Host and viral traits predict zoonotic spillover from mammals

Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 546; no. 7660; pp. 646 - 650
Main Authors Olival, Kevin J., Hosseini, Parviez R., Zambrana-Torrelio, Carlos, Ross, Noam, Bogich, Tiffany L., Daszak, Peter
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.06.2017
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/nature22975

Cover

Loading…
Abstract Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel zoonoses are likely to be found. Zoonotic virus distribution patterns Zoonotic viruses, many originating in wild mammals, pose a serious threat to global public health. Peter Daszak and colleagues create a comprehensive database of mammalian host–virus relationships, which they analyse to determine patterns of virus and zoonotic virus distribution in mammals. They identify various factors that influence the number and diversity of viruses that infect a given species as well as factors that predict the proportion of zoonotic viruses per species. In doing so, they identify mammalian species and geographic locations where novel zoonoses are likely to be found. The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS) 1 , 2 , 3 . Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs 4 . However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries 5 , 6 , 7 . Here we conduct a comprehensive analysis of mammalian host–virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range—which may reflect human–wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.
AbstractList Analysis of a comprehensive database of mammalian host-virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel zoonoses are likely to be found.
The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.
Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel zoonoses are likely to be found. Zoonotic virus distribution patterns Zoonotic viruses, many originating in wild mammals, pose a serious threat to global public health. Peter Daszak and colleagues create a comprehensive database of mammalian host–virus relationships, which they analyse to determine patterns of virus and zoonotic virus distribution in mammals. They identify various factors that influence the number and diversity of viruses that infect a given species as well as factors that predict the proportion of zoonotic viruses per species. In doing so, they identify mammalian species and geographic locations where novel zoonoses are likely to be found. The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS) 1 , 2 , 3 . Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs 4 . However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries 5 , 6 , 7 . Here we conduct a comprehensive analysis of mammalian host–virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range—which may reflect human–wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.
Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel zoonoses are likely to be found. Zoonotic viruses, many originating in wild mammals, pose a serious threat to global public health. Peter Daszak and colleagues create a comprehensive database of mammalian host–virus relationships, which they analyse to determine patterns of virus and zoonotic virus distribution in mammals. They identify various factors that influence the number and diversity of viruses that infect a given species as well as factors that predict the proportion of zoonotic viruses per species. In doing so, they identify mammalian species and geographic locations where novel zoonoses are likely to be found. The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS) 1 , 2 , 3 . Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs 4 . However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries 5 , 6 , 7 . Here we conduct a comprehensive analysis of mammalian host–virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range—which may reflect human–wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.
The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.
Audience Academic
Author Olival, Kevin J.
Bogich, Tiffany L.
Daszak, Peter
Ross, Noam
Hosseini, Parviez R.
Zambrana-Torrelio, Carlos
Author_xml – sequence: 1
  givenname: Kevin J.
  surname: Olival
  fullname: Olival, Kevin J.
  email: olival@ecohealthalliance.org
  organization: EcoHealth Alliance
– sequence: 2
  givenname: Parviez R.
  surname: Hosseini
  fullname: Hosseini, Parviez R.
  organization: EcoHealth Alliance
– sequence: 3
  givenname: Carlos
  surname: Zambrana-Torrelio
  fullname: Zambrana-Torrelio, Carlos
  organization: EcoHealth Alliance
– sequence: 4
  givenname: Noam
  surname: Ross
  fullname: Ross, Noam
  organization: EcoHealth Alliance
– sequence: 5
  givenname: Tiffany L.
  surname: Bogich
  fullname: Bogich, Tiffany L.
  organization: EcoHealth Alliance
– sequence: 6
  givenname: Peter
  surname: Daszak
  fullname: Daszak, Peter
  email: daszak@ecohealthalliance.org
  organization: EcoHealth Alliance
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28636590$$D View this record in MEDLINE/PubMed
BookMark eNqF099r1TAUB_AgE3c3ffJdintRtPMkzY_2QWEMdYOB4I_nkKXpNaNN7pL04vbXm8vdpHdUpQ-B9nO-J-E0B2jPeWcQeo7hGENVv3MqjcEQ0gj2CC0wFbykvBZ7aAFA6hLqiu-jgxivAIBhQZ-gfVLzirMGFuj9mY-pUK4t1jaovkhB2RSLVTCt1am49d75ZHURV7bv_dqEogt-KAY1DKqPT9HjLi_m2d16iH58-vj99Ky8-PL5_PTkotSCi1RqYpgWdcWIYAIrRhnt2gYzwBSLFrdAlKD4UmPFTd1Cyyhl2ADuas5BCV4dog_b3NV4OZhWG5f32ctVsIMKN9IrK3e_OPtTLv1aMiaAcsgBr-4Cgr8eTUxysFGbvlfO-DFK3GDCoWZ4Q48e0Cs_BpePlxUBTghM1VL1RlrX-dxXb0LlCacNBqBN_U9FG1HhhgucVTmjlsaZfJQ8687m1zv-5YzXK3stp63_iqZJxzMoP60ZrJ5t_XqnIJtkfqWlGmOU59--7h7-f3aa-2I64D-Tvf9RM8BboIOPMZhOaptUsn4zb9tLDHJzGeTkMuSaNw9q7mPn9dutjlm5pQmTuc_w31y0Et0
CitedBy_id crossref_primary_10_1371_journal_ppat_1012763
crossref_primary_10_1016_j_cell_2023_03_036
crossref_primary_10_1136_bmjgh_2020_004254
crossref_primary_10_1080_14760584_2022_2148660
crossref_primary_10_1038_nature23088
crossref_primary_10_3389_fevo_2023_1126149
crossref_primary_10_1016_j_virusres_2020_198175
crossref_primary_10_1371_journal_pbio_3000206
crossref_primary_10_1016_j_xinn_2020_100065
crossref_primary_10_1016_j_cell_2021_06_008
crossref_primary_10_7717_peerj_17651
crossref_primary_10_1007_s00705_020_04683_7
crossref_primary_10_3389_fcimb_2019_00256
crossref_primary_10_1111_gcb_16708
crossref_primary_10_1089_vbz_2022_0090
crossref_primary_10_1111_1365_2656_13666
crossref_primary_10_3390_v15010199
crossref_primary_10_1126_science_abj3624
crossref_primary_10_1038_s41467_024_49967_7
crossref_primary_10_1098_rspb_2019_2736
crossref_primary_10_1098_rstb_2019_0296
crossref_primary_10_1111_brv_12568
crossref_primary_10_1016_j_jiph_2021_04_011
crossref_primary_10_3201_eid2502_181246
crossref_primary_10_1371_journal_pntd_0008940
crossref_primary_10_1038_s41586_024_08471_0
crossref_primary_10_1371_journal_ppat_1009583
crossref_primary_10_1016_j_biocon_2020_108702
crossref_primary_10_1098_rspb_2022_1073
crossref_primary_10_1093_nar_gkab862
crossref_primary_10_1038_s41893_019_0293_3
crossref_primary_10_1111_ele_14294
crossref_primary_10_1371_journal_pbio_3000436
crossref_primary_10_1098_rstb_2018_0339
crossref_primary_10_4049_jimmunol_1701214
crossref_primary_10_1186_s12915_022_01463_4
crossref_primary_10_1038_s41564_024_01879_4
crossref_primary_10_1016_j_gecco_2019_e00889
crossref_primary_10_1073_pnas_2122851119
crossref_primary_10_1093_ve_veaa017
crossref_primary_10_1016_j_envint_2021_106915
crossref_primary_10_1016_j_virusres_2018_02_013
crossref_primary_10_1038_s41579_020_0394_z
crossref_primary_10_1016_j_coviro_2024_101436
crossref_primary_10_1371_journal_ppat_1012629
crossref_primary_10_1093_conphys_coz094
crossref_primary_10_1098_rsob_170189
crossref_primary_10_1016_j_cub_2020_04_031
crossref_primary_10_1016_j_meegid_2018_05_016
crossref_primary_10_1038_s41598_021_95000_y
crossref_primary_10_1111_cobi_14310
crossref_primary_10_1038_s41586_022_04788_w
crossref_primary_10_1084_jem_20211220
crossref_primary_10_1111_1462_2920_16121
crossref_primary_10_1093_biosci_biy074
crossref_primary_10_1084_jem_20211223
crossref_primary_10_3390_life12020156
crossref_primary_10_1111_1365_2656_13883
crossref_primary_10_1073_pnas_1814995116
crossref_primary_10_1126_science_aap7463
crossref_primary_10_1002_hsr2_1590
crossref_primary_10_1098_rspb_2020_1841
crossref_primary_10_1111_mec_17078
crossref_primary_10_3389_fimmu_2023_1239572
crossref_primary_10_1126_science_aav4265
crossref_primary_10_1016_j_ygeno_2020_08_029
crossref_primary_10_1186_s40168_020_00965_z
crossref_primary_10_3390_ijerph17217884
crossref_primary_10_3390_v16111688
crossref_primary_10_1002_ajpa_24718
crossref_primary_10_1126_sciimmunol_abd0205
crossref_primary_10_1038_s41559_020_01333_8
crossref_primary_10_1038_s41597_023_02636_8
crossref_primary_10_3390_v13091800
crossref_primary_10_3389_fmicb_2021_675528
crossref_primary_10_26508_lsa_201900542
crossref_primary_10_3390_v17010131
crossref_primary_10_1128_mSphere_00397_18
crossref_primary_10_3917_spub_190_0091
crossref_primary_10_1007_s10531_024_02872_3
crossref_primary_10_1111_1348_0421_13033
crossref_primary_10_1093_ve_veaa033
crossref_primary_10_1093_conphys_coab074
crossref_primary_10_1016_j_meegid_2020_104450
crossref_primary_10_1111_ijcp_13524
crossref_primary_10_1016_j_coesh_2020_08_005
crossref_primary_10_1128_JVI_02140_17
crossref_primary_10_1038_s41467_021_25833_8
crossref_primary_10_35825_2587_5728_2023_7_4_350_365
crossref_primary_10_1098_rspb_2022_1165
crossref_primary_10_1093_gigascience_giy116
crossref_primary_10_7554_eLife_45079
crossref_primary_10_1038_s41598_018_28061_1
crossref_primary_10_1093_biosci_biac075
crossref_primary_10_1126_science_adq7993
crossref_primary_10_1007_s40823_024_00096_3
crossref_primary_10_1016_j_scitotenv_2020_143723
crossref_primary_10_1111_ele_14003
crossref_primary_10_3390_tropicalmed4030099
crossref_primary_10_1016_j_pecon_2020_12_005
crossref_primary_10_1098_rsos_231512
crossref_primary_10_3892_mmr_2023_13005
crossref_primary_10_1111_mam_12110
crossref_primary_10_3389_fimmu_2018_02112
crossref_primary_10_1111_mam_12353
crossref_primary_10_1029_2021RG000766
crossref_primary_10_1038_s41586_018_0010_9
crossref_primary_10_1177_2053019620979326
crossref_primary_10_1038_d41586_018_03923_w
crossref_primary_10_1038_s41598_019_52209_2
crossref_primary_10_1126_sciadv_adl3466
crossref_primary_10_1101_cshperspect_a038612
crossref_primary_10_1098_rstb_2019_0014
crossref_primary_10_3389_fpubh_2020_00318
crossref_primary_10_1098_rsos_181577
crossref_primary_10_3390_molecules29010225
crossref_primary_10_1016_j_vprsr_2024_101113
crossref_primary_10_1038_s41586_020_03128_0
crossref_primary_10_1038_s44358_024_00005_w
crossref_primary_10_1016_j_coviro_2023_101377
crossref_primary_10_1002_ece3_11509
crossref_primary_10_1016_j_onehlt_2023_100631
crossref_primary_10_1098_rstb_2019_0021
crossref_primary_10_3390_v11100971
crossref_primary_10_3201_eid2904_221022
crossref_primary_10_1016_j_antiviral_2018_02_001
crossref_primary_10_1038_s41564_019_0430_9
crossref_primary_10_1016_j_pecon_2021_07_005
crossref_primary_10_1002_ece3_4451
crossref_primary_10_1080_21505594_2020_1771980
crossref_primary_10_1093_biosci_biab080
crossref_primary_10_1186_s12983_023_00502_2
crossref_primary_10_1111_1365_2656_12998
crossref_primary_10_7717_peerj_8013
crossref_primary_10_1186_s12917_018_1603_0
crossref_primary_10_1016_j_onehlt_2022_100468
crossref_primary_10_1016_j_coviro_2023_101346
crossref_primary_10_1016_j_isci_2022_104782
crossref_primary_10_1080_14760584_2020_1813574
crossref_primary_10_1073_pnas_2202871119
crossref_primary_10_2174_1568026620666200325114400
crossref_primary_10_35864_evmd_1321675
crossref_primary_10_1073_pnas_2113628119
crossref_primary_10_1098_rsbl_2019_0423
crossref_primary_10_1098_rsbl_2019_0668
crossref_primary_10_1038_s41597_023_02472_w
crossref_primary_10_1093_bib_bbaa251
crossref_primary_10_1073_pnas_2218860120
crossref_primary_10_1038_s41467_017_00923_8
crossref_primary_10_1093_ismejo_wrae087
crossref_primary_10_3917_spub_190_0173
crossref_primary_10_1016_j_chembiol_2024_03_008
crossref_primary_10_1186_s40168_018_0554_9
crossref_primary_10_1111_mam_12329
crossref_primary_10_1038_s41467_024_49515_3
crossref_primary_10_5334_aogh_3770
crossref_primary_10_1146_annurev_environ_041020_063132
crossref_primary_10_1016_j_pt_2019_03_010
crossref_primary_10_1016_S2542_5196_22_00147_4
crossref_primary_10_1186_s12985_018_0949_z
crossref_primary_10_1016_j_ttbdis_2020_101419
crossref_primary_10_1016_j_tmaid_2024_102692
crossref_primary_10_1111_zph_12460
crossref_primary_10_3390_vaccines8020228
crossref_primary_10_3390_v12050539
crossref_primary_10_1080_22221751_2023_2192816
crossref_primary_10_20517_2347_9264_2024_54
crossref_primary_10_1016_j_jeem_2021_102451
crossref_primary_10_1371_journal_pbio_2006738
crossref_primary_10_1371_journal_pbio_3001135
crossref_primary_10_14202_vetworld_2020_495_501
crossref_primary_10_1007_s00705_019_04347_1
crossref_primary_10_1186_s42522_022_00067_w
crossref_primary_10_3389_fncel_2021_755875
crossref_primary_10_1086_714595
crossref_primary_10_1016_j_envint_2024_109183
crossref_primary_10_3389_fmicb_2018_00686
crossref_primary_10_1111_1365_2664_14442
crossref_primary_10_3390_v14102242
crossref_primary_10_1093_bioinformatics_btab338
crossref_primary_10_3389_fviro_2021_684949
crossref_primary_10_4103_ijmr_IJMR_601_21
crossref_primary_10_1101_cshperspect_a031690
crossref_primary_10_1155_2024_4237104
crossref_primary_10_1177_0748730420987322
crossref_primary_10_1016_j_scitotenv_2022_153043
crossref_primary_10_1073_pnas_2104759118
crossref_primary_10_1016_j_tree_2019_03_004
crossref_primary_10_1039_D3TA03343K
crossref_primary_10_2993_0278_0771_40_2_117
crossref_primary_10_1099_mgen_0_001275
crossref_primary_10_3390_microorganisms9020433
crossref_primary_10_1038_s41467_021_24085_w
crossref_primary_10_1111_1751_7915_13800
crossref_primary_10_1016_j_vacune_2024_05_014
crossref_primary_10_1098_rspb_2023_1085
crossref_primary_10_1186_s44149_021_00016_6
crossref_primary_10_1038_d41586_022_03358_4
crossref_primary_10_1080_01652176_2022_2086718
crossref_primary_10_1146_annurev_animal_022516_022811
crossref_primary_10_1016_j_virusres_2017_10_016
crossref_primary_10_1098_rstb_2019_0224
crossref_primary_10_1111_jzo_12769
crossref_primary_10_1089_hs_2017_0069
crossref_primary_10_3389_fimmu_2023_1209532
crossref_primary_10_2139_ssrn_4048508
crossref_primary_10_1038_s41598_020_74473_3
crossref_primary_10_1515_mammalia_2019_0036
crossref_primary_10_1016_j_vetpar_2017_12_018
crossref_primary_10_1186_s13567_024_01399_3
crossref_primary_10_3201_eid2807_212614
crossref_primary_10_1111_zph_12484
crossref_primary_10_1007_s10764_021_00272_w
crossref_primary_10_3389_fmicb_2020_631736
crossref_primary_10_1038_s41586_020_2812_9
crossref_primary_10_1016_j_virs_2024_06_008
crossref_primary_10_1086_701069
crossref_primary_10_1098_rspa_2020_0469
crossref_primary_10_1016_j_csbj_2023_01_005
crossref_primary_10_1016_j_csbj_2023_02_044
crossref_primary_10_1016_j_cell_2018_03_070
crossref_primary_10_1093_bjc_azae047
crossref_primary_10_1016_j_coviro_2023_101302
crossref_primary_10_1002_rmv_2326
crossref_primary_10_1111_ele_13586
crossref_primary_10_1038_s41598_018_36485_y
crossref_primary_10_1098_rspb_2019_1109
crossref_primary_10_1371_journal_pone_0223958
crossref_primary_10_1371_journal_pone_0186943
crossref_primary_10_1016_S2666_5247_20_30002_1
crossref_primary_10_3389_fcosc_2023_1218153
crossref_primary_10_1016_j_meegid_2023_105407
crossref_primary_10_1038_s41467_021_23926_y
crossref_primary_10_1098_rstb_2020_0351
crossref_primary_10_1371_journal_ppat_1008758
crossref_primary_10_1098_rstb_2020_0350
crossref_primary_10_1128_jvi_01757_21
crossref_primary_10_1093_bioinformatics_bty694
crossref_primary_10_3389_fimmu_2017_01481
crossref_primary_10_3390_v13102020
crossref_primary_10_1038_s41467_022_29378_2
crossref_primary_10_1371_journal_pone_0258523
crossref_primary_10_1371_journal_pbio_3001390
crossref_primary_10_3390_ani10091632
crossref_primary_10_3390_v10120675
crossref_primary_10_1371_journal_pone_0207010
crossref_primary_10_1038_s41598_022_22134_y
crossref_primary_10_1146_annurev_anthro_041420_100047
crossref_primary_10_1007_s11356_021_12553_1
crossref_primary_10_1098_rspb_2022_0397
crossref_primary_10_3897_BDJ_12_e132199
crossref_primary_10_1242_dmm_050763
crossref_primary_10_1016_j_bjid_2017_11_003
crossref_primary_10_1073_pnas_2003352117
crossref_primary_10_1079_onehealthcases_2024_0020
crossref_primary_10_46234_ccdcw2021_035
crossref_primary_10_1111_zph_12663
crossref_primary_10_1016_j_it_2024_01_008
crossref_primary_10_1111_gcb_15412
crossref_primary_10_1590_s1678_9946202365017
crossref_primary_10_1038_d41586_020_01096_z
crossref_primary_10_1111_zph_12540
crossref_primary_10_1098_rstb_2020_0363
crossref_primary_10_1098_rstb_2020_0360
crossref_primary_10_3390_pathogens12111342
crossref_primary_10_1098_rspb_2021_0900
crossref_primary_10_3390_v12010048
crossref_primary_10_1016_j_jnc_2023_126330
crossref_primary_10_1111_tbed_14389
crossref_primary_10_15446_rsap_v23n4_88717
crossref_primary_10_1098_rstb_2020_0358
crossref_primary_10_1098_rstb_2020_0355
crossref_primary_10_1098_rstb_2020_0356
crossref_primary_10_1016_j_coviro_2021_12_008
crossref_primary_10_1073_pnas_2215600119
crossref_primary_10_3389_fvets_2021_604560
crossref_primary_10_1086_721088
crossref_primary_10_1016_S2542_5196_23_00077_3
crossref_primary_10_1590_1678_4685_gmb_2021_0309
crossref_primary_10_1007_s42770_022_00858_3
crossref_primary_10_1128_mBio_02755_20
crossref_primary_10_1016_j_chom_2018_01_006
crossref_primary_10_1016_j_tim_2022_07_002
crossref_primary_10_1016_j_carbpol_2021_117797
crossref_primary_10_3389_fpubh_2018_00104
crossref_primary_10_1371_journal_pone_0254467
crossref_primary_10_15446_abc_v29n3_117008
crossref_primary_10_3389_fevo_2019_00069
crossref_primary_10_3390_v13081509
crossref_primary_10_1016_j_cub_2021_06_006
crossref_primary_10_1002_ece3_10814
crossref_primary_10_1016_j_onehlt_2023_100596
crossref_primary_10_3389_fmicb_2021_809296
crossref_primary_10_1007_s10530_023_03213_1
crossref_primary_10_1016_j_pt_2020_10_012
crossref_primary_10_1007_s10393_022_01599_3
crossref_primary_10_1371_journal_pntd_0008338
crossref_primary_10_1016_j_lanwpc_2024_101264
crossref_primary_10_1038_s41467_020_16153_4
crossref_primary_10_1038_s41562_023_01597_7
crossref_primary_10_1128_jvi_00935_24
crossref_primary_10_1186_s13071_022_05516_z
crossref_primary_10_3389_fbinf_2023_1069487
crossref_primary_10_3389_fimmu_2020_00026
crossref_primary_10_1016_j_actaastro_2018_10_042
crossref_primary_10_3389_fpubh_2018_00235
crossref_primary_10_1007_s13752_020_00363_6
crossref_primary_10_3390_v14050905
crossref_primary_10_1016_j_jviromet_2020_114037
crossref_primary_10_1016_j_gecco_2018_e00515
crossref_primary_10_1016_j_yamp_2023_07_008
crossref_primary_10_1016_j_scitotenv_2019_04_266
crossref_primary_10_1016_j_micinf_2017_11_013
crossref_primary_10_1111_tbed_14361
crossref_primary_10_1186_s13059_018_1456_7
crossref_primary_10_1111_2041_210X_14500
crossref_primary_10_3390_v14091899
crossref_primary_10_1128_JVI_00082_18
crossref_primary_10_1016_j_coviro_2022_101228
crossref_primary_10_1038_s41467_024_49891_w
crossref_primary_10_4236_jbm_2019_712011
crossref_primary_10_1016_j_ribaf_2020_101335
crossref_primary_10_1128_mBio_02220_20
crossref_primary_10_1002_pan3_10625
crossref_primary_10_1021_acsomega_2c02524
crossref_primary_10_1007_s11259_024_10488_9
crossref_primary_10_1111_mam_12173
crossref_primary_10_3390_covid4020014
crossref_primary_10_1007_s10393_022_01609_4
crossref_primary_10_1098_rspb_2019_2882
crossref_primary_10_1016_j_ttbdis_2022_102073
crossref_primary_10_1093_biosci_biz125
crossref_primary_10_1146_annurev_virology_092818_015613
crossref_primary_10_1016_j_cell_2023_01_011
crossref_primary_10_1016_j_onehlt_2023_100498
crossref_primary_10_1016_j_cvsm_2019_02_002
crossref_primary_10_7189_jogh_13_03034
crossref_primary_10_1146_annurev_virology_092818_015851
crossref_primary_10_1038_s42003_024_05870_x
crossref_primary_10_1016_j_bsheal_2019_10_004
crossref_primary_10_1016_j_coesh_2021_100310
crossref_primary_10_1371_journal_pone_0301841
crossref_primary_10_1099_jgv_0_001214
crossref_primary_10_1186_s41182_018_0117_6
crossref_primary_10_1002_pan3_10119
crossref_primary_10_3390_v11020192
crossref_primary_10_1016_j_virs_2023_02_002
crossref_primary_10_3390_v13020252
crossref_primary_10_3389_fimmu_2017_01098
crossref_primary_10_1016_j_meegid_2021_105030
crossref_primary_10_1038_s41467_024_50316_x
crossref_primary_10_1038_s41684_018_0029_4
crossref_primary_10_54751_revistafoco_v16n9_194
crossref_primary_10_1002_inc3_34
crossref_primary_10_1186_s12985_025_02702_0
crossref_primary_10_1007_s10393_020_01471_2
crossref_primary_10_3389_fevo_2024_1324605
crossref_primary_10_1098_rsos_190883
crossref_primary_10_1016_j_epidem_2021_100523
crossref_primary_10_1515_ntrev_2021_0072
crossref_primary_10_1089_vbz_2024_0091
crossref_primary_10_3390_microorganisms9030540
crossref_primary_10_1016_j_coviro_2022_101202
crossref_primary_10_1111_mec_15463
crossref_primary_10_1007_s10393_018_1359_9
crossref_primary_10_3390_v10040143
crossref_primary_10_1007_s10393_022_01619_2
crossref_primary_10_1017_S0031182020002371
crossref_primary_10_1007_s10393_022_01608_5
crossref_primary_10_1038_s41559_020_1275_6
crossref_primary_10_3390_v14122820
crossref_primary_10_1080_20008686_2024_2441537
crossref_primary_10_1016_j_onehlt_2020_100177
crossref_primary_10_1111_tbed_14478
crossref_primary_10_1016_S2666_5247_21_00245_7
crossref_primary_10_3390_vaccines10091551
crossref_primary_10_1038_s41598_018_22899_1
crossref_primary_10_1016_j_micpath_2025_107328
crossref_primary_10_1038_nature23660
crossref_primary_10_1002_ajp_22991
crossref_primary_10_1038_s41467_023_39455_9
crossref_primary_10_1371_journal_pntd_0007393
crossref_primary_10_1002_evan_21920
crossref_primary_10_4049_jimmunol_1900001
crossref_primary_10_1111_mec_15573
crossref_primary_10_3390_v13112226
crossref_primary_10_1371_journal_pone_0239599
crossref_primary_10_1007_s40588_024_00221_0
crossref_primary_10_3390_microorganisms12112191
crossref_primary_10_3390_microorganisms8050750
crossref_primary_10_29328_journal_abse_1001009
crossref_primary_10_1136_bmjopen_2020_041247
crossref_primary_10_1098_rsbl_2021_0427
crossref_primary_10_1002_evl3_247
crossref_primary_10_3389_fmicb_2018_02562
crossref_primary_10_1111_1365_2435_13311
crossref_primary_10_1038_s41586_024_07380_6
crossref_primary_10_1016_j_mbs_2021_108732
crossref_primary_10_1016_j_jviromet_2024_115057
crossref_primary_10_1002_ece3_8466
crossref_primary_10_1111_jeb_13771
crossref_primary_10_3389_fvets_2023_1229676
crossref_primary_10_1002_cti2_1114
crossref_primary_10_1016_j_chom_2018_03_012
crossref_primary_10_3389_fvets_2021_644414
crossref_primary_10_1093_gbe_evad148
crossref_primary_10_1016_j_ecolmodel_2022_110092
crossref_primary_10_1016_j_pt_2019_04_001
crossref_primary_10_1016_j_ecolmodel_2022_110095
crossref_primary_10_1016_S0140_6736_21_00948_X
crossref_primary_10_1038_sdata_2018_17
crossref_primary_10_1038_s42003_022_03797_9
crossref_primary_10_3390_ani11072044
crossref_primary_10_3897_biss_4_59199
crossref_primary_10_1126_science_aap9072
crossref_primary_10_1080_10455752_2022_2144397
crossref_primary_10_1038_s41564_019_0371_3
crossref_primary_10_1089_vbz_2020_2696
crossref_primary_10_1186_s12985_022_01847_6
crossref_primary_10_1021_acsnano_9b07293
crossref_primary_10_1111_mve_12639
crossref_primary_10_1038_s41598_022_08350_6
crossref_primary_10_1371_journal_pone_0287893
crossref_primary_10_1007_s10640_020_00449_6
crossref_primary_10_22207_JPAM_14_2_02
crossref_primary_10_3390_v16081210
crossref_primary_10_1016_j_xcrp_2024_102081
crossref_primary_10_3389_fvets_2023_1310303
crossref_primary_10_1002_ctm2_886
crossref_primary_10_1038_s41467_019_09444_y
crossref_primary_10_1038_s41467_025_57314_7
crossref_primary_10_1098_rsif_2017_0479
crossref_primary_10_1016_j_chom_2021_04_003
crossref_primary_10_1007_s10393_023_01636_9
crossref_primary_10_1073_pnas_2013102117
crossref_primary_10_1146_annurev_ecolsys_102320_101234
crossref_primary_10_3201_eid2911_230362
crossref_primary_10_3389_fpsyt_2020_566141
crossref_primary_10_1111_mec_15422
crossref_primary_10_1126_science_aav0379
crossref_primary_10_1111_tbed_13102
crossref_primary_10_1590_1519_6984_248032
crossref_primary_10_2174_0929867324666171005112921
crossref_primary_10_3389_fpubh_2021_627654
crossref_primary_10_3390_v11060568
crossref_primary_10_3201_eid2704_202676
crossref_primary_10_3390_v17030349
crossref_primary_10_1016_j_coviro_2021_04_013
crossref_primary_10_1016_j_crviro_2021_100008
crossref_primary_10_7554_eLife_66550
crossref_primary_10_1111_tbed_14557
crossref_primary_10_1128_JVI_01173_21
crossref_primary_10_1016_j_csbj_2017_09_001
crossref_primary_10_1016_j_heliyon_2023_e19345
crossref_primary_10_1002_eap_1886
crossref_primary_10_1016_j_cmi_2017_12_010
crossref_primary_10_1016_j_jviromet_2024_115005
crossref_primary_10_1038_s41586_021_04224_5
crossref_primary_10_1016_j_scitotenv_2021_145413
crossref_primary_10_1038_s41559_021_01454_8
crossref_primary_10_1186_s12917_024_04310_6
crossref_primary_10_1016_j_patter_2023_100738
crossref_primary_10_1016_j_cimid_2024_102127
crossref_primary_10_1080_21505594_2021_1920741
crossref_primary_10_1016_j_csbj_2024_07_022
crossref_primary_10_1214_19_AOAS1296
crossref_primary_10_1016_j_tree_2021_01_008
crossref_primary_10_1098_rsos_231177
crossref_primary_10_15212_ZOONOSES_2021_0028
crossref_primary_10_1038_nbt_4268
crossref_primary_10_1590_0001_3765202020191375
crossref_primary_10_1146_annurev_virology_100422_024648
crossref_primary_10_3390_v14050987
crossref_primary_10_1038_s41564_021_00999_5
crossref_primary_10_3390_d9030035
crossref_primary_10_24072_pcjournal_206
crossref_primary_10_1016_j_cell_2023_08_029
crossref_primary_10_3390_v12121413
crossref_primary_10_3390_v15030599
crossref_primary_10_1038_s41598_020_63799_7
crossref_primary_10_1371_journal_pntd_0007065
crossref_primary_10_1016_j_isci_2023_107435
crossref_primary_10_1093_ve_veae044
crossref_primary_10_3389_fmicb_2023_1157608
crossref_primary_10_1093_ve_vead079
crossref_primary_10_1038_s41579_021_00665_x
crossref_primary_10_1080_22221751_2023_2225932
crossref_primary_10_51523_2708_6011_2020_17_4_3
crossref_primary_10_3390_vaccines9070690
crossref_primary_10_1038_s41467_022_35273_7
crossref_primary_10_1016_j_virusres_2020_197986
crossref_primary_10_1007_s12250_020_00219_0
crossref_primary_10_1111_ecog_05143
crossref_primary_10_1016_j_gecco_2024_e02880
crossref_primary_10_1038_s41559_020_1254_y
crossref_primary_10_1038_s41559_023_02192_9
crossref_primary_10_1016_j_epidem_2020_100416
crossref_primary_10_1038_s41598_018_31193_z
crossref_primary_10_1126_science_abn2222
crossref_primary_10_1371_journal_ppat_1009079
crossref_primary_10_1038_s41598_020_71226_0
crossref_primary_10_2217_fmb_2023_0233
crossref_primary_10_1017_S095026881700231X
crossref_primary_10_1021_acsanm_4c04873
crossref_primary_10_1126_sciadv_abl4183
crossref_primary_10_3390_ani13203279
crossref_primary_10_1080_15265161_2018_1513584
crossref_primary_10_1590_1678_4685_gmb_2020_0104
crossref_primary_10_1016_j_mcp_2020_101648
crossref_primary_10_1038_s41426_018_0119_9
crossref_primary_10_3390_microorganisms12050924
crossref_primary_10_1038_s41559_022_01723_0
crossref_primary_10_1080_1040841X_2021_1879006
crossref_primary_10_1016_j_biocon_2020_108650
crossref_primary_10_1016_j_jhep_2018_11_010
crossref_primary_10_1038_s41598_023_35861_7
crossref_primary_10_1128_mBio_00812_20
crossref_primary_10_1371_journal_pone_0294397
crossref_primary_10_1186_s40168_024_01955_1
crossref_primary_10_1073_pnas_2219962120
crossref_primary_10_36233_0507_4088_188
crossref_primary_10_1016_j_isci_2024_110369
crossref_primary_10_2471_BLT_17_205005
crossref_primary_10_1111_ecog_06939
crossref_primary_10_3389_fmicb_2023_1151524
crossref_primary_10_1038_s41597_023_02157_4
crossref_primary_10_1007_s10393_018_1356_z
crossref_primary_10_3390_su13148034
crossref_primary_10_1002_fee_2795
crossref_primary_10_1371_journal_ppat_1012471
crossref_primary_10_1007_s10393_017_1276_3
crossref_primary_10_1038_s41559_020_01364_1
crossref_primary_10_1073_pnas_2023540118
crossref_primary_10_1111_1365_2656_12985
crossref_primary_10_3390_v13071226
crossref_primary_10_1007_s11262_022_01897_6
crossref_primary_10_1073_pnas_1908072116
crossref_primary_10_3390_v11030260
crossref_primary_10_1038_s42005_021_00637_w
crossref_primary_10_1590_2358_289820241408759p
crossref_primary_10_3390_v10050222
crossref_primary_10_1007_s00284_021_02607_5
crossref_primary_10_1007_s10344_019_1346_7
crossref_primary_10_1016_S0140_6736_20_32387_4
crossref_primary_10_1016_j_biocon_2021_108952
crossref_primary_10_1016_j_mib_2020_07_004
crossref_primary_10_1139_facets_2020_0028
crossref_primary_10_1371_journal_pbio_3002800
crossref_primary_10_3389_fevo_2019_00406
crossref_primary_10_1098_rsos_181182
crossref_primary_10_1002_ece3_8852
crossref_primary_10_1007_s11427_017_9241_3
crossref_primary_10_1111_ppa_13446
crossref_primary_10_1111_mec_16027
crossref_primary_10_1002_ece3_5228
crossref_primary_10_3389_fcimb_2022_921950
crossref_primary_10_1002_ece3_6315
crossref_primary_10_1016_j_immuni_2022_10_008
crossref_primary_10_1016_j_smim_2024_101911
crossref_primary_10_3390_v16081197
crossref_primary_10_1038_s41559_024_02353_4
crossref_primary_10_1038_s41598_019_53184_4
crossref_primary_10_1186_s40249_023_01062_7
crossref_primary_10_1371_journal_pone_0226203
crossref_primary_10_1155_tbed_5530007
crossref_primary_10_1089_vbz_2022_0025
crossref_primary_10_14745_ccdr_v43i10a03
crossref_primary_10_1098_rsos_211600
crossref_primary_10_1111_gbb_12680
crossref_primary_10_1016_j_celrep_2021_109140
crossref_primary_10_1371_journal_pone_0298976
crossref_primary_10_1111_geb_13008
crossref_primary_10_1007_s00239_021_10013_5
crossref_primary_10_1371_journal_pone_0230802
crossref_primary_10_1146_annurev_virology_100120_015057
crossref_primary_10_1111_mec_15288
crossref_primary_10_1002_ece3_70614
crossref_primary_10_18470_1992_1098_2024_3_3
crossref_primary_10_1371_journal_pcbi_1009714
crossref_primary_10_3390_v16121885
crossref_primary_10_1371_journal_pone_0214227
crossref_primary_10_1038_s41598_023_47448_3
crossref_primary_10_1098_rsos_230578
crossref_primary_10_1590_1678_4685_gmb_2020_0355
crossref_primary_10_1093_ilar_ilx023
crossref_primary_10_1111_mec_16491
crossref_primary_10_3389_fpubh_2023_1133330
crossref_primary_10_1042_ETLS20200097
crossref_primary_10_1093_gbe_evaa151
crossref_primary_10_1111_1755_0998_12946
crossref_primary_10_3389_fvets_2020_00379
crossref_primary_10_52711_0974_360X_2022_00314
crossref_primary_10_3390_v11050478
crossref_primary_10_1093_bioadv_vbaf016
crossref_primary_10_3389_fvets_2024_1421158
crossref_primary_10_1038_s41586_020_2562_8
crossref_primary_10_3390_v11030240
crossref_primary_10_1016_j_vacun_2024_02_002
crossref_primary_10_7717_peerj_5979
crossref_primary_10_3390_v13101975
crossref_primary_10_3390_ijms22115672
crossref_primary_10_1002_jobm_202200072
crossref_primary_10_1007_s11692_021_09531_3
crossref_primary_10_1098_rspb_2021_0341
crossref_primary_10_1002_ece3_11572
crossref_primary_10_1016_j_heliyon_2022_e09449
crossref_primary_10_3389_fmicb_2021_737753
crossref_primary_10_3390_v13122484
crossref_primary_10_1007_s10570_019_02925_9
crossref_primary_10_3390_biology10020154
crossref_primary_10_1073_pnas_2000429117
crossref_primary_10_1126_sciadv_aar5931
crossref_primary_10_1128_mbio_02985_21
crossref_primary_10_3389_fviro_2022_862961
crossref_primary_10_1016_j_ijppaw_2020_07_004
crossref_primary_10_2139_ssrn_3984756
crossref_primary_10_1038_s41559_019_0910_6
crossref_primary_10_1186_s42522_022_00060_3
crossref_primary_10_1016_j_worlddev_2020_105121
crossref_primary_10_7589_JWD_D_20_00079
crossref_primary_10_1007_s11252_023_01436_7
crossref_primary_10_3390_v14051100
crossref_primary_10_1016_S2542_5196_21_00196_0
crossref_primary_10_1016_j_ijppaw_2022_02_010
crossref_primary_10_1155_2023_9285855
crossref_primary_10_1007_s11427_017_9252_y
crossref_primary_10_2196_26109
crossref_primary_10_3389_fmicb_2022_780651
crossref_primary_10_1128_msystems_00042_24
crossref_primary_10_1128_spectrum_00675_24
crossref_primary_10_1016_j_cell_2024_07_025
crossref_primary_10_1080_01652176_2022_2079756
crossref_primary_10_1016_j_virs_2023_01_002
crossref_primary_10_1016_j_bsheal_2020_01_003
crossref_primary_10_3389_fcimb_2022_1081370
crossref_primary_10_1073_pnas_2002324118
crossref_primary_10_3389_fmars_2022_838988
crossref_primary_10_1016_j_biocon_2020_108798
crossref_primary_10_1186_s12985_022_01806_1
crossref_primary_10_3390_ijerph17113789
crossref_primary_10_3390_v11121157
crossref_primary_10_1126_science_abd4559
crossref_primary_10_1186_s12862_019_1433_0
crossref_primary_10_1007_s10311_021_01291_y
crossref_primary_10_1007_s42770_022_00688_3
crossref_primary_10_3389_fimmu_2020_605270
crossref_primary_10_1093_jtm_taaa015
crossref_primary_10_1111_mec_15250
crossref_primary_10_3390_v11030210
crossref_primary_10_1089_omi_2021_0062
crossref_primary_10_1016_j_coviro_2018_12_007
crossref_primary_10_1038_s41586_021_03594_0
crossref_primary_10_1007_s11356_021_14625_8
crossref_primary_10_1038_s41598_021_03641_w
crossref_primary_10_1021_acs_jproteome_0c00995
crossref_primary_10_1038_s41390_023_02929_z
crossref_primary_10_1016_j_chom_2023_05_017
crossref_primary_10_3390_microorganisms9040805
crossref_primary_10_1007_s00251_019_01128_7
crossref_primary_10_7554_eLife_72123
crossref_primary_10_3390_v11040356
crossref_primary_10_1111_mec_16211
crossref_primary_10_1093_pnasnexus_pgad234
crossref_primary_10_1016_j_gpb_2020_07_003
crossref_primary_10_1016_j_cmi_2017_10_035
crossref_primary_10_1016_j_chom_2020_09_014
crossref_primary_10_3389_fmicb_2021_736530
crossref_primary_10_2471_BLT_20_254227
crossref_primary_10_1089_omi_2021_0058
crossref_primary_10_3389_fgene_2020_00831
crossref_primary_10_1128_mBio_01854_20
crossref_primary_10_1007_s10393_017_1288_z
crossref_primary_10_1007_s12250_018_0021_6
crossref_primary_10_1038_nbt0119_11b
crossref_primary_10_1007_s11684_017_0605_9
crossref_primary_10_1016_j_scitotenv_2020_142372
crossref_primary_10_1038_s41598_023_49109_x
crossref_primary_10_1073_pnas_1919176117
crossref_primary_10_1111_geb_13045
Cites_doi 10.1111/evo.12064
10.1093/oso/9780198507659.001.0001
10.1038/nature14372
10.7554/eLife.18491
10.1073/pnas.1518240113
10.1073/pnas.1521582113
10.1038/nature12711
10.1111/j.1600-0587.2011.06949.x
10.1038/nature05634
10.1093/oso/9780195074444.003.0002
10.1002/msj.20140
10.1128/CMR.00017-06
10.1371/journal.pone.0042190
10.1016/S0140-6736(12)61684-5
10.1086/596510
10.1093/nar/gkh340
10.1098/rspb.2010.0340
10.1002/evan.20041
10.1890/08-1494.1
10.1016/j.tree.2005.02.009
10.1073/pnas.1501598112
10.1098/rstb.1989.0106
10.1111/j.1420-9101.2009.01783.x
10.3201/eid1112.050997
10.1086/284325
10.1086/684391
10.1371/journal.ppat.1004395
10.1111/j.1461-0248.2009.01307.x
10.1073/pnas.1220716110
10.1126/science.1188836
10.1016/j.pt.2011.05.003
10.1038/nature06536
10.1128/mBio.00598-13
10.1098/rstb.2001.0888
10.1098/rspb.2008.0284
10.1016/j.csda.2011.02.004
10.1111/j.1466-8238.2010.00587.x
10.3201/eid1905.121042
10.1128/MMBR.00004-08
10.1038/ncomms1796
10.1098/rspb.2012.2753
10.1128/JVI.02611-14
10.1080/10635150802429642
10.1017/S0031182003002993
10.1111/j.1461-0248.2012.01858.x
10.1111/j.1558-5646.1998.tb02006.x
10.1126/science.1228282
10.1371/journal.pone.0089055
10.1111/j.0014-3820.2003.tb00285.x
10.1093/bioinformatics/btg412
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017
COPYRIGHT 2017 Nature Publishing Group
Copyright Nature Publishing Group Jun 29, 2017
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017
– notice: COPYRIGHT 2017 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jun 29, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature22975
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Proquest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


Agricultural Science Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Statistics
EISSN 1476-4687
EndPage 650
ExternalDocumentID PMC5570460
A649100498
A497319671
28636590
10_1038_nature22975
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI110964
– fundername: NIAID NIH HHS
  grantid: R01 AI079231
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ADGHP
TUS
ID FETCH-LOGICAL-c767t-c2e5c783527571a5454fd91501417d1d02a741bc1a6e8d0d54451e01f8660a763
IEDL.DBID 8C1
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 13:55:37 EDT 2025
Fri Jul 11 15:20:37 EDT 2025
Fri Jul 25 08:53:59 EDT 2025
Tue Jun 17 21:28:22 EDT 2025
Tue Jun 17 21:09:18 EDT 2025
Thu Jun 12 23:45:43 EDT 2025
Tue Jun 10 15:34:00 EDT 2025
Tue Jun 10 15:33:03 EDT 2025
Tue Jun 10 20:43:03 EDT 2025
Fri Jun 27 04:24:57 EDT 2025
Fri Jun 27 05:11:31 EDT 2025
Thu Apr 03 06:59:45 EDT 2025
Tue Jul 01 00:56:58 EDT 2025
Thu Apr 24 22:51:04 EDT 2025
Fri Feb 21 02:36:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7660
Language English
License This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c767t-c2e5c783527571a5454fd91501417d1d02a741bc1a6e8d0d54451e01f8660a763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5570460
PMID 28636590
PQID 1920622010
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5570460
proquest_miscellaneous_1912608510
proquest_journals_1920622010
gale_infotracmisc_A649100498
gale_infotracmisc_A497319671
gale_infotracgeneralonefile_A497319671
gale_infotraccpiq_649100498
gale_infotraccpiq_497319671
gale_infotracacademiconefile_A497319671
gale_incontextgauss_ISR_A649100498
gale_incontextgauss_ISR_A497319671
pubmed_primary_28636590
crossref_citationtrail_10_1038_nature22975
crossref_primary_10_1038_nature22975
springer_journals_10_1038_nature22975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-29
PublicationDateYYYYMMDD 2017-06-29
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References TJ Davies (BFnature22975_CR10) 2008; 275
B Longdon (BFnature22975_CR22) 2014; 10
CH Calisher (BFnature22975_CR31) 2006; 19
JRC Pulliam (BFnature22975_CR7) 2009; 199
JF Drexler (BFnature22975_CR26) 2012; 3
JH Epstein (BFnature22975_CR34) 2009; 76
R Poulin (BFnature22975_CR49) 2011; 27
BA Han (BFnature22975_CR15) 2015; 112
G Marra (BFnature22975_CR52) 2011; 55
KE Jones (BFnature22975_CR2) 2008; 451
BFnature22975_CR53
BFnature22975_CR55
BFnature22975_CR58
BFnature22975_CR57
BFnature22975_CR16
R Poulin (BFnature22975_CR50) 2003; 126
BFnature22975_CR19
CR Parrish (BFnature22975_CR5) 2008; 72
SJ Anthony (BFnature22975_CR25) 2013; 4
A Grafen (BFnature22975_CR41) 1989; 326
BFnature22975_CR51
JM Gómez (BFnature22975_CR11) 2013; 110
J Levinson (BFnature22975_CR18) 2013; 19
BG Holt (BFnature22975_CR54) 2013; 339
KK Goldewijk (BFnature22975_CR56) 2011; 20
CL Nunn (BFnature22975_CR29) 2005; 14
AD Luis (BFnature22975_CR12) 2013; 280
JL Geoghegan (BFnature22975_CR27) 2016; 113
A Stamatakis (BFnature22975_CR47) 2008; 57
IM Parker (BFnature22975_CR21) 2015; 520
L Brierley (BFnature22975_CR13) 2016; 187
RC Edgar (BFnature22975_CR46) 2004; 32
SS Morse (BFnature22975_CR4) 2012; 380
BFnature22975_CR32
J Felsenstein (BFnature22975_CR39) 1985; 125
ORP Bininda-Emonds (BFnature22975_CR44) 2007; 446
BFnature22975_CR33
RR Dunn (BFnature22975_CR17) 2010; 277
AM Messenger (BFnature22975_CR35) 2014; 9
DG Streicker (BFnature22975_CR14) 2010; 329
X-Y Ge (BFnature22975_CR23) 2013; 503
LH Taylor (BFnature22975_CR3) 2001; 356
JP de Magalhães (BFnature22975_CR37) 2009; 22
SP Blomberg (BFnature22975_CR40) 2003; 57
E Paradis (BFnature22975_CR45) 2004; 20
KE Jones (BFnature22975_CR36) 2009; 90
ME Woolhouse (BFnature22975_CR8) 2005; 20
N Cooper (BFnature22975_CR9) 2012; 15
JAF Diniz-Filho (BFnature22975_CR43) 1998; 52
MEJ Woolhouse (BFnature22975_CR1) 2005; 11
JH Cuthill (BFnature22975_CR48) 2013; 67
KJ Olival (BFnature22975_CR30) 2012; 14
N Cooper (BFnature22975_CR38) 2012; 7
SA Fritz (BFnature22975_CR28) 2009; 12
JAF Diniz-Filho (BFnature22975_CR42) 2012; 35
P Zhou (BFnature22975_CR20) 2016; 113
M Lipsitch (BFnature22975_CR6) 2016; 5
LJ Organtini (BFnature22975_CR24) 2015; 89
23647732 - Emerg Infect Dis. 2013 May;19(5):743-7
19787650 - Mt Sinai J Med. 2009 Oct;76(5):448-55
15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
23258408 - Science. 2013 Jan 4;339(6115):74-8
16847084 - Clin Microbiol Rev. 2006 Jul;19(3):531-45
18445561 - Proc Biol Sci. 2008 Jul 22;275(1643):1695-701
28565378 - Evolution. 1998 Oct;52(5):1247-1262
24172901 - Nature. 2013 Nov 28;503(7477):535-8
22531181 - Nat Commun. 2012 Apr 24;3:796
28636591 - Nature. 2017 Jun 29;546(7660):603-604
18772285 - Microbiol Mol Biol Rev. 2008 Sep;72(3):457-70
23378666 - Proc Biol Sci. 2013 Feb 01;280(1756):20122753
17392779 - Nature. 2007 Mar 29;446(7135):507-12
27834632 - Elife. 2016 Nov 11;5:null
19392714 - Ecol Lett. 2009 Jun;12(6):538-49
2575770 - Philos Trans R Soc Lond B Biol Sci. 1989 Dec 21;326(1233):119-57
22879916 - PLoS One. 2012;7(8):e42190
27001840 - Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4170-5
19522730 - J Evol Biol. 2009 Aug;22(8):1770-4
21680245 - Trends Parasitol. 2011 Aug;27(8):355-61
25375777 - PLoS Pathog. 2014 Nov 06;10(11):e1004395
19281304 - J Infect Dis. 2009 Feb 15;199(4):565-8
20689015 - Science. 2010 Aug 6;329(5992):676-9
18853362 - Syst Biol. 2008 Oct;57(5):758-71
24586500 - PLoS One. 2014 Feb 28;9(2):e89055
22913776 - Ecol Lett. 2012 Dec;15(12):1370-7
23550750 - Evolution. 2013 Apr;67(4):980-90
24003179 - MBio. 2013 Sep 03;4(5):e00598-13
26038558 - Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):7039-44
23200504 - Lancet. 2012 Dec 1;380(9857):1956-65
26903655 - Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2696-701
12793652 - Parasitology. 2003 May;126(Pt 5):473-80
16485468 - Emerg Infect Dis. 2005 Dec;11(12):1842-7
11516376 - Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):983-9
23610389 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7738-41
12778543 - Evolution. 2003 Apr;57(4):717-45
14734327 - Bioinformatics. 2004 Jan 22;20(2):289-90
25903634 - Nature. 2015 Apr 23;520(7548):542-4
16701375 - Trends Ecol Evol. 2005 May;20(5):238-44
26807755 - Am Nat. 2016 Feb;187(2):E53-64
20392728 - Proc Biol Sci. 2010 Sep 7;277(1694):2587-95
25410876 - J Virol. 2015 Feb;89(3):1909-12
18288193 - Nature. 2008 Feb 21;451(7181):990-3
References_xml – volume: 67
  start-page: 980
  year: 2013
  ident: BFnature22975_CR48
  publication-title: Evolution
  doi: 10.1111/evo.12064
– ident: BFnature22975_CR33
– ident: BFnature22975_CR53
  doi: 10.1093/oso/9780198507659.001.0001
– volume: 520
  start-page: 542
  year: 2015
  ident: BFnature22975_CR21
  publication-title: Nature
  doi: 10.1038/nature14372
– volume: 5
  start-page: e18491
  year: 2016
  ident: BFnature22975_CR6
  publication-title: eLife
  doi: 10.7554/eLife.18491
– volume: 113
  start-page: 2696
  year: 2016
  ident: BFnature22975_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1518240113
– volume: 113
  start-page: 4170
  year: 2016
  ident: BFnature22975_CR27
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1521582113
– volume: 503
  start-page: 535
  year: 2013
  ident: BFnature22975_CR23
  publication-title: Nature
  doi: 10.1038/nature12711
– volume: 35
  start-page: 239
  year: 2012
  ident: BFnature22975_CR42
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2011.06949.x
– volume: 446
  start-page: 507
  year: 2007
  ident: BFnature22975_CR44
  publication-title: Nature
  doi: 10.1038/nature05634
– ident: BFnature22975_CR19
  doi: 10.1093/oso/9780195074444.003.0002
– volume: 76
  start-page: 448
  year: 2009
  ident: BFnature22975_CR34
  publication-title: Mt. Sinai J. Med.
  doi: 10.1002/msj.20140
– volume: 19
  start-page: 531
  year: 2006
  ident: BFnature22975_CR31
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00017-06
– volume: 7
  start-page: e42190
  year: 2012
  ident: BFnature22975_CR38
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0042190
– volume: 380
  start-page: 1956
  year: 2012
  ident: BFnature22975_CR4
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61684-5
– volume: 199
  start-page: 565
  year: 2009
  ident: BFnature22975_CR7
  publication-title: J. Infect. Dis.
  doi: 10.1086/596510
– volume: 32
  start-page: 1792
  year: 2004
  ident: BFnature22975_CR46
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh340
– volume: 277
  start-page: 2587
  year: 2010
  ident: BFnature22975_CR17
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.2010.0340
– ident: BFnature22975_CR32
– volume: 14
  start-page: 1
  year: 2005
  ident: BFnature22975_CR29
  publication-title: Evol. Anthropol.
  doi: 10.1002/evan.20041
– volume: 90
  start-page: 2648
  year: 2009
  ident: BFnature22975_CR36
  publication-title: Ecology
  doi: 10.1890/08-1494.1
– volume: 20
  start-page: 238
  year: 2005
  ident: BFnature22975_CR8
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2005.02.009
– ident: BFnature22975_CR57
– volume: 112
  start-page: 7039
  year: 2015
  ident: BFnature22975_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1501598112
– volume: 326
  start-page: 119
  year: 1989
  ident: BFnature22975_CR41
  publication-title: Phil. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.1989.0106
– volume: 22
  start-page: 1770
  year: 2009
  ident: BFnature22975_CR37
  publication-title: J. Evol. Biol.
  doi: 10.1111/j.1420-9101.2009.01783.x
– volume: 11
  start-page: 1842
  year: 2005
  ident: BFnature22975_CR1
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1112.050997
– volume: 125
  start-page: 1
  year: 1985
  ident: BFnature22975_CR39
  publication-title: Am. Nat.
  doi: 10.1086/284325
– volume: 187
  start-page: E53
  year: 2016
  ident: BFnature22975_CR13
  publication-title: Am. Nat.
  doi: 10.1086/684391
– volume: 10
  start-page: e1004395
  year: 2014
  ident: BFnature22975_CR22
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004395
– volume: 12
  start-page: 538
  year: 2009
  ident: BFnature22975_CR28
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2009.01307.x
– volume: 110
  start-page: 7738
  year: 2013
  ident: BFnature22975_CR11
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1220716110
– ident: BFnature22975_CR58
– volume: 329
  start-page: 676
  year: 2010
  ident: BFnature22975_CR14
  publication-title: Science
  doi: 10.1126/science.1188836
– volume: 27
  start-page: 355
  year: 2011
  ident: BFnature22975_CR49
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2011.05.003
– volume: 451
  start-page: 990
  year: 2008
  ident: BFnature22975_CR2
  publication-title: Nature
  doi: 10.1038/nature06536
– volume: 4
  start-page: e00598
  year: 2013
  ident: BFnature22975_CR25
  publication-title: MBio
  doi: 10.1128/mBio.00598-13
– ident: BFnature22975_CR16
– volume: 356
  start-page: 983
  year: 2001
  ident: BFnature22975_CR3
  publication-title: Phil. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.2001.0888
– volume: 275
  start-page: 1695
  year: 2008
  ident: BFnature22975_CR10
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.2008.0284
– volume: 55
  start-page: 2372
  year: 2011
  ident: BFnature22975_CR52
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2011.02.004
– volume: 20
  start-page: 73
  year: 2011
  ident: BFnature22975_CR56
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2010.00587.x
– volume: 19
  start-page: 743
  year: 2013
  ident: BFnature22975_CR18
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1905.121042
– ident: BFnature22975_CR55
– volume: 72
  start-page: 457
  year: 2008
  ident: BFnature22975_CR5
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00004-08
– volume: 3
  start-page: 796
  year: 2012
  ident: BFnature22975_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1796
– volume: 280
  start-page: 20122753
  year: 2013
  ident: BFnature22975_CR12
  publication-title: Proc. R. Soc. Lond. B.
  doi: 10.1098/rspb.2012.2753
– volume: 89
  start-page: 1909
  year: 2015
  ident: BFnature22975_CR24
  publication-title: J. Virol.
  doi: 10.1128/JVI.02611-14
– volume: 57
  start-page: 758
  year: 2008
  ident: BFnature22975_CR47
  publication-title: Syst. Biol.
  doi: 10.1080/10635150802429642
– volume: 126
  start-page: 473
  year: 2003
  ident: BFnature22975_CR50
  publication-title: Parasitology
  doi: 10.1017/S0031182003002993
– ident: BFnature22975_CR51
– volume: 14
  start-page: 195
  year: 2012
  ident: BFnature22975_CR30
  publication-title: New Directions in Conservation Medicine: Applied Cases of Ecological Health
– volume: 15
  start-page: 1370
  year: 2012
  ident: BFnature22975_CR9
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2012.01858.x
– volume: 52
  start-page: 1247
  year: 1998
  ident: BFnature22975_CR43
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1998.tb02006.x
– volume: 339
  start-page: 74
  year: 2013
  ident: BFnature22975_CR54
  publication-title: Science
  doi: 10.1126/science.1228282
– volume: 9
  start-page: e89055
  year: 2014
  ident: BFnature22975_CR35
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0089055
– volume: 57
  start-page: 717
  year: 2003
  ident: BFnature22975_CR40
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2003.tb00285.x
– volume: 20
  start-page: 289
  year: 2004
  ident: BFnature22975_CR45
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg412
– reference: 25375777 - PLoS Pathog. 2014 Nov 06;10(11):e1004395
– reference: 14734327 - Bioinformatics. 2004 Jan 22;20(2):289-90
– reference: 26903655 - Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2696-701
– reference: 18772285 - Microbiol Mol Biol Rev. 2008 Sep;72(3):457-70
– reference: 12778543 - Evolution. 2003 Apr;57(4):717-45
– reference: 24586500 - PLoS One. 2014 Feb 28;9(2):e89055
– reference: 23647732 - Emerg Infect Dis. 2013 May;19(5):743-7
– reference: 28636591 - Nature. 2017 Jun 29;546(7660):603-604
– reference: 19281304 - J Infect Dis. 2009 Feb 15;199(4):565-8
– reference: 27834632 - Elife. 2016 Nov 11;5:null
– reference: 16847084 - Clin Microbiol Rev. 2006 Jul;19(3):531-45
– reference: 24172901 - Nature. 2013 Nov 28;503(7477):535-8
– reference: 26038558 - Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):7039-44
– reference: 16701375 - Trends Ecol Evol. 2005 May;20(5):238-44
– reference: 23258408 - Science. 2013 Jan 4;339(6115):74-8
– reference: 11516376 - Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):983-9
– reference: 20392728 - Proc Biol Sci. 2010 Sep 7;277(1694):2587-95
– reference: 28565378 - Evolution. 1998 Oct;52(5):1247-1262
– reference: 16485468 - Emerg Infect Dis. 2005 Dec;11(12):1842-7
– reference: 23200504 - Lancet. 2012 Dec 1;380(9857):1956-65
– reference: 24003179 - MBio. 2013 Sep 03;4(5):e00598-13
– reference: 19787650 - Mt Sinai J Med. 2009 Oct;76(5):448-55
– reference: 23378666 - Proc Biol Sci. 2013 Feb 01;280(1756):20122753
– reference: 18288193 - Nature. 2008 Feb 21;451(7181):990-3
– reference: 22913776 - Ecol Lett. 2012 Dec;15(12):1370-7
– reference: 19522730 - J Evol Biol. 2009 Aug;22(8):1770-4
– reference: 25410876 - J Virol. 2015 Feb;89(3):1909-12
– reference: 21680245 - Trends Parasitol. 2011 Aug;27(8):355-61
– reference: 22531181 - Nat Commun. 2012 Apr 24;3:796
– reference: 27001840 - Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4170-5
– reference: 23550750 - Evolution. 2013 Apr;67(4):980-90
– reference: 15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
– reference: 22879916 - PLoS One. 2012;7(8):e42190
– reference: 18853362 - Syst Biol. 2008 Oct;57(5):758-71
– reference: 17392779 - Nature. 2007 Mar 29;446(7135):507-12
– reference: 20689015 - Science. 2010 Aug 6;329(5992):676-9
– reference: 2575770 - Philos Trans R Soc Lond B Biol Sci. 1989 Dec 21;326(1233):119-57
– reference: 18445561 - Proc Biol Sci. 2008 Jul 22;275(1643):1695-701
– reference: 26807755 - Am Nat. 2016 Feb;187(2):E53-64
– reference: 19392714 - Ecol Lett. 2009 Jun;12(6):538-49
– reference: 23610389 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7738-41
– reference: 25903634 - Nature. 2015 Apr 23;520(7548):542-4
– reference: 12793652 - Parasitology. 2003 May;126(Pt 5):473-80
SSID ssj0005174
Score 2.6808481
Snippet Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the...
The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and...
Analysis of a comprehensive database of mammalian host-virus relationships reveals that both the total number of viruses that infect a given species and the...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 646
SubjectTerms 631/158/851
631/181/757
631/326/421
692/499
692/699/255/2514
Analysis
Animals
Bats
Biodiversity
Diseases
Distribution
Forecasts and trends
HIV
Host Specificity
Host-Pathogen Interactions
Host-virus relationships
Human immunodeficiency virus
Human populations
Humanities and Social Sciences
Humans
Identification and classification
Infectious diseases
letter
Mammals
Mammals - virology
multidisciplinary
Observations
Pandemics
Phylogenetics
Phylogeny
Physiological aspects
Science
Statistics
Surveillance
Taxonomy
Viral diseases
Viruses
Viruses - isolation & purification
Viruses - pathogenicity
Wildlife
Zoonoses
Zoonoses - epidemiology
Zoonoses - virology
Title Host and viral traits predict zoonotic spillover from mammals
URI https://link.springer.com/article/10.1038/nature22975
https://www.ncbi.nlm.nih.gov/pubmed/28636590
https://www.proquest.com/docview/1920622010
https://www.proquest.com/docview/1912608510
https://pubmed.ncbi.nlm.nih.gov/PMC5570460
Volume 546
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-xTUi8oG18dSuVQeNTihZniZ08IDSmlYLEhAaT-ha5jjMqtUm2pC_89dwlbknKVF7ycufYsX3ni-_udwBHMsRjTwXG0TKIHF-52lHSoFwpkU5MGgQ6oQTnbxdidOV_HQdje-FW2rDKpU6sFXWSa7ojP0ZLxBUe-W4_FjcOVY0i76otobEFOxx1MGHnh2etEI81FGabn-eehMcNbKZHeaWdE2ldL7cOpvWgyTXPaX0gDXfhobUk2Wmz9Htwz2T7cL-O6NTlPuxZqS3ZWwst_e4RfBjlZcVUljCK7Z0xKhBRlay4JXdNxX7neZbj61hZTGd1cCej9BM2V_M5btPHcDU8_3k2cmwBBZx5IStHeybQdLXjyUByhcaSnyYRJ1cilwlPXE-hQTHRXAkTJm5So5UZl6ehEK5CzfMEtrM8M8-AKTQzTOSnXppKnxqi2RMYqgTHo1T5vAfvl5MYa4suTt8wi2sv90kYt2a8B0cr5qIB1bib7SWtRkwwFRnFwVyrRVnGX35cxqc-ldyKhOSbmIQfESBeFPbgjWVKcxyVVjb3AL-N4K86rzvscOpiehNvprZ6ed2hXjere1cn_Q4jSrT-L7nVTX-5O2OrcMr4r3j04MWKTC0piC4z-YJ4OP69oomNPE-bzbyafg9lVgQRUmRnm68YCIa8S8mmv2o4cgJx8wW2fLUUiNaw_l3Vg83DP4QHHllOrnC8qA_b1e3CPEe7r5oMYEuO5aAWcXoOPw9g59P5xffLPxfTV1o
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxMZXWQGDNhhI0WI3sZOHCU2DqWUfD7BJezOu44xKbdItqRD8UfyN3OWjJGUqT3u-i-3Yvo_k7n5HyKYMwOxp3zpG-qHjadc4WlqQKy3ioY1930RY4Hx8Ivpn3udz_3yF_K5rYTCtstaJhaKOUoP_yHfAE3EFx9jth-mlg12jMLpat9Aor8Wh_fkDPtmy3cFHON8tzg8-ne73naqrACxHyNwx3PoG_3dw6UumwYPw4ihkGF9jMmKRyzVY2aFhWtggcqMCwsu6LA6EcDWII4x7i9z2ej2JWP3BfiOlZAH1uaoHdHvBTgnTybGOtWUBF-1AwxAuJmkuRGoLA3jwgNyvPFe6V161NbJik3Vyp8ggNdk6Wau0REa3Kyjrdw_Jbj_NcqqTiGIu8ZhiQ4o8o9MrDA_l9FeaJikMR7PpaFwkk1Isd6ETPZmAWDwiZzeytY_JapIm9imhGtwaG3oxj2Pp4YPgZvkWO8-xMNYe65D39SYqU6GZ4zuMVRFV7wWqseMdsjlnnpYgHtezvcbTUAiLkWDezYWeZZkafP2i9jxs8RUKyZYxCS9EAL4w6JC3FVOcwqqMrmod4N0Qbqs13EaL00xHl2o5tTHLmxb1ojzd6ybpthhBg5j_khvTdOvbqSoFl6m_4tghr-ZkfBKT9hKbzpCHwdcyuPTA86S8zPPt56AjhB8CRbau-ZwBYc_blGT0vYA_R9A4T8CTW7VANJb176k-W778l-Ru__T4SB0NTg43yD2OXpsrHB52yWp-NbPPwefMhy8KQafk201rlj_3lY5T
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxMZXWQGDNr6kqLGb2MnDhCZG1TKYEDCpb8F1nFGpTbIlFYI_jb-Ou3x0SZnK057vYjv2fSV39zMhu9IDt6dcY2np-pajbG0paUCvlIgmJnJdHWKD86djMTxxPozd8Qb5U_fCYFllbRMLQx0mGv-R9yASsQXH3G0vqsoiPh8O3qZnFt4ghZnW-jqNUkSOzK-f8PmW7Y8O4az3OB-8__ZuaFU3DMDShMwtzY2r8d8Hl65kCqIJJwp9hrk2JkMW2lyBx51opoTxQjss4LyMzSJPCFuBasK418h12Qe3Cbokx_KivGQFAbrqDbT7Xq-E7OTY09ryhqs-oeEUVws2V7K2hTMc3CG3qyiWHpRit0U2TLxNbhTVpDrbJluVxcjoqwrW-vVdsj9MspyqOKRYVzyjeDlFntH0HFNFOf2dJHECw9Esnc6KwlKKrS90ruZzUJF75ORKtvY-2YyT2DwkVEGIY3wn4lEkHXwQQi7X4C10zI-UwzrkTb2Jga6QzfEdZkGRYe97QWPHO2R3yZyWgB6Xsz3H0wgQIiNGYTtViywLRl-_BAcOXvflC8nWMQnHRzA-3-uQlxVTlMCqtKr6HuDdEHqrNdxOi1On07NgPbUxy4sW9bQ83csm6bYYwZro_5Ib03Rr6QwqY5cFF6rZIc-WZHwSC_hikyyQh8GXM4T3wPOgFObl9nOwF8L1gSJbYr5kQAj0NiWe_iig0BFAzhHw5F6tEI1l_Xuqj9Yv_ym5CTYl-Dg6PtohtzgGcLawuN8lm_n5wjyG8DOfPCn0nJLvV21Y_gJZdZK1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Host+and+viral+traits+predict+zoonotic+spillover+from+mammals&rft.jtitle=Nature+%28London%29&rft.au=Olival%2C+Kevin+J.&rft.au=Hosseini%2C+Parviez+R.&rft.au=Zambrana-Torrelio%2C+Carlos&rft.au=Ross%2C+Noam&rft.date=2017-06-29&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=546&rft.issue=7660&rft.spage=646&rft.epage=650&rft_id=info:doi/10.1038%2Fnature22975&rft.externalDocID=10_1038_nature22975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon