Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer
There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrat...
Saved in:
Published in | Biomaterials Vol. 101; pp. 321 - 340 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles. |
---|---|
AbstractList | There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles. There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles. There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of 230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, 125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF- alpha , IL-6 and IL-1 beta ), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles. Abstract There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles. There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ~230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ~125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles. There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles.There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles. |
Author | Viennois, Emilie Wang, Lixin Merlin, Didier Prasad, Meena Zhang, Mingzhen Xu, Changlong Zhang, Yunchen Zhang, Zhan Xiao, Bo Han, Moon Kwon Srinivasan, Shanthi |
AuthorAffiliation | 5 Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing, 400715, P. R. China 2 Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA 4 Emory University, Department of Medicine 3 Veterans Affairs Medical Center, Decatur, GA, USA 1 Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA 6 The 2nd Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China |
AuthorAffiliation_xml | – name: 3 Veterans Affairs Medical Center, Decatur, GA, USA – name: 6 The 2nd Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China – name: 5 Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing, 400715, P. R. China – name: 1 Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA – name: 2 Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA – name: 4 Emory University, Department of Medicine |
Author_xml | – sequence: 1 givenname: Mingzhen surname: Zhang fullname: Zhang, Mingzhen email: mzhang21@gsu.edu organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA – sequence: 2 givenname: Emilie surname: Viennois fullname: Viennois, Emilie organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA – sequence: 3 givenname: Meena surname: Prasad fullname: Prasad, Meena organization: Veterans Affairs Medical Center, Decatur, GA, USA – sequence: 4 givenname: Yunchen surname: Zhang fullname: Zhang, Yunchen organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA – sequence: 5 givenname: Lixin surname: Wang fullname: Wang, Lixin organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA – sequence: 6 givenname: Zhan surname: Zhang fullname: Zhang, Zhan organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA – sequence: 7 givenname: Moon Kwon surname: Han fullname: Han, Moon Kwon organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA – sequence: 8 givenname: Bo surname: Xiao fullname: Xiao, Bo organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA – sequence: 9 givenname: Changlong surname: Xu fullname: Xu, Changlong organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA – sequence: 10 givenname: Shanthi surname: Srinivasan fullname: Srinivasan, Shanthi organization: Veterans Affairs Medical Center, Decatur, GA, USA – sequence: 11 givenname: Didier surname: Merlin fullname: Merlin, Didier organization: Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27318094$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk81u1DAUhSNURKeFV0AWKzYZ_JM4ThcVbSk_UiUWwNryODczHhw72J5B8zI8Kw5TqlIJdSRLVq6PP9_jHJ8UR847KIpXBM8JJvzNer4wflAJglE2zmmuzXEeRDwpZkQ0oqxbXB8VM0wqWrac0OPiJMY1zt-4os-KY9owInBbzYpf151ZWEBL45YQyi4zt9Ahp5wfVUhGW4hn6AI5vwWL0gqCGmGT60iNY_BKr1Dvw7SAxgBbcMl4h5TrUAqg0pALyPfIuN6qIffsww4t_M_M6kwEFeGPVntrkomlitFrk53lknIawvPiaZ89wovb-bT49v7669XH8ubzh09XFzelbjhPJehe1JqTajLVVQA9AGVqUfOKcehEVQtW9Rig5cCrlpKG0Z51GGNNGMMVOy3O99xxsxig07ntoKwcgxlU2EmvjPx3xZmVXPqtnGAU8wx4fQsI_scGYpKDiRqsVQ78Jkqaz2KYE94-KiWC1jWlWIgDpFg0hNS4eVzatK1gDWVTry_vm71z-TcVWXC2F-jgYwzQ30kIllME5Vrej6CcIihxHmTq-e2DzdokNcUiX5yxhyHe7RGQf_nWQJBRG8h56EwAnWTnzWGY8wcYbY0zWtnvsIO49pvgpj1ERiqx_DI9l-m1EM4wbSjJgMv_Aw7t4jf6oTBQ |
CitedBy_id | crossref_primary_10_3390_nu13051686 crossref_primary_10_1016_j_jddst_2023_104274 crossref_primary_10_3390_pharmaceutics13122005 crossref_primary_10_1039_C8FO02295J crossref_primary_10_1016_j_jconrel_2022_08_046 crossref_primary_10_1016_j_jpha_2023_09_012 crossref_primary_10_1080_17425247_2022_2053673 crossref_primary_10_3390_ijms21186502 crossref_primary_10_3389_fphar_2023_1243734 crossref_primary_10_1016_j_biopha_2023_115904 crossref_primary_10_1016_j_jconrel_2019_08_037 crossref_primary_10_1016_j_biopha_2022_113209 crossref_primary_10_5937_scriptamed56_52551 crossref_primary_10_1186_s12964_023_01292_0 crossref_primary_10_1007_s11101_021_09760_6 crossref_primary_10_3389_fpls_2024_1512047 crossref_primary_10_1007_s11010_025_05232_z crossref_primary_10_1016_j_apsb_2021_03_012 crossref_primary_10_21769_BioProtoc_3351 crossref_primary_10_3390_molecules28176293 crossref_primary_10_3390_ijms232415545 crossref_primary_10_1016_j_jconrel_2020_04_032 crossref_primary_10_1186_s12951_025_03096_5 crossref_primary_10_3390_ijerph19074148 crossref_primary_10_3390_ijms25031781 crossref_primary_10_1002_smll_202307247 crossref_primary_10_1021_acsbiomedchemau_2c00073 crossref_primary_10_3390_biom14030312 crossref_primary_10_1016_j_yexcr_2024_114234 crossref_primary_10_3389_fddsv_2022_1043617 crossref_primary_10_1016_j_ctim_2018_12_021 crossref_primary_10_1021_acs_jafc_1c04737 crossref_primary_10_1016_j_ijbiomac_2024_136392 crossref_primary_10_1093_bfgp_ely020 crossref_primary_10_1111_jcmm_18177 crossref_primary_10_1177_15593258221127556 crossref_primary_10_1021_acs_molpharmaceut_9b00246 crossref_primary_10_1186_s13020_023_00839_0 crossref_primary_10_3390_foods8060185 crossref_primary_10_55905_cuadv15n7_050 crossref_primary_10_1016_j_cej_2025_161853 crossref_primary_10_3390_molecules27051511 crossref_primary_10_1021_acsami_4c10562 crossref_primary_10_1039_D1NR06015E crossref_primary_10_3390_ijms23094919 crossref_primary_10_1016_j_reactfunctpolym_2020_104520 crossref_primary_10_1186_s12951_024_02933_3 crossref_primary_10_1016_j_jconrel_2023_03_056 crossref_primary_10_1186_s12951_024_02340_8 crossref_primary_10_3390_ijms25020745 crossref_primary_10_2147_IJN_S362244 crossref_primary_10_1080_17425247_2022_2041599 crossref_primary_10_2147_IJN_S483091 crossref_primary_10_3389_fcimb_2024_1397735 crossref_primary_10_3389_fsufs_2019_00023 crossref_primary_10_1016_j_jpha_2024_101014 crossref_primary_10_1016_j_ymthe_2023_02_017 crossref_primary_10_1007_s11481_019_09873_y crossref_primary_10_2147_IJN_S463145 crossref_primary_10_1007_s13346_024_01621_x crossref_primary_10_1182_bloodadvances_2024013333 crossref_primary_10_1007_s13346_024_01515_y crossref_primary_10_1016_j_biopha_2018_12_063 crossref_primary_10_1038_s41598_022_19950_7 crossref_primary_10_2147_IJN_S454794 crossref_primary_10_1186_s12951_023_01766_w crossref_primary_10_1039_D3FO01608K crossref_primary_10_1016_j_addr_2023_114774 crossref_primary_10_1093_nutrit_nuab106 crossref_primary_10_1155_2022_1304839 crossref_primary_10_3390_plants12061207 crossref_primary_10_1080_10408398_2023_2204375 crossref_primary_10_1016_j_jfca_2024_106064 crossref_primary_10_1016_j_crmicr_2024_100301 crossref_primary_10_1016_j_jconrel_2023_11_020 crossref_primary_10_1007_s12272_019_01203_3 crossref_primary_10_33549_physiolres_934886 crossref_primary_10_3389_fimmu_2022_896745 crossref_primary_10_1007_s13770_021_00367_8 crossref_primary_10_1111_jcmm_13897 crossref_primary_10_1093_hr_uhae093 crossref_primary_10_3390_membranes11060411 crossref_primary_10_1093_bbb_zbae198 crossref_primary_10_1016_j_ijpharm_2021_120461 crossref_primary_10_1016_j_jconrel_2022_09_043 crossref_primary_10_3390_ijms22179543 crossref_primary_10_1016_j_jep_2020_112951 crossref_primary_10_3389_fphar_2020_00438 crossref_primary_10_1038_s41598_022_08915_5 crossref_primary_10_1016_j_phrs_2023_106999 crossref_primary_10_1021_acsomega_1c02162 crossref_primary_10_1039_D2BM01719A crossref_primary_10_3390_cells12141852 crossref_primary_10_3390_molecules27238184 crossref_primary_10_3389_fbioe_2023_1339941 crossref_primary_10_1016_j_jddst_2024_106300 crossref_primary_10_1007_s12274_022_5199_0 crossref_primary_10_1093_ecco_jcc_jjx115 crossref_primary_10_1016_j_psj_2023_102988 crossref_primary_10_3389_fbioe_2024_1390708 crossref_primary_10_1016_j_ymthe_2020_11_030 crossref_primary_10_3389_fbioe_2020_00425 crossref_primary_10_3390_pharmaceutics13040498 crossref_primary_10_1007_s11033_024_09379_8 crossref_primary_10_1111_jocd_16776 crossref_primary_10_3390_pharmaceutics13091355 crossref_primary_10_1016_j_cej_2023_148282 crossref_primary_10_21769_BioProtoc_3390 crossref_primary_10_4068_cmj_2024_60_1_1 crossref_primary_10_1080_08820139_2021_1891094 crossref_primary_10_2147_IJN_S420748 crossref_primary_10_1007_s13596_024_00811_9 crossref_primary_10_3390_ijms22105366 crossref_primary_10_1016_j_semcancer_2020_10_006 crossref_primary_10_3390_nu13072162 crossref_primary_10_1016_j_bioactmat_2022_10_005 crossref_primary_10_1080_17425247_2022_2043847 crossref_primary_10_1038_s41598_020_61358_8 crossref_primary_10_1016_j_cclet_2023_109074 crossref_primary_10_3390_nano14161331 crossref_primary_10_1002_VIW_20240115 crossref_primary_10_1016_j_ijbiomac_2022_08_032 crossref_primary_10_1016_j_apsb_2024_02_005 crossref_primary_10_1016_j_actbio_2016_11_071 crossref_primary_10_3390_ph15060708 crossref_primary_10_1186_s12967_024_05892_3 crossref_primary_10_1021_acssuschemeng_9b00954 crossref_primary_10_1016_j_tifs_2020_05_019 crossref_primary_10_1021_acs_nanolett_2c05099 crossref_primary_10_3390_pharmaceutics14040822 crossref_primary_10_1016_j_reth_2024_10_001 crossref_primary_10_1016_j_phrs_2023_106733 crossref_primary_10_15406_ppij_2024_12_00429 crossref_primary_10_1007_s40199_018_0222_4 crossref_primary_10_3390_antiox13121474 crossref_primary_10_3390_biomedicines10020415 crossref_primary_10_1021_acsabm_3c01108 crossref_primary_10_3390_cells12151999 crossref_primary_10_1016_j_plana_2022_100022 crossref_primary_10_1155_jfbc_2625586 crossref_primary_10_1002_biof_1808 crossref_primary_10_1021_acsbiomaterials_9b00862 crossref_primary_10_2147_IJN_S275805 crossref_primary_10_1093_advances_nmz123 crossref_primary_10_3390_ijms23147611 crossref_primary_10_1016_j_cclet_2024_110224 crossref_primary_10_3389_fphar_2022_843412 crossref_primary_10_1007_s12274_024_6961_2 crossref_primary_10_1016_j_phrs_2018_04_015 crossref_primary_10_1186_s12951_023_02161_1 crossref_primary_10_3389_fmolb_2022_846650 crossref_primary_10_3389_fonc_2022_942020 crossref_primary_10_3390_molecules27123955 crossref_primary_10_3390_pharmaceutics14091905 crossref_primary_10_3389_fbioe_2023_1307878 crossref_primary_10_1016_j_foodres_2025_115804 crossref_primary_10_1021_acsami_4c14542 crossref_primary_10_1016_j_ajps_2021_05_006 crossref_primary_10_3390_pharmaceutics15030716 crossref_primary_10_1007_s12032_024_02481_8 crossref_primary_10_1016_j_cbi_2016_08_002 crossref_primary_10_2174_2210303108666181109120710 crossref_primary_10_1016_j_heliyon_2024_e40172 crossref_primary_10_2147_JIR_S421124 crossref_primary_10_3389_fimmu_2023_1255668 crossref_primary_10_2174_1568026620666200320113322 crossref_primary_10_3390_vetsci10010055 crossref_primary_10_1016_j_tifs_2023_04_001 crossref_primary_10_1016_S1875_5364_24_60742_9 crossref_primary_10_1002_adma_202207826 crossref_primary_10_1016_j_jare_2024_04_001 crossref_primary_10_2147_IJN_S477270 crossref_primary_10_1016_j_lfs_2025_123472 crossref_primary_10_1016_j_tice_2022_101800 crossref_primary_10_3390_nano10122460 crossref_primary_10_1002_advs_202300552 crossref_primary_10_2147_DDDT_S461977 crossref_primary_10_21931_RB_2023_08_02_17 crossref_primary_10_1002_jev2_12510 crossref_primary_10_1038_s41392_024_01745_z crossref_primary_10_2147_IJN_S310952 crossref_primary_10_3389_fbioe_2024_1478517 crossref_primary_10_3934_bioeng_2017_1_73 crossref_primary_10_3934_biophy_2017_1_152 crossref_primary_10_3390_fishes8050259 crossref_primary_10_3390_membranes12040352 crossref_primary_10_1016_j_jconrel_2022_06_058 crossref_primary_10_1016_j_ncrna_2019_02_002 crossref_primary_10_1515_med_2020_0160 crossref_primary_10_1016_j_biopha_2024_116543 crossref_primary_10_1016_j_ymthe_2024_02_021 crossref_primary_10_1016_j_apsb_2020_11_003 crossref_primary_10_3389_fbioe_2021_670124 crossref_primary_10_3389_fnut_2021_778998 crossref_primary_10_1021_acs_jafc_3c06867 crossref_primary_10_2147_IJN_S432279 crossref_primary_10_3390_synbio2040024 crossref_primary_10_1016_j_arr_2025_102712 crossref_primary_10_3389_fcell_2024_1509123 crossref_primary_10_1016_j_biomaterials_2021_121178 crossref_primary_10_1007_s11101_024_09947_7 crossref_primary_10_1016_j_vesic_2024_100058 crossref_primary_10_1039_D4MA00896K crossref_primary_10_1111_jfbc_14479 crossref_primary_10_1016_j_parepi_2024_e00347 crossref_primary_10_1021_acs_biomac_4c00535 crossref_primary_10_3390_pharmaceutics15051457 crossref_primary_10_1208_s12249_018_1165_2 crossref_primary_10_3390_jfb14110540 crossref_primary_10_1038_s42003_022_03781_3 crossref_primary_10_1002_pca_3367 crossref_primary_10_1016_j_critrevonc_2023_104121 crossref_primary_10_1002_biof_2090 crossref_primary_10_1016_j_phanu_2017_01_001 crossref_primary_10_3390_antiox12061169 crossref_primary_10_3389_fphar_2022_1002269 crossref_primary_10_3389_fbioe_2021_629832 crossref_primary_10_3390_antiox12061286 crossref_primary_10_3390_cancers13184672 crossref_primary_10_3389_fnut_2021_718093 crossref_primary_10_1016_j_sjbs_2020_10_027 crossref_primary_10_3390_plants12203604 crossref_primary_10_3390_md22100469 crossref_primary_10_1002_adtp_202300195 crossref_primary_10_1002_bmc_5993 crossref_primary_10_1271_kagakutoseibutsu_61_78 crossref_primary_10_1039_D4FO00263F crossref_primary_10_3390_cells11243950 crossref_primary_10_1016_j_cofs_2021_12_001 crossref_primary_10_1016_j_matdes_2022_110686 crossref_primary_10_1186_s12906_023_04182_7 crossref_primary_10_3390_genes11091075 crossref_primary_10_1016_j_jddst_2024_106011 crossref_primary_10_3390_pharmaceutics16050588 crossref_primary_10_1016_j_phrs_2022_106472 crossref_primary_10_14336_AD_2021_0601 crossref_primary_10_3390_biomedicines11041053 crossref_primary_10_1016_j_addr_2021_114108 crossref_primary_10_3390_ijms26010189 crossref_primary_10_1186_s12951_024_02663_6 crossref_primary_10_2174_1385272827666230915103130 crossref_primary_10_1089_can_2023_0168 crossref_primary_10_1016_j_addr_2021_114101 crossref_primary_10_1016_j_ijpx_2022_100114 crossref_primary_10_1016_j_msec_2019_01_137 crossref_primary_10_1016_S1875_5364_19_30012_3 crossref_primary_10_3390_ijms23010191 crossref_primary_10_1080_17435889_2024_2403324 crossref_primary_10_1186_s41544_019_0026_9 crossref_primary_10_1016_j_semcancer_2019_08_009 crossref_primary_10_3390_ijms24032071 crossref_primary_10_1016_j_fbio_2021_100934 crossref_primary_10_1186_s12951_023_02193_7 crossref_primary_10_3389_fimmu_2024_1364401 crossref_primary_10_1371_journal_pntd_0009423 crossref_primary_10_1080_17425247_2023_2231345 crossref_primary_10_1097_MD_0000000000036303 crossref_primary_10_2147_IJN_S502591 crossref_primary_10_1016_j_jare_2022_02_014 crossref_primary_10_3390_polym13060862 crossref_primary_10_3390_ijms22094660 crossref_primary_10_1007_s13577_023_00994_4 crossref_primary_10_3390_ijms21113956 crossref_primary_10_1039_D3MH01030A crossref_primary_10_1021_acsnano_3c11436 crossref_primary_10_3390_pharmaceutics14061233 crossref_primary_10_1016_j_jep_2021_114589 crossref_primary_10_1016_j_ijbiomac_2024_137847 crossref_primary_10_1007_s12668_024_01543_5 crossref_primary_10_1016_j_jddst_2025_106647 crossref_primary_10_1080_10837450_2023_2202242 crossref_primary_10_1016_j_ymthe_2019_01_003 crossref_primary_10_1371_journal_pone_0304335 crossref_primary_10_3389_fphar_2023_1272241 crossref_primary_10_3389_fonc_2023_1194350 crossref_primary_10_3390_molecules24234246 crossref_primary_10_2147_IJN_S413831 crossref_primary_10_3389_fphar_2022_908830 crossref_primary_10_3390_jnt3010005 crossref_primary_10_3390_pr12122938 crossref_primary_10_22159_ijap_2024v16i2_49293 crossref_primary_10_3389_fmed_2024_1420281 crossref_primary_10_1039_D4FO01366B crossref_primary_10_3390_vaccines10101727 crossref_primary_10_3389_fphar_2023_1260134 crossref_primary_10_2147_IJN_S478435 crossref_primary_10_1016_j_trac_2023_117274 crossref_primary_10_26599_FMH_2026_9420081 crossref_primary_10_1021_acsomega_0c02893 crossref_primary_10_1016_j_rsurfi_2021_100005 crossref_primary_10_1016_j_jddst_2023_105096 crossref_primary_10_1016_j_taap_2021_115425 crossref_primary_10_3390_cells10030486 crossref_primary_10_1016_j_jep_2024_119008 crossref_primary_10_1016_j_addr_2022_114317 crossref_primary_10_1016_j_apsb_2021_08_016 crossref_primary_10_1038_s41598_018_32953_7 crossref_primary_10_1016_j_jconrel_2019_02_034 crossref_primary_10_1016_j_ejpb_2019_02_011 crossref_primary_10_1186_s12951_025_03306_0 crossref_primary_10_1016_j_fochx_2023_100947 crossref_primary_10_1021_acsnano_1c08281 crossref_primary_10_1039_D2TB01965E crossref_primary_10_1016_j_foodchem_2024_140833 crossref_primary_10_3389_fonc_2022_864980 crossref_primary_10_3390_antiox12112015 crossref_primary_10_1016_j_arabjc_2018_11_020 crossref_primary_10_1080_17425247_2018_1420055 crossref_primary_10_1186_s12951_023_01858_7 crossref_primary_10_1021_acs_jafc_4c12480 crossref_primary_10_1016_j_banm_2024_03_013 crossref_primary_10_4103_SBVJ_SBVJ_19_24 crossref_primary_10_1007_s12668_024_01478_x crossref_primary_10_1016_j_jconrel_2022_12_027 crossref_primary_10_1016_j_ijbiomac_2024_132001 crossref_primary_10_3389_fcell_2022_883841 crossref_primary_10_1002_ptr_6121 crossref_primary_10_1016_j_jfutfo_2022_08_003 crossref_primary_10_3390_ijms26052211 crossref_primary_10_1111_bph_15421 crossref_primary_10_3390_separations10030218 crossref_primary_10_3389_fonc_2021_781720 crossref_primary_10_3389_fbioe_2020_584391 crossref_primary_10_3390_nu16050741 crossref_primary_10_1016_j_chmed_2023_11_002 crossref_primary_10_1016_j_ijbiomac_2025_141112 crossref_primary_10_1016_j_jconrel_2024_01_060 crossref_primary_10_1002_jev2_12466 crossref_primary_10_1080_17435889_2024_2350356 crossref_primary_10_3390_cancers14225682 crossref_primary_10_3390_futurepharmacol4020020 crossref_primary_10_1016_j_ijbiomac_2017_06_117 crossref_primary_10_3390_antiox13040408 crossref_primary_10_1016_j_biopha_2024_116855 crossref_primary_10_2174_1570159X21666230216095938 crossref_primary_10_1186_s12951_023_01837_y crossref_primary_10_3389_fbioe_2022_1076348 crossref_primary_10_1016_j_biotechadv_2022_108092 crossref_primary_10_1039_D3NA00093A crossref_primary_10_1146_annurev_bioeng_071516_044603 crossref_primary_10_1080_15592324_2022_2129290 crossref_primary_10_1002_jssc_202300669 crossref_primary_10_1097_MS9_0000000000002030 crossref_primary_10_1002_smll_202409501 crossref_primary_10_1016_j_biomaterials_2022_121413 crossref_primary_10_1039_D3FO03503D crossref_primary_10_1007_s12274_023_6112_1 crossref_primary_10_3390_fermentation6040102 crossref_primary_10_3892_br_2017_908 crossref_primary_10_1016_j_ccmp_2023_100116 crossref_primary_10_3390_app13116656 crossref_primary_10_52711_0974_360X_2021_00854 crossref_primary_10_1016_j_bioactmat_2021_04_023 crossref_primary_10_3389_fcell_2025_1485422 crossref_primary_10_1039_C7NR04734G crossref_primary_10_1038_s41598_022_17899_1 crossref_primary_10_3390_molecules26175230 crossref_primary_10_1016_j_nano_2020_102271 crossref_primary_10_1111_jcmm_17404 crossref_primary_10_1016_j_ijbiomac_2024_131241 crossref_primary_10_1093_ibd_izy123 crossref_primary_10_3390_biomedicines10092245 crossref_primary_10_1016_j_colsurfb_2018_10_057 crossref_primary_10_1016_j_smim_2022_101664 crossref_primary_10_1093_ecco_jcc_jjab223 crossref_primary_10_3390_pharmaceutics14122581 crossref_primary_10_1155_2024_7955190 crossref_primary_10_3389_fphar_2022_1025768 crossref_primary_10_1016_j_foodres_2025_116186 crossref_primary_10_1016_j_phrs_2024_107202 crossref_primary_10_55544_jrasb_2_1_35 crossref_primary_10_1158_0008_5472_CAN_16_1681 crossref_primary_10_3389_fmed_2021_755969 crossref_primary_10_2217_nnm_2016_0353 crossref_primary_10_1016_j_jiec_2022_08_011 crossref_primary_10_1002_wnan_1986 crossref_primary_10_22159_ajpcr_2022_v15i7_44825 crossref_primary_10_1002_fsh3_12060 crossref_primary_10_1186_s12951_022_01421_w crossref_primary_10_3390_app14073037 crossref_primary_10_1016_j_jconrel_2025_01_018 crossref_primary_10_1016_j_heliyon_2024_e40127 crossref_primary_10_1186_s12951_023_02065_0 crossref_primary_10_1039_C7TB03207B crossref_primary_10_1021_acs_jafc_1c07306 crossref_primary_10_1016_j_jconrel_2022_05_025 crossref_primary_10_3390_nano10071424 crossref_primary_10_1186_s43556_024_00230_x crossref_primary_10_1038_s41598_022_23961_9 crossref_primary_10_3390_ijms22158170 crossref_primary_10_1039_D2FO03477H crossref_primary_10_1016_j_heliyon_2022_e09150 crossref_primary_10_1016_j_biopha_2023_115266 crossref_primary_10_3389_fmicb_2021_785716 crossref_primary_10_1016_j_jare_2022_09_013 crossref_primary_10_2147_IJN_S370784 crossref_primary_10_1016_j_jare_2021_07_002 crossref_primary_10_1039_D0FO01975E crossref_primary_10_1007_s10565_024_09867_4 crossref_primary_10_4103_ijd_ijd_491_23 crossref_primary_10_3390_foods13050712 crossref_primary_10_1016_j_obmed_2025_100597 crossref_primary_10_1186_s41110_022_00166_8 crossref_primary_10_1186_s12951_021_01195_7 crossref_primary_10_3390_cells12060824 crossref_primary_10_1016_j_phymed_2024_156087 crossref_primary_10_1080_10408398_2025_2479066 crossref_primary_10_1016_j_ijpharm_2022_122340 crossref_primary_10_1093_ecco_jcc_jjz184 crossref_primary_10_1002_adtp_201900129 crossref_primary_10_51847_uiRo7joIWu crossref_primary_10_1016_j_pharmthera_2024_108754 crossref_primary_10_1016_j_pharmthera_2025_108832 crossref_primary_10_2147_DDDT_S446949 crossref_primary_10_3390_ijms252312522 crossref_primary_10_1016_j_abb_2018_03_004 crossref_primary_10_1186_s12951_024_02381_z crossref_primary_10_1039_D4FO04321A crossref_primary_10_1002_adma_202409138 crossref_primary_10_1080_15476286_2016_1248329 crossref_primary_10_1039_D3NA00649B crossref_primary_10_1016_j_biopha_2024_116514 crossref_primary_10_3389_fphar_2022_902551 crossref_primary_10_3390_ijms251910353 crossref_primary_10_1039_D2BM00540A crossref_primary_10_1039_D4TB02394C crossref_primary_10_3390_molecules23071622 crossref_primary_10_3390_pr11010112 crossref_primary_10_1016_j_molimm_2023_09_009 crossref_primary_10_1021_acs_jafc_1c07658 crossref_primary_10_3389_fphar_2023_1197144 crossref_primary_10_1002_jev2_12283 crossref_primary_10_1016_j_jhip_2025_02_002 crossref_primary_10_1080_13543776_2023_2195093 crossref_primary_10_18231_j_ijnmhs_2022_003 crossref_primary_10_1007_s12010_021_03598_6 crossref_primary_10_1016_j_fmre_2023_09_007 crossref_primary_10_1016_j_lfs_2023_121830 crossref_primary_10_3390_app12168262 crossref_primary_10_3389_fimmu_2022_1028418 crossref_primary_10_3390_molecules28114413 crossref_primary_10_1039_D1QM00295C crossref_primary_10_1002_adma_202304963 crossref_primary_10_1186_s43094_024_00634_0 crossref_primary_10_26599_FSHW_2022_9250074 crossref_primary_10_3390_antiox12101862 crossref_primary_10_1016_j_bioadv_2023_213592 crossref_primary_10_1039_D3GC01287E crossref_primary_10_3390_beverages10010009 crossref_primary_10_1186_s13020_019_0245_x crossref_primary_10_2174_1386207325666220629161828 crossref_primary_10_3390_nano11081922 crossref_primary_10_3390_ph14080811 crossref_primary_10_1097_JBR_0000000000000078 crossref_primary_10_1186_s41043_024_00577_5 crossref_primary_10_1002_smll_202304023 crossref_primary_10_1080_02652048_2024_2443430 crossref_primary_10_2147_IJN_S293067 crossref_primary_10_1016_j_ijbiomac_2021_05_200 crossref_primary_10_1111_1750_3841_15787 crossref_primary_10_1039_C8GC01248B crossref_primary_10_2174_1570180820666230807152019 crossref_primary_10_3390_molecules28248045 crossref_primary_10_3390_ijms252212092 crossref_primary_10_3389_fnut_2025_1544746 crossref_primary_10_1007_s00432_024_05763_w crossref_primary_10_2147_IJN_S417422 crossref_primary_10_3390_foods13162624 crossref_primary_10_3390_ijms221910634 crossref_primary_10_1002_jev2_12069 crossref_primary_10_1021_acs_bioconjchem_0c00364 crossref_primary_10_1021_acs_jafc_2c00631 crossref_primary_10_1038_s41598_023_30180_3 crossref_primary_10_1186_s43094_021_00223_5 crossref_primary_10_3390_pharmaceutics13081203 crossref_primary_10_1186_s12951_025_03092_9 crossref_primary_10_1186_s12964_022_00889_1 crossref_primary_10_1016_j_colsurfa_2024_134990 crossref_primary_10_1007_s11095_022_03431_7 crossref_primary_10_1080_10717544_2023_2219427 crossref_primary_10_3389_fbioe_2023_1215650 crossref_primary_10_1016_j_bioactmat_2024_11_004 crossref_primary_10_1186_s40001_024_01937_x crossref_primary_10_1002_smll_202306553 crossref_primary_10_3390_nano14221800 crossref_primary_10_1016_j_phrs_2024_107062 crossref_primary_10_1021_acs_jafc_4c11506 crossref_primary_10_1021_acsabm_3c01256 crossref_primary_10_1080_17425247_2020_1698543 crossref_primary_10_1016_j_omtm_2020_08_009 crossref_primary_10_3390_cells11142232 crossref_primary_10_3390_nu12020477 crossref_primary_10_3389_fimmu_2023_1338918 crossref_primary_10_1002_mnfr_202200142 crossref_primary_10_1016_j_onano_2023_100181 crossref_primary_10_1038_s41467_025_56624_0 crossref_primary_10_1016_j_adcanc_2023_100103 crossref_primary_10_1016_j_jsps_2024_102124 crossref_primary_10_1016_j_tifs_2021_10_032 crossref_primary_10_3390_biomedicines8050103 crossref_primary_10_3390_nu15020273 crossref_primary_10_2147_IJN_S493434 crossref_primary_10_2217_nnm_2017_0196 crossref_primary_10_1016_j_ejps_2023_106604 crossref_primary_10_1016_j_addr_2021_113887 crossref_primary_10_1002_cbin_11841 crossref_primary_10_2147_IJN_S425173 crossref_primary_10_3389_fnut_2021_586564 crossref_primary_10_1016_j_jare_2024_01_035 crossref_primary_10_1038_s41419_018_0814_4 crossref_primary_10_1016_j_jff_2023_105997 crossref_primary_10_1186_s13068_024_02462_z crossref_primary_10_1002_adma_201901935 crossref_primary_10_1093_plphys_kiad644 crossref_primary_10_1002_iid3_1121 crossref_primary_10_1002_mnfr_202200013 crossref_primary_10_3390_pharmaceutics15020333 crossref_primary_10_1002_ptr_7828 crossref_primary_10_1016_j_phymed_2024_155509 crossref_primary_10_1002_jex2_154 crossref_primary_10_1016_j_foodchem_2024_140199 crossref_primary_10_1016_j_jep_2024_117733 crossref_primary_10_1016_j_parint_2021_102431 crossref_primary_10_1142_S1793984423300091 crossref_primary_10_3389_fphar_2024_1523052 crossref_primary_10_3390_biom13091412 crossref_primary_10_21769_BioProtoc_3685 crossref_primary_10_3390_nu15051265 crossref_primary_10_1002_adfm_202416151 crossref_primary_10_1038_s41598_021_02241_y crossref_primary_10_3390_pharmaceutics13020145 crossref_primary_10_1039_D3MA00856H crossref_primary_10_1186_s13020_023_00764_2 crossref_primary_10_1186_s12951_024_02856_z crossref_primary_10_3390_foods9121852 crossref_primary_10_1021_acs_molpharmaceut_1c00415 crossref_primary_10_1007_s11596_024_2939_2 crossref_primary_10_1016_j_apsb_2022_12_022 crossref_primary_10_1016_j_addr_2021_113828 crossref_primary_10_1016_j_fct_2023_114102 crossref_primary_10_3390_cells13010090 crossref_primary_10_1016_j_bioactmat_2024_12_001 crossref_primary_10_3389_fnut_2023_1223349 crossref_primary_10_3390_md22030098 crossref_primary_10_3390_plants11111487 crossref_primary_10_1016_j_apsb_2023_08_033 crossref_primary_10_1021_acsomega_3c04479 crossref_primary_10_1155_2021_6623400 crossref_primary_10_3389_fbioe_2021_675194 crossref_primary_10_1016_j_biopha_2023_114572 crossref_primary_10_1007_s12272_020_01219_0 crossref_primary_10_2147_IJN_S413149 crossref_primary_10_1016_j_ajps_2023_100831 crossref_primary_10_1002_adtp_202400256 crossref_primary_10_1021_acsnano_4c05309 crossref_primary_10_1016_j_jddst_2024_105618 crossref_primary_10_1016_j_biomaterials_2022_121707 crossref_primary_10_1016_j_jff_2016_10_007 crossref_primary_10_1038_s41598_017_00696_6 crossref_primary_10_3390_bioengineering10101199 crossref_primary_10_3389_fonc_2022_1070479 crossref_primary_10_1186_s12951_022_01657_6 crossref_primary_10_3390_biology11060804 crossref_primary_10_2217_imt_2022_0179 crossref_primary_10_1021_acs_nanolett_1c02530 crossref_primary_10_1371_journal_pone_0262884 crossref_primary_10_1016_j_addr_2024_115332 crossref_primary_10_1016_j_foodchem_2024_140168 crossref_primary_10_1016_j_ntm_2023_100004 crossref_primary_10_3390_biom15030394 crossref_primary_10_3389_fphar_2023_1121950 crossref_primary_10_1021_acsabm_3c00094 crossref_primary_10_1016_j_foodchem_2023_135629 crossref_primary_10_1016_j_addr_2021_113964 crossref_primary_10_34133_bmr_0098 crossref_primary_10_1093_ecco_jcc_jjz113 crossref_primary_10_3390_biomedicines11061554 crossref_primary_10_1007_s12672_024_00974_6 crossref_primary_10_1039_D3TB02752J crossref_primary_10_3389_fphar_2021_632569 crossref_primary_10_1007_s13346_024_01698_4 crossref_primary_10_3390_biomedicines12092142 crossref_primary_10_1007_s11095_019_2712_6 crossref_primary_10_3390_cells9051111 |
Cites_doi | 10.1021/acsnano.5b02762 10.1017/S0007114511003308 10.1038/ajg.2011.354 10.1038/labinvest.2014.89 10.1126/scitranslmed.aac5608 10.1039/c3tb21564d 10.1002/mnfr.201300729 10.1016/j.canlet.2013.07.032 10.1038/nri3608 10.1126/scisignal.2005261 10.1593/neo.09542 10.1097/MOG.0b013e328354cc36 10.1038/onc.2010.91 10.1016/j.addr.2011.12.009 10.1126/scisignal.2003019 10.1126/scitranslmed.aaa5657 10.1016/j.biomaterials.2015.01.026 10.1080/01635581.2013.749925 10.1053/j.gastro.2006.11.022 10.1053/j.gastro.2010.01.058 10.1002/mnfr.201400347 10.1142/S0192415X11008762 10.1038/nri2653 10.1002/ibd.21527 10.1158/0008-5472.CAN-08-1952 10.1084/jem.20070590 10.1097/MIB.0000000000000236 10.1136/gut.35.5.646 10.1021/pr300819m 10.1021/acsnano.5b01324 10.3109/1061186X.2013.829076 10.1371/journal.pone.0044328 10.1053/j.gastro.2010.01.057 10.1002/pmic.200500390 10.1073/pnas.0906372106 10.1053/j.gastro.2014.01.056 10.1172/JCI76693 10.1136/gutjnl-2014-307126 10.1016/j.ijpharm.2012.05.041 10.1111/j.1524-475X.2008.00410.x 10.3389/fimmu.2012.00107 10.1016/j.colsurfb.2015.07.081 10.1084/jem.184.1.241 10.4049/jimmunol.1100559 10.1016/j.ccr.2012.11.013 10.1038/mt.2013.214 10.1038/mt.2013.190 10.1016/j.foodchem.2012.07.124 10.1155/2015/142979 10.1002/ibd.21944 10.1053/j.gastro.2008.04.002 10.1002/mnfr.201400630 10.1053/j.gastro.2009.11.003 10.1172/JCI44631 10.1016/j.immuni.2010.02.012 10.2174/187152012803833080 10.1177/153537020523001102 10.1038/nature13152 10.1136/gut.51.2.182 10.1021/acsnano.5b00166 10.1016/j.biomaterials.2013.06.008 10.1038/mt.2013.130 10.1046/j.1365-2036.1996.85257000.x 10.1016/0092-8674(93)80068-P 10.1080/21688370.2015.1134415 10.4103/1477-3163.78279 10.1016/j.jconrel.2007.08.008 10.1016/j.biomaterials.2010.09.062 10.4155/fmc.09.142 10.1038/nature10208 10.1021/acsnano.5b02796 10.1080/10408391003624848 10.1091/mbc.e15-03-0147 10.1189/jlb.1212612 10.1016/j.biomaterials.2015.01.011 10.1007/s00216-005-3126-3 10.1016/j.immuni.2012.06.017 10.1126/science.1224820 10.1016/j.cgh.2013.01.020 10.1002/ptr.2677 10.1016/j.jprot.2014.09.002 10.1006/bbrc.2000.2666 10.1146/annurev-med-112211-154330 10.1089/jmf.2005.8.125 10.3402/jev.v4.28713 10.1038/mt.2013.64 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 5PM |
DOI | 10.1016/j.biomaterials.2016.06.018 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Engineering Research Database MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 340 |
ExternalDocumentID | PMC4921206 27318094 10_1016_j_biomaterials_2016_06_018 S0142961216302721 1_s2_0_S0142961216302721 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: BLRD VA grantid: I01 BX002526 – fundername: Intramural VA grantid: VA999999 – fundername: NIDDK NIH HHS grantid: R01 DK071594 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c766t-ecf85c6148094d4eefee23ab56436ed845834f0ee96e64921732f3d000c133043 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Thu Aug 21 14:06:54 EDT 2025 Fri Jul 11 05:44:22 EDT 2025 Fri Jul 11 09:07:06 EDT 2025 Thu Jul 10 18:28:22 EDT 2025 Fri Jul 11 15:14:25 EDT 2025 Mon Jul 21 06:04:00 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Tue Jul 01 01:19:27 EDT 2025 Fri Feb 23 02:31:33 EST 2024 Tue Feb 25 20:00:56 EST 2025 Tue Aug 26 17:19:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Inflammatory bowel disease Colitis-associated cancer Therapy Natural drug delivery system Edible ginger derived nanoparticles |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c766t-ecf85c6148094d4eefee23ab56436ed845834f0ee96e64921732f3d000c133043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.biomaterials.2016.06.018 |
PMID | 27318094 |
PQID | 1799837236 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4921206 proquest_miscellaneous_2000306169 proquest_miscellaneous_1825522088 proquest_miscellaneous_1808711507 proquest_miscellaneous_1799837236 pubmed_primary_27318094 crossref_primary_10_1016_j_biomaterials_2016_06_018 crossref_citationtrail_10_1016_j_biomaterials_2016_06_018 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2016_06_018 elsevier_clinicalkeyesjournals_1_s2_0_S0142961216302721 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2016_06_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Zhuang, Deng, Jiang, Mu, Wang (bib30) 2014; 22 Stretch, Campbell, Dwarakanath, Yaqoob, Stevenson, Morris (bib4) 1996; 10 Hsiang, Lo, Huang, Li, Wu, Ho (bib65) 2013; 136 Xiao, Si, Zhang, Merlin (bib24) 2015; 135 Kawasaki, Altieri, Lu, Toyoda, Tenjo, Tanigawa (bib61) 1998; 58 Ensign, Cone, Hanes (bib9) 2012; 64 Mori, Yamanishi, Ikeda, Kumagi, Hiasa, Matsuura (bib77) 2013; 93 Butt, Sultan (bib34) 2011; 51 Sussman, Santaolalla, Strobel, Dheer, Abreu (bib3) 2012; 28 Coombes, Siddiqui, Arancibia-Carcamo, Hall, Sun, Belkaid (bib75) 2007; 204 Zhang, Viennois, Xu, Merlin (bib31) 2016; 4 Barrientos, Stojadinovic, Golinko, Brem, Tomic-Canic (bib72) 2008; 16 Maloy, Powrie (bib48) 2011; 474 Viennois, Baker, Xiao, Wang, Laroui, Merlin (bib58) 2015; 112 Al-Suhaimi, Al-Riziza, Al-Essa (bib38) 2011; 39 Zhuang, Deng, Mu, Zhang, Yan, Miller (bib27) 2015; 4 Xing, Zhang, Wang, Liu, Shi, Cheng (bib15) 2015; 48 Kuhn, Lohler, Rennick, Rajewsky, Muller (bib57) 1993; 75 Rath, Haller (bib70) 2012; 18 Kwon, Wang, Thangaraju, Shuang, Liu, Dashwood (bib84) 2010; 29 Han, Cheng, Wu, Zhou, Long, Wei (bib19) 2015; 48 Mu, Zhuang, Wang, Jiang, Deng, Wang (bib28) 2014; 58 Zhang, Ermann, Succi, Zhou, Hamilton, Cao (bib10) 2015; 7 Araujo, Shrestha, Shahbazi, Liu, Herranz-Blanco, Makila (bib16) 2015; 9 Chassaing, Srinivasan, Delgado, Young, Gewirtz, Vijay-Kumar (bib55) 2012; 7 Xiao, Yang, Viennois, Zhang, Ayyadurai, Baker (bib20) 2014; 2 Francescone, Hou, Grivennikov (bib45) 2015; 21 Dupaul-Chicoine, Yeretssian, Doiron, Bergstrom, McIntire, LeBlanc (bib59) 2010; 32 Chan, Giovannucci (bib2) 2010; 138 De Robertis, Massi, Poeta, Carotti, Morini, Cecchetelli (bib60) 2011; 10 Xiao, Laroui, Viennois, Ayyadurai, Charania, Zhang (bib11) 2014; 146 Viennois, Xiao, Ayyadurai, Wang, Wang, Zhang (bib39) 2014; 94 Fasolino, Izzo, Clavel, Romano, Haller, Borrelli (bib68) 2015; 59 Karna, Chagani, Gundala, Rida, Asif, Sharma (bib33) 2012; 107 Laroui, Theiss, Yan, Dalmasso, Nguyen, Sitaraman (bib23) 2011; 32 Grzanna, Lindmark, Frondoza (bib37) 2005; 8 Terzic, Grivennikov, Karin, Karin (bib79) 2010; 138 Yang, Chen, Zhao, Han, Chen (bib54) 2012; 434 Rogler (bib83) 2014; 345 Hansen, Petersen, Henriksen, Boerresen, Rasmussen, Elema (bib17) 2015; 9 Prasad, Tyagi (bib66) 2015; 2015 Tang, Tong, Coyle, Yin, Pondenis, Borst (bib25) 2015; 9 Brahmbhatt, Gundala, Asif, Shamsi, Aneja (bib32) 2013; 65 Liang, Nagahashi, Kim, Harikumar, Yamada, Huang (bib82) 2013; 23 Wiczer, Thomas (bib62) 2012; 5 Pertuit, Moulari, Betz, Nadaradjane, Neumann, Ismaili (bib5) 2007; 123 Davidson, Leach, Fort, Thompson-Snipes, Kühn, Müller (bib56) 1996; 184 Laroui, Geem, Xiao, Viennois, Rakhya, Denning (bib43) 2014; 22 Marouga, David, Hawkins (bib49) 2005; 382 Vetrano, Rescigno, Cera, Correale, Rumio, Doni (bib41) 2008; 135 Moriasi, Subramaniam, Awasthi, Ramalingam, Anant (bib13) 2012; 12 Arthur, Perez-Chanona, Muhlbauer, Tomkovich, Uronis, Fan (bib81) 2012; 338 Hrabakova, Kollareddy, Tyleckova, Halada, Hajduch, Gadher (bib87) 2013; 12 Li, Gyselman, Dorudi, Bustin (bib86) 2000; 271 Navaneethan, Lashner (bib7) 2013; 11 Turner (bib40) 2009; 9 Saxena, Taliaferro-Smith, Knight, Merlin, Anania, O'Regan (bib53) 2008; 68 Yan, Cao, Cover, Whitehead, Washington, Polk (bib47) 2007; 132 Brown, Shah, Liu, Pham, Zhang, Jadus (bib36) 2009; 23 Browning, Kwon, Wang (bib85) 2010; 2 Morton, Lee, Deng, Dreaden, Siouve, Shopsowitz (bib26) 2014; 7 Peterson, Artis (bib46) 2014; 14 Record (bib63) 2013; 21 Yeo, Kim, Park, Oh, Kim, Cho (bib89) 2006; 6 Wang, DuBois (bib8) 2013; 64 Ramishetti, Kedmi, Goldsmith, Leonard, Sprague, Godin (bib22) 2015; 9 Hang, Dalmasso, Torkvist, Halfvarson, Yan, Laroui (bib44) 2011; 121 Kakhniashvili, Griko, Bulla, Goodman (bib50) 2005; 230 Lin, Buckhaults, Lee, Xiong, Farrell, Podolsky (bib88) 2009; 11 Parkkila, Parkkila, Juvonen, Rajaniemi (bib74) 1994; 35 Xiao, Laroui, Ayyadurai, Viennois, Charania, Zhang (bib21) 2013; 34 Laroui, Dalmasso, Nguyen, Yan, Sitaraman, Merlin (bib18) 2010; 138 Deol, Kaur (bib64) 2013; 21 Noubade, Wong, Ota, Rutz, Eidenschenk, Valdez (bib69) 2014; 509 Khounlotham, Kim, Peatman, Nava, Medina-Contreras, Addis (bib71) 2012; 37 Prasad, Aggarwal (bib35) 2014; 2014 Hanauer (bib6) 2002; 51 Terzic, Grivennikov, Karin, Karin (bib1) 2010; 138 Kitano, Kudo, Yamao, Takagi, Sakamoto, Komaki (bib78) 2012; 107 Kamekura, Nava, Feng, Quiros, Nishio, Weber (bib73) 2015; 26 Yamanishi, Murakami, Ikeda, Abe, Kumagi, Hiasa (bib76) 2012; 188 Utrilla, Peinado, Ruiz, Rodriguez-Nogales, Algieri, Rodriguez-Cabezas (bib67) 2015; 59 Dulai, Siegel, Colombel, Sandborn, Peyrin-Biroulet (bib12) 2014; 63 Fukata, Shang, Santaolalla, Sotolongo, Pastorini, Espana (bib14) 2011; 17 Rubin, Shaker, Levin (bib80) 2012; 3 Groschwitz, Ahrens, Osterfeld, Gurish, Han, Abrink (bib42) 2009; 106 Leoni, Neumann, Kamaly, Quiros, Nishio, Jones (bib51) 2015; 125 Headland, Jones, Norling, Kim, Souza, Corsiero (bib52) 2015; 7 Ju, Mu, Dokland, Zhuang, Wang, Jiang (bib29) 2013; 21 Khounlotham (10.1016/j.biomaterials.2016.06.018_bib71) 2012; 37 Zhuang (10.1016/j.biomaterials.2016.06.018_bib27) 2015; 4 Tang (10.1016/j.biomaterials.2016.06.018_bib25) 2015; 9 Terzic (10.1016/j.biomaterials.2016.06.018_bib79) 2010; 138 Maloy (10.1016/j.biomaterials.2016.06.018_bib48) 2011; 474 Rath (10.1016/j.biomaterials.2016.06.018_bib70) 2012; 18 Al-Suhaimi (10.1016/j.biomaterials.2016.06.018_bib38) 2011; 39 Hrabakova (10.1016/j.biomaterials.2016.06.018_bib87) 2013; 12 Davidson (10.1016/j.biomaterials.2016.06.018_bib56) 1996; 184 Wiczer (10.1016/j.biomaterials.2016.06.018_bib62) 2012; 5 Brown (10.1016/j.biomaterials.2016.06.018_bib36) 2009; 23 Groschwitz (10.1016/j.biomaterials.2016.06.018_bib42) 2009; 106 Sussman (10.1016/j.biomaterials.2016.06.018_bib3) 2012; 28 Yang (10.1016/j.biomaterials.2016.06.018_bib54) 2012; 434 Pertuit (10.1016/j.biomaterials.2016.06.018_bib5) 2007; 123 Noubade (10.1016/j.biomaterials.2016.06.018_bib69) 2014; 509 Xing (10.1016/j.biomaterials.2016.06.018_bib15) 2015; 48 Xiao (10.1016/j.biomaterials.2016.06.018_bib24) 2015; 135 Viennois (10.1016/j.biomaterials.2016.06.018_bib39) 2014; 94 Xiao (10.1016/j.biomaterials.2016.06.018_bib20) 2014; 2 Yeo (10.1016/j.biomaterials.2016.06.018_bib89) 2006; 6 Prasad (10.1016/j.biomaterials.2016.06.018_bib35) 2014; 2014 Turner (10.1016/j.biomaterials.2016.06.018_bib40) 2009; 9 Record (10.1016/j.biomaterials.2016.06.018_bib63) 2013; 21 Ramishetti (10.1016/j.biomaterials.2016.06.018_bib22) 2015; 9 Chassaing (10.1016/j.biomaterials.2016.06.018_bib55) 2012; 7 Arthur (10.1016/j.biomaterials.2016.06.018_bib81) 2012; 338 Wang (10.1016/j.biomaterials.2016.06.018_bib30) 2014; 22 Laroui (10.1016/j.biomaterials.2016.06.018_bib43) 2014; 22 Barrientos (10.1016/j.biomaterials.2016.06.018_bib72) 2008; 16 Li (10.1016/j.biomaterials.2016.06.018_bib86) 2000; 271 Xiao (10.1016/j.biomaterials.2016.06.018_bib11) 2014; 146 Butt (10.1016/j.biomaterials.2016.06.018_bib34) 2011; 51 Utrilla (10.1016/j.biomaterials.2016.06.018_bib67) 2015; 59 Rogler (10.1016/j.biomaterials.2016.06.018_bib83) 2014; 345 Araujo (10.1016/j.biomaterials.2016.06.018_bib16) 2015; 9 Moriasi (10.1016/j.biomaterials.2016.06.018_bib13) 2012; 12 Headland (10.1016/j.biomaterials.2016.06.018_bib52) 2015; 7 Browning (10.1016/j.biomaterials.2016.06.018_bib85) 2010; 2 Saxena (10.1016/j.biomaterials.2016.06.018_bib53) 2008; 68 De Robertis (10.1016/j.biomaterials.2016.06.018_bib60) 2011; 10 Grzanna (10.1016/j.biomaterials.2016.06.018_bib37) 2005; 8 Leoni (10.1016/j.biomaterials.2016.06.018_bib51) 2015; 125 Zhang (10.1016/j.biomaterials.2016.06.018_bib31) 2016; 4 Marouga (10.1016/j.biomaterials.2016.06.018_bib49) 2005; 382 Terzic (10.1016/j.biomaterials.2016.06.018_bib1) 2010; 138 Rubin (10.1016/j.biomaterials.2016.06.018_bib80) 2012; 3 Kamekura (10.1016/j.biomaterials.2016.06.018_bib73) 2015; 26 Lin (10.1016/j.biomaterials.2016.06.018_bib88) 2009; 11 Ensign (10.1016/j.biomaterials.2016.06.018_bib9) 2012; 64 Karna (10.1016/j.biomaterials.2016.06.018_bib33) 2012; 107 Zhang (10.1016/j.biomaterials.2016.06.018_bib10) 2015; 7 Wang (10.1016/j.biomaterials.2016.06.018_bib8) 2013; 64 Navaneethan (10.1016/j.biomaterials.2016.06.018_bib7) 2013; 11 Deol (10.1016/j.biomaterials.2016.06.018_bib64) 2013; 21 Vetrano (10.1016/j.biomaterials.2016.06.018_bib41) 2008; 135 Peterson (10.1016/j.biomaterials.2016.06.018_bib46) 2014; 14 Kawasaki (10.1016/j.biomaterials.2016.06.018_bib61) 1998; 58 Coombes (10.1016/j.biomaterials.2016.06.018_bib75) 2007; 204 Hanauer (10.1016/j.biomaterials.2016.06.018_bib6) 2002; 51 Dulai (10.1016/j.biomaterials.2016.06.018_bib12) 2014; 63 Morton (10.1016/j.biomaterials.2016.06.018_bib26) 2014; 7 Mu (10.1016/j.biomaterials.2016.06.018_bib28) 2014; 58 Kuhn (10.1016/j.biomaterials.2016.06.018_bib57) 1993; 75 Ju (10.1016/j.biomaterials.2016.06.018_bib29) 2013; 21 Yamanishi (10.1016/j.biomaterials.2016.06.018_bib76) 2012; 188 Prasad (10.1016/j.biomaterials.2016.06.018_bib66) 2015; 2015 Fasolino (10.1016/j.biomaterials.2016.06.018_bib68) 2015; 59 Kitano (10.1016/j.biomaterials.2016.06.018_bib78) 2012; 107 Hang (10.1016/j.biomaterials.2016.06.018_bib44) 2011; 121 Xiao (10.1016/j.biomaterials.2016.06.018_bib21) 2013; 34 Chan (10.1016/j.biomaterials.2016.06.018_bib2) 2010; 138 Hsiang (10.1016/j.biomaterials.2016.06.018_bib65) 2013; 136 Hansen (10.1016/j.biomaterials.2016.06.018_bib17) 2015; 9 Kwon (10.1016/j.biomaterials.2016.06.018_bib84) 2010; 29 Dupaul-Chicoine (10.1016/j.biomaterials.2016.06.018_bib59) 2010; 32 Brahmbhatt (10.1016/j.biomaterials.2016.06.018_bib32) 2013; 65 Parkkila (10.1016/j.biomaterials.2016.06.018_bib74) 1994; 35 Han (10.1016/j.biomaterials.2016.06.018_bib19) 2015; 48 Fukata (10.1016/j.biomaterials.2016.06.018_bib14) 2011; 17 Yan (10.1016/j.biomaterials.2016.06.018_bib47) 2007; 132 Laroui (10.1016/j.biomaterials.2016.06.018_bib23) 2011; 32 Kakhniashvili (10.1016/j.biomaterials.2016.06.018_bib50) 2005; 230 Francescone (10.1016/j.biomaterials.2016.06.018_bib45) 2015; 21 Liang (10.1016/j.biomaterials.2016.06.018_bib82) 2013; 23 Stretch (10.1016/j.biomaterials.2016.06.018_bib4) 1996; 10 Laroui (10.1016/j.biomaterials.2016.06.018_bib18) 2010; 138 Viennois (10.1016/j.biomaterials.2016.06.018_bib58) 2015; 112 Mori (10.1016/j.biomaterials.2016.06.018_bib77) 2013; 93 |
References_xml | – volume: 121 start-page: 1733 year: 2011 end-page: 1747 ident: bib44 article-title: CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice publication-title: J. Clin. Invest. – volume: 21 start-page: 855 year: 2013 end-page: 865 ident: bib64 article-title: Improving the therapeutic efficiency of ginger extract for treatment of colon cancer using a suitably designed multiparticulate system publication-title: J. Drug Target – volume: 474 start-page: 298 year: 2011 end-page: 306 ident: bib48 article-title: Intestinal homeostasis and its breakdown in inflammatory bowel disease publication-title: Nature – volume: 75 start-page: 263 year: 1993 end-page: 274 ident: bib57 article-title: Interleukin-10-Deficient mice develop chronic enterocolitis publication-title: Cell – volume: 28 start-page: 327 year: 2012 end-page: 333 ident: bib3 article-title: Cancer in inflammatory bowel disease: lessons from animal models publication-title: Curr. Opin. Gastroenterol. – volume: 39 start-page: 215 year: 2011 end-page: 231 ident: bib38 article-title: Physiological and therapeutical roles of ginger and turmeric on endocrine functions publication-title: Am. J. Chin. Med. – volume: 59 start-page: 807 year: 2015 end-page: 819 ident: bib67 article-title: Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect in the DSS model of mouse colitis publication-title: Mol. Nutr. Food Res. – volume: 2 start-page: 1499 year: 2014 end-page: 1508 ident: bib20 article-title: Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticles publication-title: J. Mater Chem. B – volume: 58 start-page: 5071 year: 1998 end-page: 5074 ident: bib61 article-title: Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer publication-title: Cancer Res. – volume: 63 start-page: 1843 year: 2014 end-page: 1853 ident: bib12 article-title: Systematic review: monotherapy with antitumour necrosis factor alpha agents versus combination therapy with an immunosuppressive for IBD publication-title: Gut – volume: 21 start-page: 409 year: 2015 end-page: 418 ident: bib45 article-title: Cytokines, IBD, and colitis-associated cancer publication-title: Inflamm. Bowel Dis. – volume: 32 start-page: 1218 year: 2011 end-page: 1228 ident: bib23 article-title: Functional TNF alpha gene silencing mediated by polyethyleneimine/TNF alpha siRNA nanocomplexes in inflamed colon publication-title: Biomaterials – volume: 107 start-page: 303 year: 2012 end-page: 310 ident: bib78 article-title: Characterization of small solid tumors in the pancreas: the value of contrast-enhanced harmonic endoscopic ultrasonography publication-title: Am. J. Gastroenterol. – volume: 12 start-page: 455 year: 2013 end-page: 469 ident: bib87 article-title: Cancer cell resistance to aurora kinase inhibitors: identification of novel targets for cancer therapy publication-title: J. Proteome Res. – volume: 29 start-page: 3423 year: 2010 end-page: 3434 ident: bib84 article-title: PKG inhibits TCF signaling in colon cancer cells by blocking beta-catenin expression and activating FOXO4 publication-title: Oncogene – volume: 21 start-page: 1345 year: 2013 end-page: 1357 ident: bib29 article-title: Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis publication-title: Mol. Ther. – volume: 8 start-page: 125 year: 2005 end-page: 132 ident: bib37 article-title: Ginger - an herbal medicinal product with broad anti-inflammatory actions publication-title: J. Med. Food – volume: 68 start-page: 9712 year: 2008 end-page: 9722 ident: bib53 article-title: Bidirectional crosstalk between leptin and insulin-like growth Factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor publication-title: Cancer Res. – volume: 18 start-page: 1364 year: 2012 end-page: 1377 ident: bib70 article-title: Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation publication-title: Inflamm. Bowel Dis. – volume: 64 start-page: 557 year: 2012 end-page: 570 ident: bib9 article-title: Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers publication-title: Adv. Drug Deliv. Rev. – volume: 107 start-page: 473 year: 2012 end-page: 484 ident: bib33 article-title: Benefits of whole ginger extract in prostate cancer publication-title: Brit J. Nutr. – volume: 138 start-page: 2101 year: 2010 end-page: 2114 ident: bib1 article-title: Inflammation and colon cancer publication-title: Gastroenterology – volume: 434 start-page: 155 year: 2012 end-page: 160 ident: bib54 article-title: Comparative study on preparative methods of DC-Chol/DOPE liposomes and formulation optimization by determining encapsulation efficiency publication-title: Int. J. Pharm. – volume: 48 start-page: 16 year: 2015 end-page: 25 ident: bib15 article-title: An “imaging-biopsy” strategy for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots publication-title: Biomaterials – volume: 34 start-page: 7471 year: 2013 end-page: 7482 ident: bib21 article-title: Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy publication-title: Biomaterials – volume: 2014 year: 2014 ident: bib35 article-title: Chronic diseases caused by chronic inflammation require chronic treatment: anti-inflammatory role of dietary spices publication-title: J. Clin. Cell Immunol. – volume: 2 start-page: 65 year: 2010 end-page: 80 ident: bib85 article-title: cGMP-dependent protein kinases as potential targets for colon cancer prevention and treatment publication-title: Future Med. Chem. – volume: 7 start-page: ra44 year: 2014 ident: bib26 article-title: A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways publication-title: Sci. Signal – volume: 51 start-page: 383 year: 2011 end-page: 393 ident: bib34 article-title: Ginger and its health claims: molecular aspects publication-title: Crit. Rev. Food Sci. – volume: 112 start-page: 166 year: 2015 end-page: 179 ident: bib58 article-title: Longitudinal study of circulating protein biomarkers in inflammatory bowel disease publication-title: J. Proteomics – volume: 136 start-page: 170 year: 2013 end-page: 177 ident: bib65 article-title: Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-kappa B activity and interleukin-1 beta signalling pathway publication-title: Food Chem. – volume: 9 start-page: 6985 year: 2015 end-page: 6995 ident: bib17 article-title: Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using Copper-64 liposomes publication-title: ACS Nano – volume: 125 start-page: 1215 year: 2015 end-page: 1227 ident: bib51 article-title: Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair publication-title: J. Clin. Invest. – volume: 10 start-page: 941 year: 1996 end-page: 947 ident: bib4 article-title: 5-Amino salicylic acid absorption and metabolism in ulcerative colitis patients receiving maintenance sulphasalazine, olsalazine or mesalazine publication-title: Aliment. Pharm. Ther. – volume: 2015 start-page: 142179 year: 2015 ident: bib66 article-title: Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer publication-title: Gastroenterol. Res. Pract. – volume: 21 start-page: 1294 year: 2013 end-page: 1296 ident: bib63 article-title: Exosome-like nanoparticles from food: protective nanoshuttles for bioactive cargo publication-title: Mol. Ther. – volume: 59 start-page: 434 year: 2015 end-page: 442 ident: bib68 article-title: Orally administered allyl sulfides from garlic ameliorate murine colitis publication-title: Mol. Nutr. Food Res. – volume: 6 start-page: 1158 year: 2006 end-page: 1165 ident: bib89 article-title: Loss of transgelin in repeated bouts of ulcerative colitis-induced colon carcinogenesis publication-title: Proteomics – volume: 230 start-page: 787 year: 2005 end-page: 792 ident: bib50 article-title: The proteomics of sickle cell disease: profiling of erythrocyte membrane proteins by 2D-DIGE and tandem mass spectrometry publication-title: Exp. Biol. Med. – volume: 11 start-page: 524 year: 2013 end-page: 525 ident: bib7 article-title: Effects of immunosuppression and liver transplantation on inflammatory bowel disease in patients with primary sclerosing cholangitis publication-title: Clin. Gastroenterol. Hepatol. – volume: 4 start-page: 28713 year: 2015 ident: bib27 article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage publication-title: J. Extracell. Vesicles – volume: 14 start-page: 141 year: 2014 end-page: 153 ident: bib46 article-title: Intestinal epithelial cells: regulators of barrier function and immune homeostasis publication-title: Nat. Rev. Immunol. – volume: 35 start-page: 646 year: 1994 end-page: 650 ident: bib74 article-title: Distribution of the carbonic-anhydrase Isoenzyme-I, isoenzyme-II, and isoenzyme-Vi in the human alimentary-tract publication-title: Gut – volume: 65 start-page: 263 year: 2013 end-page: 272 ident: bib32 article-title: Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation publication-title: Nutr. Cancer – volume: 138 start-page: 843 year: 2010 end-page: 853 ident: bib18 article-title: Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model publication-title: Gastroenterology – volume: 9 start-page: 6706 year: 2015 end-page: 6716 ident: bib22 article-title: Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles publication-title: ACS Nano – volume: 106 start-page: 22381 year: 2009 end-page: 22386 ident: bib42 article-title: Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 271 start-page: 537 year: 2000 end-page: 543 ident: bib86 article-title: Elevated levels of RanBP7 mRNA in colorectal carcinoma are associated with increased proliferation and are similar to the transcription pattern of the proto-oncogene c-myc publication-title: Biochem. Biophys. Res. Commun. – volume: 64 start-page: 131 year: 2013 end-page: 144 ident: bib8 article-title: The role of anti-inflammatory drugs in colorectal cancer publication-title: Annu. Rev. Med. – volume: 7 start-page: 300ra128 year: 2015 ident: bib10 article-title: An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease publication-title: Sci. Transl. Med. – volume: 188 start-page: 2164 year: 2012 end-page: 2172 ident: bib76 article-title: Regulatory dendritic cells pulsed with carbonic anhydrase I protect mice from colitis induced by CD4( publication-title: J. Immunol. – volume: 4 start-page: e1134415 year: 2016 ident: bib31 article-title: Plant derived edible nanoparticles as a new therapeutic approach against diseases publication-title: Tissue Barriers – volume: 338 start-page: 120 year: 2012 end-page: 123 ident: bib81 article-title: Intestinal inflammation targets cancer-inducing activity of the microbiota publication-title: Science – volume: 10 start-page: 9 year: 2011 ident: bib60 article-title: The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies publication-title: J. Carcinog. – volume: 135 start-page: 379 year: 2015 end-page: 385 ident: bib24 article-title: Oral administration of pH-sensitive curcumin-loaded microparticles for ulcerative colitis therapy publication-title: Colloid Surf. B – volume: 23 start-page: 640 year: 2009 end-page: 645 ident: bib36 article-title: Ginger's (Zingiber officinale roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro publication-title: Phytother. Res. – volume: 9 start-page: 799 year: 2009 end-page: 809 ident: bib40 article-title: Intestinal mucosal barrier function in health and disease publication-title: Nat. Rev. Immunol. – volume: 138 start-page: 2101 year: 2010 end-page: 2114 ident: bib79 article-title: Inflammation and colon cancer publication-title: Gastroenterology – volume: 132 start-page: 562 year: 2007 end-page: 575 ident: bib47 article-title: Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth publication-title: Gastroenterology – volume: 23 start-page: 107 year: 2013 end-page: 120 ident: bib82 article-title: Sphingosine-1-Phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer publication-title: Cancer Cell – volume: 17 start-page: 1464 year: 2011 end-page: 1473 ident: bib14 article-title: Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis publication-title: Inflamm. Bowel Dis. – volume: 123 start-page: 211 year: 2007 end-page: 218 ident: bib5 article-title: 5-amino salicylic acid bound nanoparticles for the therapy of inflammatory bowel disease publication-title: J. Control Release – volume: 382 start-page: 669 year: 2005 end-page: 678 ident: bib49 article-title: The development of the DIGE system: 2D fluorescence difference gel analysis technology publication-title: Anal. Bioanal. Chem. – volume: 7 start-page: 315ra190 year: 2015 ident: bib52 article-title: Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis publication-title: Sci. Transl. Med. – volume: 51 start-page: 182 year: 2002 end-page: 183 ident: bib6 article-title: New steroids for IBD: progress report publication-title: Gut – volume: 94 start-page: 950 year: 2014 end-page: 965 ident: bib39 article-title: Micheliolide, a new sesquiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer publication-title: Lab. Invest. – volume: 32 start-page: 367 year: 2010 end-page: 378 ident: bib59 article-title: Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases publication-title: Immunity – volume: 58 start-page: 1561 year: 2014 end-page: 1573 ident: bib28 article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles publication-title: Mol. Nutr. Food Res. – volume: 509 start-page: 235 year: 2014 end-page: 239 ident: bib69 article-title: NRROS negatively regulates reactive oxygen species during host defence and autoimmunity publication-title: Nature – volume: 345 start-page: 235 year: 2014 end-page: 241 ident: bib83 article-title: Chronic ulcerative colitis and colorectal cancer publication-title: Cancer Lett. – volume: 16 start-page: 585 year: 2008 end-page: 601 ident: bib72 article-title: Growth factors and cytokines in wound healing publication-title: Wound Repair Regen. – volume: 48 start-page: 45 year: 2015 end-page: 55 ident: bib19 article-title: Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery publication-title: Biomaterials – volume: 184 start-page: 241 year: 1996 end-page: 251 ident: bib56 article-title: T helper cell 1-type CD4 publication-title: J. Exp. Med. – volume: 11 year: 2009 ident: bib88 article-title: Association of the actin-binding protein transgelin with lymph node metastasis in human colorectal cancer publication-title: Neoplasia – volume: 3 start-page: 107 year: 2012 ident: bib80 article-title: Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer publication-title: Front. Immunol. – volume: 138 start-page: 2029 year: 2010 end-page: 2043 ident: bib2 article-title: Primary prevention of colorectal cancer publication-title: Gastroenterology – volume: 204 start-page: 1757 year: 2007 end-page: 1764 ident: bib75 article-title: A functionally specialized population of mucosal CD103(+) DCs induces Foxp3(+) regulatory T cells via a TGF-beta- and retinoic acid-dependent mechanism publication-title: J. Exp. Med. – volume: 93 start-page: 963 year: 2013 end-page: 972 ident: bib77 article-title: Oral administration of carbonic anhydrase I ameliorates murine experimental colitis induced by Foxp3(-)CD4( publication-title: J. Leukoc. Biol. – volume: 5 year: 2012 ident: bib62 article-title: Phospholipase D and mTORC1: nutrients are what bring them together publication-title: Sci. Signal – volume: 12 start-page: 1221 year: 2012 end-page: 1238 ident: bib13 article-title: Prevention of colitis-associated cancer: natural compounds that target the IL-6 soluble receptor publication-title: Anti-Cancer Agent Med. Chem. – volume: 9 start-page: 5072 year: 2015 end-page: 5081 ident: bib25 article-title: Targeting tumor vasculature with aptamer-functionalized doxorubicin - polylactide nanoconjugates for enhanced cancer therapy publication-title: ACS Nano – volume: 22 start-page: 69 year: 2014 end-page: 80 ident: bib43 article-title: Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles publication-title: Mol. Ther. – volume: 9 start-page: 8291 year: 2015 end-page: 8302 ident: bib16 article-title: Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs publication-title: ACS Nano – volume: 22 start-page: 522 year: 2014 end-page: 534 ident: bib30 article-title: Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit publication-title: Mol. Ther. – volume: 26 start-page: 3165 year: 2015 end-page: 3177 ident: bib73 article-title: Inflammation-induced desmoglein-2 ectodomain shedding compromises the mucosal barrier publication-title: Mol. Biol. Cell – volume: 135 start-page: 173 year: 2008 end-page: 184 ident: bib41 article-title: Unique role of junctional adhesion molecule-A in maintaining mucosal homeostasis in inflammatory bowel disease publication-title: Gastroenterology – volume: 146 start-page: 1289 year: 2014 end-page: 1300 ident: bib11 article-title: Nanoparticles with surface antibody against CD98 and carrying CD98 small interfering RNA reduce colitis in mice publication-title: Gastroenterology – volume: 37 start-page: 563 year: 2012 end-page: 573 ident: bib71 article-title: Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis publication-title: Immunity – volume: 7 start-page: e44328 year: 2012 ident: bib55 article-title: Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation publication-title: PLoS One – volume: 9 start-page: 8291 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib16 article-title: Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs publication-title: ACS Nano doi: 10.1021/acsnano.5b02762 – volume: 107 start-page: 473 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib33 article-title: Benefits of whole ginger extract in prostate cancer publication-title: Brit J. Nutr. doi: 10.1017/S0007114511003308 – volume: 107 start-page: 303 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib78 article-title: Characterization of small solid tumors in the pancreas: the value of contrast-enhanced harmonic endoscopic ultrasonography publication-title: Am. J. Gastroenterol. doi: 10.1038/ajg.2011.354 – volume: 94 start-page: 950 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib39 article-title: Micheliolide, a new sesquiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer publication-title: Lab. Invest. doi: 10.1038/labinvest.2014.89 – volume: 7 start-page: 315ra190 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib52 article-title: Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aac5608 – volume: 2 start-page: 1499 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib20 article-title: Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticles publication-title: J. Mater Chem. B doi: 10.1039/c3tb21564d – volume: 58 start-page: 5071 year: 1998 ident: 10.1016/j.biomaterials.2016.06.018_bib61 article-title: Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer publication-title: Cancer Res. – volume: 58 start-page: 1561 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib28 article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201300729 – volume: 345 start-page: 235 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib83 article-title: Chronic ulcerative colitis and colorectal cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2013.07.032 – volume: 14 start-page: 141 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib46 article-title: Intestinal epithelial cells: regulators of barrier function and immune homeostasis publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3608 – volume: 7 start-page: ra44 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib26 article-title: A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways publication-title: Sci. Signal doi: 10.1126/scisignal.2005261 – volume: 11 year: 2009 ident: 10.1016/j.biomaterials.2016.06.018_bib88 article-title: Association of the actin-binding protein transgelin with lymph node metastasis in human colorectal cancer publication-title: Neoplasia doi: 10.1593/neo.09542 – volume: 28 start-page: 327 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib3 article-title: Cancer in inflammatory bowel disease: lessons from animal models publication-title: Curr. Opin. Gastroenterol. doi: 10.1097/MOG.0b013e328354cc36 – volume: 29 start-page: 3423 year: 2010 ident: 10.1016/j.biomaterials.2016.06.018_bib84 article-title: PKG inhibits TCF signaling in colon cancer cells by blocking beta-catenin expression and activating FOXO4 publication-title: Oncogene doi: 10.1038/onc.2010.91 – volume: 64 start-page: 557 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib9 article-title: Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.12.009 – volume: 5 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib62 article-title: Phospholipase D and mTORC1: nutrients are what bring them together publication-title: Sci. Signal doi: 10.1126/scisignal.2003019 – volume: 7 start-page: 300ra128 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib10 article-title: An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa5657 – volume: 48 start-page: 45 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib19 article-title: Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.01.026 – volume: 65 start-page: 263 year: 2013 ident: 10.1016/j.biomaterials.2016.06.018_bib32 article-title: Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation publication-title: Nutr. Cancer doi: 10.1080/01635581.2013.749925 – volume: 132 start-page: 562 year: 2007 ident: 10.1016/j.biomaterials.2016.06.018_bib47 article-title: Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.11.022 – volume: 138 start-page: 2101 year: 2010 ident: 10.1016/j.biomaterials.2016.06.018_bib79 article-title: Inflammation and colon cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.01.058 – volume: 59 start-page: 434 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib68 article-title: Orally administered allyl sulfides from garlic ameliorate murine colitis publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201400347 – volume: 39 start-page: 215 year: 2011 ident: 10.1016/j.biomaterials.2016.06.018_bib38 article-title: Physiological and therapeutical roles of ginger and turmeric on endocrine functions publication-title: Am. J. Chin. Med. doi: 10.1142/S0192415X11008762 – volume: 9 start-page: 799 year: 2009 ident: 10.1016/j.biomaterials.2016.06.018_bib40 article-title: Intestinal mucosal barrier function in health and disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2653 – volume: 138 start-page: 2101 year: 2010 ident: 10.1016/j.biomaterials.2016.06.018_bib1 article-title: Inflammation and colon cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.01.058 – volume: 17 start-page: 1464 year: 2011 ident: 10.1016/j.biomaterials.2016.06.018_bib14 article-title: Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis publication-title: Inflamm. Bowel Dis. doi: 10.1002/ibd.21527 – volume: 68 start-page: 9712 year: 2008 ident: 10.1016/j.biomaterials.2016.06.018_bib53 article-title: Bidirectional crosstalk between leptin and insulin-like growth Factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-1952 – volume: 2014 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib35 article-title: Chronic diseases caused by chronic inflammation require chronic treatment: anti-inflammatory role of dietary spices publication-title: J. Clin. Cell Immunol. – volume: 204 start-page: 1757 year: 2007 ident: 10.1016/j.biomaterials.2016.06.018_bib75 article-title: A functionally specialized population of mucosal CD103(+) DCs induces Foxp3(+) regulatory T cells via a TGF-beta- and retinoic acid-dependent mechanism publication-title: J. Exp. Med. doi: 10.1084/jem.20070590 – volume: 21 start-page: 409 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib45 article-title: Cytokines, IBD, and colitis-associated cancer publication-title: Inflamm. Bowel Dis. doi: 10.1097/MIB.0000000000000236 – volume: 35 start-page: 646 year: 1994 ident: 10.1016/j.biomaterials.2016.06.018_bib74 article-title: Distribution of the carbonic-anhydrase Isoenzyme-I, isoenzyme-II, and isoenzyme-Vi in the human alimentary-tract publication-title: Gut doi: 10.1136/gut.35.5.646 – volume: 12 start-page: 455 year: 2013 ident: 10.1016/j.biomaterials.2016.06.018_bib87 article-title: Cancer cell resistance to aurora kinase inhibitors: identification of novel targets for cancer therapy publication-title: J. Proteome Res. doi: 10.1021/pr300819m – volume: 9 start-page: 6985 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib17 article-title: Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using Copper-64 liposomes publication-title: ACS Nano doi: 10.1021/acsnano.5b01324 – volume: 21 start-page: 855 year: 2013 ident: 10.1016/j.biomaterials.2016.06.018_bib64 article-title: Improving the therapeutic efficiency of ginger extract for treatment of colon cancer using a suitably designed multiparticulate system publication-title: J. Drug Target doi: 10.3109/1061186X.2013.829076 – volume: 7 start-page: e44328 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib55 article-title: Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation publication-title: PLoS One doi: 10.1371/journal.pone.0044328 – volume: 138 start-page: 2029 year: 2010 ident: 10.1016/j.biomaterials.2016.06.018_bib2 article-title: Primary prevention of colorectal cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.01.057 – volume: 6 start-page: 1158 year: 2006 ident: 10.1016/j.biomaterials.2016.06.018_bib89 article-title: Loss of transgelin in repeated bouts of ulcerative colitis-induced colon carcinogenesis publication-title: Proteomics doi: 10.1002/pmic.200500390 – volume: 106 start-page: 22381 year: 2009 ident: 10.1016/j.biomaterials.2016.06.018_bib42 article-title: Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0906372106 – volume: 146 start-page: 1289 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib11 article-title: Nanoparticles with surface antibody against CD98 and carrying CD98 small interfering RNA reduce colitis in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2014.01.056 – volume: 125 start-page: 1215 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib51 article-title: Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair publication-title: J. Clin. Invest. doi: 10.1172/JCI76693 – volume: 63 start-page: 1843 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib12 article-title: Systematic review: monotherapy with antitumour necrosis factor alpha agents versus combination therapy with an immunosuppressive for IBD publication-title: Gut doi: 10.1136/gutjnl-2014-307126 – volume: 434 start-page: 155 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib54 article-title: Comparative study on preparative methods of DC-Chol/DOPE liposomes and formulation optimization by determining encapsulation efficiency publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2012.05.041 – volume: 16 start-page: 585 year: 2008 ident: 10.1016/j.biomaterials.2016.06.018_bib72 article-title: Growth factors and cytokines in wound healing publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2008.00410.x – volume: 3 start-page: 107 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib80 article-title: Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer publication-title: Front. Immunol. doi: 10.3389/fimmu.2012.00107 – volume: 135 start-page: 379 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib24 article-title: Oral administration of pH-sensitive curcumin-loaded microparticles for ulcerative colitis therapy publication-title: Colloid Surf. B doi: 10.1016/j.colsurfb.2015.07.081 – volume: 184 start-page: 241 year: 1996 ident: 10.1016/j.biomaterials.2016.06.018_bib56 article-title: T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice publication-title: J. Exp. Med. doi: 10.1084/jem.184.1.241 – volume: 188 start-page: 2164 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib76 article-title: Regulatory dendritic cells pulsed with carbonic anhydrase I protect mice from colitis induced by CD4(+)CD25(-) T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1100559 – volume: 23 start-page: 107 year: 2013 ident: 10.1016/j.biomaterials.2016.06.018_bib82 article-title: Sphingosine-1-Phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.11.013 – volume: 22 start-page: 69 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib43 article-title: Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles publication-title: Mol. Ther. doi: 10.1038/mt.2013.214 – volume: 22 start-page: 522 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib30 article-title: Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit publication-title: Mol. Ther. doi: 10.1038/mt.2013.190 – volume: 136 start-page: 170 year: 2013 ident: 10.1016/j.biomaterials.2016.06.018_bib65 article-title: Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-kappa B activity and interleukin-1 beta signalling pathway publication-title: Food Chem. doi: 10.1016/j.foodchem.2012.07.124 – volume: 2015 start-page: 142179 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib66 article-title: Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer publication-title: Gastroenterol. Res. Pract. doi: 10.1155/2015/142979 – volume: 18 start-page: 1364 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib70 article-title: Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation publication-title: Inflamm. Bowel Dis. doi: 10.1002/ibd.21944 – volume: 135 start-page: 173 year: 2008 ident: 10.1016/j.biomaterials.2016.06.018_bib41 article-title: Unique role of junctional adhesion molecule-A in maintaining mucosal homeostasis in inflammatory bowel disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2008.04.002 – volume: 59 start-page: 807 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib67 article-title: Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect in the DSS model of mouse colitis publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201400630 – volume: 138 start-page: 843 year: 2010 ident: 10.1016/j.biomaterials.2016.06.018_bib18 article-title: Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.11.003 – volume: 121 start-page: 1733 year: 2011 ident: 10.1016/j.biomaterials.2016.06.018_bib44 article-title: CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI44631 – volume: 32 start-page: 367 year: 2010 ident: 10.1016/j.biomaterials.2016.06.018_bib59 article-title: Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases publication-title: Immunity doi: 10.1016/j.immuni.2010.02.012 – volume: 12 start-page: 1221 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib13 article-title: Prevention of colitis-associated cancer: natural compounds that target the IL-6 soluble receptor publication-title: Anti-Cancer Agent Med. Chem. doi: 10.2174/187152012803833080 – volume: 230 start-page: 787 year: 2005 ident: 10.1016/j.biomaterials.2016.06.018_bib50 article-title: The proteomics of sickle cell disease: profiling of erythrocyte membrane proteins by 2D-DIGE and tandem mass spectrometry publication-title: Exp. Biol. Med. doi: 10.1177/153537020523001102 – volume: 509 start-page: 235 year: 2014 ident: 10.1016/j.biomaterials.2016.06.018_bib69 article-title: NRROS negatively regulates reactive oxygen species during host defence and autoimmunity publication-title: Nature doi: 10.1038/nature13152 – volume: 51 start-page: 182 year: 2002 ident: 10.1016/j.biomaterials.2016.06.018_bib6 article-title: New steroids for IBD: progress report publication-title: Gut doi: 10.1136/gut.51.2.182 – volume: 9 start-page: 5072 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib25 article-title: Targeting tumor vasculature with aptamer-functionalized doxorubicin - polylactide nanoconjugates for enhanced cancer therapy publication-title: ACS Nano doi: 10.1021/acsnano.5b00166 – volume: 34 start-page: 7471 year: 2013 ident: 10.1016/j.biomaterials.2016.06.018_bib21 article-title: Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.06.008 – volume: 21 start-page: 1294 year: 2013 ident: 10.1016/j.biomaterials.2016.06.018_bib63 article-title: Exosome-like nanoparticles from food: protective nanoshuttles for bioactive cargo publication-title: Mol. Ther. doi: 10.1038/mt.2013.130 – volume: 10 start-page: 941 year: 1996 ident: 10.1016/j.biomaterials.2016.06.018_bib4 article-title: 5-Amino salicylic acid absorption and metabolism in ulcerative colitis patients receiving maintenance sulphasalazine, olsalazine or mesalazine publication-title: Aliment. Pharm. Ther. doi: 10.1046/j.1365-2036.1996.85257000.x – volume: 75 start-page: 263 year: 1993 ident: 10.1016/j.biomaterials.2016.06.018_bib57 article-title: Interleukin-10-Deficient mice develop chronic enterocolitis publication-title: Cell doi: 10.1016/0092-8674(93)80068-P – volume: 4 start-page: e1134415 year: 2016 ident: 10.1016/j.biomaterials.2016.06.018_bib31 article-title: Plant derived edible nanoparticles as a new therapeutic approach against diseases publication-title: Tissue Barriers doi: 10.1080/21688370.2015.1134415 – volume: 10 start-page: 9 year: 2011 ident: 10.1016/j.biomaterials.2016.06.018_bib60 article-title: The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies publication-title: J. Carcinog. doi: 10.4103/1477-3163.78279 – volume: 123 start-page: 211 year: 2007 ident: 10.1016/j.biomaterials.2016.06.018_bib5 article-title: 5-amino salicylic acid bound nanoparticles for the therapy of inflammatory bowel disease publication-title: J. Control Release doi: 10.1016/j.jconrel.2007.08.008 – volume: 32 start-page: 1218 year: 2011 ident: 10.1016/j.biomaterials.2016.06.018_bib23 article-title: Functional TNF alpha gene silencing mediated by polyethyleneimine/TNF alpha siRNA nanocomplexes in inflamed colon publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.09.062 – volume: 2 start-page: 65 year: 2010 ident: 10.1016/j.biomaterials.2016.06.018_bib85 article-title: cGMP-dependent protein kinases as potential targets for colon cancer prevention and treatment publication-title: Future Med. Chem. doi: 10.4155/fmc.09.142 – volume: 474 start-page: 298 year: 2011 ident: 10.1016/j.biomaterials.2016.06.018_bib48 article-title: Intestinal homeostasis and its breakdown in inflammatory bowel disease publication-title: Nature doi: 10.1038/nature10208 – volume: 9 start-page: 6706 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib22 article-title: Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.5b02796 – volume: 51 start-page: 383 year: 2011 ident: 10.1016/j.biomaterials.2016.06.018_bib34 article-title: Ginger and its health claims: molecular aspects publication-title: Crit. Rev. Food Sci. doi: 10.1080/10408391003624848 – volume: 26 start-page: 3165 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib73 article-title: Inflammation-induced desmoglein-2 ectodomain shedding compromises the mucosal barrier publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e15-03-0147 – volume: 93 start-page: 963 year: 2013 ident: 10.1016/j.biomaterials.2016.06.018_bib77 article-title: Oral administration of carbonic anhydrase I ameliorates murine experimental colitis induced by Foxp3(-)CD4(+)CD25(-) T cells publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1212612 – volume: 48 start-page: 16 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib15 article-title: An “imaging-biopsy” strategy for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.01.011 – volume: 382 start-page: 669 year: 2005 ident: 10.1016/j.biomaterials.2016.06.018_bib49 article-title: The development of the DIGE system: 2D fluorescence difference gel analysis technology publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-005-3126-3 – volume: 37 start-page: 563 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib71 article-title: Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis publication-title: Immunity doi: 10.1016/j.immuni.2012.06.017 – volume: 338 start-page: 120 year: 2012 ident: 10.1016/j.biomaterials.2016.06.018_bib81 article-title: Intestinal inflammation targets cancer-inducing activity of the microbiota publication-title: Science doi: 10.1126/science.1224820 – volume: 11 start-page: 524 year: 2013 ident: 10.1016/j.biomaterials.2016.06.018_bib7 article-title: Effects of immunosuppression and liver transplantation on inflammatory bowel disease in patients with primary sclerosing cholangitis publication-title: Clin. Gastroenterol. Hepatol. doi: 10.1016/j.cgh.2013.01.020 – volume: 23 start-page: 640 year: 2009 ident: 10.1016/j.biomaterials.2016.06.018_bib36 article-title: Ginger's (Zingiber officinale roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro publication-title: Phytother. Res. doi: 10.1002/ptr.2677 – volume: 112 start-page: 166 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib58 article-title: Longitudinal study of circulating protein biomarkers in inflammatory bowel disease publication-title: J. Proteomics doi: 10.1016/j.jprot.2014.09.002 – volume: 271 start-page: 537 year: 2000 ident: 10.1016/j.biomaterials.2016.06.018_bib86 article-title: Elevated levels of RanBP7 mRNA in colorectal carcinoma are associated with increased proliferation and are similar to the transcription pattern of the proto-oncogene c-myc publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.2666 – volume: 64 start-page: 131 year: 2013 ident: 10.1016/j.biomaterials.2016.06.018_bib8 article-title: The role of anti-inflammatory drugs in colorectal cancer publication-title: Annu. Rev. Med. doi: 10.1146/annurev-med-112211-154330 – volume: 8 start-page: 125 year: 2005 ident: 10.1016/j.biomaterials.2016.06.018_bib37 article-title: Ginger - an herbal medicinal product with broad anti-inflammatory actions publication-title: J. Med. Food doi: 10.1089/jmf.2005.8.125 – volume: 4 start-page: 28713 year: 2015 ident: 10.1016/j.biomaterials.2016.06.018_bib27 article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage publication-title: J. Extracell. Vesicles doi: 10.3402/jev.v4.28713 – volume: 21 start-page: 1345 year: 2013 ident: 10.1016/j.biomaterials.2016.06.018_bib29 article-title: Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis publication-title: Mol. Ther. doi: 10.1038/mt.2013.64 |
SSID | ssj0014042 |
Score | 2.6676536 |
Snippet | There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and... Abstract There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease... There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn’s disease and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 321 |
SubjectTerms | Advanced Basic Science animal models Animals Antineoplastic Agents, Phytogenic - administration & dosage Antineoplastic Agents, Phytogenic - chemistry Antineoplastic Agents, Phytogenic - therapeutic use Biocompatibility Cancer Catechols - administration & dosage Catechols - chemistry Catechols - therapeutic use Cell Line Cell Line, Tumor colitis Colitis, Ulcerative - complications Colitis, Ulcerative - drug therapy Colitis, Ulcerative - prevention & control Colitis-associated cancer Colon Colonic Neoplasms - drug therapy Colonic Neoplasms - etiology Colonic Neoplasms - prevention & control Crohn disease Cytokines Dentistry Edible Edible ginger derived nanoparticles Fatty Alcohols - administration & dosage Fatty Alcohols - chemistry Fatty Alcohols - therapeutic use Female Ginger Humans Inflammatory bowel disease Inflammatory Bowel Diseases - drug therapy Inflammatory Bowel Diseases - prevention & control interleukin-10 interleukin-1beta interleukin-6 intestinal mucosa lipids macrophages Medical services Mice Mice, Inbred C57BL microRNA Nanoparticles Nanoparticles - administration & dosage Nanoparticles - chemistry Nanoparticles - therapeutic use Natural drug delivery system neoplasms oral administration Phytotherapy proteins Therapy toxicity tumor necrosis factor-alpha zeta potential Zingiber officinale - chemistry |
Title | Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961216302721 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961216302721 https://dx.doi.org/10.1016/j.biomaterials.2016.06.018 https://www.ncbi.nlm.nih.gov/pubmed/27318094 https://www.proquest.com/docview/1799837236 https://www.proquest.com/docview/1808711507 https://www.proquest.com/docview/1825522088 https://www.proquest.com/docview/2000306169 https://pubmed.ncbi.nlm.nih.gov/PMC4921206 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemTULwgMb4Kh-TkXgNbWzHSUA8VNOmAtqemLQ3K3Zs6FScau3GG3_K_tbdOU7UsjFV4rHNOYl85_Nd7nc_E_I-1bCPpcYkmTN5IriBJSUKkWiRlxjflpnABufjEzk5FV_PsrMtctD1wiCsMvr-1qcHbx3_GcbZHM6n0yHCkliJBFgSa2-hmVyIHK38w58e5oHsMayFMbIEpTvi0YDxwhb3atmqGmFeMnB54gEgd29St4PQv7GUK5vT0S55HKNKOm5f_AnZsn6PPFrhGtwjD45jFf0puT6sp3pm6Y_2k14NEle2pr7ykEFHoNxHOqa-ubIzutKhRTsGcgqhLl6g88gA1Xha-Zr2sHXaOAq2C-b2K5TxqW5-w71iOSjImoC8WyRVNBB4A4MmePGMnB4dfj-YJPGchsTkUi4Ta1yRGWQUhVyxFtY6axmvdAbRjrR1gaVZ4UbWltJKUUISxJnjNThjk-LnFP6cbPvG25eE8oJpITKXOgdxB6-QPN7CjTNZ5FrUekDKTjHKRBJzPEtjpjq02rlaVapCpSqE7qXFgPB-7Lyl8tho1KdO_6prVgX3qmDH2Wh0ftdou4ieYqFStWBqpG5Z84B87keuLYiNn_yuM1YFHgPLQJW3zSU8MYcUm-eMy3tkihFk0pgs3CcD6ShjsE39W4aFnFumshyQF-1C6eceAmckjxMwR2tLqBdA5vP1K376MzCgoxGxkXz1n3P0mjzEXy1k8A3ZXl5c2rcQYy71fnAi-2Rn_OXb5OQGEmeBuA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIvE4ICiv5WkkrmE3tuMkIA5V1WqBbk-t1JsVO3ZZtDir7rbc-Cn8VmYcJ9qlpVqJazJOIs94PJP55jMh71IN-1hqTJI5kyeCG1hSohCJFnmJ8W2ZCWxwnhzJ8Yn4cpqdbpG9rhcGYZXR97c-PXjreGUYZ3M4n06HCEtiJRJgSay9YTP5LQHLF48xeP-rx3kgfQxrcYwsQfGOeTSAvLDHvVq2ukaclwxknngCyPW71NUo9G8w5crudPCA3I9hJd1tv_wh2bJ-h9xbIRvcIbcnsYz-iPzer6d6ZulZ-0-vBolLW1NfeUihI1LuA92lvrm0M7rSokU7CnIKsS7eoPNIAdV4Wvma9rh12jgKxgv29iPU8alufsKzYj0oyJoAvVskVbQQ-AKDNnj-mJwc7B_vjZN4UENicimXiTWuyAxSikKyWAtrnbWMVzqDcEfausDarHAja0tppSghC-LM8Rq8sUnxfwp_QrZ94-0zQkF_WojMpc5B4MErZI-38OBMFrkWtR6QslOMMpHFHA_TmKkOrvZdrSpVoVIVYvfSYkB4P3becnlsNOpjp3_VdauCf1Ww5Ww0Or9utF1EV7FQqVowNVJXzHlAPvUj11bExm9-2xmrApeBdaDK2-YC3phDjs1zxuUNMsUIUmnMFm6SgXyUMdin_i3DQtItU1kOyNN2ofRzD5EzsscJmKO1JdQLIPX5-h0__RYo0NGI2Eg-_885ekPujI8nh-rw89HXF-Qu3mnxgy_J9vL8wr6CgHOpXweH8gcrJoNG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edible+ginger-derived+nanoparticles%3A+A+novel+therapeutic+approach+for+the+prevention+and+treatment+of+inflammatory+bowel+disease+and+colitis-associated+cancer&rft.jtitle=Biomaterials&rft.au=Zhang%2C+Mingzhen&rft.au=Viennois%2C+Emilie&rft.au=Prasad%2C+Meena&rft.au=Zhang%2C+Yunchen&rft.date=2016-09-01&rft.issn=0142-9612&rft.volume=101&rft.spage=321&rft.epage=340&rft_id=info:doi/10.1016%2Fj.biomaterials.2016.06.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2016_06_018 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2Fcov200h.gif |