Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer

There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrat...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 101; pp. 321 - 340
Main Authors Zhang, Mingzhen, Viennois, Emilie, Prasad, Meena, Zhang, Yunchen, Wang, Lixin, Zhang, Zhan, Han, Moon Kwon, Xiao, Bo, Xu, Changlong, Srinivasan, Shanthi, Merlin, Didier
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles.
AbstractList There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles.
There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles.
There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of 230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, 125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF- alpha , IL-6 and IL-1 beta ), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles.
Abstract There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles.
There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ~230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ~125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles.
There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles.There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles.
Author Viennois, Emilie
Wang, Lixin
Merlin, Didier
Prasad, Meena
Zhang, Mingzhen
Xu, Changlong
Zhang, Yunchen
Zhang, Zhan
Xiao, Bo
Han, Moon Kwon
Srinivasan, Shanthi
AuthorAffiliation 5 Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
2 Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
4 Emory University, Department of Medicine
3 Veterans Affairs Medical Center, Decatur, GA, USA
1 Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
6 The 2nd Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
AuthorAffiliation_xml – name: 3 Veterans Affairs Medical Center, Decatur, GA, USA
– name: 6 The 2nd Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
– name: 5 Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
– name: 1 Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
– name: 2 Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
– name: 4 Emory University, Department of Medicine
Author_xml – sequence: 1
  givenname: Mingzhen
  surname: Zhang
  fullname: Zhang, Mingzhen
  email: mzhang21@gsu.edu
  organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
– sequence: 2
  givenname: Emilie
  surname: Viennois
  fullname: Viennois, Emilie
  organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
– sequence: 3
  givenname: Meena
  surname: Prasad
  fullname: Prasad, Meena
  organization: Veterans Affairs Medical Center, Decatur, GA, USA
– sequence: 4
  givenname: Yunchen
  surname: Zhang
  fullname: Zhang, Yunchen
  organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
– sequence: 5
  givenname: Lixin
  surname: Wang
  fullname: Wang, Lixin
  organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
– sequence: 6
  givenname: Zhan
  surname: Zhang
  fullname: Zhang, Zhan
  organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
– sequence: 7
  givenname: Moon Kwon
  surname: Han
  fullname: Han, Moon Kwon
  organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
– sequence: 8
  givenname: Bo
  surname: Xiao
  fullname: Xiao, Bo
  organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
– sequence: 9
  givenname: Changlong
  surname: Xu
  fullname: Xu, Changlong
  organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
– sequence: 10
  givenname: Shanthi
  surname: Srinivasan
  fullname: Srinivasan, Shanthi
  organization: Veterans Affairs Medical Center, Decatur, GA, USA
– sequence: 11
  givenname: Didier
  surname: Merlin
  fullname: Merlin, Didier
  organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27318094$$D View this record in MEDLINE/PubMed
BookMark eNqNk81u1DAUhSNURKeFV0AWKzYZ_JM4ThcVbSk_UiUWwNryODczHhw72J5B8zI8Kw5TqlIJdSRLVq6PP9_jHJ8UR847KIpXBM8JJvzNer4wflAJglE2zmmuzXEeRDwpZkQ0oqxbXB8VM0wqWrac0OPiJMY1zt-4os-KY9owInBbzYpf151ZWEBL45YQyi4zt9Ahp5wfVUhGW4hn6AI5vwWL0gqCGmGT60iNY_BKr1Dvw7SAxgBbcMl4h5TrUAqg0pALyPfIuN6qIffsww4t_M_M6kwEFeGPVntrkomlitFrk53lknIawvPiaZ89wovb-bT49v7669XH8ubzh09XFzelbjhPJehe1JqTajLVVQA9AGVqUfOKcehEVQtW9Rig5cCrlpKG0Z51GGNNGMMVOy3O99xxsxig07ntoKwcgxlU2EmvjPx3xZmVXPqtnGAU8wx4fQsI_scGYpKDiRqsVQ78Jkqaz2KYE94-KiWC1jWlWIgDpFg0hNS4eVzatK1gDWVTry_vm71z-TcVWXC2F-jgYwzQ30kIllME5Vrej6CcIihxHmTq-e2DzdokNcUiX5yxhyHe7RGQf_nWQJBRG8h56EwAnWTnzWGY8wcYbY0zWtnvsIO49pvgpj1ERiqx_DI9l-m1EM4wbSjJgMv_Aw7t4jf6oTBQ
CitedBy_id crossref_primary_10_3390_nu13051686
crossref_primary_10_1016_j_jddst_2023_104274
crossref_primary_10_3390_pharmaceutics13122005
crossref_primary_10_1039_C8FO02295J
crossref_primary_10_1016_j_jconrel_2022_08_046
crossref_primary_10_1016_j_jpha_2023_09_012
crossref_primary_10_1080_17425247_2022_2053673
crossref_primary_10_3390_ijms21186502
crossref_primary_10_3389_fphar_2023_1243734
crossref_primary_10_1016_j_biopha_2023_115904
crossref_primary_10_1016_j_jconrel_2019_08_037
crossref_primary_10_1016_j_biopha_2022_113209
crossref_primary_10_5937_scriptamed56_52551
crossref_primary_10_1186_s12964_023_01292_0
crossref_primary_10_1007_s11101_021_09760_6
crossref_primary_10_3389_fpls_2024_1512047
crossref_primary_10_1007_s11010_025_05232_z
crossref_primary_10_1016_j_apsb_2021_03_012
crossref_primary_10_21769_BioProtoc_3351
crossref_primary_10_3390_molecules28176293
crossref_primary_10_3390_ijms232415545
crossref_primary_10_1016_j_jconrel_2020_04_032
crossref_primary_10_1186_s12951_025_03096_5
crossref_primary_10_3390_ijerph19074148
crossref_primary_10_3390_ijms25031781
crossref_primary_10_1002_smll_202307247
crossref_primary_10_1021_acsbiomedchemau_2c00073
crossref_primary_10_3390_biom14030312
crossref_primary_10_1016_j_yexcr_2024_114234
crossref_primary_10_3389_fddsv_2022_1043617
crossref_primary_10_1016_j_ctim_2018_12_021
crossref_primary_10_1021_acs_jafc_1c04737
crossref_primary_10_1016_j_ijbiomac_2024_136392
crossref_primary_10_1093_bfgp_ely020
crossref_primary_10_1111_jcmm_18177
crossref_primary_10_1177_15593258221127556
crossref_primary_10_1021_acs_molpharmaceut_9b00246
crossref_primary_10_1186_s13020_023_00839_0
crossref_primary_10_3390_foods8060185
crossref_primary_10_55905_cuadv15n7_050
crossref_primary_10_1016_j_cej_2025_161853
crossref_primary_10_3390_molecules27051511
crossref_primary_10_1021_acsami_4c10562
crossref_primary_10_1039_D1NR06015E
crossref_primary_10_3390_ijms23094919
crossref_primary_10_1016_j_reactfunctpolym_2020_104520
crossref_primary_10_1186_s12951_024_02933_3
crossref_primary_10_1016_j_jconrel_2023_03_056
crossref_primary_10_1186_s12951_024_02340_8
crossref_primary_10_3390_ijms25020745
crossref_primary_10_2147_IJN_S362244
crossref_primary_10_1080_17425247_2022_2041599
crossref_primary_10_2147_IJN_S483091
crossref_primary_10_3389_fcimb_2024_1397735
crossref_primary_10_3389_fsufs_2019_00023
crossref_primary_10_1016_j_jpha_2024_101014
crossref_primary_10_1016_j_ymthe_2023_02_017
crossref_primary_10_1007_s11481_019_09873_y
crossref_primary_10_2147_IJN_S463145
crossref_primary_10_1007_s13346_024_01621_x
crossref_primary_10_1182_bloodadvances_2024013333
crossref_primary_10_1007_s13346_024_01515_y
crossref_primary_10_1016_j_biopha_2018_12_063
crossref_primary_10_1038_s41598_022_19950_7
crossref_primary_10_2147_IJN_S454794
crossref_primary_10_1186_s12951_023_01766_w
crossref_primary_10_1039_D3FO01608K
crossref_primary_10_1016_j_addr_2023_114774
crossref_primary_10_1093_nutrit_nuab106
crossref_primary_10_1155_2022_1304839
crossref_primary_10_3390_plants12061207
crossref_primary_10_1080_10408398_2023_2204375
crossref_primary_10_1016_j_jfca_2024_106064
crossref_primary_10_1016_j_crmicr_2024_100301
crossref_primary_10_1016_j_jconrel_2023_11_020
crossref_primary_10_1007_s12272_019_01203_3
crossref_primary_10_33549_physiolres_934886
crossref_primary_10_3389_fimmu_2022_896745
crossref_primary_10_1007_s13770_021_00367_8
crossref_primary_10_1111_jcmm_13897
crossref_primary_10_1093_hr_uhae093
crossref_primary_10_3390_membranes11060411
crossref_primary_10_1093_bbb_zbae198
crossref_primary_10_1016_j_ijpharm_2021_120461
crossref_primary_10_1016_j_jconrel_2022_09_043
crossref_primary_10_3390_ijms22179543
crossref_primary_10_1016_j_jep_2020_112951
crossref_primary_10_3389_fphar_2020_00438
crossref_primary_10_1038_s41598_022_08915_5
crossref_primary_10_1016_j_phrs_2023_106999
crossref_primary_10_1021_acsomega_1c02162
crossref_primary_10_1039_D2BM01719A
crossref_primary_10_3390_cells12141852
crossref_primary_10_3390_molecules27238184
crossref_primary_10_3389_fbioe_2023_1339941
crossref_primary_10_1016_j_jddst_2024_106300
crossref_primary_10_1007_s12274_022_5199_0
crossref_primary_10_1093_ecco_jcc_jjx115
crossref_primary_10_1016_j_psj_2023_102988
crossref_primary_10_3389_fbioe_2024_1390708
crossref_primary_10_1016_j_ymthe_2020_11_030
crossref_primary_10_3389_fbioe_2020_00425
crossref_primary_10_3390_pharmaceutics13040498
crossref_primary_10_1007_s11033_024_09379_8
crossref_primary_10_1111_jocd_16776
crossref_primary_10_3390_pharmaceutics13091355
crossref_primary_10_1016_j_cej_2023_148282
crossref_primary_10_21769_BioProtoc_3390
crossref_primary_10_4068_cmj_2024_60_1_1
crossref_primary_10_1080_08820139_2021_1891094
crossref_primary_10_2147_IJN_S420748
crossref_primary_10_1007_s13596_024_00811_9
crossref_primary_10_3390_ijms22105366
crossref_primary_10_1016_j_semcancer_2020_10_006
crossref_primary_10_3390_nu13072162
crossref_primary_10_1016_j_bioactmat_2022_10_005
crossref_primary_10_1080_17425247_2022_2043847
crossref_primary_10_1038_s41598_020_61358_8
crossref_primary_10_1016_j_cclet_2023_109074
crossref_primary_10_3390_nano14161331
crossref_primary_10_1002_VIW_20240115
crossref_primary_10_1016_j_ijbiomac_2022_08_032
crossref_primary_10_1016_j_apsb_2024_02_005
crossref_primary_10_1016_j_actbio_2016_11_071
crossref_primary_10_3390_ph15060708
crossref_primary_10_1186_s12967_024_05892_3
crossref_primary_10_1021_acssuschemeng_9b00954
crossref_primary_10_1016_j_tifs_2020_05_019
crossref_primary_10_1021_acs_nanolett_2c05099
crossref_primary_10_3390_pharmaceutics14040822
crossref_primary_10_1016_j_reth_2024_10_001
crossref_primary_10_1016_j_phrs_2023_106733
crossref_primary_10_15406_ppij_2024_12_00429
crossref_primary_10_1007_s40199_018_0222_4
crossref_primary_10_3390_antiox13121474
crossref_primary_10_3390_biomedicines10020415
crossref_primary_10_1021_acsabm_3c01108
crossref_primary_10_3390_cells12151999
crossref_primary_10_1016_j_plana_2022_100022
crossref_primary_10_1155_jfbc_2625586
crossref_primary_10_1002_biof_1808
crossref_primary_10_1021_acsbiomaterials_9b00862
crossref_primary_10_2147_IJN_S275805
crossref_primary_10_1093_advances_nmz123
crossref_primary_10_3390_ijms23147611
crossref_primary_10_1016_j_cclet_2024_110224
crossref_primary_10_3389_fphar_2022_843412
crossref_primary_10_1007_s12274_024_6961_2
crossref_primary_10_1016_j_phrs_2018_04_015
crossref_primary_10_1186_s12951_023_02161_1
crossref_primary_10_3389_fmolb_2022_846650
crossref_primary_10_3389_fonc_2022_942020
crossref_primary_10_3390_molecules27123955
crossref_primary_10_3390_pharmaceutics14091905
crossref_primary_10_3389_fbioe_2023_1307878
crossref_primary_10_1016_j_foodres_2025_115804
crossref_primary_10_1021_acsami_4c14542
crossref_primary_10_1016_j_ajps_2021_05_006
crossref_primary_10_3390_pharmaceutics15030716
crossref_primary_10_1007_s12032_024_02481_8
crossref_primary_10_1016_j_cbi_2016_08_002
crossref_primary_10_2174_2210303108666181109120710
crossref_primary_10_1016_j_heliyon_2024_e40172
crossref_primary_10_2147_JIR_S421124
crossref_primary_10_3389_fimmu_2023_1255668
crossref_primary_10_2174_1568026620666200320113322
crossref_primary_10_3390_vetsci10010055
crossref_primary_10_1016_j_tifs_2023_04_001
crossref_primary_10_1016_S1875_5364_24_60742_9
crossref_primary_10_1002_adma_202207826
crossref_primary_10_1016_j_jare_2024_04_001
crossref_primary_10_2147_IJN_S477270
crossref_primary_10_1016_j_lfs_2025_123472
crossref_primary_10_1016_j_tice_2022_101800
crossref_primary_10_3390_nano10122460
crossref_primary_10_1002_advs_202300552
crossref_primary_10_2147_DDDT_S461977
crossref_primary_10_21931_RB_2023_08_02_17
crossref_primary_10_1002_jev2_12510
crossref_primary_10_1038_s41392_024_01745_z
crossref_primary_10_2147_IJN_S310952
crossref_primary_10_3389_fbioe_2024_1478517
crossref_primary_10_3934_bioeng_2017_1_73
crossref_primary_10_3934_biophy_2017_1_152
crossref_primary_10_3390_fishes8050259
crossref_primary_10_3390_membranes12040352
crossref_primary_10_1016_j_jconrel_2022_06_058
crossref_primary_10_1016_j_ncrna_2019_02_002
crossref_primary_10_1515_med_2020_0160
crossref_primary_10_1016_j_biopha_2024_116543
crossref_primary_10_1016_j_ymthe_2024_02_021
crossref_primary_10_1016_j_apsb_2020_11_003
crossref_primary_10_3389_fbioe_2021_670124
crossref_primary_10_3389_fnut_2021_778998
crossref_primary_10_1021_acs_jafc_3c06867
crossref_primary_10_2147_IJN_S432279
crossref_primary_10_3390_synbio2040024
crossref_primary_10_1016_j_arr_2025_102712
crossref_primary_10_3389_fcell_2024_1509123
crossref_primary_10_1016_j_biomaterials_2021_121178
crossref_primary_10_1007_s11101_024_09947_7
crossref_primary_10_1016_j_vesic_2024_100058
crossref_primary_10_1039_D4MA00896K
crossref_primary_10_1111_jfbc_14479
crossref_primary_10_1016_j_parepi_2024_e00347
crossref_primary_10_1021_acs_biomac_4c00535
crossref_primary_10_3390_pharmaceutics15051457
crossref_primary_10_1208_s12249_018_1165_2
crossref_primary_10_3390_jfb14110540
crossref_primary_10_1038_s42003_022_03781_3
crossref_primary_10_1002_pca_3367
crossref_primary_10_1016_j_critrevonc_2023_104121
crossref_primary_10_1002_biof_2090
crossref_primary_10_1016_j_phanu_2017_01_001
crossref_primary_10_3390_antiox12061169
crossref_primary_10_3389_fphar_2022_1002269
crossref_primary_10_3389_fbioe_2021_629832
crossref_primary_10_3390_antiox12061286
crossref_primary_10_3390_cancers13184672
crossref_primary_10_3389_fnut_2021_718093
crossref_primary_10_1016_j_sjbs_2020_10_027
crossref_primary_10_3390_plants12203604
crossref_primary_10_3390_md22100469
crossref_primary_10_1002_adtp_202300195
crossref_primary_10_1002_bmc_5993
crossref_primary_10_1271_kagakutoseibutsu_61_78
crossref_primary_10_1039_D4FO00263F
crossref_primary_10_3390_cells11243950
crossref_primary_10_1016_j_cofs_2021_12_001
crossref_primary_10_1016_j_matdes_2022_110686
crossref_primary_10_1186_s12906_023_04182_7
crossref_primary_10_3390_genes11091075
crossref_primary_10_1016_j_jddst_2024_106011
crossref_primary_10_3390_pharmaceutics16050588
crossref_primary_10_1016_j_phrs_2022_106472
crossref_primary_10_14336_AD_2021_0601
crossref_primary_10_3390_biomedicines11041053
crossref_primary_10_1016_j_addr_2021_114108
crossref_primary_10_3390_ijms26010189
crossref_primary_10_1186_s12951_024_02663_6
crossref_primary_10_2174_1385272827666230915103130
crossref_primary_10_1089_can_2023_0168
crossref_primary_10_1016_j_addr_2021_114101
crossref_primary_10_1016_j_ijpx_2022_100114
crossref_primary_10_1016_j_msec_2019_01_137
crossref_primary_10_1016_S1875_5364_19_30012_3
crossref_primary_10_3390_ijms23010191
crossref_primary_10_1080_17435889_2024_2403324
crossref_primary_10_1186_s41544_019_0026_9
crossref_primary_10_1016_j_semcancer_2019_08_009
crossref_primary_10_3390_ijms24032071
crossref_primary_10_1016_j_fbio_2021_100934
crossref_primary_10_1186_s12951_023_02193_7
crossref_primary_10_3389_fimmu_2024_1364401
crossref_primary_10_1371_journal_pntd_0009423
crossref_primary_10_1080_17425247_2023_2231345
crossref_primary_10_1097_MD_0000000000036303
crossref_primary_10_2147_IJN_S502591
crossref_primary_10_1016_j_jare_2022_02_014
crossref_primary_10_3390_polym13060862
crossref_primary_10_3390_ijms22094660
crossref_primary_10_1007_s13577_023_00994_4
crossref_primary_10_3390_ijms21113956
crossref_primary_10_1039_D3MH01030A
crossref_primary_10_1021_acsnano_3c11436
crossref_primary_10_3390_pharmaceutics14061233
crossref_primary_10_1016_j_jep_2021_114589
crossref_primary_10_1016_j_ijbiomac_2024_137847
crossref_primary_10_1007_s12668_024_01543_5
crossref_primary_10_1016_j_jddst_2025_106647
crossref_primary_10_1080_10837450_2023_2202242
crossref_primary_10_1016_j_ymthe_2019_01_003
crossref_primary_10_1371_journal_pone_0304335
crossref_primary_10_3389_fphar_2023_1272241
crossref_primary_10_3389_fonc_2023_1194350
crossref_primary_10_3390_molecules24234246
crossref_primary_10_2147_IJN_S413831
crossref_primary_10_3389_fphar_2022_908830
crossref_primary_10_3390_jnt3010005
crossref_primary_10_3390_pr12122938
crossref_primary_10_22159_ijap_2024v16i2_49293
crossref_primary_10_3389_fmed_2024_1420281
crossref_primary_10_1039_D4FO01366B
crossref_primary_10_3390_vaccines10101727
crossref_primary_10_3389_fphar_2023_1260134
crossref_primary_10_2147_IJN_S478435
crossref_primary_10_1016_j_trac_2023_117274
crossref_primary_10_26599_FMH_2026_9420081
crossref_primary_10_1021_acsomega_0c02893
crossref_primary_10_1016_j_rsurfi_2021_100005
crossref_primary_10_1016_j_jddst_2023_105096
crossref_primary_10_1016_j_taap_2021_115425
crossref_primary_10_3390_cells10030486
crossref_primary_10_1016_j_jep_2024_119008
crossref_primary_10_1016_j_addr_2022_114317
crossref_primary_10_1016_j_apsb_2021_08_016
crossref_primary_10_1038_s41598_018_32953_7
crossref_primary_10_1016_j_jconrel_2019_02_034
crossref_primary_10_1016_j_ejpb_2019_02_011
crossref_primary_10_1186_s12951_025_03306_0
crossref_primary_10_1016_j_fochx_2023_100947
crossref_primary_10_1021_acsnano_1c08281
crossref_primary_10_1039_D2TB01965E
crossref_primary_10_1016_j_foodchem_2024_140833
crossref_primary_10_3389_fonc_2022_864980
crossref_primary_10_3390_antiox12112015
crossref_primary_10_1016_j_arabjc_2018_11_020
crossref_primary_10_1080_17425247_2018_1420055
crossref_primary_10_1186_s12951_023_01858_7
crossref_primary_10_1021_acs_jafc_4c12480
crossref_primary_10_1016_j_banm_2024_03_013
crossref_primary_10_4103_SBVJ_SBVJ_19_24
crossref_primary_10_1007_s12668_024_01478_x
crossref_primary_10_1016_j_jconrel_2022_12_027
crossref_primary_10_1016_j_ijbiomac_2024_132001
crossref_primary_10_3389_fcell_2022_883841
crossref_primary_10_1002_ptr_6121
crossref_primary_10_1016_j_jfutfo_2022_08_003
crossref_primary_10_3390_ijms26052211
crossref_primary_10_1111_bph_15421
crossref_primary_10_3390_separations10030218
crossref_primary_10_3389_fonc_2021_781720
crossref_primary_10_3389_fbioe_2020_584391
crossref_primary_10_3390_nu16050741
crossref_primary_10_1016_j_chmed_2023_11_002
crossref_primary_10_1016_j_ijbiomac_2025_141112
crossref_primary_10_1016_j_jconrel_2024_01_060
crossref_primary_10_1002_jev2_12466
crossref_primary_10_1080_17435889_2024_2350356
crossref_primary_10_3390_cancers14225682
crossref_primary_10_3390_futurepharmacol4020020
crossref_primary_10_1016_j_ijbiomac_2017_06_117
crossref_primary_10_3390_antiox13040408
crossref_primary_10_1016_j_biopha_2024_116855
crossref_primary_10_2174_1570159X21666230216095938
crossref_primary_10_1186_s12951_023_01837_y
crossref_primary_10_3389_fbioe_2022_1076348
crossref_primary_10_1016_j_biotechadv_2022_108092
crossref_primary_10_1039_D3NA00093A
crossref_primary_10_1146_annurev_bioeng_071516_044603
crossref_primary_10_1080_15592324_2022_2129290
crossref_primary_10_1002_jssc_202300669
crossref_primary_10_1097_MS9_0000000000002030
crossref_primary_10_1002_smll_202409501
crossref_primary_10_1016_j_biomaterials_2022_121413
crossref_primary_10_1039_D3FO03503D
crossref_primary_10_1007_s12274_023_6112_1
crossref_primary_10_3390_fermentation6040102
crossref_primary_10_3892_br_2017_908
crossref_primary_10_1016_j_ccmp_2023_100116
crossref_primary_10_3390_app13116656
crossref_primary_10_52711_0974_360X_2021_00854
crossref_primary_10_1016_j_bioactmat_2021_04_023
crossref_primary_10_3389_fcell_2025_1485422
crossref_primary_10_1039_C7NR04734G
crossref_primary_10_1038_s41598_022_17899_1
crossref_primary_10_3390_molecules26175230
crossref_primary_10_1016_j_nano_2020_102271
crossref_primary_10_1111_jcmm_17404
crossref_primary_10_1016_j_ijbiomac_2024_131241
crossref_primary_10_1093_ibd_izy123
crossref_primary_10_3390_biomedicines10092245
crossref_primary_10_1016_j_colsurfb_2018_10_057
crossref_primary_10_1016_j_smim_2022_101664
crossref_primary_10_1093_ecco_jcc_jjab223
crossref_primary_10_3390_pharmaceutics14122581
crossref_primary_10_1155_2024_7955190
crossref_primary_10_3389_fphar_2022_1025768
crossref_primary_10_1016_j_foodres_2025_116186
crossref_primary_10_1016_j_phrs_2024_107202
crossref_primary_10_55544_jrasb_2_1_35
crossref_primary_10_1158_0008_5472_CAN_16_1681
crossref_primary_10_3389_fmed_2021_755969
crossref_primary_10_2217_nnm_2016_0353
crossref_primary_10_1016_j_jiec_2022_08_011
crossref_primary_10_1002_wnan_1986
crossref_primary_10_22159_ajpcr_2022_v15i7_44825
crossref_primary_10_1002_fsh3_12060
crossref_primary_10_1186_s12951_022_01421_w
crossref_primary_10_3390_app14073037
crossref_primary_10_1016_j_jconrel_2025_01_018
crossref_primary_10_1016_j_heliyon_2024_e40127
crossref_primary_10_1186_s12951_023_02065_0
crossref_primary_10_1039_C7TB03207B
crossref_primary_10_1021_acs_jafc_1c07306
crossref_primary_10_1016_j_jconrel_2022_05_025
crossref_primary_10_3390_nano10071424
crossref_primary_10_1186_s43556_024_00230_x
crossref_primary_10_1038_s41598_022_23961_9
crossref_primary_10_3390_ijms22158170
crossref_primary_10_1039_D2FO03477H
crossref_primary_10_1016_j_heliyon_2022_e09150
crossref_primary_10_1016_j_biopha_2023_115266
crossref_primary_10_3389_fmicb_2021_785716
crossref_primary_10_1016_j_jare_2022_09_013
crossref_primary_10_2147_IJN_S370784
crossref_primary_10_1016_j_jare_2021_07_002
crossref_primary_10_1039_D0FO01975E
crossref_primary_10_1007_s10565_024_09867_4
crossref_primary_10_4103_ijd_ijd_491_23
crossref_primary_10_3390_foods13050712
crossref_primary_10_1016_j_obmed_2025_100597
crossref_primary_10_1186_s41110_022_00166_8
crossref_primary_10_1186_s12951_021_01195_7
crossref_primary_10_3390_cells12060824
crossref_primary_10_1016_j_phymed_2024_156087
crossref_primary_10_1080_10408398_2025_2479066
crossref_primary_10_1016_j_ijpharm_2022_122340
crossref_primary_10_1093_ecco_jcc_jjz184
crossref_primary_10_1002_adtp_201900129
crossref_primary_10_51847_uiRo7joIWu
crossref_primary_10_1016_j_pharmthera_2024_108754
crossref_primary_10_1016_j_pharmthera_2025_108832
crossref_primary_10_2147_DDDT_S446949
crossref_primary_10_3390_ijms252312522
crossref_primary_10_1016_j_abb_2018_03_004
crossref_primary_10_1186_s12951_024_02381_z
crossref_primary_10_1039_D4FO04321A
crossref_primary_10_1002_adma_202409138
crossref_primary_10_1080_15476286_2016_1248329
crossref_primary_10_1039_D3NA00649B
crossref_primary_10_1016_j_biopha_2024_116514
crossref_primary_10_3389_fphar_2022_902551
crossref_primary_10_3390_ijms251910353
crossref_primary_10_1039_D2BM00540A
crossref_primary_10_1039_D4TB02394C
crossref_primary_10_3390_molecules23071622
crossref_primary_10_3390_pr11010112
crossref_primary_10_1016_j_molimm_2023_09_009
crossref_primary_10_1021_acs_jafc_1c07658
crossref_primary_10_3389_fphar_2023_1197144
crossref_primary_10_1002_jev2_12283
crossref_primary_10_1016_j_jhip_2025_02_002
crossref_primary_10_1080_13543776_2023_2195093
crossref_primary_10_18231_j_ijnmhs_2022_003
crossref_primary_10_1007_s12010_021_03598_6
crossref_primary_10_1016_j_fmre_2023_09_007
crossref_primary_10_1016_j_lfs_2023_121830
crossref_primary_10_3390_app12168262
crossref_primary_10_3389_fimmu_2022_1028418
crossref_primary_10_3390_molecules28114413
crossref_primary_10_1039_D1QM00295C
crossref_primary_10_1002_adma_202304963
crossref_primary_10_1186_s43094_024_00634_0
crossref_primary_10_26599_FSHW_2022_9250074
crossref_primary_10_3390_antiox12101862
crossref_primary_10_1016_j_bioadv_2023_213592
crossref_primary_10_1039_D3GC01287E
crossref_primary_10_3390_beverages10010009
crossref_primary_10_1186_s13020_019_0245_x
crossref_primary_10_2174_1386207325666220629161828
crossref_primary_10_3390_nano11081922
crossref_primary_10_3390_ph14080811
crossref_primary_10_1097_JBR_0000000000000078
crossref_primary_10_1186_s41043_024_00577_5
crossref_primary_10_1002_smll_202304023
crossref_primary_10_1080_02652048_2024_2443430
crossref_primary_10_2147_IJN_S293067
crossref_primary_10_1016_j_ijbiomac_2021_05_200
crossref_primary_10_1111_1750_3841_15787
crossref_primary_10_1039_C8GC01248B
crossref_primary_10_2174_1570180820666230807152019
crossref_primary_10_3390_molecules28248045
crossref_primary_10_3390_ijms252212092
crossref_primary_10_3389_fnut_2025_1544746
crossref_primary_10_1007_s00432_024_05763_w
crossref_primary_10_2147_IJN_S417422
crossref_primary_10_3390_foods13162624
crossref_primary_10_3390_ijms221910634
crossref_primary_10_1002_jev2_12069
crossref_primary_10_1021_acs_bioconjchem_0c00364
crossref_primary_10_1021_acs_jafc_2c00631
crossref_primary_10_1038_s41598_023_30180_3
crossref_primary_10_1186_s43094_021_00223_5
crossref_primary_10_3390_pharmaceutics13081203
crossref_primary_10_1186_s12951_025_03092_9
crossref_primary_10_1186_s12964_022_00889_1
crossref_primary_10_1016_j_colsurfa_2024_134990
crossref_primary_10_1007_s11095_022_03431_7
crossref_primary_10_1080_10717544_2023_2219427
crossref_primary_10_3389_fbioe_2023_1215650
crossref_primary_10_1016_j_bioactmat_2024_11_004
crossref_primary_10_1186_s40001_024_01937_x
crossref_primary_10_1002_smll_202306553
crossref_primary_10_3390_nano14221800
crossref_primary_10_1016_j_phrs_2024_107062
crossref_primary_10_1021_acs_jafc_4c11506
crossref_primary_10_1021_acsabm_3c01256
crossref_primary_10_1080_17425247_2020_1698543
crossref_primary_10_1016_j_omtm_2020_08_009
crossref_primary_10_3390_cells11142232
crossref_primary_10_3390_nu12020477
crossref_primary_10_3389_fimmu_2023_1338918
crossref_primary_10_1002_mnfr_202200142
crossref_primary_10_1016_j_onano_2023_100181
crossref_primary_10_1038_s41467_025_56624_0
crossref_primary_10_1016_j_adcanc_2023_100103
crossref_primary_10_1016_j_jsps_2024_102124
crossref_primary_10_1016_j_tifs_2021_10_032
crossref_primary_10_3390_biomedicines8050103
crossref_primary_10_3390_nu15020273
crossref_primary_10_2147_IJN_S493434
crossref_primary_10_2217_nnm_2017_0196
crossref_primary_10_1016_j_ejps_2023_106604
crossref_primary_10_1016_j_addr_2021_113887
crossref_primary_10_1002_cbin_11841
crossref_primary_10_2147_IJN_S425173
crossref_primary_10_3389_fnut_2021_586564
crossref_primary_10_1016_j_jare_2024_01_035
crossref_primary_10_1038_s41419_018_0814_4
crossref_primary_10_1016_j_jff_2023_105997
crossref_primary_10_1186_s13068_024_02462_z
crossref_primary_10_1002_adma_201901935
crossref_primary_10_1093_plphys_kiad644
crossref_primary_10_1002_iid3_1121
crossref_primary_10_1002_mnfr_202200013
crossref_primary_10_3390_pharmaceutics15020333
crossref_primary_10_1002_ptr_7828
crossref_primary_10_1016_j_phymed_2024_155509
crossref_primary_10_1002_jex2_154
crossref_primary_10_1016_j_foodchem_2024_140199
crossref_primary_10_1016_j_jep_2024_117733
crossref_primary_10_1016_j_parint_2021_102431
crossref_primary_10_1142_S1793984423300091
crossref_primary_10_3389_fphar_2024_1523052
crossref_primary_10_3390_biom13091412
crossref_primary_10_21769_BioProtoc_3685
crossref_primary_10_3390_nu15051265
crossref_primary_10_1002_adfm_202416151
crossref_primary_10_1038_s41598_021_02241_y
crossref_primary_10_3390_pharmaceutics13020145
crossref_primary_10_1039_D3MA00856H
crossref_primary_10_1186_s13020_023_00764_2
crossref_primary_10_1186_s12951_024_02856_z
crossref_primary_10_3390_foods9121852
crossref_primary_10_1021_acs_molpharmaceut_1c00415
crossref_primary_10_1007_s11596_024_2939_2
crossref_primary_10_1016_j_apsb_2022_12_022
crossref_primary_10_1016_j_addr_2021_113828
crossref_primary_10_1016_j_fct_2023_114102
crossref_primary_10_3390_cells13010090
crossref_primary_10_1016_j_bioactmat_2024_12_001
crossref_primary_10_3389_fnut_2023_1223349
crossref_primary_10_3390_md22030098
crossref_primary_10_3390_plants11111487
crossref_primary_10_1016_j_apsb_2023_08_033
crossref_primary_10_1021_acsomega_3c04479
crossref_primary_10_1155_2021_6623400
crossref_primary_10_3389_fbioe_2021_675194
crossref_primary_10_1016_j_biopha_2023_114572
crossref_primary_10_1007_s12272_020_01219_0
crossref_primary_10_2147_IJN_S413149
crossref_primary_10_1016_j_ajps_2023_100831
crossref_primary_10_1002_adtp_202400256
crossref_primary_10_1021_acsnano_4c05309
crossref_primary_10_1016_j_jddst_2024_105618
crossref_primary_10_1016_j_biomaterials_2022_121707
crossref_primary_10_1016_j_jff_2016_10_007
crossref_primary_10_1038_s41598_017_00696_6
crossref_primary_10_3390_bioengineering10101199
crossref_primary_10_3389_fonc_2022_1070479
crossref_primary_10_1186_s12951_022_01657_6
crossref_primary_10_3390_biology11060804
crossref_primary_10_2217_imt_2022_0179
crossref_primary_10_1021_acs_nanolett_1c02530
crossref_primary_10_1371_journal_pone_0262884
crossref_primary_10_1016_j_addr_2024_115332
crossref_primary_10_1016_j_foodchem_2024_140168
crossref_primary_10_1016_j_ntm_2023_100004
crossref_primary_10_3390_biom15030394
crossref_primary_10_3389_fphar_2023_1121950
crossref_primary_10_1021_acsabm_3c00094
crossref_primary_10_1016_j_foodchem_2023_135629
crossref_primary_10_1016_j_addr_2021_113964
crossref_primary_10_34133_bmr_0098
crossref_primary_10_1093_ecco_jcc_jjz113
crossref_primary_10_3390_biomedicines11061554
crossref_primary_10_1007_s12672_024_00974_6
crossref_primary_10_1039_D3TB02752J
crossref_primary_10_3389_fphar_2021_632569
crossref_primary_10_1007_s13346_024_01698_4
crossref_primary_10_3390_biomedicines12092142
crossref_primary_10_1007_s11095_019_2712_6
crossref_primary_10_3390_cells9051111
Cites_doi 10.1021/acsnano.5b02762
10.1017/S0007114511003308
10.1038/ajg.2011.354
10.1038/labinvest.2014.89
10.1126/scitranslmed.aac5608
10.1039/c3tb21564d
10.1002/mnfr.201300729
10.1016/j.canlet.2013.07.032
10.1038/nri3608
10.1126/scisignal.2005261
10.1593/neo.09542
10.1097/MOG.0b013e328354cc36
10.1038/onc.2010.91
10.1016/j.addr.2011.12.009
10.1126/scisignal.2003019
10.1126/scitranslmed.aaa5657
10.1016/j.biomaterials.2015.01.026
10.1080/01635581.2013.749925
10.1053/j.gastro.2006.11.022
10.1053/j.gastro.2010.01.058
10.1002/mnfr.201400347
10.1142/S0192415X11008762
10.1038/nri2653
10.1002/ibd.21527
10.1158/0008-5472.CAN-08-1952
10.1084/jem.20070590
10.1097/MIB.0000000000000236
10.1136/gut.35.5.646
10.1021/pr300819m
10.1021/acsnano.5b01324
10.3109/1061186X.2013.829076
10.1371/journal.pone.0044328
10.1053/j.gastro.2010.01.057
10.1002/pmic.200500390
10.1073/pnas.0906372106
10.1053/j.gastro.2014.01.056
10.1172/JCI76693
10.1136/gutjnl-2014-307126
10.1016/j.ijpharm.2012.05.041
10.1111/j.1524-475X.2008.00410.x
10.3389/fimmu.2012.00107
10.1016/j.colsurfb.2015.07.081
10.1084/jem.184.1.241
10.4049/jimmunol.1100559
10.1016/j.ccr.2012.11.013
10.1038/mt.2013.214
10.1038/mt.2013.190
10.1016/j.foodchem.2012.07.124
10.1155/2015/142979
10.1002/ibd.21944
10.1053/j.gastro.2008.04.002
10.1002/mnfr.201400630
10.1053/j.gastro.2009.11.003
10.1172/JCI44631
10.1016/j.immuni.2010.02.012
10.2174/187152012803833080
10.1177/153537020523001102
10.1038/nature13152
10.1136/gut.51.2.182
10.1021/acsnano.5b00166
10.1016/j.biomaterials.2013.06.008
10.1038/mt.2013.130
10.1046/j.1365-2036.1996.85257000.x
10.1016/0092-8674(93)80068-P
10.1080/21688370.2015.1134415
10.4103/1477-3163.78279
10.1016/j.jconrel.2007.08.008
10.1016/j.biomaterials.2010.09.062
10.4155/fmc.09.142
10.1038/nature10208
10.1021/acsnano.5b02796
10.1080/10408391003624848
10.1091/mbc.e15-03-0147
10.1189/jlb.1212612
10.1016/j.biomaterials.2015.01.011
10.1007/s00216-005-3126-3
10.1016/j.immuni.2012.06.017
10.1126/science.1224820
10.1016/j.cgh.2013.01.020
10.1002/ptr.2677
10.1016/j.jprot.2014.09.002
10.1006/bbrc.2000.2666
10.1146/annurev-med-112211-154330
10.1089/jmf.2005.8.125
10.3402/jev.v4.28713
10.1038/mt.2013.64
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
5PM
DOI 10.1016/j.biomaterials.2016.06.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Engineering Research Database
MEDLINE


MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 340
ExternalDocumentID PMC4921206
27318094
10_1016_j_biomaterials_2016_06_018
S0142961216302721
1_s2_0_S0142961216302721
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: BLRD VA
  grantid: I01 BX002526
– fundername: Intramural VA
  grantid: VA999999
– fundername: NIDDK NIH HHS
  grantid: R01 DK071594
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
5PM
ID FETCH-LOGICAL-c766t-ecf85c6148094d4eefee23ab56436ed845834f0ee96e64921732f3d000c133043
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Thu Aug 21 14:06:54 EDT 2025
Fri Jul 11 05:44:22 EDT 2025
Fri Jul 11 09:07:06 EDT 2025
Thu Jul 10 18:28:22 EDT 2025
Fri Jul 11 15:14:25 EDT 2025
Mon Jul 21 06:04:00 EDT 2025
Thu Apr 24 22:54:28 EDT 2025
Tue Jul 01 01:19:27 EDT 2025
Fri Feb 23 02:31:33 EST 2024
Tue Feb 25 20:00:56 EST 2025
Tue Aug 26 17:19:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Inflammatory bowel disease
Colitis-associated cancer
Therapy
Natural drug delivery system
Edible ginger derived nanoparticles
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c766t-ecf85c6148094d4eefee23ab56436ed845834f0ee96e64921732f3d000c133043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1016/j.biomaterials.2016.06.018
PMID 27318094
PQID 1799837236
PQPubID 23479
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4921206
proquest_miscellaneous_2000306169
proquest_miscellaneous_1825522088
proquest_miscellaneous_1808711507
proquest_miscellaneous_1799837236
pubmed_primary_27318094
crossref_primary_10_1016_j_biomaterials_2016_06_018
crossref_citationtrail_10_1016_j_biomaterials_2016_06_018
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2016_06_018
elsevier_clinicalkeyesjournals_1_s2_0_S0142961216302721
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2016_06_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Zhuang, Deng, Jiang, Mu, Wang (bib30) 2014; 22
Stretch, Campbell, Dwarakanath, Yaqoob, Stevenson, Morris (bib4) 1996; 10
Hsiang, Lo, Huang, Li, Wu, Ho (bib65) 2013; 136
Xiao, Si, Zhang, Merlin (bib24) 2015; 135
Kawasaki, Altieri, Lu, Toyoda, Tenjo, Tanigawa (bib61) 1998; 58
Ensign, Cone, Hanes (bib9) 2012; 64
Mori, Yamanishi, Ikeda, Kumagi, Hiasa, Matsuura (bib77) 2013; 93
Butt, Sultan (bib34) 2011; 51
Sussman, Santaolalla, Strobel, Dheer, Abreu (bib3) 2012; 28
Coombes, Siddiqui, Arancibia-Carcamo, Hall, Sun, Belkaid (bib75) 2007; 204
Zhang, Viennois, Xu, Merlin (bib31) 2016; 4
Barrientos, Stojadinovic, Golinko, Brem, Tomic-Canic (bib72) 2008; 16
Maloy, Powrie (bib48) 2011; 474
Viennois, Baker, Xiao, Wang, Laroui, Merlin (bib58) 2015; 112
Al-Suhaimi, Al-Riziza, Al-Essa (bib38) 2011; 39
Zhuang, Deng, Mu, Zhang, Yan, Miller (bib27) 2015; 4
Xing, Zhang, Wang, Liu, Shi, Cheng (bib15) 2015; 48
Kuhn, Lohler, Rennick, Rajewsky, Muller (bib57) 1993; 75
Rath, Haller (bib70) 2012; 18
Kwon, Wang, Thangaraju, Shuang, Liu, Dashwood (bib84) 2010; 29
Han, Cheng, Wu, Zhou, Long, Wei (bib19) 2015; 48
Mu, Zhuang, Wang, Jiang, Deng, Wang (bib28) 2014; 58
Zhang, Ermann, Succi, Zhou, Hamilton, Cao (bib10) 2015; 7
Araujo, Shrestha, Shahbazi, Liu, Herranz-Blanco, Makila (bib16) 2015; 9
Chassaing, Srinivasan, Delgado, Young, Gewirtz, Vijay-Kumar (bib55) 2012; 7
Xiao, Yang, Viennois, Zhang, Ayyadurai, Baker (bib20) 2014; 2
Francescone, Hou, Grivennikov (bib45) 2015; 21
Dupaul-Chicoine, Yeretssian, Doiron, Bergstrom, McIntire, LeBlanc (bib59) 2010; 32
Chan, Giovannucci (bib2) 2010; 138
De Robertis, Massi, Poeta, Carotti, Morini, Cecchetelli (bib60) 2011; 10
Xiao, Laroui, Viennois, Ayyadurai, Charania, Zhang (bib11) 2014; 146
Viennois, Xiao, Ayyadurai, Wang, Wang, Zhang (bib39) 2014; 94
Fasolino, Izzo, Clavel, Romano, Haller, Borrelli (bib68) 2015; 59
Karna, Chagani, Gundala, Rida, Asif, Sharma (bib33) 2012; 107
Laroui, Theiss, Yan, Dalmasso, Nguyen, Sitaraman (bib23) 2011; 32
Grzanna, Lindmark, Frondoza (bib37) 2005; 8
Terzic, Grivennikov, Karin, Karin (bib79) 2010; 138
Yang, Chen, Zhao, Han, Chen (bib54) 2012; 434
Rogler (bib83) 2014; 345
Hansen, Petersen, Henriksen, Boerresen, Rasmussen, Elema (bib17) 2015; 9
Prasad, Tyagi (bib66) 2015; 2015
Tang, Tong, Coyle, Yin, Pondenis, Borst (bib25) 2015; 9
Brahmbhatt, Gundala, Asif, Shamsi, Aneja (bib32) 2013; 65
Liang, Nagahashi, Kim, Harikumar, Yamada, Huang (bib82) 2013; 23
Wiczer, Thomas (bib62) 2012; 5
Pertuit, Moulari, Betz, Nadaradjane, Neumann, Ismaili (bib5) 2007; 123
Davidson, Leach, Fort, Thompson-Snipes, Kühn, Müller (bib56) 1996; 184
Laroui, Geem, Xiao, Viennois, Rakhya, Denning (bib43) 2014; 22
Marouga, David, Hawkins (bib49) 2005; 382
Vetrano, Rescigno, Cera, Correale, Rumio, Doni (bib41) 2008; 135
Moriasi, Subramaniam, Awasthi, Ramalingam, Anant (bib13) 2012; 12
Arthur, Perez-Chanona, Muhlbauer, Tomkovich, Uronis, Fan (bib81) 2012; 338
Hrabakova, Kollareddy, Tyleckova, Halada, Hajduch, Gadher (bib87) 2013; 12
Li, Gyselman, Dorudi, Bustin (bib86) 2000; 271
Navaneethan, Lashner (bib7) 2013; 11
Turner (bib40) 2009; 9
Saxena, Taliaferro-Smith, Knight, Merlin, Anania, O'Regan (bib53) 2008; 68
Yan, Cao, Cover, Whitehead, Washington, Polk (bib47) 2007; 132
Brown, Shah, Liu, Pham, Zhang, Jadus (bib36) 2009; 23
Browning, Kwon, Wang (bib85) 2010; 2
Morton, Lee, Deng, Dreaden, Siouve, Shopsowitz (bib26) 2014; 7
Peterson, Artis (bib46) 2014; 14
Record (bib63) 2013; 21
Yeo, Kim, Park, Oh, Kim, Cho (bib89) 2006; 6
Wang, DuBois (bib8) 2013; 64
Ramishetti, Kedmi, Goldsmith, Leonard, Sprague, Godin (bib22) 2015; 9
Hang, Dalmasso, Torkvist, Halfvarson, Yan, Laroui (bib44) 2011; 121
Kakhniashvili, Griko, Bulla, Goodman (bib50) 2005; 230
Lin, Buckhaults, Lee, Xiong, Farrell, Podolsky (bib88) 2009; 11
Parkkila, Parkkila, Juvonen, Rajaniemi (bib74) 1994; 35
Xiao, Laroui, Ayyadurai, Viennois, Charania, Zhang (bib21) 2013; 34
Laroui, Dalmasso, Nguyen, Yan, Sitaraman, Merlin (bib18) 2010; 138
Deol, Kaur (bib64) 2013; 21
Noubade, Wong, Ota, Rutz, Eidenschenk, Valdez (bib69) 2014; 509
Khounlotham, Kim, Peatman, Nava, Medina-Contreras, Addis (bib71) 2012; 37
Prasad, Aggarwal (bib35) 2014; 2014
Hanauer (bib6) 2002; 51
Terzic, Grivennikov, Karin, Karin (bib1) 2010; 138
Kitano, Kudo, Yamao, Takagi, Sakamoto, Komaki (bib78) 2012; 107
Kamekura, Nava, Feng, Quiros, Nishio, Weber (bib73) 2015; 26
Yamanishi, Murakami, Ikeda, Abe, Kumagi, Hiasa (bib76) 2012; 188
Utrilla, Peinado, Ruiz, Rodriguez-Nogales, Algieri, Rodriguez-Cabezas (bib67) 2015; 59
Dulai, Siegel, Colombel, Sandborn, Peyrin-Biroulet (bib12) 2014; 63
Fukata, Shang, Santaolalla, Sotolongo, Pastorini, Espana (bib14) 2011; 17
Rubin, Shaker, Levin (bib80) 2012; 3
Groschwitz, Ahrens, Osterfeld, Gurish, Han, Abrink (bib42) 2009; 106
Leoni, Neumann, Kamaly, Quiros, Nishio, Jones (bib51) 2015; 125
Headland, Jones, Norling, Kim, Souza, Corsiero (bib52) 2015; 7
Ju, Mu, Dokland, Zhuang, Wang, Jiang (bib29) 2013; 21
Khounlotham (10.1016/j.biomaterials.2016.06.018_bib71) 2012; 37
Zhuang (10.1016/j.biomaterials.2016.06.018_bib27) 2015; 4
Tang (10.1016/j.biomaterials.2016.06.018_bib25) 2015; 9
Terzic (10.1016/j.biomaterials.2016.06.018_bib79) 2010; 138
Maloy (10.1016/j.biomaterials.2016.06.018_bib48) 2011; 474
Rath (10.1016/j.biomaterials.2016.06.018_bib70) 2012; 18
Al-Suhaimi (10.1016/j.biomaterials.2016.06.018_bib38) 2011; 39
Hrabakova (10.1016/j.biomaterials.2016.06.018_bib87) 2013; 12
Davidson (10.1016/j.biomaterials.2016.06.018_bib56) 1996; 184
Wiczer (10.1016/j.biomaterials.2016.06.018_bib62) 2012; 5
Brown (10.1016/j.biomaterials.2016.06.018_bib36) 2009; 23
Groschwitz (10.1016/j.biomaterials.2016.06.018_bib42) 2009; 106
Sussman (10.1016/j.biomaterials.2016.06.018_bib3) 2012; 28
Yang (10.1016/j.biomaterials.2016.06.018_bib54) 2012; 434
Pertuit (10.1016/j.biomaterials.2016.06.018_bib5) 2007; 123
Noubade (10.1016/j.biomaterials.2016.06.018_bib69) 2014; 509
Xing (10.1016/j.biomaterials.2016.06.018_bib15) 2015; 48
Xiao (10.1016/j.biomaterials.2016.06.018_bib24) 2015; 135
Viennois (10.1016/j.biomaterials.2016.06.018_bib39) 2014; 94
Xiao (10.1016/j.biomaterials.2016.06.018_bib20) 2014; 2
Yeo (10.1016/j.biomaterials.2016.06.018_bib89) 2006; 6
Prasad (10.1016/j.biomaterials.2016.06.018_bib35) 2014; 2014
Turner (10.1016/j.biomaterials.2016.06.018_bib40) 2009; 9
Record (10.1016/j.biomaterials.2016.06.018_bib63) 2013; 21
Ramishetti (10.1016/j.biomaterials.2016.06.018_bib22) 2015; 9
Chassaing (10.1016/j.biomaterials.2016.06.018_bib55) 2012; 7
Arthur (10.1016/j.biomaterials.2016.06.018_bib81) 2012; 338
Wang (10.1016/j.biomaterials.2016.06.018_bib30) 2014; 22
Laroui (10.1016/j.biomaterials.2016.06.018_bib43) 2014; 22
Barrientos (10.1016/j.biomaterials.2016.06.018_bib72) 2008; 16
Li (10.1016/j.biomaterials.2016.06.018_bib86) 2000; 271
Xiao (10.1016/j.biomaterials.2016.06.018_bib11) 2014; 146
Butt (10.1016/j.biomaterials.2016.06.018_bib34) 2011; 51
Utrilla (10.1016/j.biomaterials.2016.06.018_bib67) 2015; 59
Rogler (10.1016/j.biomaterials.2016.06.018_bib83) 2014; 345
Araujo (10.1016/j.biomaterials.2016.06.018_bib16) 2015; 9
Moriasi (10.1016/j.biomaterials.2016.06.018_bib13) 2012; 12
Headland (10.1016/j.biomaterials.2016.06.018_bib52) 2015; 7
Browning (10.1016/j.biomaterials.2016.06.018_bib85) 2010; 2
Saxena (10.1016/j.biomaterials.2016.06.018_bib53) 2008; 68
De Robertis (10.1016/j.biomaterials.2016.06.018_bib60) 2011; 10
Grzanna (10.1016/j.biomaterials.2016.06.018_bib37) 2005; 8
Leoni (10.1016/j.biomaterials.2016.06.018_bib51) 2015; 125
Zhang (10.1016/j.biomaterials.2016.06.018_bib31) 2016; 4
Marouga (10.1016/j.biomaterials.2016.06.018_bib49) 2005; 382
Terzic (10.1016/j.biomaterials.2016.06.018_bib1) 2010; 138
Rubin (10.1016/j.biomaterials.2016.06.018_bib80) 2012; 3
Kamekura (10.1016/j.biomaterials.2016.06.018_bib73) 2015; 26
Lin (10.1016/j.biomaterials.2016.06.018_bib88) 2009; 11
Ensign (10.1016/j.biomaterials.2016.06.018_bib9) 2012; 64
Karna (10.1016/j.biomaterials.2016.06.018_bib33) 2012; 107
Zhang (10.1016/j.biomaterials.2016.06.018_bib10) 2015; 7
Wang (10.1016/j.biomaterials.2016.06.018_bib8) 2013; 64
Navaneethan (10.1016/j.biomaterials.2016.06.018_bib7) 2013; 11
Deol (10.1016/j.biomaterials.2016.06.018_bib64) 2013; 21
Vetrano (10.1016/j.biomaterials.2016.06.018_bib41) 2008; 135
Peterson (10.1016/j.biomaterials.2016.06.018_bib46) 2014; 14
Kawasaki (10.1016/j.biomaterials.2016.06.018_bib61) 1998; 58
Coombes (10.1016/j.biomaterials.2016.06.018_bib75) 2007; 204
Hanauer (10.1016/j.biomaterials.2016.06.018_bib6) 2002; 51
Dulai (10.1016/j.biomaterials.2016.06.018_bib12) 2014; 63
Morton (10.1016/j.biomaterials.2016.06.018_bib26) 2014; 7
Mu (10.1016/j.biomaterials.2016.06.018_bib28) 2014; 58
Kuhn (10.1016/j.biomaterials.2016.06.018_bib57) 1993; 75
Ju (10.1016/j.biomaterials.2016.06.018_bib29) 2013; 21
Yamanishi (10.1016/j.biomaterials.2016.06.018_bib76) 2012; 188
Prasad (10.1016/j.biomaterials.2016.06.018_bib66) 2015; 2015
Fasolino (10.1016/j.biomaterials.2016.06.018_bib68) 2015; 59
Kitano (10.1016/j.biomaterials.2016.06.018_bib78) 2012; 107
Hang (10.1016/j.biomaterials.2016.06.018_bib44) 2011; 121
Xiao (10.1016/j.biomaterials.2016.06.018_bib21) 2013; 34
Chan (10.1016/j.biomaterials.2016.06.018_bib2) 2010; 138
Hsiang (10.1016/j.biomaterials.2016.06.018_bib65) 2013; 136
Hansen (10.1016/j.biomaterials.2016.06.018_bib17) 2015; 9
Kwon (10.1016/j.biomaterials.2016.06.018_bib84) 2010; 29
Dupaul-Chicoine (10.1016/j.biomaterials.2016.06.018_bib59) 2010; 32
Brahmbhatt (10.1016/j.biomaterials.2016.06.018_bib32) 2013; 65
Parkkila (10.1016/j.biomaterials.2016.06.018_bib74) 1994; 35
Han (10.1016/j.biomaterials.2016.06.018_bib19) 2015; 48
Fukata (10.1016/j.biomaterials.2016.06.018_bib14) 2011; 17
Yan (10.1016/j.biomaterials.2016.06.018_bib47) 2007; 132
Laroui (10.1016/j.biomaterials.2016.06.018_bib23) 2011; 32
Kakhniashvili (10.1016/j.biomaterials.2016.06.018_bib50) 2005; 230
Francescone (10.1016/j.biomaterials.2016.06.018_bib45) 2015; 21
Liang (10.1016/j.biomaterials.2016.06.018_bib82) 2013; 23
Stretch (10.1016/j.biomaterials.2016.06.018_bib4) 1996; 10
Laroui (10.1016/j.biomaterials.2016.06.018_bib18) 2010; 138
Viennois (10.1016/j.biomaterials.2016.06.018_bib58) 2015; 112
Mori (10.1016/j.biomaterials.2016.06.018_bib77) 2013; 93
References_xml – volume: 121
  start-page: 1733
  year: 2011
  end-page: 1747
  ident: bib44
  article-title: CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice
  publication-title: J. Clin. Invest.
– volume: 21
  start-page: 855
  year: 2013
  end-page: 865
  ident: bib64
  article-title: Improving the therapeutic efficiency of ginger extract for treatment of colon cancer using a suitably designed multiparticulate system
  publication-title: J. Drug Target
– volume: 474
  start-page: 298
  year: 2011
  end-page: 306
  ident: bib48
  article-title: Intestinal homeostasis and its breakdown in inflammatory bowel disease
  publication-title: Nature
– volume: 75
  start-page: 263
  year: 1993
  end-page: 274
  ident: bib57
  article-title: Interleukin-10-Deficient mice develop chronic enterocolitis
  publication-title: Cell
– volume: 28
  start-page: 327
  year: 2012
  end-page: 333
  ident: bib3
  article-title: Cancer in inflammatory bowel disease: lessons from animal models
  publication-title: Curr. Opin. Gastroenterol.
– volume: 39
  start-page: 215
  year: 2011
  end-page: 231
  ident: bib38
  article-title: Physiological and therapeutical roles of ginger and turmeric on endocrine functions
  publication-title: Am. J. Chin. Med.
– volume: 59
  start-page: 807
  year: 2015
  end-page: 819
  ident: bib67
  article-title: Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect in the DSS model of mouse colitis
  publication-title: Mol. Nutr. Food Res.
– volume: 2
  start-page: 1499
  year: 2014
  end-page: 1508
  ident: bib20
  article-title: Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticles
  publication-title: J. Mater Chem. B
– volume: 58
  start-page: 5071
  year: 1998
  end-page: 5074
  ident: bib61
  article-title: Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer
  publication-title: Cancer Res.
– volume: 63
  start-page: 1843
  year: 2014
  end-page: 1853
  ident: bib12
  article-title: Systematic review: monotherapy with antitumour necrosis factor alpha agents versus combination therapy with an immunosuppressive for IBD
  publication-title: Gut
– volume: 21
  start-page: 409
  year: 2015
  end-page: 418
  ident: bib45
  article-title: Cytokines, IBD, and colitis-associated cancer
  publication-title: Inflamm. Bowel Dis.
– volume: 32
  start-page: 1218
  year: 2011
  end-page: 1228
  ident: bib23
  article-title: Functional TNF alpha gene silencing mediated by polyethyleneimine/TNF alpha siRNA nanocomplexes in inflamed colon
  publication-title: Biomaterials
– volume: 107
  start-page: 303
  year: 2012
  end-page: 310
  ident: bib78
  article-title: Characterization of small solid tumors in the pancreas: the value of contrast-enhanced harmonic endoscopic ultrasonography
  publication-title: Am. J. Gastroenterol.
– volume: 12
  start-page: 455
  year: 2013
  end-page: 469
  ident: bib87
  article-title: Cancer cell resistance to aurora kinase inhibitors: identification of novel targets for cancer therapy
  publication-title: J. Proteome Res.
– volume: 29
  start-page: 3423
  year: 2010
  end-page: 3434
  ident: bib84
  article-title: PKG inhibits TCF signaling in colon cancer cells by blocking beta-catenin expression and activating FOXO4
  publication-title: Oncogene
– volume: 21
  start-page: 1345
  year: 2013
  end-page: 1357
  ident: bib29
  article-title: Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis
  publication-title: Mol. Ther.
– volume: 8
  start-page: 125
  year: 2005
  end-page: 132
  ident: bib37
  article-title: Ginger - an herbal medicinal product with broad anti-inflammatory actions
  publication-title: J. Med. Food
– volume: 68
  start-page: 9712
  year: 2008
  end-page: 9722
  ident: bib53
  article-title: Bidirectional crosstalk between leptin and insulin-like growth Factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor
  publication-title: Cancer Res.
– volume: 18
  start-page: 1364
  year: 2012
  end-page: 1377
  ident: bib70
  article-title: Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation
  publication-title: Inflamm. Bowel Dis.
– volume: 64
  start-page: 557
  year: 2012
  end-page: 570
  ident: bib9
  article-title: Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers
  publication-title: Adv. Drug Deliv. Rev.
– volume: 107
  start-page: 473
  year: 2012
  end-page: 484
  ident: bib33
  article-title: Benefits of whole ginger extract in prostate cancer
  publication-title: Brit J. Nutr.
– volume: 138
  start-page: 2101
  year: 2010
  end-page: 2114
  ident: bib1
  article-title: Inflammation and colon cancer
  publication-title: Gastroenterology
– volume: 434
  start-page: 155
  year: 2012
  end-page: 160
  ident: bib54
  article-title: Comparative study on preparative methods of DC-Chol/DOPE liposomes and formulation optimization by determining encapsulation efficiency
  publication-title: Int. J. Pharm.
– volume: 48
  start-page: 16
  year: 2015
  end-page: 25
  ident: bib15
  article-title: An “imaging-biopsy” strategy for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots
  publication-title: Biomaterials
– volume: 34
  start-page: 7471
  year: 2013
  end-page: 7482
  ident: bib21
  article-title: Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy
  publication-title: Biomaterials
– volume: 2014
  year: 2014
  ident: bib35
  article-title: Chronic diseases caused by chronic inflammation require chronic treatment: anti-inflammatory role of dietary spices
  publication-title: J. Clin. Cell Immunol.
– volume: 2
  start-page: 65
  year: 2010
  end-page: 80
  ident: bib85
  article-title: cGMP-dependent protein kinases as potential targets for colon cancer prevention and treatment
  publication-title: Future Med. Chem.
– volume: 7
  start-page: ra44
  year: 2014
  ident: bib26
  article-title: A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways
  publication-title: Sci. Signal
– volume: 51
  start-page: 383
  year: 2011
  end-page: 393
  ident: bib34
  article-title: Ginger and its health claims: molecular aspects
  publication-title: Crit. Rev. Food Sci.
– volume: 112
  start-page: 166
  year: 2015
  end-page: 179
  ident: bib58
  article-title: Longitudinal study of circulating protein biomarkers in inflammatory bowel disease
  publication-title: J. Proteomics
– volume: 136
  start-page: 170
  year: 2013
  end-page: 177
  ident: bib65
  article-title: Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-kappa B activity and interleukin-1 beta signalling pathway
  publication-title: Food Chem.
– volume: 9
  start-page: 6985
  year: 2015
  end-page: 6995
  ident: bib17
  article-title: Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using Copper-64 liposomes
  publication-title: ACS Nano
– volume: 125
  start-page: 1215
  year: 2015
  end-page: 1227
  ident: bib51
  article-title: Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair
  publication-title: J. Clin. Invest.
– volume: 10
  start-page: 941
  year: 1996
  end-page: 947
  ident: bib4
  article-title: 5-Amino salicylic acid absorption and metabolism in ulcerative colitis patients receiving maintenance sulphasalazine, olsalazine or mesalazine
  publication-title: Aliment. Pharm. Ther.
– volume: 2015
  start-page: 142179
  year: 2015
  ident: bib66
  article-title: Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer
  publication-title: Gastroenterol. Res. Pract.
– volume: 21
  start-page: 1294
  year: 2013
  end-page: 1296
  ident: bib63
  article-title: Exosome-like nanoparticles from food: protective nanoshuttles for bioactive cargo
  publication-title: Mol. Ther.
– volume: 59
  start-page: 434
  year: 2015
  end-page: 442
  ident: bib68
  article-title: Orally administered allyl sulfides from garlic ameliorate murine colitis
  publication-title: Mol. Nutr. Food Res.
– volume: 6
  start-page: 1158
  year: 2006
  end-page: 1165
  ident: bib89
  article-title: Loss of transgelin in repeated bouts of ulcerative colitis-induced colon carcinogenesis
  publication-title: Proteomics
– volume: 230
  start-page: 787
  year: 2005
  end-page: 792
  ident: bib50
  article-title: The proteomics of sickle cell disease: profiling of erythrocyte membrane proteins by 2D-DIGE and tandem mass spectrometry
  publication-title: Exp. Biol. Med.
– volume: 11
  start-page: 524
  year: 2013
  end-page: 525
  ident: bib7
  article-title: Effects of immunosuppression and liver transplantation on inflammatory bowel disease in patients with primary sclerosing cholangitis
  publication-title: Clin. Gastroenterol. Hepatol.
– volume: 4
  start-page: 28713
  year: 2015
  ident: bib27
  article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage
  publication-title: J. Extracell. Vesicles
– volume: 14
  start-page: 141
  year: 2014
  end-page: 153
  ident: bib46
  article-title: Intestinal epithelial cells: regulators of barrier function and immune homeostasis
  publication-title: Nat. Rev. Immunol.
– volume: 35
  start-page: 646
  year: 1994
  end-page: 650
  ident: bib74
  article-title: Distribution of the carbonic-anhydrase Isoenzyme-I, isoenzyme-II, and isoenzyme-Vi in the human alimentary-tract
  publication-title: Gut
– volume: 65
  start-page: 263
  year: 2013
  end-page: 272
  ident: bib32
  article-title: Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation
  publication-title: Nutr. Cancer
– volume: 138
  start-page: 843
  year: 2010
  end-page: 853
  ident: bib18
  article-title: Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model
  publication-title: Gastroenterology
– volume: 9
  start-page: 6706
  year: 2015
  end-page: 6716
  ident: bib22
  article-title: Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles
  publication-title: ACS Nano
– volume: 106
  start-page: 22381
  year: 2009
  end-page: 22386
  ident: bib42
  article-title: Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 271
  start-page: 537
  year: 2000
  end-page: 543
  ident: bib86
  article-title: Elevated levels of RanBP7 mRNA in colorectal carcinoma are associated with increased proliferation and are similar to the transcription pattern of the proto-oncogene c-myc
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 64
  start-page: 131
  year: 2013
  end-page: 144
  ident: bib8
  article-title: The role of anti-inflammatory drugs in colorectal cancer
  publication-title: Annu. Rev. Med.
– volume: 7
  start-page: 300ra128
  year: 2015
  ident: bib10
  article-title: An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease
  publication-title: Sci. Transl. Med.
– volume: 188
  start-page: 2164
  year: 2012
  end-page: 2172
  ident: bib76
  article-title: Regulatory dendritic cells pulsed with carbonic anhydrase I protect mice from colitis induced by CD4(
  publication-title: J. Immunol.
– volume: 4
  start-page: e1134415
  year: 2016
  ident: bib31
  article-title: Plant derived edible nanoparticles as a new therapeutic approach against diseases
  publication-title: Tissue Barriers
– volume: 338
  start-page: 120
  year: 2012
  end-page: 123
  ident: bib81
  article-title: Intestinal inflammation targets cancer-inducing activity of the microbiota
  publication-title: Science
– volume: 10
  start-page: 9
  year: 2011
  ident: bib60
  article-title: The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies
  publication-title: J. Carcinog.
– volume: 135
  start-page: 379
  year: 2015
  end-page: 385
  ident: bib24
  article-title: Oral administration of pH-sensitive curcumin-loaded microparticles for ulcerative colitis therapy
  publication-title: Colloid Surf. B
– volume: 23
  start-page: 640
  year: 2009
  end-page: 645
  ident: bib36
  article-title: Ginger's (Zingiber officinale roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro
  publication-title: Phytother. Res.
– volume: 9
  start-page: 799
  year: 2009
  end-page: 809
  ident: bib40
  article-title: Intestinal mucosal barrier function in health and disease
  publication-title: Nat. Rev. Immunol.
– volume: 138
  start-page: 2101
  year: 2010
  end-page: 2114
  ident: bib79
  article-title: Inflammation and colon cancer
  publication-title: Gastroenterology
– volume: 132
  start-page: 562
  year: 2007
  end-page: 575
  ident: bib47
  article-title: Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth
  publication-title: Gastroenterology
– volume: 23
  start-page: 107
  year: 2013
  end-page: 120
  ident: bib82
  article-title: Sphingosine-1-Phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer
  publication-title: Cancer Cell
– volume: 17
  start-page: 1464
  year: 2011
  end-page: 1473
  ident: bib14
  article-title: Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis
  publication-title: Inflamm. Bowel Dis.
– volume: 123
  start-page: 211
  year: 2007
  end-page: 218
  ident: bib5
  article-title: 5-amino salicylic acid bound nanoparticles for the therapy of inflammatory bowel disease
  publication-title: J. Control Release
– volume: 382
  start-page: 669
  year: 2005
  end-page: 678
  ident: bib49
  article-title: The development of the DIGE system: 2D fluorescence difference gel analysis technology
  publication-title: Anal. Bioanal. Chem.
– volume: 7
  start-page: 315ra190
  year: 2015
  ident: bib52
  article-title: Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis
  publication-title: Sci. Transl. Med.
– volume: 51
  start-page: 182
  year: 2002
  end-page: 183
  ident: bib6
  article-title: New steroids for IBD: progress report
  publication-title: Gut
– volume: 94
  start-page: 950
  year: 2014
  end-page: 965
  ident: bib39
  article-title: Micheliolide, a new sesquiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer
  publication-title: Lab. Invest.
– volume: 32
  start-page: 367
  year: 2010
  end-page: 378
  ident: bib59
  article-title: Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases
  publication-title: Immunity
– volume: 58
  start-page: 1561
  year: 2014
  end-page: 1573
  ident: bib28
  article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles
  publication-title: Mol. Nutr. Food Res.
– volume: 509
  start-page: 235
  year: 2014
  end-page: 239
  ident: bib69
  article-title: NRROS negatively regulates reactive oxygen species during host defence and autoimmunity
  publication-title: Nature
– volume: 345
  start-page: 235
  year: 2014
  end-page: 241
  ident: bib83
  article-title: Chronic ulcerative colitis and colorectal cancer
  publication-title: Cancer Lett.
– volume: 16
  start-page: 585
  year: 2008
  end-page: 601
  ident: bib72
  article-title: Growth factors and cytokines in wound healing
  publication-title: Wound Repair Regen.
– volume: 48
  start-page: 45
  year: 2015
  end-page: 55
  ident: bib19
  article-title: Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery
  publication-title: Biomaterials
– volume: 184
  start-page: 241
  year: 1996
  end-page: 251
  ident: bib56
  article-title: T helper cell 1-type CD4
  publication-title: J. Exp. Med.
– volume: 11
  year: 2009
  ident: bib88
  article-title: Association of the actin-binding protein transgelin with lymph node metastasis in human colorectal cancer
  publication-title: Neoplasia
– volume: 3
  start-page: 107
  year: 2012
  ident: bib80
  article-title: Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer
  publication-title: Front. Immunol.
– volume: 138
  start-page: 2029
  year: 2010
  end-page: 2043
  ident: bib2
  article-title: Primary prevention of colorectal cancer
  publication-title: Gastroenterology
– volume: 204
  start-page: 1757
  year: 2007
  end-page: 1764
  ident: bib75
  article-title: A functionally specialized population of mucosal CD103(+) DCs induces Foxp3(+) regulatory T cells via a TGF-beta- and retinoic acid-dependent mechanism
  publication-title: J. Exp. Med.
– volume: 93
  start-page: 963
  year: 2013
  end-page: 972
  ident: bib77
  article-title: Oral administration of carbonic anhydrase I ameliorates murine experimental colitis induced by Foxp3(-)CD4(
  publication-title: J. Leukoc. Biol.
– volume: 5
  year: 2012
  ident: bib62
  article-title: Phospholipase D and mTORC1: nutrients are what bring them together
  publication-title: Sci. Signal
– volume: 12
  start-page: 1221
  year: 2012
  end-page: 1238
  ident: bib13
  article-title: Prevention of colitis-associated cancer: natural compounds that target the IL-6 soluble receptor
  publication-title: Anti-Cancer Agent Med. Chem.
– volume: 9
  start-page: 5072
  year: 2015
  end-page: 5081
  ident: bib25
  article-title: Targeting tumor vasculature with aptamer-functionalized doxorubicin - polylactide nanoconjugates for enhanced cancer therapy
  publication-title: ACS Nano
– volume: 22
  start-page: 69
  year: 2014
  end-page: 80
  ident: bib43
  article-title: Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles
  publication-title: Mol. Ther.
– volume: 9
  start-page: 8291
  year: 2015
  end-page: 8302
  ident: bib16
  article-title: Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs
  publication-title: ACS Nano
– volume: 22
  start-page: 522
  year: 2014
  end-page: 534
  ident: bib30
  article-title: Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit
  publication-title: Mol. Ther.
– volume: 26
  start-page: 3165
  year: 2015
  end-page: 3177
  ident: bib73
  article-title: Inflammation-induced desmoglein-2 ectodomain shedding compromises the mucosal barrier
  publication-title: Mol. Biol. Cell
– volume: 135
  start-page: 173
  year: 2008
  end-page: 184
  ident: bib41
  article-title: Unique role of junctional adhesion molecule-A in maintaining mucosal homeostasis in inflammatory bowel disease
  publication-title: Gastroenterology
– volume: 146
  start-page: 1289
  year: 2014
  end-page: 1300
  ident: bib11
  article-title: Nanoparticles with surface antibody against CD98 and carrying CD98 small interfering RNA reduce colitis in mice
  publication-title: Gastroenterology
– volume: 37
  start-page: 563
  year: 2012
  end-page: 573
  ident: bib71
  article-title: Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis
  publication-title: Immunity
– volume: 7
  start-page: e44328
  year: 2012
  ident: bib55
  article-title: Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation
  publication-title: PLoS One
– volume: 9
  start-page: 8291
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib16
  article-title: Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02762
– volume: 107
  start-page: 473
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib33
  article-title: Benefits of whole ginger extract in prostate cancer
  publication-title: Brit J. Nutr.
  doi: 10.1017/S0007114511003308
– volume: 107
  start-page: 303
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib78
  article-title: Characterization of small solid tumors in the pancreas: the value of contrast-enhanced harmonic endoscopic ultrasonography
  publication-title: Am. J. Gastroenterol.
  doi: 10.1038/ajg.2011.354
– volume: 94
  start-page: 950
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib39
  article-title: Micheliolide, a new sesquiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.2014.89
– volume: 7
  start-page: 315ra190
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib52
  article-title: Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aac5608
– volume: 2
  start-page: 1499
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib20
  article-title: Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticles
  publication-title: J. Mater Chem. B
  doi: 10.1039/c3tb21564d
– volume: 58
  start-page: 5071
  year: 1998
  ident: 10.1016/j.biomaterials.2016.06.018_bib61
  article-title: Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer
  publication-title: Cancer Res.
– volume: 58
  start-page: 1561
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib28
  article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201300729
– volume: 345
  start-page: 235
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib83
  article-title: Chronic ulcerative colitis and colorectal cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2013.07.032
– volume: 14
  start-page: 141
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib46
  article-title: Intestinal epithelial cells: regulators of barrier function and immune homeostasis
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3608
– volume: 7
  start-page: ra44
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib26
  article-title: A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.2005261
– volume: 11
  year: 2009
  ident: 10.1016/j.biomaterials.2016.06.018_bib88
  article-title: Association of the actin-binding protein transgelin with lymph node metastasis in human colorectal cancer
  publication-title: Neoplasia
  doi: 10.1593/neo.09542
– volume: 28
  start-page: 327
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib3
  article-title: Cancer in inflammatory bowel disease: lessons from animal models
  publication-title: Curr. Opin. Gastroenterol.
  doi: 10.1097/MOG.0b013e328354cc36
– volume: 29
  start-page: 3423
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.018_bib84
  article-title: PKG inhibits TCF signaling in colon cancer cells by blocking beta-catenin expression and activating FOXO4
  publication-title: Oncogene
  doi: 10.1038/onc.2010.91
– volume: 64
  start-page: 557
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib9
  article-title: Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.12.009
– volume: 5
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib62
  article-title: Phospholipase D and mTORC1: nutrients are what bring them together
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.2003019
– volume: 7
  start-page: 300ra128
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib10
  article-title: An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa5657
– volume: 48
  start-page: 45
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib19
  article-title: Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.026
– volume: 65
  start-page: 263
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.018_bib32
  article-title: Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation
  publication-title: Nutr. Cancer
  doi: 10.1080/01635581.2013.749925
– volume: 132
  start-page: 562
  year: 2007
  ident: 10.1016/j.biomaterials.2016.06.018_bib47
  article-title: Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.11.022
– volume: 138
  start-page: 2101
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.018_bib79
  article-title: Inflammation and colon cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.01.058
– volume: 59
  start-page: 434
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib68
  article-title: Orally administered allyl sulfides from garlic ameliorate murine colitis
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201400347
– volume: 39
  start-page: 215
  year: 2011
  ident: 10.1016/j.biomaterials.2016.06.018_bib38
  article-title: Physiological and therapeutical roles of ginger and turmeric on endocrine functions
  publication-title: Am. J. Chin. Med.
  doi: 10.1142/S0192415X11008762
– volume: 9
  start-page: 799
  year: 2009
  ident: 10.1016/j.biomaterials.2016.06.018_bib40
  article-title: Intestinal mucosal barrier function in health and disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2653
– volume: 138
  start-page: 2101
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.018_bib1
  article-title: Inflammation and colon cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.01.058
– volume: 17
  start-page: 1464
  year: 2011
  ident: 10.1016/j.biomaterials.2016.06.018_bib14
  article-title: Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis
  publication-title: Inflamm. Bowel Dis.
  doi: 10.1002/ibd.21527
– volume: 68
  start-page: 9712
  year: 2008
  ident: 10.1016/j.biomaterials.2016.06.018_bib53
  article-title: Bidirectional crosstalk between leptin and insulin-like growth Factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-1952
– volume: 2014
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib35
  article-title: Chronic diseases caused by chronic inflammation require chronic treatment: anti-inflammatory role of dietary spices
  publication-title: J. Clin. Cell Immunol.
– volume: 204
  start-page: 1757
  year: 2007
  ident: 10.1016/j.biomaterials.2016.06.018_bib75
  article-title: A functionally specialized population of mucosal CD103(+) DCs induces Foxp3(+) regulatory T cells via a TGF-beta- and retinoic acid-dependent mechanism
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070590
– volume: 21
  start-page: 409
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib45
  article-title: Cytokines, IBD, and colitis-associated cancer
  publication-title: Inflamm. Bowel Dis.
  doi: 10.1097/MIB.0000000000000236
– volume: 35
  start-page: 646
  year: 1994
  ident: 10.1016/j.biomaterials.2016.06.018_bib74
  article-title: Distribution of the carbonic-anhydrase Isoenzyme-I, isoenzyme-II, and isoenzyme-Vi in the human alimentary-tract
  publication-title: Gut
  doi: 10.1136/gut.35.5.646
– volume: 12
  start-page: 455
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.018_bib87
  article-title: Cancer cell resistance to aurora kinase inhibitors: identification of novel targets for cancer therapy
  publication-title: J. Proteome Res.
  doi: 10.1021/pr300819m
– volume: 9
  start-page: 6985
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib17
  article-title: Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using Copper-64 liposomes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01324
– volume: 21
  start-page: 855
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.018_bib64
  article-title: Improving the therapeutic efficiency of ginger extract for treatment of colon cancer using a suitably designed multiparticulate system
  publication-title: J. Drug Target
  doi: 10.3109/1061186X.2013.829076
– volume: 7
  start-page: e44328
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib55
  article-title: Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044328
– volume: 138
  start-page: 2029
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.018_bib2
  article-title: Primary prevention of colorectal cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.01.057
– volume: 6
  start-page: 1158
  year: 2006
  ident: 10.1016/j.biomaterials.2016.06.018_bib89
  article-title: Loss of transgelin in repeated bouts of ulcerative colitis-induced colon carcinogenesis
  publication-title: Proteomics
  doi: 10.1002/pmic.200500390
– volume: 106
  start-page: 22381
  year: 2009
  ident: 10.1016/j.biomaterials.2016.06.018_bib42
  article-title: Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0906372106
– volume: 146
  start-page: 1289
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib11
  article-title: Nanoparticles with surface antibody against CD98 and carrying CD98 small interfering RNA reduce colitis in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2014.01.056
– volume: 125
  start-page: 1215
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib51
  article-title: Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI76693
– volume: 63
  start-page: 1843
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib12
  article-title: Systematic review: monotherapy with antitumour necrosis factor alpha agents versus combination therapy with an immunosuppressive for IBD
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-307126
– volume: 434
  start-page: 155
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib54
  article-title: Comparative study on preparative methods of DC-Chol/DOPE liposomes and formulation optimization by determining encapsulation efficiency
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2012.05.041
– volume: 16
  start-page: 585
  year: 2008
  ident: 10.1016/j.biomaterials.2016.06.018_bib72
  article-title: Growth factors and cytokines in wound healing
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2008.00410.x
– volume: 3
  start-page: 107
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib80
  article-title: Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2012.00107
– volume: 135
  start-page: 379
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib24
  article-title: Oral administration of pH-sensitive curcumin-loaded microparticles for ulcerative colitis therapy
  publication-title: Colloid Surf. B
  doi: 10.1016/j.colsurfb.2015.07.081
– volume: 184
  start-page: 241
  year: 1996
  ident: 10.1016/j.biomaterials.2016.06.018_bib56
  article-title: T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.184.1.241
– volume: 188
  start-page: 2164
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib76
  article-title: Regulatory dendritic cells pulsed with carbonic anhydrase I protect mice from colitis induced by CD4(+)CD25(-) T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1100559
– volume: 23
  start-page: 107
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.018_bib82
  article-title: Sphingosine-1-Phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.11.013
– volume: 22
  start-page: 69
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib43
  article-title: Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2013.214
– volume: 22
  start-page: 522
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib30
  article-title: Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2013.190
– volume: 136
  start-page: 170
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.018_bib65
  article-title: Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-kappa B activity and interleukin-1 beta signalling pathway
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.07.124
– volume: 2015
  start-page: 142179
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib66
  article-title: Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer
  publication-title: Gastroenterol. Res. Pract.
  doi: 10.1155/2015/142979
– volume: 18
  start-page: 1364
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib70
  article-title: Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation
  publication-title: Inflamm. Bowel Dis.
  doi: 10.1002/ibd.21944
– volume: 135
  start-page: 173
  year: 2008
  ident: 10.1016/j.biomaterials.2016.06.018_bib41
  article-title: Unique role of junctional adhesion molecule-A in maintaining mucosal homeostasis in inflammatory bowel disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.04.002
– volume: 59
  start-page: 807
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib67
  article-title: Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect in the DSS model of mouse colitis
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201400630
– volume: 138
  start-page: 843
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.018_bib18
  article-title: Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.11.003
– volume: 121
  start-page: 1733
  year: 2011
  ident: 10.1016/j.biomaterials.2016.06.018_bib44
  article-title: CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI44631
– volume: 32
  start-page: 367
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.018_bib59
  article-title: Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.02.012
– volume: 12
  start-page: 1221
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib13
  article-title: Prevention of colitis-associated cancer: natural compounds that target the IL-6 soluble receptor
  publication-title: Anti-Cancer Agent Med. Chem.
  doi: 10.2174/187152012803833080
– volume: 230
  start-page: 787
  year: 2005
  ident: 10.1016/j.biomaterials.2016.06.018_bib50
  article-title: The proteomics of sickle cell disease: profiling of erythrocyte membrane proteins by 2D-DIGE and tandem mass spectrometry
  publication-title: Exp. Biol. Med.
  doi: 10.1177/153537020523001102
– volume: 509
  start-page: 235
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.018_bib69
  article-title: NRROS negatively regulates reactive oxygen species during host defence and autoimmunity
  publication-title: Nature
  doi: 10.1038/nature13152
– volume: 51
  start-page: 182
  year: 2002
  ident: 10.1016/j.biomaterials.2016.06.018_bib6
  article-title: New steroids for IBD: progress report
  publication-title: Gut
  doi: 10.1136/gut.51.2.182
– volume: 9
  start-page: 5072
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib25
  article-title: Targeting tumor vasculature with aptamer-functionalized doxorubicin - polylactide nanoconjugates for enhanced cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00166
– volume: 34
  start-page: 7471
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.018_bib21
  article-title: Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.06.008
– volume: 21
  start-page: 1294
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.018_bib63
  article-title: Exosome-like nanoparticles from food: protective nanoshuttles for bioactive cargo
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2013.130
– volume: 10
  start-page: 941
  year: 1996
  ident: 10.1016/j.biomaterials.2016.06.018_bib4
  article-title: 5-Amino salicylic acid absorption and metabolism in ulcerative colitis patients receiving maintenance sulphasalazine, olsalazine or mesalazine
  publication-title: Aliment. Pharm. Ther.
  doi: 10.1046/j.1365-2036.1996.85257000.x
– volume: 75
  start-page: 263
  year: 1993
  ident: 10.1016/j.biomaterials.2016.06.018_bib57
  article-title: Interleukin-10-Deficient mice develop chronic enterocolitis
  publication-title: Cell
  doi: 10.1016/0092-8674(93)80068-P
– volume: 4
  start-page: e1134415
  year: 2016
  ident: 10.1016/j.biomaterials.2016.06.018_bib31
  article-title: Plant derived edible nanoparticles as a new therapeutic approach against diseases
  publication-title: Tissue Barriers
  doi: 10.1080/21688370.2015.1134415
– volume: 10
  start-page: 9
  year: 2011
  ident: 10.1016/j.biomaterials.2016.06.018_bib60
  article-title: The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies
  publication-title: J. Carcinog.
  doi: 10.4103/1477-3163.78279
– volume: 123
  start-page: 211
  year: 2007
  ident: 10.1016/j.biomaterials.2016.06.018_bib5
  article-title: 5-amino salicylic acid bound nanoparticles for the therapy of inflammatory bowel disease
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2007.08.008
– volume: 32
  start-page: 1218
  year: 2011
  ident: 10.1016/j.biomaterials.2016.06.018_bib23
  article-title: Functional TNF alpha gene silencing mediated by polyethyleneimine/TNF alpha siRNA nanocomplexes in inflamed colon
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.09.062
– volume: 2
  start-page: 65
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.018_bib85
  article-title: cGMP-dependent protein kinases as potential targets for colon cancer prevention and treatment
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc.09.142
– volume: 474
  start-page: 298
  year: 2011
  ident: 10.1016/j.biomaterials.2016.06.018_bib48
  article-title: Intestinal homeostasis and its breakdown in inflammatory bowel disease
  publication-title: Nature
  doi: 10.1038/nature10208
– volume: 9
  start-page: 6706
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib22
  article-title: Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02796
– volume: 51
  start-page: 383
  year: 2011
  ident: 10.1016/j.biomaterials.2016.06.018_bib34
  article-title: Ginger and its health claims: molecular aspects
  publication-title: Crit. Rev. Food Sci.
  doi: 10.1080/10408391003624848
– volume: 26
  start-page: 3165
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib73
  article-title: Inflammation-induced desmoglein-2 ectodomain shedding compromises the mucosal barrier
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e15-03-0147
– volume: 93
  start-page: 963
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.018_bib77
  article-title: Oral administration of carbonic anhydrase I ameliorates murine experimental colitis induced by Foxp3(-)CD4(+)CD25(-) T cells
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.1212612
– volume: 48
  start-page: 16
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib15
  article-title: An “imaging-biopsy” strategy for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.011
– volume: 382
  start-page: 669
  year: 2005
  ident: 10.1016/j.biomaterials.2016.06.018_bib49
  article-title: The development of the DIGE system: 2D fluorescence difference gel analysis technology
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-005-3126-3
– volume: 37
  start-page: 563
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib71
  article-title: Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.06.017
– volume: 338
  start-page: 120
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.018_bib81
  article-title: Intestinal inflammation targets cancer-inducing activity of the microbiota
  publication-title: Science
  doi: 10.1126/science.1224820
– volume: 11
  start-page: 524
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.018_bib7
  article-title: Effects of immunosuppression and liver transplantation on inflammatory bowel disease in patients with primary sclerosing cholangitis
  publication-title: Clin. Gastroenterol. Hepatol.
  doi: 10.1016/j.cgh.2013.01.020
– volume: 23
  start-page: 640
  year: 2009
  ident: 10.1016/j.biomaterials.2016.06.018_bib36
  article-title: Ginger's (Zingiber officinale roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro
  publication-title: Phytother. Res.
  doi: 10.1002/ptr.2677
– volume: 112
  start-page: 166
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib58
  article-title: Longitudinal study of circulating protein biomarkers in inflammatory bowel disease
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2014.09.002
– volume: 271
  start-page: 537
  year: 2000
  ident: 10.1016/j.biomaterials.2016.06.018_bib86
  article-title: Elevated levels of RanBP7 mRNA in colorectal carcinoma are associated with increased proliferation and are similar to the transcription pattern of the proto-oncogene c-myc
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.2666
– volume: 64
  start-page: 131
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.018_bib8
  article-title: The role of anti-inflammatory drugs in colorectal cancer
  publication-title: Annu. Rev. Med.
  doi: 10.1146/annurev-med-112211-154330
– volume: 8
  start-page: 125
  year: 2005
  ident: 10.1016/j.biomaterials.2016.06.018_bib37
  article-title: Ginger - an herbal medicinal product with broad anti-inflammatory actions
  publication-title: J. Med. Food
  doi: 10.1089/jmf.2005.8.125
– volume: 4
  start-page: 28713
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.018_bib27
  article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage
  publication-title: J. Extracell. Vesicles
  doi: 10.3402/jev.v4.28713
– volume: 21
  start-page: 1345
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.018_bib29
  article-title: Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2013.64
SSID ssj0014042
Score 2.6676536
Snippet There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and...
Abstract There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease...
There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn’s disease and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 321
SubjectTerms Advanced Basic Science
animal models
Animals
Antineoplastic Agents, Phytogenic - administration & dosage
Antineoplastic Agents, Phytogenic - chemistry
Antineoplastic Agents, Phytogenic - therapeutic use
Biocompatibility
Cancer
Catechols - administration & dosage
Catechols - chemistry
Catechols - therapeutic use
Cell Line
Cell Line, Tumor
colitis
Colitis, Ulcerative - complications
Colitis, Ulcerative - drug therapy
Colitis, Ulcerative - prevention & control
Colitis-associated cancer
Colon
Colonic Neoplasms - drug therapy
Colonic Neoplasms - etiology
Colonic Neoplasms - prevention & control
Crohn disease
Cytokines
Dentistry
Edible
Edible ginger derived nanoparticles
Fatty Alcohols - administration & dosage
Fatty Alcohols - chemistry
Fatty Alcohols - therapeutic use
Female
Ginger
Humans
Inflammatory bowel disease
Inflammatory Bowel Diseases - drug therapy
Inflammatory Bowel Diseases - prevention & control
interleukin-10
interleukin-1beta
interleukin-6
intestinal mucosa
lipids
macrophages
Medical services
Mice
Mice, Inbred C57BL
microRNA
Nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Nanoparticles - therapeutic use
Natural drug delivery system
neoplasms
oral administration
Phytotherapy
proteins
Therapy
toxicity
tumor necrosis factor-alpha
zeta potential
Zingiber officinale - chemistry
Title Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961216302721
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961216302721
https://dx.doi.org/10.1016/j.biomaterials.2016.06.018
https://www.ncbi.nlm.nih.gov/pubmed/27318094
https://www.proquest.com/docview/1799837236
https://www.proquest.com/docview/1808711507
https://www.proquest.com/docview/1825522088
https://www.proquest.com/docview/2000306169
https://pubmed.ncbi.nlm.nih.gov/PMC4921206
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemTULwgMb4Kh-TkXgNbWzHSUA8VNOmAtqemLQ3K3Zs6FScau3GG3_K_tbdOU7UsjFV4rHNOYl85_Nd7nc_E_I-1bCPpcYkmTN5IriBJSUKkWiRlxjflpnABufjEzk5FV_PsrMtctD1wiCsMvr-1qcHbx3_GcbZHM6n0yHCkliJBFgSa2-hmVyIHK38w58e5oHsMayFMbIEpTvi0YDxwhb3atmqGmFeMnB54gEgd29St4PQv7GUK5vT0S55HKNKOm5f_AnZsn6PPFrhGtwjD45jFf0puT6sp3pm6Y_2k14NEle2pr7ykEFHoNxHOqa-ubIzutKhRTsGcgqhLl6g88gA1Xha-Zr2sHXaOAq2C-b2K5TxqW5-w71iOSjImoC8WyRVNBB4A4MmePGMnB4dfj-YJPGchsTkUi4Ta1yRGWQUhVyxFtY6axmvdAbRjrR1gaVZ4UbWltJKUUISxJnjNThjk-LnFP6cbPvG25eE8oJpITKXOgdxB6-QPN7CjTNZ5FrUekDKTjHKRBJzPEtjpjq02rlaVapCpSqE7qXFgPB-7Lyl8tho1KdO_6prVgX3qmDH2Wh0ftdou4ieYqFStWBqpG5Z84B87keuLYiNn_yuM1YFHgPLQJW3zSU8MYcUm-eMy3tkihFk0pgs3CcD6ShjsE39W4aFnFumshyQF-1C6eceAmckjxMwR2tLqBdA5vP1K376MzCgoxGxkXz1n3P0mjzEXy1k8A3ZXl5c2rcQYy71fnAi-2Rn_OXb5OQGEmeBuA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIvE4ICiv5WkkrmE3tuMkIA5V1WqBbk-t1JsVO3ZZtDir7rbc-Cn8VmYcJ9qlpVqJazJOIs94PJP55jMh71IN-1hqTJI5kyeCG1hSohCJFnmJ8W2ZCWxwnhzJ8Yn4cpqdbpG9rhcGYZXR97c-PXjreGUYZ3M4n06HCEtiJRJgSay9YTP5LQHLF48xeP-rx3kgfQxrcYwsQfGOeTSAvLDHvVq2ukaclwxknngCyPW71NUo9G8w5crudPCA3I9hJd1tv_wh2bJ-h9xbIRvcIbcnsYz-iPzer6d6ZulZ-0-vBolLW1NfeUihI1LuA92lvrm0M7rSokU7CnIKsS7eoPNIAdV4Wvma9rh12jgKxgv29iPU8alufsKzYj0oyJoAvVskVbQQ-AKDNnj-mJwc7B_vjZN4UENicimXiTWuyAxSikKyWAtrnbWMVzqDcEfausDarHAja0tppSghC-LM8Rq8sUnxfwp_QrZ94-0zQkF_WojMpc5B4MErZI-38OBMFrkWtR6QslOMMpHFHA_TmKkOrvZdrSpVoVIVYvfSYkB4P3becnlsNOpjp3_VdauCf1Ww5Ww0Or9utF1EV7FQqVowNVJXzHlAPvUj11bExm9-2xmrApeBdaDK2-YC3phDjs1zxuUNMsUIUmnMFm6SgXyUMdin_i3DQtItU1kOyNN2ofRzD5EzsscJmKO1JdQLIPX5-h0__RYo0NGI2Eg-_885ekPujI8nh-rw89HXF-Qu3mnxgy_J9vL8wr6CgHOpXweH8gcrJoNG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edible+ginger-derived+nanoparticles%3A+A+novel+therapeutic+approach+for+the+prevention+and+treatment+of+inflammatory+bowel+disease+and+colitis-associated+cancer&rft.jtitle=Biomaterials&rft.au=Zhang%2C+Mingzhen&rft.au=Viennois%2C+Emilie&rft.au=Prasad%2C+Meena&rft.au=Zhang%2C+Yunchen&rft.date=2016-09-01&rft.issn=0142-9612&rft.volume=101&rft.spage=321&rft.epage=340&rft_id=info:doi/10.1016%2Fj.biomaterials.2016.06.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2016_06_018
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2Fcov200h.gif