Host and viral traits predict zoonotic spillover from mammals
Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel...
Saved in:
Published in | Nature (London) Vol. 546; no. 7660; pp. 646 - 650 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.06.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/nature22975 |
Cover
Loading…
Abstract | Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel zoonoses are likely to be found.
Zoonotic virus distribution patterns
Zoonotic viruses, many originating in wild mammals, pose a serious threat to global public health. Peter Daszak and colleagues create a comprehensive database of mammalian host–virus relationships, which they analyse to determine patterns of virus and zoonotic virus distribution in mammals. They identify various factors that influence the number and diversity of viruses that infect a given species as well as factors that predict the proportion of zoonotic viruses per species. In doing so, they identify mammalian species and geographic locations where novel zoonoses are likely to be found.
The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS)
1
,
2
,
3
. Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs
4
. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries
5
,
6
,
7
. Here we conduct a comprehensive analysis of mammalian host–virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range—which may reflect human–wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people. |
---|---|
AbstractList | Analysis of a comprehensive database of mammalian host-virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel zoonoses are likely to be found. The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people. Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel zoonoses are likely to be found. Zoonotic virus distribution patterns Zoonotic viruses, many originating in wild mammals, pose a serious threat to global public health. Peter Daszak and colleagues create a comprehensive database of mammalian host–virus relationships, which they analyse to determine patterns of virus and zoonotic virus distribution in mammals. They identify various factors that influence the number and diversity of viruses that infect a given species as well as factors that predict the proportion of zoonotic viruses per species. In doing so, they identify mammalian species and geographic locations where novel zoonoses are likely to be found. The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS) 1 , 2 , 3 . Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs 4 . However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries 5 , 6 , 7 . Here we conduct a comprehensive analysis of mammalian host–virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range—which may reflect human–wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people. Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel zoonoses are likely to be found. Zoonotic viruses, many originating in wild mammals, pose a serious threat to global public health. Peter Daszak and colleagues create a comprehensive database of mammalian host–virus relationships, which they analyse to determine patterns of virus and zoonotic virus distribution in mammals. They identify various factors that influence the number and diversity of viruses that infect a given species as well as factors that predict the proportion of zoonotic viruses per species. In doing so, they identify mammalian species and geographic locations where novel zoonoses are likely to be found. The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS) 1 , 2 , 3 . Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs 4 . However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries 5 , 6 , 7 . Here we conduct a comprehensive analysis of mammalian host–virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range—which may reflect human–wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people. The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people. |
Audience | Academic |
Author | Olival, Kevin J. Bogich, Tiffany L. Daszak, Peter Ross, Noam Hosseini, Parviez R. Zambrana-Torrelio, Carlos |
Author_xml | – sequence: 1 givenname: Kevin J. surname: Olival fullname: Olival, Kevin J. email: olival@ecohealthalliance.org organization: EcoHealth Alliance – sequence: 2 givenname: Parviez R. surname: Hosseini fullname: Hosseini, Parviez R. organization: EcoHealth Alliance – sequence: 3 givenname: Carlos surname: Zambrana-Torrelio fullname: Zambrana-Torrelio, Carlos organization: EcoHealth Alliance – sequence: 4 givenname: Noam surname: Ross fullname: Ross, Noam organization: EcoHealth Alliance – sequence: 5 givenname: Tiffany L. surname: Bogich fullname: Bogich, Tiffany L. organization: EcoHealth Alliance – sequence: 6 givenname: Peter surname: Daszak fullname: Daszak, Peter email: daszak@ecohealthalliance.org organization: EcoHealth Alliance |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28636590$$D View this record in MEDLINE/PubMed |
BookMark | eNqF099r1TAUB_AgE3c3ffJdintRtPMkzY_2QWEMdYOB4I_nkKXpNaNN7pL04vbXm8vdpHdUpQ-B9nO-J-E0B2jPeWcQeo7hGENVv3MqjcEQ0gj2CC0wFbykvBZ7aAFA6hLqiu-jgxivAIBhQZ-gfVLzirMGFuj9mY-pUK4t1jaovkhB2RSLVTCt1am49d75ZHURV7bv_dqEogt-KAY1DKqPT9HjLi_m2d16iH58-vj99Ky8-PL5_PTkotSCi1RqYpgWdcWIYAIrRhnt2gYzwBSLFrdAlKD4UmPFTd1Cyyhl2ADuas5BCV4dog_b3NV4OZhWG5f32ctVsIMKN9IrK3e_OPtTLv1aMiaAcsgBr-4Cgr8eTUxysFGbvlfO-DFK3GDCoWZ4Q48e0Cs_BpePlxUBTghM1VL1RlrX-dxXb0LlCacNBqBN_U9FG1HhhgucVTmjlsaZfJQ8687m1zv-5YzXK3stp63_iqZJxzMoP60ZrJ5t_XqnIJtkfqWlGmOU59--7h7-f3aa-2I64D-Tvf9RM8BboIOPMZhOaptUsn4zb9tLDHJzGeTkMuSaNw9q7mPn9dutjlm5pQmTuc_w31y0Et0 |
CitedBy_id | crossref_primary_10_1371_journal_ppat_1012763 crossref_primary_10_1016_j_cell_2023_03_036 crossref_primary_10_1136_bmjgh_2020_004254 crossref_primary_10_1080_14760584_2022_2148660 crossref_primary_10_1038_nature23088 crossref_primary_10_3389_fevo_2023_1126149 crossref_primary_10_1016_j_virusres_2020_198175 crossref_primary_10_1371_journal_pbio_3000206 crossref_primary_10_1016_j_xinn_2020_100065 crossref_primary_10_1016_j_cell_2021_06_008 crossref_primary_10_7717_peerj_17651 crossref_primary_10_1007_s00705_020_04683_7 crossref_primary_10_3389_fcimb_2019_00256 crossref_primary_10_1111_gcb_16708 crossref_primary_10_1089_vbz_2022_0090 crossref_primary_10_1111_1365_2656_13666 crossref_primary_10_3390_v15010199 crossref_primary_10_1126_science_abj3624 crossref_primary_10_1038_s41467_024_49967_7 crossref_primary_10_1098_rspb_2019_2736 crossref_primary_10_1098_rstb_2019_0296 crossref_primary_10_1111_brv_12568 crossref_primary_10_1016_j_jiph_2021_04_011 crossref_primary_10_3201_eid2502_181246 crossref_primary_10_1371_journal_pntd_0008940 crossref_primary_10_1038_s41586_024_08471_0 crossref_primary_10_1371_journal_ppat_1009583 crossref_primary_10_1016_j_biocon_2020_108702 crossref_primary_10_1098_rspb_2022_1073 crossref_primary_10_1093_nar_gkab862 crossref_primary_10_1038_s41893_019_0293_3 crossref_primary_10_1111_ele_14294 crossref_primary_10_1371_journal_pbio_3000436 crossref_primary_10_1098_rstb_2018_0339 crossref_primary_10_4049_jimmunol_1701214 crossref_primary_10_1186_s12915_022_01463_4 crossref_primary_10_1038_s41564_024_01879_4 crossref_primary_10_1016_j_gecco_2019_e00889 crossref_primary_10_1073_pnas_2122851119 crossref_primary_10_1093_ve_veaa017 crossref_primary_10_1016_j_envint_2021_106915 crossref_primary_10_1016_j_virusres_2018_02_013 crossref_primary_10_1038_s41579_020_0394_z crossref_primary_10_1016_j_coviro_2024_101436 crossref_primary_10_1371_journal_ppat_1012629 crossref_primary_10_1093_conphys_coz094 crossref_primary_10_1098_rsob_170189 crossref_primary_10_1016_j_cub_2020_04_031 crossref_primary_10_1016_j_meegid_2018_05_016 crossref_primary_10_1038_s41598_021_95000_y crossref_primary_10_1111_cobi_14310 crossref_primary_10_1038_s41586_022_04788_w crossref_primary_10_1084_jem_20211220 crossref_primary_10_1111_1462_2920_16121 crossref_primary_10_1093_biosci_biy074 crossref_primary_10_1084_jem_20211223 crossref_primary_10_3390_life12020156 crossref_primary_10_1111_1365_2656_13883 crossref_primary_10_1073_pnas_1814995116 crossref_primary_10_1126_science_aap7463 crossref_primary_10_1002_hsr2_1590 crossref_primary_10_1098_rspb_2020_1841 crossref_primary_10_1111_mec_17078 crossref_primary_10_3389_fimmu_2023_1239572 crossref_primary_10_1126_science_aav4265 crossref_primary_10_1016_j_ygeno_2020_08_029 crossref_primary_10_1186_s40168_020_00965_z crossref_primary_10_3390_ijerph17217884 crossref_primary_10_3390_v16111688 crossref_primary_10_1002_ajpa_24718 crossref_primary_10_1126_sciimmunol_abd0205 crossref_primary_10_1038_s41559_020_01333_8 crossref_primary_10_1038_s41597_023_02636_8 crossref_primary_10_3390_v13091800 crossref_primary_10_3389_fmicb_2021_675528 crossref_primary_10_26508_lsa_201900542 crossref_primary_10_3390_v17010131 crossref_primary_10_1128_mSphere_00397_18 crossref_primary_10_3917_spub_190_0091 crossref_primary_10_1007_s10531_024_02872_3 crossref_primary_10_1111_1348_0421_13033 crossref_primary_10_1093_ve_veaa033 crossref_primary_10_1093_conphys_coab074 crossref_primary_10_1016_j_meegid_2020_104450 crossref_primary_10_1111_ijcp_13524 crossref_primary_10_1016_j_coesh_2020_08_005 crossref_primary_10_1128_JVI_02140_17 crossref_primary_10_1038_s41467_021_25833_8 crossref_primary_10_35825_2587_5728_2023_7_4_350_365 crossref_primary_10_1098_rspb_2022_1165 crossref_primary_10_1093_gigascience_giy116 crossref_primary_10_7554_eLife_45079 crossref_primary_10_1038_s41598_018_28061_1 crossref_primary_10_1093_biosci_biac075 crossref_primary_10_1126_science_adq7993 crossref_primary_10_1007_s40823_024_00096_3 crossref_primary_10_1016_j_scitotenv_2020_143723 crossref_primary_10_1111_ele_14003 crossref_primary_10_3390_tropicalmed4030099 crossref_primary_10_1016_j_pecon_2020_12_005 crossref_primary_10_1098_rsos_231512 crossref_primary_10_3892_mmr_2023_13005 crossref_primary_10_1111_mam_12110 crossref_primary_10_3389_fimmu_2018_02112 crossref_primary_10_1111_mam_12353 crossref_primary_10_1029_2021RG000766 crossref_primary_10_1038_s41586_018_0010_9 crossref_primary_10_1177_2053019620979326 crossref_primary_10_1038_d41586_018_03923_w crossref_primary_10_1038_s41598_019_52209_2 crossref_primary_10_1126_sciadv_adl3466 crossref_primary_10_1101_cshperspect_a038612 crossref_primary_10_1098_rstb_2019_0014 crossref_primary_10_3389_fpubh_2020_00318 crossref_primary_10_1098_rsos_181577 crossref_primary_10_3390_molecules29010225 crossref_primary_10_1016_j_vprsr_2024_101113 crossref_primary_10_1038_s41586_020_03128_0 crossref_primary_10_1038_s44358_024_00005_w crossref_primary_10_1016_j_coviro_2023_101377 crossref_primary_10_1002_ece3_11509 crossref_primary_10_1016_j_onehlt_2023_100631 crossref_primary_10_1098_rstb_2019_0021 crossref_primary_10_3390_v11100971 crossref_primary_10_3201_eid2904_221022 crossref_primary_10_1016_j_antiviral_2018_02_001 crossref_primary_10_1038_s41564_019_0430_9 crossref_primary_10_1016_j_pecon_2021_07_005 crossref_primary_10_1002_ece3_4451 crossref_primary_10_1080_21505594_2020_1771980 crossref_primary_10_1093_biosci_biab080 crossref_primary_10_1186_s12983_023_00502_2 crossref_primary_10_1111_1365_2656_12998 crossref_primary_10_7717_peerj_8013 crossref_primary_10_1186_s12917_018_1603_0 crossref_primary_10_1016_j_onehlt_2022_100468 crossref_primary_10_1016_j_coviro_2023_101346 crossref_primary_10_1016_j_isci_2022_104782 crossref_primary_10_1080_14760584_2020_1813574 crossref_primary_10_1073_pnas_2202871119 crossref_primary_10_2174_1568026620666200325114400 crossref_primary_10_35864_evmd_1321675 crossref_primary_10_1073_pnas_2113628119 crossref_primary_10_1098_rsbl_2019_0423 crossref_primary_10_1098_rsbl_2019_0668 crossref_primary_10_1038_s41597_023_02472_w crossref_primary_10_1093_bib_bbaa251 crossref_primary_10_1073_pnas_2218860120 crossref_primary_10_1038_s41467_017_00923_8 crossref_primary_10_1093_ismejo_wrae087 crossref_primary_10_3917_spub_190_0173 crossref_primary_10_1016_j_chembiol_2024_03_008 crossref_primary_10_1186_s40168_018_0554_9 crossref_primary_10_1111_mam_12329 crossref_primary_10_1038_s41467_024_49515_3 crossref_primary_10_5334_aogh_3770 crossref_primary_10_1146_annurev_environ_041020_063132 crossref_primary_10_1016_j_pt_2019_03_010 crossref_primary_10_1016_S2542_5196_22_00147_4 crossref_primary_10_1186_s12985_018_0949_z crossref_primary_10_1016_j_ttbdis_2020_101419 crossref_primary_10_1016_j_tmaid_2024_102692 crossref_primary_10_1111_zph_12460 crossref_primary_10_3390_vaccines8020228 crossref_primary_10_3390_v12050539 crossref_primary_10_1080_22221751_2023_2192816 crossref_primary_10_20517_2347_9264_2024_54 crossref_primary_10_1016_j_jeem_2021_102451 crossref_primary_10_1371_journal_pbio_2006738 crossref_primary_10_1371_journal_pbio_3001135 crossref_primary_10_14202_vetworld_2020_495_501 crossref_primary_10_1007_s00705_019_04347_1 crossref_primary_10_1186_s42522_022_00067_w crossref_primary_10_3389_fncel_2021_755875 crossref_primary_10_1086_714595 crossref_primary_10_1016_j_envint_2024_109183 crossref_primary_10_3389_fmicb_2018_00686 crossref_primary_10_1111_1365_2664_14442 crossref_primary_10_3390_v14102242 crossref_primary_10_1093_bioinformatics_btab338 crossref_primary_10_3389_fviro_2021_684949 crossref_primary_10_4103_ijmr_IJMR_601_21 crossref_primary_10_1101_cshperspect_a031690 crossref_primary_10_1155_2024_4237104 crossref_primary_10_1177_0748730420987322 crossref_primary_10_1016_j_scitotenv_2022_153043 crossref_primary_10_1073_pnas_2104759118 crossref_primary_10_1016_j_tree_2019_03_004 crossref_primary_10_1039_D3TA03343K crossref_primary_10_2993_0278_0771_40_2_117 crossref_primary_10_1099_mgen_0_001275 crossref_primary_10_3390_microorganisms9020433 crossref_primary_10_1038_s41467_021_24085_w crossref_primary_10_1111_1751_7915_13800 crossref_primary_10_1016_j_vacune_2024_05_014 crossref_primary_10_1098_rspb_2023_1085 crossref_primary_10_1186_s44149_021_00016_6 crossref_primary_10_1038_d41586_022_03358_4 crossref_primary_10_1080_01652176_2022_2086718 crossref_primary_10_1146_annurev_animal_022516_022811 crossref_primary_10_1016_j_virusres_2017_10_016 crossref_primary_10_1098_rstb_2019_0224 crossref_primary_10_1111_jzo_12769 crossref_primary_10_1089_hs_2017_0069 crossref_primary_10_3389_fimmu_2023_1209532 crossref_primary_10_2139_ssrn_4048508 crossref_primary_10_1038_s41598_020_74473_3 crossref_primary_10_1515_mammalia_2019_0036 crossref_primary_10_1016_j_vetpar_2017_12_018 crossref_primary_10_1186_s13567_024_01399_3 crossref_primary_10_3201_eid2807_212614 crossref_primary_10_1111_zph_12484 crossref_primary_10_1007_s10764_021_00272_w crossref_primary_10_3389_fmicb_2020_631736 crossref_primary_10_1038_s41586_020_2812_9 crossref_primary_10_1016_j_virs_2024_06_008 crossref_primary_10_1086_701069 crossref_primary_10_1098_rspa_2020_0469 crossref_primary_10_1016_j_csbj_2023_01_005 crossref_primary_10_1016_j_csbj_2023_02_044 crossref_primary_10_1016_j_cell_2018_03_070 crossref_primary_10_1093_bjc_azae047 crossref_primary_10_1016_j_coviro_2023_101302 crossref_primary_10_1002_rmv_2326 crossref_primary_10_1111_ele_13586 crossref_primary_10_1038_s41598_018_36485_y crossref_primary_10_1098_rspb_2019_1109 crossref_primary_10_1371_journal_pone_0223958 crossref_primary_10_1371_journal_pone_0186943 crossref_primary_10_1016_S2666_5247_20_30002_1 crossref_primary_10_3389_fcosc_2023_1218153 crossref_primary_10_1016_j_meegid_2023_105407 crossref_primary_10_1038_s41467_021_23926_y crossref_primary_10_1098_rstb_2020_0351 crossref_primary_10_1371_journal_ppat_1008758 crossref_primary_10_1098_rstb_2020_0350 crossref_primary_10_1128_jvi_01757_21 crossref_primary_10_1093_bioinformatics_bty694 crossref_primary_10_3389_fimmu_2017_01481 crossref_primary_10_3390_v13102020 crossref_primary_10_1038_s41467_022_29378_2 crossref_primary_10_1371_journal_pone_0258523 crossref_primary_10_1371_journal_pbio_3001390 crossref_primary_10_3390_ani10091632 crossref_primary_10_3390_v10120675 crossref_primary_10_1371_journal_pone_0207010 crossref_primary_10_1038_s41598_022_22134_y crossref_primary_10_1146_annurev_anthro_041420_100047 crossref_primary_10_1007_s11356_021_12553_1 crossref_primary_10_1098_rspb_2022_0397 crossref_primary_10_3897_BDJ_12_e132199 crossref_primary_10_1242_dmm_050763 crossref_primary_10_1016_j_bjid_2017_11_003 crossref_primary_10_1073_pnas_2003352117 crossref_primary_10_1079_onehealthcases_2024_0020 crossref_primary_10_46234_ccdcw2021_035 crossref_primary_10_1111_zph_12663 crossref_primary_10_1016_j_it_2024_01_008 crossref_primary_10_1111_gcb_15412 crossref_primary_10_1590_s1678_9946202365017 crossref_primary_10_1038_d41586_020_01096_z crossref_primary_10_1111_zph_12540 crossref_primary_10_1098_rstb_2020_0363 crossref_primary_10_1098_rstb_2020_0360 crossref_primary_10_3390_pathogens12111342 crossref_primary_10_1098_rspb_2021_0900 crossref_primary_10_3390_v12010048 crossref_primary_10_1016_j_jnc_2023_126330 crossref_primary_10_1111_tbed_14389 crossref_primary_10_15446_rsap_v23n4_88717 crossref_primary_10_1098_rstb_2020_0358 crossref_primary_10_1098_rstb_2020_0355 crossref_primary_10_1098_rstb_2020_0356 crossref_primary_10_1016_j_coviro_2021_12_008 crossref_primary_10_1073_pnas_2215600119 crossref_primary_10_3389_fvets_2021_604560 crossref_primary_10_1086_721088 crossref_primary_10_1016_S2542_5196_23_00077_3 crossref_primary_10_1590_1678_4685_gmb_2021_0309 crossref_primary_10_1007_s42770_022_00858_3 crossref_primary_10_1128_mBio_02755_20 crossref_primary_10_1016_j_chom_2018_01_006 crossref_primary_10_1016_j_tim_2022_07_002 crossref_primary_10_1016_j_carbpol_2021_117797 crossref_primary_10_3389_fpubh_2018_00104 crossref_primary_10_1371_journal_pone_0254467 crossref_primary_10_15446_abc_v29n3_117008 crossref_primary_10_3389_fevo_2019_00069 crossref_primary_10_3390_v13081509 crossref_primary_10_1016_j_cub_2021_06_006 crossref_primary_10_1002_ece3_10814 crossref_primary_10_1016_j_onehlt_2023_100596 crossref_primary_10_3389_fmicb_2021_809296 crossref_primary_10_1007_s10530_023_03213_1 crossref_primary_10_1016_j_pt_2020_10_012 crossref_primary_10_1007_s10393_022_01599_3 crossref_primary_10_1371_journal_pntd_0008338 crossref_primary_10_1016_j_lanwpc_2024_101264 crossref_primary_10_1038_s41467_020_16153_4 crossref_primary_10_1038_s41562_023_01597_7 crossref_primary_10_1128_jvi_00935_24 crossref_primary_10_1186_s13071_022_05516_z crossref_primary_10_3389_fbinf_2023_1069487 crossref_primary_10_3389_fimmu_2020_00026 crossref_primary_10_1016_j_actaastro_2018_10_042 crossref_primary_10_3389_fpubh_2018_00235 crossref_primary_10_1007_s13752_020_00363_6 crossref_primary_10_3390_v14050905 crossref_primary_10_1016_j_jviromet_2020_114037 crossref_primary_10_1016_j_gecco_2018_e00515 crossref_primary_10_1016_j_yamp_2023_07_008 crossref_primary_10_1016_j_scitotenv_2019_04_266 crossref_primary_10_1016_j_micinf_2017_11_013 crossref_primary_10_1111_tbed_14361 crossref_primary_10_1186_s13059_018_1456_7 crossref_primary_10_1111_2041_210X_14500 crossref_primary_10_3390_v14091899 crossref_primary_10_1128_JVI_00082_18 crossref_primary_10_1016_j_coviro_2022_101228 crossref_primary_10_1038_s41467_024_49891_w crossref_primary_10_4236_jbm_2019_712011 crossref_primary_10_1016_j_ribaf_2020_101335 crossref_primary_10_1128_mBio_02220_20 crossref_primary_10_1002_pan3_10625 crossref_primary_10_1021_acsomega_2c02524 crossref_primary_10_1007_s11259_024_10488_9 crossref_primary_10_1111_mam_12173 crossref_primary_10_3390_covid4020014 crossref_primary_10_1007_s10393_022_01609_4 crossref_primary_10_1098_rspb_2019_2882 crossref_primary_10_1016_j_ttbdis_2022_102073 crossref_primary_10_1093_biosci_biz125 crossref_primary_10_1146_annurev_virology_092818_015613 crossref_primary_10_1016_j_cell_2023_01_011 crossref_primary_10_1016_j_onehlt_2023_100498 crossref_primary_10_1016_j_cvsm_2019_02_002 crossref_primary_10_7189_jogh_13_03034 crossref_primary_10_1146_annurev_virology_092818_015851 crossref_primary_10_1038_s42003_024_05870_x crossref_primary_10_1016_j_bsheal_2019_10_004 crossref_primary_10_1016_j_coesh_2021_100310 crossref_primary_10_1371_journal_pone_0301841 crossref_primary_10_1099_jgv_0_001214 crossref_primary_10_1186_s41182_018_0117_6 crossref_primary_10_1002_pan3_10119 crossref_primary_10_3390_v11020192 crossref_primary_10_1016_j_virs_2023_02_002 crossref_primary_10_3390_v13020252 crossref_primary_10_3389_fimmu_2017_01098 crossref_primary_10_1016_j_meegid_2021_105030 crossref_primary_10_1038_s41467_024_50316_x crossref_primary_10_1038_s41684_018_0029_4 crossref_primary_10_54751_revistafoco_v16n9_194 crossref_primary_10_1002_inc3_34 crossref_primary_10_1186_s12985_025_02702_0 crossref_primary_10_1007_s10393_020_01471_2 crossref_primary_10_3389_fevo_2024_1324605 crossref_primary_10_1098_rsos_190883 crossref_primary_10_1016_j_epidem_2021_100523 crossref_primary_10_1515_ntrev_2021_0072 crossref_primary_10_1089_vbz_2024_0091 crossref_primary_10_3390_microorganisms9030540 crossref_primary_10_1016_j_coviro_2022_101202 crossref_primary_10_1111_mec_15463 crossref_primary_10_1007_s10393_018_1359_9 crossref_primary_10_3390_v10040143 crossref_primary_10_1007_s10393_022_01619_2 crossref_primary_10_1017_S0031182020002371 crossref_primary_10_1007_s10393_022_01608_5 crossref_primary_10_1038_s41559_020_1275_6 crossref_primary_10_3390_v14122820 crossref_primary_10_1080_20008686_2024_2441537 crossref_primary_10_1016_j_onehlt_2020_100177 crossref_primary_10_1111_tbed_14478 crossref_primary_10_1016_S2666_5247_21_00245_7 crossref_primary_10_3390_vaccines10091551 crossref_primary_10_1038_s41598_018_22899_1 crossref_primary_10_1016_j_micpath_2025_107328 crossref_primary_10_1038_nature23660 crossref_primary_10_1002_ajp_22991 crossref_primary_10_1038_s41467_023_39455_9 crossref_primary_10_1371_journal_pntd_0007393 crossref_primary_10_1002_evan_21920 crossref_primary_10_4049_jimmunol_1900001 crossref_primary_10_1111_mec_15573 crossref_primary_10_3390_v13112226 crossref_primary_10_1371_journal_pone_0239599 crossref_primary_10_1007_s40588_024_00221_0 crossref_primary_10_3390_microorganisms12112191 crossref_primary_10_3390_microorganisms8050750 crossref_primary_10_29328_journal_abse_1001009 crossref_primary_10_1136_bmjopen_2020_041247 crossref_primary_10_1098_rsbl_2021_0427 crossref_primary_10_1002_evl3_247 crossref_primary_10_3389_fmicb_2018_02562 crossref_primary_10_1111_1365_2435_13311 crossref_primary_10_1038_s41586_024_07380_6 crossref_primary_10_1016_j_mbs_2021_108732 crossref_primary_10_1016_j_jviromet_2024_115057 crossref_primary_10_1002_ece3_8466 crossref_primary_10_1111_jeb_13771 crossref_primary_10_3389_fvets_2023_1229676 crossref_primary_10_1002_cti2_1114 crossref_primary_10_1016_j_chom_2018_03_012 crossref_primary_10_3389_fvets_2021_644414 crossref_primary_10_1093_gbe_evad148 crossref_primary_10_1016_j_ecolmodel_2022_110092 crossref_primary_10_1016_j_pt_2019_04_001 crossref_primary_10_1016_j_ecolmodel_2022_110095 crossref_primary_10_1016_S0140_6736_21_00948_X crossref_primary_10_1038_sdata_2018_17 crossref_primary_10_1038_s42003_022_03797_9 crossref_primary_10_3390_ani11072044 crossref_primary_10_3897_biss_4_59199 crossref_primary_10_1126_science_aap9072 crossref_primary_10_1080_10455752_2022_2144397 crossref_primary_10_1038_s41564_019_0371_3 crossref_primary_10_1089_vbz_2020_2696 crossref_primary_10_1186_s12985_022_01847_6 crossref_primary_10_1021_acsnano_9b07293 crossref_primary_10_1111_mve_12639 crossref_primary_10_1038_s41598_022_08350_6 crossref_primary_10_1371_journal_pone_0287893 crossref_primary_10_1007_s10640_020_00449_6 crossref_primary_10_22207_JPAM_14_2_02 crossref_primary_10_3390_v16081210 crossref_primary_10_1016_j_xcrp_2024_102081 crossref_primary_10_3389_fvets_2023_1310303 crossref_primary_10_1002_ctm2_886 crossref_primary_10_1038_s41467_019_09444_y crossref_primary_10_1038_s41467_025_57314_7 crossref_primary_10_1098_rsif_2017_0479 crossref_primary_10_1016_j_chom_2021_04_003 crossref_primary_10_1007_s10393_023_01636_9 crossref_primary_10_1073_pnas_2013102117 crossref_primary_10_1146_annurev_ecolsys_102320_101234 crossref_primary_10_3201_eid2911_230362 crossref_primary_10_3389_fpsyt_2020_566141 crossref_primary_10_1111_mec_15422 crossref_primary_10_1126_science_aav0379 crossref_primary_10_1111_tbed_13102 crossref_primary_10_1590_1519_6984_248032 crossref_primary_10_2174_0929867324666171005112921 crossref_primary_10_3389_fpubh_2021_627654 crossref_primary_10_3390_v11060568 crossref_primary_10_3201_eid2704_202676 crossref_primary_10_3390_v17030349 crossref_primary_10_1016_j_coviro_2021_04_013 crossref_primary_10_1016_j_crviro_2021_100008 crossref_primary_10_7554_eLife_66550 crossref_primary_10_1111_tbed_14557 crossref_primary_10_1128_JVI_01173_21 crossref_primary_10_1016_j_csbj_2017_09_001 crossref_primary_10_1016_j_heliyon_2023_e19345 crossref_primary_10_1002_eap_1886 crossref_primary_10_1016_j_cmi_2017_12_010 crossref_primary_10_1016_j_jviromet_2024_115005 crossref_primary_10_1038_s41586_021_04224_5 crossref_primary_10_1016_j_scitotenv_2021_145413 crossref_primary_10_1038_s41559_021_01454_8 crossref_primary_10_1186_s12917_024_04310_6 crossref_primary_10_1016_j_patter_2023_100738 crossref_primary_10_1016_j_cimid_2024_102127 crossref_primary_10_1080_21505594_2021_1920741 crossref_primary_10_1016_j_csbj_2024_07_022 crossref_primary_10_1214_19_AOAS1296 crossref_primary_10_1016_j_tree_2021_01_008 crossref_primary_10_1098_rsos_231177 crossref_primary_10_15212_ZOONOSES_2021_0028 crossref_primary_10_1038_nbt_4268 crossref_primary_10_1590_0001_3765202020191375 crossref_primary_10_1146_annurev_virology_100422_024648 crossref_primary_10_3390_v14050987 crossref_primary_10_1038_s41564_021_00999_5 crossref_primary_10_3390_d9030035 crossref_primary_10_24072_pcjournal_206 crossref_primary_10_1016_j_cell_2023_08_029 crossref_primary_10_3390_v12121413 crossref_primary_10_3390_v15030599 crossref_primary_10_1038_s41598_020_63799_7 crossref_primary_10_1371_journal_pntd_0007065 crossref_primary_10_1016_j_isci_2023_107435 crossref_primary_10_1093_ve_veae044 crossref_primary_10_3389_fmicb_2023_1157608 crossref_primary_10_1093_ve_vead079 crossref_primary_10_1038_s41579_021_00665_x crossref_primary_10_1080_22221751_2023_2225932 crossref_primary_10_51523_2708_6011_2020_17_4_3 crossref_primary_10_3390_vaccines9070690 crossref_primary_10_1038_s41467_022_35273_7 crossref_primary_10_1016_j_virusres_2020_197986 crossref_primary_10_1007_s12250_020_00219_0 crossref_primary_10_1111_ecog_05143 crossref_primary_10_1016_j_gecco_2024_e02880 crossref_primary_10_1038_s41559_020_1254_y crossref_primary_10_1038_s41559_023_02192_9 crossref_primary_10_1016_j_epidem_2020_100416 crossref_primary_10_1038_s41598_018_31193_z crossref_primary_10_1126_science_abn2222 crossref_primary_10_1371_journal_ppat_1009079 crossref_primary_10_1038_s41598_020_71226_0 crossref_primary_10_2217_fmb_2023_0233 crossref_primary_10_1017_S095026881700231X crossref_primary_10_1021_acsanm_4c04873 crossref_primary_10_1126_sciadv_abl4183 crossref_primary_10_3390_ani13203279 crossref_primary_10_1080_15265161_2018_1513584 crossref_primary_10_1590_1678_4685_gmb_2020_0104 crossref_primary_10_1016_j_mcp_2020_101648 crossref_primary_10_1038_s41426_018_0119_9 crossref_primary_10_3390_microorganisms12050924 crossref_primary_10_1038_s41559_022_01723_0 crossref_primary_10_1080_1040841X_2021_1879006 crossref_primary_10_1016_j_biocon_2020_108650 crossref_primary_10_1016_j_jhep_2018_11_010 crossref_primary_10_1038_s41598_023_35861_7 crossref_primary_10_1128_mBio_00812_20 crossref_primary_10_1371_journal_pone_0294397 crossref_primary_10_1186_s40168_024_01955_1 crossref_primary_10_1073_pnas_2219962120 crossref_primary_10_36233_0507_4088_188 crossref_primary_10_1016_j_isci_2024_110369 crossref_primary_10_2471_BLT_17_205005 crossref_primary_10_1111_ecog_06939 crossref_primary_10_3389_fmicb_2023_1151524 crossref_primary_10_1038_s41597_023_02157_4 crossref_primary_10_1007_s10393_018_1356_z crossref_primary_10_3390_su13148034 crossref_primary_10_1002_fee_2795 crossref_primary_10_1371_journal_ppat_1012471 crossref_primary_10_1007_s10393_017_1276_3 crossref_primary_10_1038_s41559_020_01364_1 crossref_primary_10_1073_pnas_2023540118 crossref_primary_10_1111_1365_2656_12985 crossref_primary_10_3390_v13071226 crossref_primary_10_1007_s11262_022_01897_6 crossref_primary_10_1073_pnas_1908072116 crossref_primary_10_3390_v11030260 crossref_primary_10_1038_s42005_021_00637_w crossref_primary_10_1590_2358_289820241408759p crossref_primary_10_3390_v10050222 crossref_primary_10_1007_s00284_021_02607_5 crossref_primary_10_1007_s10344_019_1346_7 crossref_primary_10_1016_S0140_6736_20_32387_4 crossref_primary_10_1016_j_biocon_2021_108952 crossref_primary_10_1016_j_mib_2020_07_004 crossref_primary_10_1139_facets_2020_0028 crossref_primary_10_1371_journal_pbio_3002800 crossref_primary_10_3389_fevo_2019_00406 crossref_primary_10_1098_rsos_181182 crossref_primary_10_1002_ece3_8852 crossref_primary_10_1007_s11427_017_9241_3 crossref_primary_10_1111_ppa_13446 crossref_primary_10_1111_mec_16027 crossref_primary_10_1002_ece3_5228 crossref_primary_10_3389_fcimb_2022_921950 crossref_primary_10_1002_ece3_6315 crossref_primary_10_1016_j_immuni_2022_10_008 crossref_primary_10_1016_j_smim_2024_101911 crossref_primary_10_3390_v16081197 crossref_primary_10_1038_s41559_024_02353_4 crossref_primary_10_1038_s41598_019_53184_4 crossref_primary_10_1186_s40249_023_01062_7 crossref_primary_10_1371_journal_pone_0226203 crossref_primary_10_1155_tbed_5530007 crossref_primary_10_1089_vbz_2022_0025 crossref_primary_10_14745_ccdr_v43i10a03 crossref_primary_10_1098_rsos_211600 crossref_primary_10_1111_gbb_12680 crossref_primary_10_1016_j_celrep_2021_109140 crossref_primary_10_1371_journal_pone_0298976 crossref_primary_10_1111_geb_13008 crossref_primary_10_1007_s00239_021_10013_5 crossref_primary_10_1371_journal_pone_0230802 crossref_primary_10_1146_annurev_virology_100120_015057 crossref_primary_10_1111_mec_15288 crossref_primary_10_1002_ece3_70614 crossref_primary_10_18470_1992_1098_2024_3_3 crossref_primary_10_1371_journal_pcbi_1009714 crossref_primary_10_3390_v16121885 crossref_primary_10_1371_journal_pone_0214227 crossref_primary_10_1038_s41598_023_47448_3 crossref_primary_10_1098_rsos_230578 crossref_primary_10_1590_1678_4685_gmb_2020_0355 crossref_primary_10_1093_ilar_ilx023 crossref_primary_10_1111_mec_16491 crossref_primary_10_3389_fpubh_2023_1133330 crossref_primary_10_1042_ETLS20200097 crossref_primary_10_1093_gbe_evaa151 crossref_primary_10_1111_1755_0998_12946 crossref_primary_10_3389_fvets_2020_00379 crossref_primary_10_52711_0974_360X_2022_00314 crossref_primary_10_3390_v11050478 crossref_primary_10_1093_bioadv_vbaf016 crossref_primary_10_3389_fvets_2024_1421158 crossref_primary_10_1038_s41586_020_2562_8 crossref_primary_10_3390_v11030240 crossref_primary_10_1016_j_vacun_2024_02_002 crossref_primary_10_7717_peerj_5979 crossref_primary_10_3390_v13101975 crossref_primary_10_3390_ijms22115672 crossref_primary_10_1002_jobm_202200072 crossref_primary_10_1007_s11692_021_09531_3 crossref_primary_10_1098_rspb_2021_0341 crossref_primary_10_1002_ece3_11572 crossref_primary_10_1016_j_heliyon_2022_e09449 crossref_primary_10_3389_fmicb_2021_737753 crossref_primary_10_3390_v13122484 crossref_primary_10_1007_s10570_019_02925_9 crossref_primary_10_3390_biology10020154 crossref_primary_10_1073_pnas_2000429117 crossref_primary_10_1126_sciadv_aar5931 crossref_primary_10_1128_mbio_02985_21 crossref_primary_10_3389_fviro_2022_862961 crossref_primary_10_1016_j_ijppaw_2020_07_004 crossref_primary_10_2139_ssrn_3984756 crossref_primary_10_1038_s41559_019_0910_6 crossref_primary_10_1186_s42522_022_00060_3 crossref_primary_10_1016_j_worlddev_2020_105121 crossref_primary_10_7589_JWD_D_20_00079 crossref_primary_10_1007_s11252_023_01436_7 crossref_primary_10_3390_v14051100 crossref_primary_10_1016_S2542_5196_21_00196_0 crossref_primary_10_1016_j_ijppaw_2022_02_010 crossref_primary_10_1155_2023_9285855 crossref_primary_10_1007_s11427_017_9252_y crossref_primary_10_2196_26109 crossref_primary_10_3389_fmicb_2022_780651 crossref_primary_10_1128_msystems_00042_24 crossref_primary_10_1128_spectrum_00675_24 crossref_primary_10_1016_j_cell_2024_07_025 crossref_primary_10_1080_01652176_2022_2079756 crossref_primary_10_1016_j_virs_2023_01_002 crossref_primary_10_1016_j_bsheal_2020_01_003 crossref_primary_10_3389_fcimb_2022_1081370 crossref_primary_10_1073_pnas_2002324118 crossref_primary_10_3389_fmars_2022_838988 crossref_primary_10_1016_j_biocon_2020_108798 crossref_primary_10_1186_s12985_022_01806_1 crossref_primary_10_3390_ijerph17113789 crossref_primary_10_3390_v11121157 crossref_primary_10_1126_science_abd4559 crossref_primary_10_1186_s12862_019_1433_0 crossref_primary_10_1007_s10311_021_01291_y crossref_primary_10_1007_s42770_022_00688_3 crossref_primary_10_3389_fimmu_2020_605270 crossref_primary_10_1093_jtm_taaa015 crossref_primary_10_1111_mec_15250 crossref_primary_10_3390_v11030210 crossref_primary_10_1089_omi_2021_0062 crossref_primary_10_1016_j_coviro_2018_12_007 crossref_primary_10_1038_s41586_021_03594_0 crossref_primary_10_1007_s11356_021_14625_8 crossref_primary_10_1038_s41598_021_03641_w crossref_primary_10_1021_acs_jproteome_0c00995 crossref_primary_10_1038_s41390_023_02929_z crossref_primary_10_1016_j_chom_2023_05_017 crossref_primary_10_3390_microorganisms9040805 crossref_primary_10_1007_s00251_019_01128_7 crossref_primary_10_7554_eLife_72123 crossref_primary_10_3390_v11040356 crossref_primary_10_1111_mec_16211 crossref_primary_10_1093_pnasnexus_pgad234 crossref_primary_10_1016_j_gpb_2020_07_003 crossref_primary_10_1016_j_cmi_2017_10_035 crossref_primary_10_1016_j_chom_2020_09_014 crossref_primary_10_3389_fmicb_2021_736530 crossref_primary_10_2471_BLT_20_254227 crossref_primary_10_1089_omi_2021_0058 crossref_primary_10_3389_fgene_2020_00831 crossref_primary_10_1128_mBio_01854_20 crossref_primary_10_1007_s10393_017_1288_z crossref_primary_10_1007_s12250_018_0021_6 crossref_primary_10_1038_nbt0119_11b crossref_primary_10_1007_s11684_017_0605_9 crossref_primary_10_1016_j_scitotenv_2020_142372 crossref_primary_10_1038_s41598_023_49109_x crossref_primary_10_1073_pnas_1919176117 crossref_primary_10_1111_geb_13045 |
Cites_doi | 10.1111/evo.12064 10.1093/oso/9780198507659.001.0001 10.1038/nature14372 10.7554/eLife.18491 10.1073/pnas.1518240113 10.1073/pnas.1521582113 10.1038/nature12711 10.1111/j.1600-0587.2011.06949.x 10.1038/nature05634 10.1093/oso/9780195074444.003.0002 10.1002/msj.20140 10.1128/CMR.00017-06 10.1371/journal.pone.0042190 10.1016/S0140-6736(12)61684-5 10.1086/596510 10.1093/nar/gkh340 10.1098/rspb.2010.0340 10.1002/evan.20041 10.1890/08-1494.1 10.1016/j.tree.2005.02.009 10.1073/pnas.1501598112 10.1098/rstb.1989.0106 10.1111/j.1420-9101.2009.01783.x 10.3201/eid1112.050997 10.1086/284325 10.1086/684391 10.1371/journal.ppat.1004395 10.1111/j.1461-0248.2009.01307.x 10.1073/pnas.1220716110 10.1126/science.1188836 10.1016/j.pt.2011.05.003 10.1038/nature06536 10.1128/mBio.00598-13 10.1098/rstb.2001.0888 10.1098/rspb.2008.0284 10.1016/j.csda.2011.02.004 10.1111/j.1466-8238.2010.00587.x 10.3201/eid1905.121042 10.1128/MMBR.00004-08 10.1038/ncomms1796 10.1098/rspb.2012.2753 10.1128/JVI.02611-14 10.1080/10635150802429642 10.1017/S0031182003002993 10.1111/j.1461-0248.2012.01858.x 10.1111/j.1558-5646.1998.tb02006.x 10.1126/science.1228282 10.1371/journal.pone.0089055 10.1111/j.0014-3820.2003.tb00285.x 10.1093/bioinformatics/btg412 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017 COPYRIGHT 2017 Nature Publishing Group Copyright Nature Publishing Group Jun 29, 2017 |
Copyright_xml | – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017 – notice: COPYRIGHT 2017 Nature Publishing Group – notice: Copyright Nature Publishing Group Jun 29, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/nature22975 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Proquest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Statistics |
EISSN | 1476-4687 |
EndPage | 650 |
ExternalDocumentID | PMC5570460 A649100498 A497319671 28636590 10_1038_nature22975 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI110964 – fundername: NIAID NIH HHS grantid: R01 AI079231 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 5PM ADGHP TUS |
ID | FETCH-LOGICAL-c767t-c2e5c783527571a5454fd91501417d1d02a741bc1a6e8d0d54451e01f8660a763 |
IEDL.DBID | 8C1 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 13:55:37 EDT 2025 Fri Jul 11 15:20:37 EDT 2025 Fri Jul 25 08:53:59 EDT 2025 Tue Jun 17 21:28:22 EDT 2025 Tue Jun 17 21:09:18 EDT 2025 Thu Jun 12 23:45:43 EDT 2025 Tue Jun 10 15:34:00 EDT 2025 Tue Jun 10 15:33:03 EDT 2025 Tue Jun 10 20:43:03 EDT 2025 Fri Jun 27 04:24:57 EDT 2025 Fri Jun 27 05:11:31 EDT 2025 Thu Apr 03 06:59:45 EDT 2025 Tue Jul 01 00:56:58 EDT 2025 Thu Apr 24 22:51:04 EDT 2025 Fri Feb 21 02:36:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7660 |
Language | English |
License | This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c767t-c2e5c783527571a5454fd91501417d1d02a741bc1a6e8d0d54451e01f8660a763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5570460 |
PMID | 28636590 |
PQID | 1920622010 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5570460 proquest_miscellaneous_1912608510 proquest_journals_1920622010 gale_infotracmisc_A649100498 gale_infotracmisc_A497319671 gale_infotracgeneralonefile_A497319671 gale_infotraccpiq_649100498 gale_infotraccpiq_497319671 gale_infotracacademiconefile_A497319671 gale_incontextgauss_ISR_A649100498 gale_incontextgauss_ISR_A497319671 pubmed_primary_28636590 crossref_citationtrail_10_1038_nature22975 crossref_primary_10_1038_nature22975 springer_journals_10_1038_nature22975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-29 |
PublicationDateYYYYMMDD | 2017-06-29 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | TJ Davies (BFnature22975_CR10) 2008; 275 B Longdon (BFnature22975_CR22) 2014; 10 CH Calisher (BFnature22975_CR31) 2006; 19 JRC Pulliam (BFnature22975_CR7) 2009; 199 JF Drexler (BFnature22975_CR26) 2012; 3 JH Epstein (BFnature22975_CR34) 2009; 76 R Poulin (BFnature22975_CR49) 2011; 27 BA Han (BFnature22975_CR15) 2015; 112 G Marra (BFnature22975_CR52) 2011; 55 KE Jones (BFnature22975_CR2) 2008; 451 BFnature22975_CR53 BFnature22975_CR55 BFnature22975_CR58 BFnature22975_CR57 BFnature22975_CR16 R Poulin (BFnature22975_CR50) 2003; 126 BFnature22975_CR19 CR Parrish (BFnature22975_CR5) 2008; 72 SJ Anthony (BFnature22975_CR25) 2013; 4 A Grafen (BFnature22975_CR41) 1989; 326 BFnature22975_CR51 JM Gómez (BFnature22975_CR11) 2013; 110 J Levinson (BFnature22975_CR18) 2013; 19 BG Holt (BFnature22975_CR54) 2013; 339 KK Goldewijk (BFnature22975_CR56) 2011; 20 CL Nunn (BFnature22975_CR29) 2005; 14 AD Luis (BFnature22975_CR12) 2013; 280 JL Geoghegan (BFnature22975_CR27) 2016; 113 A Stamatakis (BFnature22975_CR47) 2008; 57 IM Parker (BFnature22975_CR21) 2015; 520 L Brierley (BFnature22975_CR13) 2016; 187 RC Edgar (BFnature22975_CR46) 2004; 32 SS Morse (BFnature22975_CR4) 2012; 380 BFnature22975_CR32 J Felsenstein (BFnature22975_CR39) 1985; 125 ORP Bininda-Emonds (BFnature22975_CR44) 2007; 446 BFnature22975_CR33 RR Dunn (BFnature22975_CR17) 2010; 277 AM Messenger (BFnature22975_CR35) 2014; 9 DG Streicker (BFnature22975_CR14) 2010; 329 X-Y Ge (BFnature22975_CR23) 2013; 503 LH Taylor (BFnature22975_CR3) 2001; 356 JP de Magalhães (BFnature22975_CR37) 2009; 22 SP Blomberg (BFnature22975_CR40) 2003; 57 E Paradis (BFnature22975_CR45) 2004; 20 KE Jones (BFnature22975_CR36) 2009; 90 ME Woolhouse (BFnature22975_CR8) 2005; 20 N Cooper (BFnature22975_CR9) 2012; 15 JAF Diniz-Filho (BFnature22975_CR43) 1998; 52 MEJ Woolhouse (BFnature22975_CR1) 2005; 11 JH Cuthill (BFnature22975_CR48) 2013; 67 KJ Olival (BFnature22975_CR30) 2012; 14 N Cooper (BFnature22975_CR38) 2012; 7 SA Fritz (BFnature22975_CR28) 2009; 12 JAF Diniz-Filho (BFnature22975_CR42) 2012; 35 P Zhou (BFnature22975_CR20) 2016; 113 M Lipsitch (BFnature22975_CR6) 2016; 5 LJ Organtini (BFnature22975_CR24) 2015; 89 23647732 - Emerg Infect Dis. 2013 May;19(5):743-7 19787650 - Mt Sinai J Med. 2009 Oct;76(5):448-55 15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 23258408 - Science. 2013 Jan 4;339(6115):74-8 16847084 - Clin Microbiol Rev. 2006 Jul;19(3):531-45 18445561 - Proc Biol Sci. 2008 Jul 22;275(1643):1695-701 28565378 - Evolution. 1998 Oct;52(5):1247-1262 24172901 - Nature. 2013 Nov 28;503(7477):535-8 22531181 - Nat Commun. 2012 Apr 24;3:796 28636591 - Nature. 2017 Jun 29;546(7660):603-604 18772285 - Microbiol Mol Biol Rev. 2008 Sep;72(3):457-70 23378666 - Proc Biol Sci. 2013 Feb 01;280(1756):20122753 17392779 - Nature. 2007 Mar 29;446(7135):507-12 27834632 - Elife. 2016 Nov 11;5:null 19392714 - Ecol Lett. 2009 Jun;12(6):538-49 2575770 - Philos Trans R Soc Lond B Biol Sci. 1989 Dec 21;326(1233):119-57 22879916 - PLoS One. 2012;7(8):e42190 27001840 - Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4170-5 19522730 - J Evol Biol. 2009 Aug;22(8):1770-4 21680245 - Trends Parasitol. 2011 Aug;27(8):355-61 25375777 - PLoS Pathog. 2014 Nov 06;10(11):e1004395 19281304 - J Infect Dis. 2009 Feb 15;199(4):565-8 20689015 - Science. 2010 Aug 6;329(5992):676-9 18853362 - Syst Biol. 2008 Oct;57(5):758-71 24586500 - PLoS One. 2014 Feb 28;9(2):e89055 22913776 - Ecol Lett. 2012 Dec;15(12):1370-7 23550750 - Evolution. 2013 Apr;67(4):980-90 24003179 - MBio. 2013 Sep 03;4(5):e00598-13 26038558 - Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):7039-44 23200504 - Lancet. 2012 Dec 1;380(9857):1956-65 26903655 - Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2696-701 12793652 - Parasitology. 2003 May;126(Pt 5):473-80 16485468 - Emerg Infect Dis. 2005 Dec;11(12):1842-7 11516376 - Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):983-9 23610389 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7738-41 12778543 - Evolution. 2003 Apr;57(4):717-45 14734327 - Bioinformatics. 2004 Jan 22;20(2):289-90 25903634 - Nature. 2015 Apr 23;520(7548):542-4 16701375 - Trends Ecol Evol. 2005 May;20(5):238-44 26807755 - Am Nat. 2016 Feb;187(2):E53-64 20392728 - Proc Biol Sci. 2010 Sep 7;277(1694):2587-95 25410876 - J Virol. 2015 Feb;89(3):1909-12 18288193 - Nature. 2008 Feb 21;451(7181):990-3 |
References_xml | – volume: 67 start-page: 980 year: 2013 ident: BFnature22975_CR48 publication-title: Evolution doi: 10.1111/evo.12064 – ident: BFnature22975_CR33 – ident: BFnature22975_CR53 doi: 10.1093/oso/9780198507659.001.0001 – volume: 520 start-page: 542 year: 2015 ident: BFnature22975_CR21 publication-title: Nature doi: 10.1038/nature14372 – volume: 5 start-page: e18491 year: 2016 ident: BFnature22975_CR6 publication-title: eLife doi: 10.7554/eLife.18491 – volume: 113 start-page: 2696 year: 2016 ident: BFnature22975_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1518240113 – volume: 113 start-page: 4170 year: 2016 ident: BFnature22975_CR27 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1521582113 – volume: 503 start-page: 535 year: 2013 ident: BFnature22975_CR23 publication-title: Nature doi: 10.1038/nature12711 – volume: 35 start-page: 239 year: 2012 ident: BFnature22975_CR42 publication-title: Ecography doi: 10.1111/j.1600-0587.2011.06949.x – volume: 446 start-page: 507 year: 2007 ident: BFnature22975_CR44 publication-title: Nature doi: 10.1038/nature05634 – ident: BFnature22975_CR19 doi: 10.1093/oso/9780195074444.003.0002 – volume: 76 start-page: 448 year: 2009 ident: BFnature22975_CR34 publication-title: Mt. Sinai J. Med. doi: 10.1002/msj.20140 – volume: 19 start-page: 531 year: 2006 ident: BFnature22975_CR31 publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00017-06 – volume: 7 start-page: e42190 year: 2012 ident: BFnature22975_CR38 publication-title: PLoS One doi: 10.1371/journal.pone.0042190 – volume: 380 start-page: 1956 year: 2012 ident: BFnature22975_CR4 publication-title: Lancet doi: 10.1016/S0140-6736(12)61684-5 – volume: 199 start-page: 565 year: 2009 ident: BFnature22975_CR7 publication-title: J. Infect. Dis. doi: 10.1086/596510 – volume: 32 start-page: 1792 year: 2004 ident: BFnature22975_CR46 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh340 – volume: 277 start-page: 2587 year: 2010 ident: BFnature22975_CR17 publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.2010.0340 – ident: BFnature22975_CR32 – volume: 14 start-page: 1 year: 2005 ident: BFnature22975_CR29 publication-title: Evol. Anthropol. doi: 10.1002/evan.20041 – volume: 90 start-page: 2648 year: 2009 ident: BFnature22975_CR36 publication-title: Ecology doi: 10.1890/08-1494.1 – volume: 20 start-page: 238 year: 2005 ident: BFnature22975_CR8 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2005.02.009 – ident: BFnature22975_CR57 – volume: 112 start-page: 7039 year: 2015 ident: BFnature22975_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1501598112 – volume: 326 start-page: 119 year: 1989 ident: BFnature22975_CR41 publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.1989.0106 – volume: 22 start-page: 1770 year: 2009 ident: BFnature22975_CR37 publication-title: J. Evol. Biol. doi: 10.1111/j.1420-9101.2009.01783.x – volume: 11 start-page: 1842 year: 2005 ident: BFnature22975_CR1 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1112.050997 – volume: 125 start-page: 1 year: 1985 ident: BFnature22975_CR39 publication-title: Am. Nat. doi: 10.1086/284325 – volume: 187 start-page: E53 year: 2016 ident: BFnature22975_CR13 publication-title: Am. Nat. doi: 10.1086/684391 – volume: 10 start-page: e1004395 year: 2014 ident: BFnature22975_CR22 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004395 – volume: 12 start-page: 538 year: 2009 ident: BFnature22975_CR28 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01307.x – volume: 110 start-page: 7738 year: 2013 ident: BFnature22975_CR11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1220716110 – ident: BFnature22975_CR58 – volume: 329 start-page: 676 year: 2010 ident: BFnature22975_CR14 publication-title: Science doi: 10.1126/science.1188836 – volume: 27 start-page: 355 year: 2011 ident: BFnature22975_CR49 publication-title: Trends Parasitol. doi: 10.1016/j.pt.2011.05.003 – volume: 451 start-page: 990 year: 2008 ident: BFnature22975_CR2 publication-title: Nature doi: 10.1038/nature06536 – volume: 4 start-page: e00598 year: 2013 ident: BFnature22975_CR25 publication-title: MBio doi: 10.1128/mBio.00598-13 – ident: BFnature22975_CR16 – volume: 356 start-page: 983 year: 2001 ident: BFnature22975_CR3 publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2001.0888 – volume: 275 start-page: 1695 year: 2008 ident: BFnature22975_CR10 publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.2008.0284 – volume: 55 start-page: 2372 year: 2011 ident: BFnature22975_CR52 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2011.02.004 – volume: 20 start-page: 73 year: 2011 ident: BFnature22975_CR56 publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2010.00587.x – volume: 19 start-page: 743 year: 2013 ident: BFnature22975_CR18 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1905.121042 – ident: BFnature22975_CR55 – volume: 72 start-page: 457 year: 2008 ident: BFnature22975_CR5 publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00004-08 – volume: 3 start-page: 796 year: 2012 ident: BFnature22975_CR26 publication-title: Nat. Commun. doi: 10.1038/ncomms1796 – volume: 280 start-page: 20122753 year: 2013 ident: BFnature22975_CR12 publication-title: Proc. R. Soc. Lond. B. doi: 10.1098/rspb.2012.2753 – volume: 89 start-page: 1909 year: 2015 ident: BFnature22975_CR24 publication-title: J. Virol. doi: 10.1128/JVI.02611-14 – volume: 57 start-page: 758 year: 2008 ident: BFnature22975_CR47 publication-title: Syst. Biol. doi: 10.1080/10635150802429642 – volume: 126 start-page: 473 year: 2003 ident: BFnature22975_CR50 publication-title: Parasitology doi: 10.1017/S0031182003002993 – ident: BFnature22975_CR51 – volume: 14 start-page: 195 year: 2012 ident: BFnature22975_CR30 publication-title: New Directions in Conservation Medicine: Applied Cases of Ecological Health – volume: 15 start-page: 1370 year: 2012 ident: BFnature22975_CR9 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2012.01858.x – volume: 52 start-page: 1247 year: 1998 ident: BFnature22975_CR43 publication-title: Evolution doi: 10.1111/j.1558-5646.1998.tb02006.x – volume: 339 start-page: 74 year: 2013 ident: BFnature22975_CR54 publication-title: Science doi: 10.1126/science.1228282 – volume: 9 start-page: e89055 year: 2014 ident: BFnature22975_CR35 publication-title: PLoS One doi: 10.1371/journal.pone.0089055 – volume: 57 start-page: 717 year: 2003 ident: BFnature22975_CR40 publication-title: Evolution doi: 10.1111/j.0014-3820.2003.tb00285.x – volume: 20 start-page: 289 year: 2004 ident: BFnature22975_CR45 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg412 – reference: 25375777 - PLoS Pathog. 2014 Nov 06;10(11):e1004395 – reference: 14734327 - Bioinformatics. 2004 Jan 22;20(2):289-90 – reference: 26903655 - Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2696-701 – reference: 18772285 - Microbiol Mol Biol Rev. 2008 Sep;72(3):457-70 – reference: 12778543 - Evolution. 2003 Apr;57(4):717-45 – reference: 24586500 - PLoS One. 2014 Feb 28;9(2):e89055 – reference: 23647732 - Emerg Infect Dis. 2013 May;19(5):743-7 – reference: 28636591 - Nature. 2017 Jun 29;546(7660):603-604 – reference: 19281304 - J Infect Dis. 2009 Feb 15;199(4):565-8 – reference: 27834632 - Elife. 2016 Nov 11;5:null – reference: 16847084 - Clin Microbiol Rev. 2006 Jul;19(3):531-45 – reference: 24172901 - Nature. 2013 Nov 28;503(7477):535-8 – reference: 26038558 - Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):7039-44 – reference: 16701375 - Trends Ecol Evol. 2005 May;20(5):238-44 – reference: 23258408 - Science. 2013 Jan 4;339(6115):74-8 – reference: 11516376 - Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):983-9 – reference: 20392728 - Proc Biol Sci. 2010 Sep 7;277(1694):2587-95 – reference: 28565378 - Evolution. 1998 Oct;52(5):1247-1262 – reference: 16485468 - Emerg Infect Dis. 2005 Dec;11(12):1842-7 – reference: 23200504 - Lancet. 2012 Dec 1;380(9857):1956-65 – reference: 24003179 - MBio. 2013 Sep 03;4(5):e00598-13 – reference: 19787650 - Mt Sinai J Med. 2009 Oct;76(5):448-55 – reference: 23378666 - Proc Biol Sci. 2013 Feb 01;280(1756):20122753 – reference: 18288193 - Nature. 2008 Feb 21;451(7181):990-3 – reference: 22913776 - Ecol Lett. 2012 Dec;15(12):1370-7 – reference: 19522730 - J Evol Biol. 2009 Aug;22(8):1770-4 – reference: 25410876 - J Virol. 2015 Feb;89(3):1909-12 – reference: 21680245 - Trends Parasitol. 2011 Aug;27(8):355-61 – reference: 22531181 - Nat Commun. 2012 Apr 24;3:796 – reference: 27001840 - Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4170-5 – reference: 23550750 - Evolution. 2013 Apr;67(4):980-90 – reference: 15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 – reference: 22879916 - PLoS One. 2012;7(8):e42190 – reference: 18853362 - Syst Biol. 2008 Oct;57(5):758-71 – reference: 17392779 - Nature. 2007 Mar 29;446(7135):507-12 – reference: 20689015 - Science. 2010 Aug 6;329(5992):676-9 – reference: 2575770 - Philos Trans R Soc Lond B Biol Sci. 1989 Dec 21;326(1233):119-57 – reference: 18445561 - Proc Biol Sci. 2008 Jul 22;275(1643):1695-701 – reference: 26807755 - Am Nat. 2016 Feb;187(2):E53-64 – reference: 19392714 - Ecol Lett. 2009 Jun;12(6):538-49 – reference: 23610389 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7738-41 – reference: 25903634 - Nature. 2015 Apr 23;520(7548):542-4 – reference: 12793652 - Parasitology. 2003 May;126(Pt 5):473-80 |
SSID | ssj0005174 |
Score | 2.6808481 |
Snippet | Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the... The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and... Analysis of a comprehensive database of mammalian host-virus relationships reveals that both the total number of viruses that infect a given species and the... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 646 |
SubjectTerms | 631/158/851 631/181/757 631/326/421 692/499 692/699/255/2514 Analysis Animals Bats Biodiversity Diseases Distribution Forecasts and trends HIV Host Specificity Host-Pathogen Interactions Host-virus relationships Human immunodeficiency virus Human populations Humanities and Social Sciences Humans Identification and classification Infectious diseases letter Mammals Mammals - virology multidisciplinary Observations Pandemics Phylogenetics Phylogeny Physiological aspects Science Statistics Surveillance Taxonomy Viral diseases Viruses Viruses - isolation & purification Viruses - pathogenicity Wildlife Zoonoses Zoonoses - epidemiology Zoonoses - virology |
Title | Host and viral traits predict zoonotic spillover from mammals |
URI | https://link.springer.com/article/10.1038/nature22975 https://www.ncbi.nlm.nih.gov/pubmed/28636590 https://www.proquest.com/docview/1920622010 https://www.proquest.com/docview/1912608510 https://pubmed.ncbi.nlm.nih.gov/PMC5570460 |
Volume | 546 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-xTUi8oG18dSuVQeNTihZniZ08IDSmlYLEhAaT-ha5jjMqtUm2pC_89dwlbknKVF7ycufYsX3ni-_udwBHMsRjTwXG0TKIHF-52lHSoFwpkU5MGgQ6oQTnbxdidOV_HQdje-FW2rDKpU6sFXWSa7ojP0ZLxBUe-W4_FjcOVY0i76otobEFOxx1MGHnh2etEI81FGabn-eehMcNbKZHeaWdE2ldL7cOpvWgyTXPaX0gDXfhobUk2Wmz9Htwz2T7cL-O6NTlPuxZqS3ZWwst_e4RfBjlZcVUljCK7Z0xKhBRlay4JXdNxX7neZbj61hZTGd1cCej9BM2V_M5btPHcDU8_3k2cmwBBZx5IStHeybQdLXjyUByhcaSnyYRJ1cilwlPXE-hQTHRXAkTJm5So5UZl6ehEK5CzfMEtrM8M8-AKTQzTOSnXppKnxqi2RMYqgTHo1T5vAfvl5MYa4suTt8wi2sv90kYt2a8B0cr5qIB1bib7SWtRkwwFRnFwVyrRVnGX35cxqc-ldyKhOSbmIQfESBeFPbgjWVKcxyVVjb3AL-N4K86rzvscOpiehNvprZ6ed2hXjere1cn_Q4jSrT-L7nVTX-5O2OrcMr4r3j04MWKTC0piC4z-YJ4OP69oomNPE-bzbyafg9lVgQRUmRnm68YCIa8S8mmv2o4cgJx8wW2fLUUiNaw_l3Vg83DP4QHHllOrnC8qA_b1e3CPEe7r5oMYEuO5aAWcXoOPw9g59P5xffLPxfTV1o |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxMZXWQGDNhhI0WI3sZOHCU2DqWUfD7BJezOu44xKbdItqRD8UfyN3OWjJGUqT3u-i-3Yvo_k7n5HyKYMwOxp3zpG-qHjadc4WlqQKy3ioY1930RY4Hx8Ivpn3udz_3yF_K5rYTCtstaJhaKOUoP_yHfAE3EFx9jth-mlg12jMLpat9Aor8Wh_fkDPtmy3cFHON8tzg8-ne73naqrACxHyNwx3PoG_3dw6UumwYPw4ihkGF9jMmKRyzVY2aFhWtggcqMCwsu6LA6EcDWII4x7i9z2ej2JWP3BfiOlZAH1uaoHdHvBTgnTybGOtWUBF-1AwxAuJmkuRGoLA3jwgNyvPFe6V161NbJik3Vyp8ggNdk6Wau0REa3Kyjrdw_Jbj_NcqqTiGIu8ZhiQ4o8o9MrDA_l9FeaJikMR7PpaFwkk1Isd6ETPZmAWDwiZzeytY_JapIm9imhGtwaG3oxj2Pp4YPgZvkWO8-xMNYe65D39SYqU6GZ4zuMVRFV7wWqseMdsjlnnpYgHtezvcbTUAiLkWDezYWeZZkafP2i9jxs8RUKyZYxCS9EAL4w6JC3FVOcwqqMrmod4N0Qbqs13EaL00xHl2o5tTHLmxb1ojzd6ybpthhBg5j_khvTdOvbqSoFl6m_4tghr-ZkfBKT9hKbzpCHwdcyuPTA86S8zPPt56AjhB8CRbau-ZwBYc_blGT0vYA_R9A4T8CTW7VANJb176k-W778l-Ru__T4SB0NTg43yD2OXpsrHB52yWp-NbPPwefMhy8KQafk201rlj_3lY5T |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxMZXWQGDNr6kqLGb2MnDhCZG1TKYEDCpb8F1nFGpTbIlFYI_jb-Ou3x0SZnK057vYjv2fSV39zMhu9IDt6dcY2np-pajbG0paUCvlIgmJnJdHWKD86djMTxxPozd8Qb5U_fCYFllbRMLQx0mGv-R9yASsQXH3G0vqsoiPh8O3qZnFt4ghZnW-jqNUkSOzK-f8PmW7Y8O4az3OB-8__ZuaFU3DMDShMwtzY2r8d8Hl65kCqIJJwp9hrk2JkMW2lyBx51opoTxQjss4LyMzSJPCFuBasK418h12Qe3Cbokx_KivGQFAbrqDbT7Xq-E7OTY09ryhqs-oeEUVws2V7K2hTMc3CG3qyiWHpRit0U2TLxNbhTVpDrbJluVxcjoqwrW-vVdsj9MspyqOKRYVzyjeDlFntH0HFNFOf2dJHECw9Esnc6KwlKKrS90ruZzUJF75ORKtvY-2YyT2DwkVEGIY3wn4lEkHXwQQi7X4C10zI-UwzrkTb2Jga6QzfEdZkGRYe97QWPHO2R3yZyWgB6Xsz3H0wgQIiNGYTtViywLRl-_BAcOXvflC8nWMQnHRzA-3-uQlxVTlMCqtKr6HuDdEHqrNdxOi1On07NgPbUxy4sW9bQ83csm6bYYwZro_5Ib03Rr6QwqY5cFF6rZIc-WZHwSC_hikyyQh8GXM4T3wPOgFObl9nOwF8L1gSJbYr5kQAj0NiWe_iig0BFAzhHw5F6tEI1l_Xuqj9Yv_ym5CTYl-Dg6PtohtzgGcLawuN8lm_n5wjyG8DOfPCn0nJLvV21Y_gJZdZK1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Host+and+viral+traits+predict+zoonotic+spillover+from+mammals&rft.jtitle=Nature+%28London%29&rft.au=Olival%2C+Kevin+J.&rft.au=Hosseini%2C+Parviez+R.&rft.au=Zambrana-Torrelio%2C+Carlos&rft.au=Ross%2C+Noam&rft.date=2017-06-29&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=546&rft.issue=7660&rft.spage=646&rft.epage=650&rft_id=info:doi/10.1038%2Fnature22975&rft.externalDocID=10_1038_nature22975 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |