog) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)
– sequence: 76
  fullname: Georg-August-University = Georg-August-Universität Göttingen
– sequence: 77
  fullname: Centro San Giovanni di Dio, Fatebenefratelli, Brescia (IRCCS)
– sequence: 78
  fullname: Università degli Studi di Brescia = University of Brescia (UniBs)
– sequence: 79
  fullname: Department of Radiology and Nuclear Medicine Amsterdam
– sequence: 80
  fullname: VU University Medical Center Amsterdam
– sequence: 81
  fullname: Institute of Neurology, Queen Square, London
– sequence: 82
  fullname: Centre investigation clinique - Unité de pharmacologie clinique et d'évaluations thérapeutiques (CIC-UPCET)
– sequence: 84
  fullname: Institut de Neurosciences des Systèmes (INS)
– sequence: 85
  fullname: Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)
– sequence: 86
  fullname: Lille Neurosciences & Cognition - U 1172 (LilNCog)
– sequence: 87
  fullname: Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire Lille (CHRU Lille)
– sequence: 88
  fullname: University "G. d'Annunzio" of Chieti-Pescara Chieti
– sequence: 89
  fullname: Toulouse NeuroImaging Center (ToNIC)
– sequence: 90
  fullname: Université Toulouse III - Paul Sabatier (UT3)
– sequence: 91
  fullname: Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Toulouse Mind & Brain Institut (TMBI)
– sequence: 92
  fullname: Université Toulouse - Jean Jaurès (UT2J)
– sequence: 93
  fullname: Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
– sequence: 94
  fullname: Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J)
– sequence: 95
  fullname: Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
– sequence: 96
  fullname: Université de Toulouse (UT)
– sequence: 97
  fullname: Department of Psychiatry and Psychotherapy, Faculty of Medicine
– sequence: 99
  fullname: Centre de résonance magnétique biologique et médicale (CRMBM)
– sequence: 100
  fullname: Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)
– sequence: 101
  fullname: Centre d'Exploration Métabolique par Résonance Magnétique Hôpital de la Timone - APHM (CEMEREM)
– sequence: 102
  fullname: Hôpital de la Timone CHU - APHM (TIMONE)-Centre de résonance magnétique biologique et médicale (CRMBM)
– sequence: 103
  fullname: Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)
– sequence: 104
  fullname: Leibniz Institute for Neurobiology Magdeburg (LIN)
– sequence: 105
  fullname: GlaxoSmithKline Stevenage, UK (GSK)
– sequence: 106
  fullname: GlaxoSmithKline Headquarters, London, UK (GSK)
– sequence: 107
  fullname: Laboratory of Neuroimaging of aging, Memory clinic and LANVIE
– sequence: 108
  fullname: Geneva University Hospital and Geneva University
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
2020. The Authors
Attribution
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2020. The Authors
– notice: Attribution
CorporateAuthor PharmaCog Consortium
CorporateAuthor_xml – name: PharmaCog Consortium
DBID 6I.
AAFTH
RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1016/j.neuroimage.2020.116932
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Test-retest reliability of automated volumetry across different MRI sites and vendors
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_4bcba99cf0714e6b976f984d5ac2cc2e
oai_swepub_ki_se_471240
oai_HAL_hal_03500798v1
32416226
10_1016_j_neuroimage_2020_116932
S1053811920304183
Genre Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GrantInformation_xml – fundername: Department of Health
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AGRNS
ALIPV
RYH
AAYXX
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c768t-bdfd40bd263cecc1a078718922f115e20a7f394f82de1a07d12a8ddb4f24baf73
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:05:13 EDT 2025
Thu Jul 03 05:18:39 EDT 2025
Fri Jun 27 06:31:17 EDT 2025
Fri Jul 11 02:50:55 EDT 2025
Wed Aug 13 05:01:02 EDT 2025
Wed Feb 19 02:29:24 EST 2025
Tue Jul 01 03:02:13 EDT 2025
Thu Apr 24 23:10:36 EDT 2025
Thu Jun 26 23:58:48 EDT 2025
Fri Feb 23 02:46:38 EST 2024
Tue Aug 26 18:33:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Reliability analysis
Hippocampal subfields
FreeSurfer
Amygdalar nuclei
Multicenter MRI study
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c768t-bdfd40bd263cecc1a078718922f115e20a7f394f82de1a07d12a8ddb4f24baf73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6285-0989
0000-0002-1794-8987
0000-0002-4181-0427
0000-0003-3749-2988
0000-0002-3750-710X
0000-0003-1767-5330
0000-0003-3539-7856
0000-0003-2696-6017
0000-0003-3543-3706
0000-0001-8008-9727
0000-0002-2072-8010
0000-0002-3758-6231
0000-0001-8029-3947
0000-0001-7011-7667
0000-0001-9734-7702
0000-0002-3676-0664
0000-0001-5722-3967
0000-0002-3750-710x
0000-0001-6564-3187
0000-0002-8237-4481
0000-0002-6419-1753
0000-0002-9573-1417
0000-0003-2665-534x
0000-0001-9811-0897
0000-0001-9504-7503
0000-0002-1374-1620
0000-0001-8073-102X
0000-0003-3916-6422
0000-0003-0142-0931
0000-0003-1492-5330
0000-0001-7075-7082
0000-0001-7067-536X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811920304183
PMID 32416226
PQID 2429050048
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_4bcba99cf0714e6b976f984d5ac2cc2e
swepub_primary_oai_swepub_ki_se_471240
hal_primary_oai_HAL_hal_03500798v1
proquest_miscellaneous_2404044471
proquest_journals_2429050048
pubmed_primary_32416226
crossref_citationtrail_10_1016_j_neuroimage_2020_116932
crossref_primary_10_1016_j_neuroimage_2020_116932
nii_cinii_1871428067786748032
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_116932
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_116932
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage
PublicationTitleAlternate Neuroimage
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
– name: Elsevier Limited
– name: Elsevier
References Fischl (bib28) 2012; vol. 62
Wassum, Izquierdo (bib83) 2015; 57
Konrad, Ukas, Nebel, Arolt, Toga, Narr (bib51) 2009; 47
Cavedo, Boccardi, Ganzola, Canu, Beltramello, Caltagirone, Thompson, Frisoni (bib16) 2011; 76
Catani, Dell’Acqua, De Schotten (bib15) 2013; 37
Dale, Fischl, Sereno (bib19) 1999; 9
Leal, Noche, Murray, Yassa (bib53) 2017; 27
Heimer, De Olmos, Alheid, Pearson, Sakamoto, Shinoda, Marksteiner, Switzer (bib37) 1999
Janak, Tye (bib43) 2015; 517
Shrout, Fleiss (bib74) 1979; 86
Cullen, Westlund, Klimes-Dougan, Mueller, Houri, Eberly, Lim (bib17) 2014; 71
Amunts, Kedo, Kindler, Pieperhoff, Mohlberg, Shah, Habel, Schneider, Zilles (bib2) 2005; 210
Zou, Warfield, Bharatha, Tempany, Kaus, Haker, Wells, Jolesz, Kikinis (bib94) 2004; 11
Zarei, Beckmann, Binnewijzend, Schoonheim, Oghabian, Sanz-Arigita, Scheltens, Matthews, Barkhof (bib91) 2013; 66
Ding, Van Hoesen (bib23) 2015; 523
Iglesias, Augustinack, Nguyen, Player, Player, Wright, Roy, Frosch, McKee, Wald (bib40) 2015; 115
Prestia, Boccardi, Galluzzi, Cavedo, Adorni, Soricelli, Bonetti, Geroldi, Giannakopoulos, Thompson (bib64) 2011; 192
Schmahl, Berne, Krause, Kleindienst, Valerius, Vermetten, Bohus (bib73) 2009; 34
Driessen, Herrmann, Stahl, Zwaan, Meier, Hill, Osterheider, Petersen (bib26) 2000; 57
Morey, Petty, Xu, Hayes, Wagner, Lewis, LaBar, Styner, McCarthy (bib57) 2009; 45
Yang, Wang (bib89) 2017; 11
Feher (bib27) 2017
Grimm, Pohlack, Cacciaglia, Winkelmann, Plichta, Demirakca, Flor (bib34) 2015; 253
Helms (bib38) 2016; 29
Rolls (bib68) 2015; 62
Dupont, Plummer (bib25) 1998; 19
Backhausen, Herting, Buse, Roessner, Smolka, Vetter (bib4) 2016; 10
Fischl, Sereno, Dale (bib30) 1999; 9
Frankó, Joly, Alzheimer’s Disease Neuroimaging Initiative (bib31) 2013; 8
Asami, Nakamura, Takaishi, Yoshida, Yoshimi, Whitford, Hirayasu (bib3) 2018; 13
Howard, Eichenbaum (bib39) 2015; 1621
Zijdenbos, Dawant, Margolin, Palmer (bib93) 1994; 13
Kemppainen, Jolkkonen, Pitkänen (bib48) 2002; 12
Kim, Pignatelli, Xu, Itohara, Tonegawa (bib49) 2016; 19
Wisse, Biessels, Geerlings (bib86) 2014; 6
Yushkevich, Amaral, Augustinack, Bender, Bernstein, Boccardi, Bocchetta, Burggren, Carr, Chakravarty (bib90) 2015; 111
Bartsch, Schott, Behr (bib8) 2019; 2019
Mueller, Yushkevich, Das, Wang, Van Leemput, Iglesias, Alpert, Mezher, Ng, Paz (bib58) 2018; 17
Iglesias, Van Leemput, Augustinack, Insausti, Fischl, Reuter (bib41) 2016; 141
Tae, Kim, Lee, Nam, Kim (bib76) 2008; 50
Bouchard, Malykhin, Martin, Hanstock, Emery, Fisher, Camicioli (bib11) 2008; 29
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, Van Der Kouwe, Killiany, Kennedy, Klaveness (bib29) 2002; 33
Jovicich, Marizzoni, Sala-Llonch, Bosch, Bartrés-Faz, Arnold, Benninghoff, Wiltfang, Roccatagliata, Nobili (bib46) 2013; 83
Cao, Passos, Mwangi, Amaral-Silva, Tannous, Wu, Zunta-Soares, Soares (bib14) 2017; 22
Krabbe, Gründemann, Lüthi (bib52) 2018; 83
Poppenk, Evensmoen, Moscovitch, Nadel (bib62) 2013; 17
Morey, Selgrade, Wagner, Huettel, Wang, McCarthy (bib56) 2010; 31
Rajaratnam (bib65) 1960; 25
Rossi, Lanfredi, Pievani, Boccardi, Beneduce, Rillosi, Giannakopoulos, Thompson, Rossi, Frisoni (bib70) 2012; 203
Viviani, Pracht, Brenner, Beschoner, Stingl, Stöcker (bib82) 2017; 11
Murray, Brosch, Sander (bib60) 2014; 60
Ganzola, Maziade, Duchesne (bib33) 2014; 156
Amaral, Park, Devenyi, Lynn, Pipitone, Winterburn, Chavez, Schira, Lobaugh, Voineskos (bib1) 2018; 170
Dewey, Hana, Russell, Price, McCaffrey, Harezlak, Sem, Anyanwu, Guttmann, Navia (bib21) 2010; 51
Van Leemput, Bakkour, Benner, Wiggins, Wald, Augustinack, Dickerson, Golland, Fischl (bib81) 2009; 19
Taha, Hanbury (bib77) 2015; 15
Frisoni, Ganzola, Canu, Rüb, Pizzini, Alessandrini, Zoccatelli, Beltramello, Caltagirone, Thompson (bib32) 2008; 131
Montagrin, Saiote, Schiller (bib55) 2018; 28
Cicchetti (bib18) 1994; 6
Bang, Spina, Miller (bib6) 2015; 386
Barnes, Bartlett, van de Pol, Laura, Loy, Scahill, Frost, Thompson, Fox (bib7) 2009; 30
Jovicich, Marizzoni, Bosch, Bartrés-Faz, Arnold, Benninghoff, Wiltfang, Roccatagliata, Picco, Nobili (bib47) 2014; 101
Braak, Braak (bib12) 1983; 11
Tyszka, Pauli (bib78) 2016; 37
Weniger, Lange, Sachsse, Irle (bib84) 2009; 34
Despotović, Goossens, Philips (bib20) 2015
Janiri, Sani, Rossi, Piras, Iorio, Banaj, Giuseppin, Spinazzola, Maggiora, Ambrosi (bib44) 2017; 19
Brown, Pierce, Clark, Fischl, Iglesias, Milberg, McGlinchey, Salat (bib13) 2020; 210
Marizzoni, Antelmi, Bosch, Bartrés-Faz, Müller, Wiltfang, Fiedler, Roccatagliata, Picco, Nobili (bib54) 2015; 36
Mulder, de Jong, Knol, van Schijndel, Cover, Visser, Barkhof, Vrenken, Alzheimer’s Disease Neuroimaging Initiative (bib59) 2014; 92
Wijeratne, Sachdev, Wen, Piguet, Lipnicki, Malhi, Mitchell, Sachdev (bib85) 2013; 25
Prestia, Cavedo, Boccardi, Muscio, Adorni, Geroldi, Bonetti, Thompson, Frisoni (bib63) 2015; 23
Dupont, Plummer (bib24) 1990; 11
Iscan, Jin, Kendrick, Szeglin, Lu, Trivedi, Fava, McGrath, Weissman, Kurian (bib42) 2015; 36
Benarroch (bib9) 2015; 84
Zhong, Xu, Qin, Zeng, Hu, Shen (bib92) 2019; 1715
Knierim (bib50) 2015; 25
Rich, Cho, Tang, Savic, Krystal, Wang, Xu, Anticevic (bib69) 2016; 250
Sah, Faber, Lopez de Armentia, Power (bib71) 2003; 83
Han, Jovicich, Salat, van der Kouwe, Quinn, Czanner, Busa, Pacheco, Albert, Killiany, Maguire, Rosas, Makris, Dale, Dickerson, Fischl (bib36) 2006; 32
Pipitone, Park, Winterburn, Lett, Lerch, Pruessner, Lepage, Voineskos, Chakravarty, Alzheimer’s Disease Neuroimaging Initiative (bib61) 2014; 101
Benson, Willis, Ketter, Speer, Kimbrell, Herscovitch, George, Post (bib10) 2014; 168
Ding (bib22) 2013; 521
Gryglewski, Baldinger-Melich, Seiger, Godbersen, Michenthaler, Klöbl, Spurny, Kautzky, Vanicek, Kasper (bib35) 2019; 214
Saygin, Kliemann, Iglesias, van der Kouwe, André, Boyd, Reuter, Stevens, Van Leemput, McKee, Frosch (bib72) 2017; 155
Jovicich, Czanner, Han, Salat, van der Kouwe, Quinn, Pacheco, Albert, Killiany, Blacker, Maguire, Rosas, Makris, Gollub, Dale, Dickerson, Fischl (bib45) 2009; 46
Reuter, Rosas, Fischl (bib66) 2010; 53
Wonderlick, Ziegler, Hosseini-Varnamkhasti, Locascio, Bakkour, van der Kouwe, Triantafyllou, Corkin, Dickerson (bib87) 2009; 44
Worker, Dima, Combes, Crum, Streffer, Einstein, Mehta, Barker, Cr Williams, O’daly (bib88) 2018; 39
Zuo, Anderson, Bellec, Birn, Biswal, Blautzik, Breitner, Buckner, Calhoun, Castellanos (bib95) 2014; 1
Reuter, Schmansky, Rosas, Fischl (bib67) 2012; 61
Ubeda-Bañon, Novejarque, Mohedano-Moriano, Pro-Sistiaga, de la Rosa-Prieto, Insausti, Martinez-Garcia, Lanuza, Martinez-Marcos (bib79) 2007; 8
van den Burg, Stoop (bib80) 2019; 375
Babaev, Chatain, Krueger-Burg (bib5) 2018; 50
Strange, Witter, Lein, Moser (bib75) 2014; 15
Janiri (10.1016/j.neuroimage.2020.116932_bib44) 2017; 19
Feher (10.1016/j.neuroimage.2020.116932_bib27) 2017
Prestia (10.1016/j.neuroimage.2020.116932_bib63) 2015; 23
Wonderlick (10.1016/j.neuroimage.2020.116932_bib87) 2009; 44
Zou (10.1016/j.neuroimage.2020.116932_bib94) 2004; 11
Cao (10.1016/j.neuroimage.2020.116932_bib14) 2017; 22
Worker (10.1016/j.neuroimage.2020.116932_bib88) 2018; 39
Amaral (10.1016/j.neuroimage.2020.116932_bib1) 2018; 170
Braak (10.1016/j.neuroimage.2020.116932_bib12) 1983; 11
Asami (10.1016/j.neuroimage.2020.116932_bib3) 2018; 13
Yang (10.1016/j.neuroimage.2020.116932_bib89) 2017; 11
Bouchard (10.1016/j.neuroimage.2020.116932_bib11) 2008; 29
Reuter (10.1016/j.neuroimage.2020.116932_bib67) 2012; 61
Ganzola (10.1016/j.neuroimage.2020.116932_bib33) 2014; 156
Viviani (10.1016/j.neuroimage.2020.116932_bib82) 2017; 11
Zuo (10.1016/j.neuroimage.2020.116932_bib95) 2014; 1
Konrad (10.1016/j.neuroimage.2020.116932_bib51) 2009; 47
Murray (10.1016/j.neuroimage.2020.116932_bib60) 2014; 60
Frankó (10.1016/j.neuroimage.2020.116932_bib31) 2013; 8
Jovicich (10.1016/j.neuroimage.2020.116932_bib45) 2009; 46
Poppenk (10.1016/j.neuroimage.2020.116932_bib62) 2013; 17
Yushkevich (10.1016/j.neuroimage.2020.116932_bib90) 2015; 111
Bang (10.1016/j.neuroimage.2020.116932_bib6) 2015; 386
Dupont (10.1016/j.neuroimage.2020.116932_bib25) 1998; 19
Frisoni (10.1016/j.neuroimage.2020.116932_bib32) 2008; 131
Gryglewski (10.1016/j.neuroimage.2020.116932_bib35) 2019; 214
Rajaratnam (10.1016/j.neuroimage.2020.116932_bib65) 1960; 25
Rolls (10.1016/j.neuroimage.2020.116932_bib68) 2015; 62
van den Burg (10.1016/j.neuroimage.2020.116932_bib80) 2019; 375
Zijdenbos (10.1016/j.neuroimage.2020.116932_bib93) 1994; 13
Grimm (10.1016/j.neuroimage.2020.116932_bib34) 2015; 253
Shrout (10.1016/j.neuroimage.2020.116932_bib74) 1979; 86
Cullen (10.1016/j.neuroimage.2020.116932_bib17) 2014; 71
Jovicich (10.1016/j.neuroimage.2020.116932_bib47) 2014; 101
Jovicich (10.1016/j.neuroimage.2020.116932_bib46) 2013; 83
Backhausen (10.1016/j.neuroimage.2020.116932_bib4) 2016; 10
Zarei (10.1016/j.neuroimage.2020.116932_bib91) 2013; 66
Ding (10.1016/j.neuroimage.2020.116932_bib23) 2015; 523
Han (10.1016/j.neuroimage.2020.116932_bib36) 2006; 32
Iglesias (10.1016/j.neuroimage.2020.116932_bib41) 2016; 141
Leal (10.1016/j.neuroimage.2020.116932_bib53) 2017; 27
Janak (10.1016/j.neuroimage.2020.116932_bib43) 2015; 517
Marizzoni (10.1016/j.neuroimage.2020.116932_bib54) 2015; 36
Zhong (10.1016/j.neuroimage.2020.116932_bib92) 2019; 1715
Amunts (10.1016/j.neuroimage.2020.116932_bib2) 2005; 210
Helms (10.1016/j.neuroimage.2020.116932_bib38) 2016; 29
Howard (10.1016/j.neuroimage.2020.116932_bib39) 2015; 1621
Morey (10.1016/j.neuroimage.2020.116932_bib56) 2010; 31
Krabbe (10.1016/j.neuroimage.2020.116932_bib52) 2018; 83
Tae (10.1016/j.neuroimage.2020.116932_bib76) 2008; 50
Pipitone (10.1016/j.neuroimage.2020.116932_bib61) 2014; 101
Weniger (10.1016/j.neuroimage.2020.116932_bib84) 2009; 34
Mulder (10.1016/j.neuroimage.2020.116932_bib59) 2014; 92
Wassum (10.1016/j.neuroimage.2020.116932_bib83) 2015; 57
Brown (10.1016/j.neuroimage.2020.116932_bib13) 2020; 210
Montagrin (10.1016/j.neuroimage.2020.116932_bib55) 2018; 28
Benson (10.1016/j.neuroimage.2020.116932_bib10) 2014; 168
Dale (10.1016/j.neuroimage.2020.116932_bib19) 1999; 9
Iscan (10.1016/j.neuroimage.2020.116932_bib42) 2015; 36
Bartsch (10.1016/j.neuroimage.2020.116932_bib8) 2019; 2019
Taha (10.1016/j.neuroimage.2020.116932_bib77) 2015; 15
Ubeda-Bañon (10.1016/j.neuroimage.2020.116932_bib79) 2007; 8
Schmahl (10.1016/j.neuroimage.2020.116932_bib73) 2009; 34
Morey (10.1016/j.neuroimage.2020.116932_bib57) 2009; 45
Rossi (10.1016/j.neuroimage.2020.116932_bib70) 2012; 203
Heimer (10.1016/j.neuroimage.2020.116932_bib37) 1999
Kemppainen (10.1016/j.neuroimage.2020.116932_bib48) 2002; 12
Ding (10.1016/j.neuroimage.2020.116932_bib22) 2013; 521
Rich (10.1016/j.neuroimage.2020.116932_bib69) 2016; 250
Dupont (10.1016/j.neuroimage.2020.116932_bib24) 1990; 11
Prestia (10.1016/j.neuroimage.2020.116932_bib64) 2011; 192
Despotović (10.1016/j.neuroimage.2020.116932_bib20) 2015
Van Leemput (10.1016/j.neuroimage.2020.116932_bib81) 2009; 19
Barnes (10.1016/j.neuroimage.2020.116932_bib7) 2009; 30
Benarroch (10.1016/j.neuroimage.2020.116932_bib9) 2015; 84
Fischl (10.1016/j.neuroimage.2020.116932_bib28) 2012; vol. 62
Wijeratne (10.1016/j.neuroimage.2020.116932_bib85) 2013; 25
Reuter (10.1016/j.neuroimage.2020.116932_bib66) 2010; 53
Wisse (10.1016/j.neuroimage.2020.116932_bib86) 2014; 6
Fischl (10.1016/j.neuroimage.2020.116932_bib29) 2002; 33
Knierim (10.1016/j.neuroimage.2020.116932_bib50) 2015; 25
Sah (10.1016/j.neuroimage.2020.116932_bib71) 2003; 83
Strange (10.1016/j.neuroimage.2020.116932_bib75) 2014; 15
Tyszka (10.1016/j.neuroimage.2020.116932_bib78) 2016; 37
Catani (10.1016/j.neuroimage.2020.116932_bib15) 2013; 37
Cavedo (10.1016/j.neuroimage.2020.116932_bib16) 2011; 76
Fischl (10.1016/j.neuroimage.2020.116932_bib30) 1999; 9
Iglesias (10.1016/j.neuroimage.2020.116932_bib40) 2015; 115
Babaev (10.1016/j.neuroimage.2020.116932_bib5) 2018; 50
Cicchetti (10.1016/j.neuroimage.2020.116932_bib18) 1994; 6
Dewey (10.1016/j.neuroimage.2020.116932_bib21) 2010; 51
Kim (10.1016/j.neuroimage.2020.116932_bib49) 2016; 19
Driessen (10.1016/j.neuroimage.2020.116932_bib26) 2000; 57
Saygin (10.1016/j.neuroimage.2020.116932_bib72) 2017; 155
Mueller (10.1016/j.neuroimage.2020.116932_bib58) 2018; 17
References_xml – volume: 84
  start-page: 313
  year: 2015
  end-page: 324
  ident: bib9
  article-title: The amygdala: functional organization and involvement in neurologic disorders
  publication-title: Neurology
– volume: 253
  start-page: 254
  year: 2015
  end-page: 261
  ident: bib34
  article-title: Amygdalar and hippocampal volume: a comparison between manual segmentation, freesurfer and VBM
  publication-title: J. Neurosci. Methods
– volume: 11
  start-page: 349
  year: 1983
  end-page: 365
  ident: bib12
  article-title: Neuronal types in the basolateral amygdaloid nuclei of man
  publication-title: Brain Res. Bull.
– volume: 111
  start-page: 526
  year: 2015
  end-page: 541
  ident: bib90
  article-title: Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol
  publication-title: Neuroimage
– volume: 25
  start-page: R1116
  year: 2015
  end-page: R1121
  ident: bib50
  article-title: The hippocampus
  publication-title: Curr. Biol.
– start-page: 427
  year: 2017
  end-page: 439
  ident: bib27
  article-title: 4.6 - the Chemical Senses
– volume: 83
  start-page: 472
  year: 2013
  end-page: 484
  ident: bib46
  article-title: Brain morphometry reproducibility in multi-center 3 T MRI studies: a comparison of cross-sectional and longitudinal segmentations
  publication-title: Neuroimage
– volume: 83
  start-page: 800
  year: 2018
  end-page: 809
  ident: bib52
  article-title: Amygdala inhibitory circuits regulate associative fear conditioning
  publication-title: Biol. Psychiatr.
– volume: 1621
  start-page: 345
  year: 2015
  end-page: 354
  ident: bib39
  article-title: Time and space in the hippocampus
  publication-title: Brain Res.
– volume: 36
  start-page: 3472
  year: 2015
  end-page: 3485
  ident: bib42
  article-title: Test–retest reliability of FreeSurfer measurements within and between sites: effects of visual approval process
  publication-title: Hum. Brain Mapp.
– volume: 12
  start-page: 735
  year: 2002
  end-page: 755
  ident: bib48
  article-title: Projections from the posterior cortical nucleus of the amygdala to the hippocampal formation and parahippocampal region in rat
  publication-title: Hippocampus
– volume: 76
  start-page: 727
  year: 2011
  end-page: 733
  ident: bib16
  article-title: Local amygdala structural differences with 3T MRI in patients with alzheimer disease
  publication-title: Neurology
– volume: 11
  start-page: 258
  year: 2017
  ident: bib82
  article-title: Multimodal MEMPRAGE, FLAIR, and R2∗ segmentation to resolve dura and vessels from cortical gray matter
  publication-title: Front. Neurosci.
– volume: 203
  start-page: 132
  year: 2012
  end-page: 138
  ident: bib70
  article-title: Volumetric and topographic differences in hippocampal subdivisions in borderline personality and bipolar disorders
  publication-title: Psychiatr. Res. Neuroimaging
– volume: 141
  start-page: 542
  year: 2016
  end-page: 555
  ident: bib41
  article-title: Alzheimer’s Disease Neuroimaging Initiative, 2016. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases
  publication-title: Neuroimage
– volume: 17
  start-page: 1006
  year: 2018
  end-page: 1018
  ident: bib58
  article-title: Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2
  publication-title: Neuroimage: Clinic
– volume: 6
  start-page: 261
  year: 2014
  ident: bib86
  article-title: A critical appraisal of the hippocampal subfield segmentation package in FreeSurfer
  publication-title: Front. Aging Neurosci.
– volume: 11
  start-page: 116
  year: 1990
  end-page: 128
  ident: bib24
  article-title: Power and sample size calculations: a review and computer program. Control
  publication-title: Clin. Trials
– volume: 15
  start-page: 29
  year: 2015
  ident: bib77
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imag.
– volume: 37
  start-page: 1724
  year: 2013
  end-page: 1737
  ident: bib15
  article-title: A revised limbic system model for memory, emotion and behaviour
  publication-title: Neurosci. Biobehav. Rev.
– volume: 6
  start-page: 284
  year: 1994
  ident: bib18
  article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology
  publication-title: Psychol. Assess.
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bib19
  article-title: Cortical surface-based analysis: I. segmentation and surface reconstruction
  publication-title: Neuroimage
– volume: 210
  start-page: 116563
  year: 2020
  ident: bib13
  article-title: Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners
  publication-title: Neuroimage
– volume: 214
  start-page: 159
  year: 2019
  end-page: 167
  ident: bib35
  article-title: Structural changes in amygdala nuclei, hippocampal subfields and cortical thickness following electroconvulsive therapy in treatment-resistant depression: longitudinal analysis
  publication-title: Br. J. Psychiatr.
– volume: 47
  start-page: 1185
  year: 2009
  end-page: 1195
  ident: bib51
  article-title: Defining the human hippocampus in cerebral magnetic resonance imaging- an overview of current segmentation protocols
  publication-title: Neuroimage
– volume: 51
  start-page: 1334
  year: 2010
  end-page: 1344
  ident: bib21
  article-title: Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study
  publication-title: Neuroimage
– volume: 210
  start-page: 343
  year: 2005
  end-page: 352
  ident: bib2
  article-title: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps
  publication-title: Anat. Embryol.
– volume: 11
  start-page: 178
  year: 2004
  end-page: 189
  ident: bib94
  article-title: Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports
  publication-title: Acad. Radiol.
– volume: 57
  start-page: 271
  year: 2015
  end-page: 283
  ident: bib83
  article-title: The basolateral amygdala in reward learning and addiction
  publication-title: Neurosci. Biobehav. Rev.
– volume: 10
  start-page: 558
  year: 2016
  ident: bib4
  article-title: Quality control of structural MRI images applied using FreeSurfer—a hands-on workflow to rate motion artifacts
  publication-title: Front. Neurosci.
– volume: 30
  start-page: 1711
  year: 2009
  end-page: 1723
  ident: bib7
  article-title: A meta-analysis of hippocampal atrophy rates in alzheimer’s disease
  publication-title: Neurobiol. Aging
– volume: vol. 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib28
  article-title: FreeSurfer. Neuroimage
– volume: 11
  start-page: 86
  year: 2017
  ident: bib89
  article-title: From structure to behavior in basolateral amygdala-hippocampus circuits
  publication-title: Front. Neural Circ.
– volume: 62
  start-page: 119
  year: 2015
  end-page: 157
  ident: bib68
  article-title: Limbic systems for emotion and for memory, but no single limbic system
  publication-title: Cortex
– volume: 1
  start-page: 140049
  year: 2014
  ident: bib95
  article-title: An open science resource for establishing reliability and reproducibility in functional connectomics
– volume: 168
  start-page: 243
  year: 2014
  end-page: 253
  ident: bib10
  article-title: Differential abnormalities of functional connectivity of the amygdala and hippocampus in unipolar and bipolar affective disorders
  publication-title: J. Affect. Disord.
– volume: 17
  start-page: 230
  year: 2013
  end-page: 240
  ident: bib62
  article-title: Long-axis specialization of the human hippocampus
  publication-title: Trends Cognit. Sci.
– volume: 23
  start-page: 47
  year: 2015
  end-page: 58
  ident: bib63
  article-title: Hippocampal and amygdalar local structural differences in elderly patients with schizophrenia
  publication-title: Am. J. Geriatr. Psychiatr.
– volume: 13
  start-page: 716
  year: 1994
  end-page: 724
  ident: bib93
  article-title: Morphometric analysis of white matter lesions in MR images: method and validation
  publication-title: IEEE Trans. Med. Imag.
– volume: 50
  start-page: 569
  year: 2008
  ident: bib76
  article-title: Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder
  publication-title: Neuroradiology
– volume: 31
  start-page: 1751
  year: 2010
  end-page: 1762
  ident: bib56
  article-title: Scan–rescan reliability of subcortical brain volumes derived from automated segmentation
  publication-title: Hum. Brain Mapp.
– volume: 155
  start-page: 370
  year: 2017
  end-page: 382
  ident: bib72
  article-title: High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas
  publication-title: Neuroimage
– volume: 101
  start-page: 390
  year: 2014
  end-page: 403
  ident: bib47
  article-title: Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects
  publication-title: Neuroimage
– volume: 8
  year: 2013
  ident: bib31
  article-title: Evaluating Alzheimer’s disease progression using rate of regional hippocampal atrophy
  publication-title: PloS One
– volume: 36
  start-page: 3516
  year: 2015
  end-page: 3527
  ident: bib54
  article-title: Longitudinal reproducibility of automatically segmented hippocampal subfields: A multisite E uropean 3T study on healthy elderly
  publication-title: Hum. Brain Mapp.
– volume: 61
  start-page: 1402
  year: 2012
  end-page: 1418
  ident: bib67
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
– volume: 34
  start-page: 383
  year: 2009
  end-page: 388
  ident: bib84
  article-title: Reduced amygdala and hippocampus size in trauma-exposed women with borderline personality disorder and without posttraumatic stress disorder
  publication-title: J. Psychiatry Neurosci.
– volume: 19
  start-page: 1636
  year: 2016
  ident: bib49
  article-title: Antagonistic negative and positive neurons of the basolateral amygdala
  publication-title: Nat. Neurosci.
– volume: 46
  start-page: 177
  year: 2009
  end-page: 192
  ident: bib45
  article-title: MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths
  publication-title: Neuroimage
– volume: 45
  start-page: 855
  year: 2009
  end-page: 866
  ident: bib57
  article-title: A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes
  publication-title: Neuroimage
– volume: 131
  start-page: 3266
  year: 2008
  end-page: 3276
  ident: bib32
  article-title: Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla
  publication-title: Brain
– volume: 115
  start-page: 117
  year: 2015
  end-page: 137
  ident: bib40
  article-title: A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI
  publication-title: Neuroimage
– volume: 34
  start-page: 289
  year: 2009
  end-page: 295
  ident: bib73
  article-title: Hippocampus and amygdala volumes in patients with borderline personality disorder with or without posttraumatic stress disorder
  publication-title: J. Psychiatry Neurosci.
– volume: 170
  start-page: 132
  year: 2018
  end-page: 150
  ident: bib1
  article-title: Manual segmentation of the fornix, fimbria, and alveus on high-resolution 3T MRI: application via fully-automated mapping of the human memory circuit white and grey matter in healthy and pathological aging
  publication-title: Neuroimage
– volume: 101
  start-page: 494
  year: 2014
  end-page: 512
  ident: bib61
  article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates
  publication-title: Neuroimage
– volume: 250
  start-page: 50
  year: 2016
  end-page: 60
  ident: bib69
  article-title: Amygdala volume is reduced in early course schizophrenia
  publication-title: Psychiatr. Res. Neuroimaging
– volume: 8
  start-page: 103
  year: 2007
  ident: bib79
  article-title: Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli
  publication-title: BMC Neurosci.
– volume: 50
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib5
  article-title: Inhibition in the amygdala anxiety circuitry
  publication-title: Exp. Mol. Med.
– volume: 375
  start-page: 93
  year: 2019
  end-page: 101
  ident: bib80
  article-title: Neuropeptide signalling in the central nucleus of the amygdala
  publication-title: Cell Tissue Res.
– volume: 192
  start-page: 77
  year: 2011
  end-page: 83
  ident: bib64
  article-title: Hippocampal and amygdalar volume changes in elderly patients with alzheimer’s disease and schizophrenia
  publication-title: Psychiatr. Res. Neuroimaging
– volume: 83
  start-page: 803
  year: 2003
  end-page: 834
  ident: bib71
  article-title: The amygdaloid complex: anatomy and physiology
  publication-title: Physiol. Rev.
– volume: 517
  start-page: 284
  year: 2015
  ident: bib43
  article-title: From circuits to behaviour in the amygdala
  publication-title: Nature
– volume: 19
  start-page: 549
  year: 2009
  end-page: 557
  ident: bib81
  article-title: Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI
  publication-title: Hippocampus
– volume: 53
  start-page: 1181
  year: 2010
  end-page: 1196
  ident: bib66
  article-title: Highly accurate inverse consistent registration: a robust approach
  publication-title: Neuroimage
– volume: 92
  start-page: 169
  year: 2014
  end-page: 181
  ident: bib59
  article-title: Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST
  publication-title: Neuroimage
– volume: 25
  start-page: 54
  year: 2013
  end-page: 60
  ident: bib85
  article-title: Hippocampal and amygdala volumes in an older bipolar disorder sample
  publication-title: Int. Psychogeriatr.
– volume: 60
  start-page: 10
  year: 2014
  end-page: 33
  ident: bib60
  article-title: The functional profile of the human amygdala in affective processing: insights from intracranial recordings
  publication-title: Cortex
– volume: 29
  start-page: 1027
  year: 2008
  end-page: 1039
  ident: bib11
  article-title: Age and dementia-associated atrophy predominates in the hippocampal head and amygdala in Parkinson’s disease
  publication-title: Neurobiol. Aging
– volume: 37
  start-page: 3979
  year: 2016
  end-page: 3998
  ident: bib78
  article-title: In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template
  publication-title: Hum. Brain Mapp.
– volume: 32
  start-page: 180
  year: 2006
  end-page: 194
  ident: bib36
  article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer
  publication-title: Neuroimage
– volume: 523
  start-page: 2233
  year: 2015
  end-page: 2253
  ident: bib23
  article-title: Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of cyto-and chemoarchitecture
  publication-title: J. Comp. Neurol.
– volume: 57
  start-page: 1115
  year: 2000
  end-page: 1122
  ident: bib26
  article-title: Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization
  publication-title: Arch. Gen. Psychiatr.
– volume: 39
  start-page: 1743
  year: 2018
  end-page: 1754
  ident: bib88
  article-title: Test–retest reliability and longitudinal analysis of automated hippocampal subregion volumes in healthy ageing and A lzheimer’s disease populations
  publication-title: Hum. Brain Mapp.
– volume: 13
  year: 2018
  ident: bib3
  article-title: Smaller volumes in the lateral and basal nuclei of the amygdala in patients with panic disorder
  publication-title: PloS One
– volume: 29
  start-page: 111
  year: 2016
  end-page: 124
  ident: bib38
  article-title: Segmentation of human brain using structural MRI
  publication-title: Magnetic Reson. Mater. Phys. Biol. Med.
– volume: 19
  start-page: 353
  year: 2017
  end-page: 362
  ident: bib44
  article-title: Amygdala and hippocampus volumes are differently affected by childhood trauma in patients with bipolar disorders and healthy controls
  publication-title: Bipolar Disord.
– volume: 44
  start-page: 1324
  year: 2009
  end-page: 1333
  ident: bib87
  article-title: Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging
  publication-title: Neuroimage
– volume: 86
  start-page: 420
  year: 1979
  ident: bib74
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
– volume: 15
  start-page: 655
  year: 2014
  end-page: 669
  ident: bib75
  article-title: Functional organization of the hippocampal longitudinal axis
  publication-title: Nat. Rev. Neurosci.
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: bib30
  article-title: Cortical surface-based analysis II: inflation, flattening, and surface-based coordinate system
  publication-title: Neuroimage
– volume: 22
  start-page: 1352
  year: 2017
  ident: bib14
  article-title: Hippocampal subfield volumes in mood disorders
  publication-title: Mol. Psychiatr.
– volume: 156
  start-page: 76
  year: 2014
  end-page: 86
  ident: bib33
  article-title: Hippocampus and amygdala volumes in children and young adults at high-risk of schizophrenia: research synthesis
  publication-title: Schizophr. Res.
– volume: 2019
  year: 2019
  ident: bib8
  article-title: Hippocampal dysfunction in schizophrenia and aberrant hippocampal synaptic plasticity in rodent model psychosis: a selective review
  publication-title: Pharmacopsychiatry
– volume: 66
  start-page: 28
  year: 2013
  end-page: 35
  ident: bib91
  article-title: Functional segmentation of the hippocampus in the healthy human brain and in alzheimer’s disease
  publication-title: Neuroimage
– volume: 521
  start-page: 4145
  year: 2013
  end-page: 4162
  ident: bib22
  article-title: Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent
  publication-title: J. Comp. Neurol.
– year: 2015
  ident: bib20
  article-title: MRI segmentation of the human brain: challenges, methods, and applications
  publication-title: Comput. Math. Methods Med.
– year: 1999
  ident: bib37
  article-title: The Human Basal Forebrain Part II the Primate Nervous System, Part III
– volume: 25
  start-page: 261
  year: 1960
  end-page: 271
  ident: bib65
  article-title: Reliability formulas for independent decision data when reliability data are matched
  publication-title: Psychometrika
– volume: 386
  start-page: 1672
  year: 2015
  end-page: 1682
  ident: bib6
  article-title: Frontotemporal dementia
  publication-title: Lancet
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bib29
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 1715
  start-page: 165
  year: 2019
  end-page: 175
  ident: bib92
  article-title: Functional parcellation of the hippocampus from resting-state dynamic functional connectivity
  publication-title: Brain Res.
– volume: 19
  start-page: 589
  year: 1998
  end-page: 601
  ident: bib25
  article-title: Power and sample size calculations for studies involving linear regression
  publication-title: Contr. Clin. Trials
– volume: 71
  start-page: 1138
  year: 2014
  end-page: 1147
  ident: bib17
  article-title: Abnormal amygdala resting-state functional connectivity in adolescent depression
  publication-title: JAMA Psychiatry
– volume: 28
  start-page: 672
  year: 2018
  end-page: 679
  ident: bib55
  article-title: The social hippocampus
  publication-title: Hippocampus
– volume: 27
  start-page: 464
  year: 2017
  end-page: 476
  ident: bib53
  article-title: Disruption of amygdala–entorhinal–hippocampal network in late-life depression
  publication-title: Hippocampus
– volume: 1715
  start-page: 165
  year: 2019
  ident: 10.1016/j.neuroimage.2020.116932_bib92
  article-title: Functional parcellation of the hippocampus from resting-state dynamic functional connectivity
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2019.03.023
– volume: 15
  start-page: 655
  year: 2014
  ident: 10.1016/j.neuroimage.2020.116932_bib75
  article-title: Functional organization of the hippocampal longitudinal axis
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3785
– volume: 111
  start-page: 526
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib90
  article-title: Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.004
– volume: 210
  start-page: 343
  year: 2005
  ident: 10.1016/j.neuroimage.2020.116932_bib2
  article-title: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps
  publication-title: Anat. Embryol.
  doi: 10.1007/s00429-005-0025-5
– volume: 23
  start-page: 47
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib63
  article-title: Hippocampal and amygdalar local structural differences in elderly patients with schizophrenia
  publication-title: Am. J. Geriatr. Psychiatr.
  doi: 10.1016/j.jagp.2014.01.006
– volume: 11
  start-page: 349
  year: 1983
  ident: 10.1016/j.neuroimage.2020.116932_bib12
  article-title: Neuronal types in the basolateral amygdaloid nuclei of man
  publication-title: Brain Res. Bull.
  doi: 10.1016/0361-9230(83)90171-5
– volume: 101
  start-page: 494
  year: 2014
  ident: 10.1016/j.neuroimage.2020.116932_bib61
  article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.04.054
– volume: 57
  start-page: 1115
  year: 2000
  ident: 10.1016/j.neuroimage.2020.116932_bib26
  article-title: Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization
  publication-title: Arch. Gen. Psychiatr.
  doi: 10.1001/archpsyc.57.12.1115
– volume: 168
  start-page: 243
  year: 2014
  ident: 10.1016/j.neuroimage.2020.116932_bib10
  article-title: Differential abnormalities of functional connectivity of the amygdala and hippocampus in unipolar and bipolar affective disorders
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2014.05.045
– volume: 60
  start-page: 10
  year: 2014
  ident: 10.1016/j.neuroimage.2020.116932_bib60
  article-title: The functional profile of the human amygdala in affective processing: insights from intracranial recordings
  publication-title: Cortex
  doi: 10.1016/j.cortex.2014.06.010
– volume: 34
  start-page: 289
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116932_bib73
  article-title: Hippocampus and amygdala volumes in patients with borderline personality disorder with or without posttraumatic stress disorder
  publication-title: J. Psychiatry Neurosci.
– volume: 1621
  start-page: 345
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib39
  article-title: Time and space in the hippocampus
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2014.10.069
– volume: 86
  start-page: 420
  year: 1979
  ident: 10.1016/j.neuroimage.2020.116932_bib74
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– volume: 36
  start-page: 3472
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib42
  article-title: Test–retest reliability of FreeSurfer measurements within and between sites: effects of visual approval process
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22856
– volume: 84
  start-page: 313
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib9
  article-title: The amygdala: functional organization and involvement in neurologic disorders
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001171
– volume: 155
  start-page: 370
  year: 2017
  ident: 10.1016/j.neuroimage.2020.116932_bib72
  article-title: High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.046
– volume: 11
  start-page: 116
  year: 1990
  ident: 10.1016/j.neuroimage.2020.116932_bib24
  article-title: Power and sample size calculations: a review and computer program. Control
  publication-title: Clin. Trials
  doi: 10.1016/0197-2456(90)90005-M
– volume: 25
  start-page: 54
  year: 2013
  ident: 10.1016/j.neuroimage.2020.116932_bib85
  article-title: Hippocampal and amygdala volumes in an older bipolar disorder sample
  publication-title: Int. Psychogeriatr.
  doi: 10.1017/S1041610212001469
– volume: 27
  start-page: 464
  year: 2017
  ident: 10.1016/j.neuroimage.2020.116932_bib53
  article-title: Disruption of amygdala–entorhinal–hippocampal network in late-life depression
  publication-title: Hippocampus
  doi: 10.1002/hipo.22705
– volume: 50
  start-page: 569
  year: 2008
  ident: 10.1016/j.neuroimage.2020.116932_bib76
  article-title: Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder
  publication-title: Neuroradiology
  doi: 10.1007/s00234-008-0383-9
– volume: 170
  start-page: 132
  year: 2018
  ident: 10.1016/j.neuroimage.2020.116932_bib1
  article-title: Manual segmentation of the fornix, fimbria, and alveus on high-resolution 3T MRI: application via fully-automated mapping of the human memory circuit white and grey matter in healthy and pathological aging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.027
– volume: 15
  start-page: 29
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib77
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imag.
  doi: 10.1186/s12880-015-0068-x
– volume: 19
  start-page: 589
  year: 1998
  ident: 10.1016/j.neuroimage.2020.116932_bib25
  article-title: Power and sample size calculations for studies involving linear regression
  publication-title: Contr. Clin. Trials
  doi: 10.1016/S0197-2456(98)00037-3
– volume: 8
  start-page: 103
  year: 2007
  ident: 10.1016/j.neuroimage.2020.116932_bib79
  article-title: Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-8-103
– volume: 9
  start-page: 195
  year: 1999
  ident: 10.1016/j.neuroimage.2020.116932_bib30
  article-title: Cortical surface-based analysis II: inflation, flattening, and surface-based coordinate system
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0396
– volume: 29
  start-page: 111
  year: 2016
  ident: 10.1016/j.neuroimage.2020.116932_bib38
  article-title: Segmentation of human brain using structural MRI
  publication-title: Magnetic Reson. Mater. Phys. Biol. Med.
  doi: 10.1007/s10334-015-0518-z
– volume: 22
  start-page: 1352
  year: 2017
  ident: 10.1016/j.neuroimage.2020.116932_bib14
  article-title: Hippocampal subfield volumes in mood disorders
  publication-title: Mol. Psychiatr.
  doi: 10.1038/mp.2016.262
– volume: 11
  start-page: 178
  year: 2004
  ident: 10.1016/j.neuroimage.2020.116932_bib94
  article-title: Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports
  publication-title: Acad. Radiol.
  doi: 10.1016/S1076-6332(03)00671-8
– volume: 101
  start-page: 390
  year: 2014
  ident: 10.1016/j.neuroimage.2020.116932_bib47
  article-title: Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.075
– volume: 46
  start-page: 177
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116932_bib45
  article-title: MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.02.010
– volume: 25
  start-page: R1116
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib50
  article-title: The hippocampus
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.10.049
– volume: 37
  start-page: 3979
  year: 2016
  ident: 10.1016/j.neuroimage.2020.116932_bib78
  article-title: In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23289
– volume: 19
  start-page: 549
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116932_bib81
  article-title: Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI
  publication-title: Hippocampus
  doi: 10.1002/hipo.20615
– volume: 17
  start-page: 230
  year: 2013
  ident: 10.1016/j.neuroimage.2020.116932_bib62
  article-title: Long-axis specialization of the human hippocampus
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2013.03.005
– volume: 37
  start-page: 1724
  year: 2013
  ident: 10.1016/j.neuroimage.2020.116932_bib15
  article-title: A revised limbic system model for memory, emotion and behaviour
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2013.07.001
– volume: 17
  start-page: 1006
  year: 2018
  ident: 10.1016/j.neuroimage.2020.116932_bib58
  article-title: Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2
  publication-title: Neuroimage: Clinic
  doi: 10.1016/j.nicl.2017.12.036
– volume: 10
  start-page: 558
  year: 2016
  ident: 10.1016/j.neuroimage.2020.116932_bib4
  article-title: Quality control of structural MRI images applied using FreeSurfer—a hands-on workflow to rate motion artifacts
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00558
– volume: 375
  start-page: 93
  year: 2019
  ident: 10.1016/j.neuroimage.2020.116932_bib80
  article-title: Neuropeptide signalling in the central nucleus of the amygdala
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-018-2862-6
– volume: 32
  start-page: 180
  year: 2006
  ident: 10.1016/j.neuroimage.2020.116932_bib36
  article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.02.051
– volume: 51
  start-page: 1334
  year: 2010
  ident: 10.1016/j.neuroimage.2020.116932_bib21
  article-title: Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.033
– volume: 71
  start-page: 1138
  year: 2014
  ident: 10.1016/j.neuroimage.2020.116932_bib17
  article-title: Abnormal amygdala resting-state functional connectivity in adolescent depression
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2014.1087
– start-page: 427
  year: 2017
  ident: 10.1016/j.neuroimage.2020.116932_bib27
– volume: 39
  start-page: 1743
  year: 2018
  ident: 10.1016/j.neuroimage.2020.116932_bib88
  article-title: Test–retest reliability and longitudinal analysis of automated hippocampal subregion volumes in healthy ageing and A lzheimer’s disease populations
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23948
– volume: 11
  start-page: 86
  year: 2017
  ident: 10.1016/j.neuroimage.2020.116932_bib89
  article-title: From structure to behavior in basolateral amygdala-hippocampus circuits
  publication-title: Front. Neural Circ.
  doi: 10.3389/fncir.2017.00086
– volume: 9
  start-page: 179
  year: 1999
  ident: 10.1016/j.neuroimage.2020.116932_bib19
  article-title: Cortical surface-based analysis: I. segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 517
  start-page: 284
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib43
  article-title: From circuits to behaviour in the amygdala
  publication-title: Nature
  doi: 10.1038/nature14188
– volume: 83
  start-page: 472
  year: 2013
  ident: 10.1016/j.neuroimage.2020.116932_bib46
  article-title: Brain morphometry reproducibility in multi-center 3 T MRI studies: a comparison of cross-sectional and longitudinal segmentations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.007
– volume: 12
  start-page: 735
  year: 2002
  ident: 10.1016/j.neuroimage.2020.116932_bib48
  article-title: Projections from the posterior cortical nucleus of the amygdala to the hippocampal formation and parahippocampal region in rat
  publication-title: Hippocampus
  doi: 10.1002/hipo.10020
– volume: 62
  start-page: 119
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib68
  article-title: Limbic systems for emotion and for memory, but no single limbic system
  publication-title: Cortex
  doi: 10.1016/j.cortex.2013.12.005
– volume: 131
  start-page: 3266
  year: 2008
  ident: 10.1016/j.neuroimage.2020.116932_bib32
  article-title: Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla
  publication-title: Brain
  doi: 10.1093/brain/awn280
– volume: 44
  start-page: 1324
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116932_bib87
  article-title: Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.037
– year: 1999
  ident: 10.1016/j.neuroimage.2020.116932_bib37
– volume: 47
  start-page: 1185
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116932_bib51
  article-title: Defining the human hippocampus in cerebral magnetic resonance imaging- an overview of current segmentation protocols
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.019
– volume: 13
  start-page: 716
  year: 1994
  ident: 10.1016/j.neuroimage.2020.116932_bib93
  article-title: Morphometric analysis of white matter lesions in MR images: method and validation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.363096
– volume: 1
  start-page: 140049
  year: 2014
  ident: 10.1016/j.neuroimage.2020.116932_bib95
  article-title: An open science resource for establishing reliability and reproducibility in functional connectomics
– volume: 30
  start-page: 1711
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116932_bib7
  article-title: A meta-analysis of hippocampal atrophy rates in alzheimer’s disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2008.01.010
– volume: 214
  start-page: 159
  year: 2019
  ident: 10.1016/j.neuroimage.2020.116932_bib35
  article-title: Structural changes in amygdala nuclei, hippocampal subfields and cortical thickness following electroconvulsive therapy in treatment-resistant depression: longitudinal analysis
  publication-title: Br. J. Psychiatr.
  doi: 10.1192/bjp.2018.224
– volume: 11
  start-page: 258
  year: 2017
  ident: 10.1016/j.neuroimage.2020.116932_bib82
  article-title: Multimodal MEMPRAGE, FLAIR, and R2∗ segmentation to resolve dura and vessels from cortical gray matter
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00258
– volume: 33
  start-page: 341
  year: 2002
  ident: 10.1016/j.neuroimage.2020.116932_bib29
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 76
  start-page: 727
  year: 2011
  ident: 10.1016/j.neuroimage.2020.116932_bib16
  article-title: Local amygdala structural differences with 3T MRI in patients with alzheimer disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31820d62d9
– volume: 523
  start-page: 2233
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib23
  article-title: Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of cyto-and chemoarchitecture
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23786
– volume: 28
  start-page: 672
  year: 2018
  ident: 10.1016/j.neuroimage.2020.116932_bib55
  article-title: The social hippocampus
  publication-title: Hippocampus
  doi: 10.1002/hipo.22797
– volume: 25
  start-page: 261
  year: 1960
  ident: 10.1016/j.neuroimage.2020.116932_bib65
  article-title: Reliability formulas for independent decision data when reliability data are matched
  publication-title: Psychometrika
  doi: 10.1007/BF02289730
– volume: 6
  start-page: 261
  year: 2014
  ident: 10.1016/j.neuroimage.2020.116932_bib86
  article-title: A critical appraisal of the hippocampal subfield segmentation package in FreeSurfer
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2014.00261
– volume: 36
  start-page: 3516
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib54
  article-title: Longitudinal reproducibility of automatically segmented hippocampal subfields: A multisite E uropean 3T study on healthy elderly
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22859
– volume: 6
  start-page: 284
  year: 1994
  ident: 10.1016/j.neuroimage.2020.116932_bib18
  article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology
  publication-title: Psychol. Assess.
  doi: 10.1037/1040-3590.6.4.284
– volume: 521
  start-page: 4145
  year: 2013
  ident: 10.1016/j.neuroimage.2020.116932_bib22
  article-title: Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23416
– volume: 253
  start-page: 254
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib34
  article-title: Amygdalar and hippocampal volume: a comparison between manual segmentation, freesurfer and VBM
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.05.024
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2020.116932_bib31
  article-title: Evaluating Alzheimer’s disease progression using rate of regional hippocampal atrophy
  publication-title: PloS One
  doi: 10.1371/journal.pone.0071354
– volume: 115
  start-page: 117
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib40
  article-title: A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.042
– volume: 45
  start-page: 855
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116932_bib57
  article-title: A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.033
– volume: 61
  start-page: 1402
  year: 2012
  ident: 10.1016/j.neuroimage.2020.116932_bib67
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.084
– volume: 203
  start-page: 132
  year: 2012
  ident: 10.1016/j.neuroimage.2020.116932_bib70
  article-title: Volumetric and topographic differences in hippocampal subdivisions in borderline personality and bipolar disorders
  publication-title: Psychiatr. Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2011.12.004
– volume: 386
  start-page: 1672
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib6
  article-title: Frontotemporal dementia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)00461-4
– volume: 2019
  year: 2019
  ident: 10.1016/j.neuroimage.2020.116932_bib8
  article-title: Hippocampal dysfunction in schizophrenia and aberrant hippocampal synaptic plasticity in rodent model psychosis: a selective review
  publication-title: Pharmacopsychiatry
– volume: 92
  start-page: 169
  year: 2014
  ident: 10.1016/j.neuroimage.2020.116932_bib59
  article-title: Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.058
– volume: 19
  start-page: 353
  year: 2017
  ident: 10.1016/j.neuroimage.2020.116932_bib44
  article-title: Amygdala and hippocampus volumes are differently affected by childhood trauma in patients with bipolar disorders and healthy controls
  publication-title: Bipolar Disord.
  doi: 10.1111/bdi.12516
– volume: 19
  start-page: 1636
  year: 2016
  ident: 10.1016/j.neuroimage.2020.116932_bib49
  article-title: Antagonistic negative and positive neurons of the basolateral amygdala
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4414
– volume: 13
  year: 2018
  ident: 10.1016/j.neuroimage.2020.116932_bib3
  article-title: Smaller volumes in the lateral and basal nuclei of the amygdala in patients with panic disorder
  publication-title: PloS One
  doi: 10.1371/journal.pone.0207163
– volume: 141
  start-page: 542
  year: 2016
  ident: 10.1016/j.neuroimage.2020.116932_bib41
  article-title: Alzheimer’s Disease Neuroimaging Initiative, 2016. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.07.020
– volume: 83
  start-page: 800
  year: 2018
  ident: 10.1016/j.neuroimage.2020.116932_bib52
  article-title: Amygdala inhibitory circuits regulate associative fear conditioning
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2017.10.006
– volume: 66
  start-page: 28
  year: 2013
  ident: 10.1016/j.neuroimage.2020.116932_bib91
  article-title: Functional segmentation of the hippocampus in the healthy human brain and in alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.071
– volume: 50
  start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2020.116932_bib5
  article-title: Inhibition in the amygdala anxiety circuitry
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-018-0063-8
– volume: vol. 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.neuroimage.2020.116932_bib28
– volume: 192
  start-page: 77
  year: 2011
  ident: 10.1016/j.neuroimage.2020.116932_bib64
  article-title: Hippocampal and amygdalar volume changes in elderly patients with alzheimer’s disease and schizophrenia
  publication-title: Psychiatr. Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2010.12.015
– volume: 29
  start-page: 1027
  year: 2008
  ident: 10.1016/j.neuroimage.2020.116932_bib11
  article-title: Age and dementia-associated atrophy predominates in the hippocampal head and amygdala in Parkinson’s disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2007.02.002
– volume: 57
  start-page: 271
  year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib83
  article-title: The basolateral amygdala in reward learning and addiction
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2015.08.017
– volume: 34
  start-page: 383
  year: 2009
  ident: 10.1016/j.neuroimage.2020.116932_bib84
  article-title: Reduced amygdala and hippocampus size in trauma-exposed women with borderline personality disorder and without posttraumatic stress disorder
  publication-title: J. Psychiatry Neurosci.
– volume: 250
  start-page: 50
  year: 2016
  ident: 10.1016/j.neuroimage.2020.116932_bib69
  article-title: Amygdala volume is reduced in early course schizophrenia
  publication-title: Psychiatr. Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2016.02.006
– volume: 156
  start-page: 76
  year: 2014
  ident: 10.1016/j.neuroimage.2020.116932_bib33
  article-title: Hippocampus and amygdala volumes in children and young adults at high-risk of schizophrenia: research synthesis
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2014.03.030
– volume: 210
  start-page: 116563
  year: 2020
  ident: 10.1016/j.neuroimage.2020.116932_bib13
  article-title: Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116563
– volume: 31
  start-page: 1751
  year: 2010
  ident: 10.1016/j.neuroimage.2020.116932_bib56
  article-title: Scan–rescan reliability of subcortical brain volumes derived from automated segmentation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20973
– volume: 83
  start-page: 803
  year: 2003
  ident: 10.1016/j.neuroimage.2020.116932_bib71
  article-title: The amygdaloid complex: anatomy and physiology
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00002.2003
– year: 2015
  ident: 10.1016/j.neuroimage.2020.116932_bib20
  article-title: MRI segmentation of the human brain: challenges, methods, and applications
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/450341
– volume: 53
  start-page: 1181
  year: 2010
  ident: 10.1016/j.neuroimage.2020.116932_bib66
  article-title: Highly accurate inverse consistent registration: a robust approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.020
SSID ssj0009148
ssib001088192
ssib057766155
ssib044495972
ssib042110531
ssib001197117
Score 2.499056
Snippet The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of...
BackgroundThe amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and...
Background: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation...
SourceID doaj
swepub
hal
proquest
pubmed
crossref
nii
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116932
SubjectTerms [SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging
Adult
Aged
ALZHEIMERS-DISEASE
Amygdala
Amygdala - anatomy & histology
Amygdalar nuclei
Amygdalar nuclei; FreeSurfer; Hippocampal subfields; Multicenter MRI study; Reliability analysis
Amygdalar nuclei; Hippocampal subfields; Multicenter MRI study; FreeSurfer; Reliability analysis
anatomy & histology [Amygdala]
anatomy & histology [Hippocampus]
Automation
Behavior
Bioengineering
BORDERLINE PERSONALITY-DISORDER
Cognition
ELDERLY-PATIENTS
Female
FreeSurfer
FUNCTIONAL-ORGANIZATION
Hippocampal subfields
Hippocampus
Hippocampus - anatomy & histology
HUMAN BRAIN
Humans
Image processing
Image Processing, Computer-Assisted
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Imaging
info:eu-repo/classification/ddc/616.8
Life Sciences
Magnetic Resonance Imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Male
MANUAL SEGMENTATION
Medical imaging
Medizin
Memory
MESH: Adult
MESH: Aged
MESH: Amygdala / anatomy & histology
MESH: Female
MESH: Hippocampus / anatomy & histology
MESH: Humans
MESH: Image Processing, Computer-Assisted / methods
MESH: Image Processing, Computer-Assisted / standards
MESH: Magnetic Resonance Imaging / methods
MESH: Magnetic Resonance Imaging / standards
MESH: Male
MESH: Middle Aged
MESH: Neuroimaging / methods
MESH: Neuroimaging / standards
MESH: Reproducibility of Results
MESH: Software
methods [Image Processing, Computer-Assisted]
methods [Magnetic Resonance Imaging]
methods [Neuroimaging]
METHODS FREESURFER
Middle Aged
Multicenter MRI study
Neuroimaging
Neuroimaging - methods
Neuroimaging - standards
Neurosciences. Biological psychiatry. Neuropsychiatry
Nuclei
RC321-571
Regulation
Reliability analysis
Reproducibility of Results
SAMPLE-SIZE CALCULATIONS
Segmentation
Software
standards [Image Processing, Computer-Assisted]
standards [Magnetic Resonance Imaging]
standards [Neuroimaging]
STRUCTURAL DIFFERENCES
Studies
SURFACE-BASED ANALYSIS
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoD4gL4k1oiwxC3CISr_MwnBZEtSCWA2ql3iw7tmlgm6ySbKX9B_xsZuIksAiJPXCJIjt-xDOe-RxPPhPyggnmXM51GHG4cG1MKAobh7G1NsmVErnB7x3Lz-ninH-8SC5-O-oLY8I8PbAfuFdcF1oJUTj808amGtynEzk3iSpYUTCL1hd83riYGul2AeUPcTs-mqtnhyyvYI7CmpChpUjFjO04o56zf8cnHVxicORBVZZ_w59_kIv2Dun0Drk9IEk6929wl9yw1T1ycznsld8nP-ZX269GwcqVVkhaXFJVGXpZrtfgvsAIrGi70X0AW0vrii6_fHhNz6DlsMFvsR1t7Kr0JN5bWjuqNl0N6NYa6g1a12yp6l-LjoesdFgJxe3otm8L7Kipm_YBOT99f_ZuEQ7nLoQFLD66UBtneKQNS2cFSDhWACPAhQnGHOBHyyKVuZngLmfGYqaJmcqN0dwxrpXLZg_JYVVX9jGhiWGQ7WwOq07OkJ3QRi7XcQaq4FjhApKNApDFQEqOZ2Os5Bh99k3-Ep1E0UkvuoDEU8m1J-bYo8xblPH0PFJr9wmgcHJQOPkvhQuIGDVEjn-vgr2Fiso9OvBmKjsgHI9c9iz9HBRyp_eL-SeJabg_HGUiv44DcgL6CoOJ1xjkxnHvHFkCM55HWMnxqMlyMFetBJwmogSteUCeTdlgaHD3SFW23uAzYO85BzATkEd-BkxdAVQepwDkA_LST4mdTg5J3-EOhjcDRBk9-R-SOCK3cHR8xN8xOeyajT0BiNjpp701-AkboWYs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLe2HRAXxDeBDRmEuIUmrtPEcCoTU0GUA2zSbpYd21ugS6o0ReqFM38278VOpyIOk7hErb_j9_zez3nPz4S8YoI5V3AdJxweXBsTi9KmcWqtzQqlRGHwe8f8y2R2xj-dZ-d75Hg4C4NulUH2e5neS-uQMgqzOVpW1egbIANQN4BQ0LoHnIkn2HmOXP7m17Wbh0i5Pw6XjWMsHbx5vI9XHzOyuoKVCztFhvJjIsZsR0X1kfx3NNX-JbpM7tdV9S9U-lfI0V5NndwldwK-pFP_CvfInq3vk1vzYEF_QH5PrzYXRsF-ltYYyriiqjb0slouQamBaFjQ1Vr3bm0r2tR0_vXjW3oKPcctfqHtaGsXlQ_tvaGNo2rdNYB5raFezHXthqr-tehw9UqHjVA0Uq_6vkC6mqZdPSRnJx9Oj2dxuI0hLmFL0sXaOMMTbdhkXALdUwXgAhSbYMwBqrQsUbkbC-4KZixmmpSpwhjNHeNauXz8iBzUTW2fEJoZBtnOFrAX5QxjFtrEFTrNgUEcK11E8oEAsgyhyvHGjIUcfNK-y2vSSSSd9KSLSLqtufThOm5Q5z3SeFseA273CU17IQPHSa5LrYQoHR74shMNKM6JgptMlawsmY2IGDhEDmdaQQpDQ9UNBvBuW3eH929Y-yUw5M7oZ9PPEtPQapzkoviZRuQI-BUmE58p0I2jRR1jB-a8SLCRw4GTZRBiKwnoTSQZyviIvNhmg_hBm5KqbbPGMqAFOKw76OKxXwHboQBWTycA7yPy2i-JnUGGpB_wC6Y3B5yZPP2viXhGbuM_7wB4SA66dm2PADF2-nkvEv4AQ0VpaQ
  priority: 102
  providerName: Elsevier
Title Amygdalar nuclei and hippocampal subfields on MRI: Test-retest reliability of automated volumetry across different MRI sites and vendors
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811920304183
https://dx.doi.org/10.1016/j.neuroimage.2020.116932
https://cir.nii.ac.jp/crid/1871428067786748032
https://www.ncbi.nlm.nih.gov/pubmed/32416226
https://www.proquest.com/docview/2429050048
https://www.proquest.com/docview/2404044471
https://amu.hal.science/hal-03500798
http://kipublications.ki.se/Default.aspx?queryparsed=id:144353263
https://doaj.org/article/4bcba99cf0714e6b976f984d5ac2cc2e
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfoJiEuiO8FtsogxC2QuE6TwAF1qFMHtELTJu0W2bG9BbqkJClSLzvzZ_Ne4rQqQqiXtPJXHL-vn-3nZ0Jes5gZE3HpehweXCrlxqn2XV9rHURCxJHC9Y7pbDi54J8vg0u74FZZt8pOJzaKWhUprpG_A1MSewEy3MfFTxdvjcLdVXuFRo_sY-gydOkKL8NN0F2ft0fhgoEbQQHrydP6dzXxIrMbkFqYJTLUHcN4wLbMUxPFf8tK9a7RXbKXZ9m_EOlf4UYbE3XygNy32JKOWmZ4SO7o_BG5O7W754_J79HN6koJmMvSHMMYZ1Tkil5niwUYNFALc1otZePSVtEip9Oz0_f0HN7slrg6W9NSz7M2rPeKFoaKZV0A3tWKtiquLldUNJ9Fu2tXamyE4hBWzbtAs6qirJ6Qi5Px-aeJa29icFOYjtSuVEZxTyo2HKRAc18AsACjFjNmAFFq5onQDGJuIqY0ZiqfiUgpyQ3jUphw8JTs5UWuDwgNFINsoyOYh3KG8Qq1ZyLph8AchqXGIWFHgCS1Ycrxtox50vmjfU82pEuQdElLOof465qLNlTHDnWOkcbr8hhsu0koyqvEym7CZSpFHKcGD3vpoQQEZ-KIq0CkLE2ZdkjccUjSnWcFDQwNZTt04MO6rsU8LZbZsfYrYMit3k9GXxNMwx1jL4yjX75DjoBfYTDx6QPdOO6mY9zAkEceNnLYcXJiFViVbMTNIS_X2aB6cD9J5LpYYhmwAJwDvHHIs1YC1l0BnO4PAdo75E0rEludtEk_4B8MbwgY03v-_168IPfwu1vvvkOyV5dLfQRwsJZ90nt76_cbye-T_dHpl8kMfo_Hs29n_WaJBZ7T2_EfNrxkdQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfWTgJeEP8JbGAQ8BaRuE4TgxDqYFPL2gpNnbS34MT2FuiSkqagfgM-DZ-Ru_xpVYRQX_YSVXbsXH3n393Z5zMhL5hgxgQ8sh0ODx4pZYtYu7artfYCKUWgcL1jNO72T_mnM-9sh_xuzsJgWGWDiSVQqyzGNfLXoEqE46HAvZ99t_HWKNxdba7QqMTiWC9_gss2fzf4CPx9ydjR4eRD365vFbBjMK0LO1JGcSdSrNuJgX5XgpIEgBaMGbCONHOkbzqCm4ApjZXKZTJQKuKG8UgavwP9tsgu74Ar0ya7B4fjzyfrNL8urw7feR07cF1Rxw5VEWVlhsrkEnAC_FKGaNUVHbahEMt7Azb0YusCAzRbaZL8ywb-K8FpqRSPbpGbtTVLe5X43SY7Or1Dro3q_fq75FfvcnmuJHjPNMXEyQmVqaIXyWwGKhSAaErni6gMopvTLKWjk8EbOoEv2zmuBxc019OkSiS-pJmhclFkYGFrRStQLfIlleXfos1FLwV2QpFp8_JbgOUqy-f3yOmVcOk-aadZqh8S6ikG1UYH4PlyhhkStWOCyPVBHA2LjUX8hgFhXCdGx_s5pmETAfc1XLMuRNaFFess4q5azqrkIFu0OUAer97H9N5lQZafhzVahDyKIylEbPB4me5GYDMaEXDlyZjFMdMWEY2EhM0JWsB86CjZgoC3q7a1lVVZT1u2fg4CuUF9vzcMsQz3qB1fBD9ci-yDvMJg4tMFvnHcv8dMhT4PHOxkr5HksIbMebie4BZ5tqoGsMMdLJnqbIHvgM7hHAwqizyoZsCKFPAM3C44ExZ5VU2JDSLrom_wC4bXB6vWefR_Kp6S6_3JaBgOB-Pjx-QGjkEVW7hH2kW-0PtgjBbRkxoBKPly1aDzB2otnZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfWIU28IP4T2MAg4C1a7DhNDEKoMKqVrRNCm9S34MT2FuiS0qagfgM-E5-Ou_xpVYRQX_YSRXHsOL7z7-7s8x0hz7nk1kYicT0BF5Fo7crUMJcZY4JIKRlpXO8YnnQPz8THUTDaIr_bszDoVtliYgXUukhxjXwfRIn0AmS4fdu4RXw66L-dfHcxgxTutLbpNGoWOTKLn2C-zd4MDoDWLzjvfzh9f-g2GQbcFNTs0k201cJLNO_6KfwLUyAwAawl5xY0JcM9FVpfChtxbbBQM64irRNhuUiUDX1ot0OuhX7AcI6Fo3AV8JeJ-hhe4LsRY7LxIqp9y6pYldklIAZYqBxxqyt9viYaqwwCaxKyc4Gump08y_6lDf8V6rQSj_2b5Eaj19JezYi3yJbJb5OdYbNzf4f86l0uzrUCO5rmGEI5oyrX9CKbTECYAiSN6WyeVO50M1rkdPh58IqewpfdKa4Ml3RqxlkdUnxBC0vVvCxA1zaa1vBaThdUVb9F25QvJTZCkWSz6luA6rqYzu6Ssyuh0T2ynRe5eUBooDkUWxOBDSw4xko0no0SFgJjWp5ah4QtAeK0CZGOmTrGcesL9zVekS5G0sU16RzCljUndZiQDeq8Qxov38dA39WDYnoeN7gRiyRNlJSpxYNmppuA9mhlJHSgUp6m3DhEthwSt2dpAf2hoWyDDrxe1m30rVqP2rD2M2DItd4f9o5jfIa71V4oox_MIXvArzCYeGVAN4E7-RizMBSRh43stpwcN-A5i1dT3SFPl8UAe7iXpXJTzPEdkD5CgGrlkPv1DFh2BWwE1gWzwiEv6ymx1snm0Te4g-ENQb_1Hv6_F0_IDkBNfDw4OXpEruMQ1E6Gu2S7nM7NHmilZfK4mv6UfLlqvPkD58WgZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amygdalar+nuclei+and+hippocampal+subfields+on+MRI%3A+Test-retest+reliability+of+automated+volumetry+across+different+MRI+sites+and+vendors&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Quattrini%2C+Giulia&rft.au=Pievani%2C+Michela&rft.au=Jovicich%2C+Jorge&rft.au=Aiello%2C+Marco&rft.date=2020-09-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=218&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.116932&rft.externalDocID=S1053811920304183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon