Clades of huge phages from across Earth’s ecosystems
Bacteriophages typically have small genomes 1 and depend on their bacterial hosts for replication 2 . Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is—to our knowledge—the largest ph...
Saved in:
Published in | Nature (London) Vol. 578; no. 7795; pp. 425 - 431 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.02.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacteriophages typically have small genomes
1
and depend on their bacterial hosts for replication
2
. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is—to our knowledge—the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR–Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR–Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR–Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth’s ecosystems.
Genomic analyses of major clades of huge phages sampled from across Earth’s ecosystems show that they have diverse genetic inventories, including a variety of CRISPR–Cas systems and translation-relevant genes. |
---|---|
AbstractList | Bacteriophages typically have small genomes and depend on their bacterial hosts for replication. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is—to our knowledge—the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR–Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR–Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR–Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth’s ecosystems. Bacteriophages typically have small genomes and depend on their bacterial hosts for replication . Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems. Bacteriophages typically have small genomes 1 and depend on their bacterial hosts for replication 2 . Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is—to our knowledge—the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR–Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR–Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR–Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth’s ecosystems. Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems.Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems. Bacteriophages typically have small genomes.sup.1 and depend on their bacterial hosts for replication.sup.2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is--to our knowledge--the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems. Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems. Bacteriophages typically have small genomes 1 and depend on their bacterial hosts for replication 2 . Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is—to our knowledge—the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR–Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR–Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR–Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth’s ecosystems. Genomic analyses of major clades of huge phages sampled from across Earth’s ecosystems show that they have diverse genetic inventories, including a variety of CRISPR–Cas systems and translation-relevant genes. Bacteriophages typically have small genomes.sup.1 and depend on their bacterial hosts for replication.sup.2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is--to our knowledge--the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems. Genomic analyses of major clades of huge phages sampled from across Earth's ecosystems show that they have diverse genetic inventories, including a variety of CRISPR-Cas systems and translation-relevant genes. |
Audience | Academic |
Author | Munk, Patrick Lavy, Adi Lane, Katherine R. Borton, Mikayla A. Keren, Ray Ward, Fred Morowitz, Michael Matheus-Carnevali, Paula Nelson, Tara C. Relman, David A. Brooks, Brandon Li, Wen-Jun Doudna, Jennifer A. Sachdeva, Rohan Méheust, Raphaël Farag, Ibrahim F. Devoto, Audra Al-Shayeb, Basem Olm, Matthew R. Cate, Jamie H. D. Power, Mary E. Zhou, Jinglie Wrighton, Kelly Finstad, Kari Chen, Lin-Xing Warren, Lesley Sharrar, Allison Lehours, Anne-Catherine Santini, Joanne M. Kantor, Rose Probst, Alexander J. Jaffe, Alexander L. Thomas, Alex Tringe, Susannah G. Castelle, Cindy J. Goltsman, Daniela S. A. Lei, Shufei Bouma-Gregson, Keith Amundson, Ronald Anantharaman, Karthik Banfield, Jillian F. He, Christine Sun, Christine Amano, Yuki Harrison, Sue |
Author_xml | – sequence: 1 givenname: Basem surname: Al-Shayeb fullname: Al-Shayeb, Basem organization: Innovative Genomics Institute, University of California Berkeley – sequence: 2 givenname: Rohan surname: Sachdeva fullname: Sachdeva, Rohan organization: Innovative Genomics Institute, University of California Berkeley – sequence: 3 givenname: Lin-Xing surname: Chen fullname: Chen, Lin-Xing organization: Innovative Genomics Institute, University of California Berkeley – sequence: 4 givenname: Fred surname: Ward fullname: Ward, Fred organization: Innovative Genomics Institute, University of California Berkeley – sequence: 5 givenname: Patrick surname: Munk fullname: Munk, Patrick organization: National Food Institute, Technical University of Denmark – sequence: 6 givenname: Audra surname: Devoto fullname: Devoto, Audra organization: Innovative Genomics Institute, University of California Berkeley – sequence: 7 givenname: Cindy J. surname: Castelle fullname: Castelle, Cindy J. organization: Innovative Genomics Institute, University of California Berkeley – sequence: 8 givenname: Matthew R. surname: Olm fullname: Olm, Matthew R. organization: Innovative Genomics Institute, University of California Berkeley – sequence: 9 givenname: Keith surname: Bouma-Gregson fullname: Bouma-Gregson, Keith organization: Earth and Planetary Science, University of California Berkeley – sequence: 10 givenname: Yuki surname: Amano fullname: Amano, Yuki organization: Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency – sequence: 11 givenname: Christine surname: He fullname: He, Christine organization: Innovative Genomics Institute, University of California Berkeley – sequence: 12 givenname: Raphaël surname: Méheust fullname: Méheust, Raphaël organization: Innovative Genomics Institute, University of California Berkeley – sequence: 13 givenname: Brandon surname: Brooks fullname: Brooks, Brandon organization: Innovative Genomics Institute, University of California Berkeley – sequence: 14 givenname: Alex surname: Thomas fullname: Thomas, Alex organization: Innovative Genomics Institute, University of California Berkeley – sequence: 15 givenname: Adi surname: Lavy fullname: Lavy, Adi organization: Innovative Genomics Institute, University of California Berkeley – sequence: 16 givenname: Paula surname: Matheus-Carnevali fullname: Matheus-Carnevali, Paula organization: Innovative Genomics Institute, University of California Berkeley – sequence: 17 givenname: Christine surname: Sun fullname: Sun, Christine organization: Department of Microbiology & Immunology, Stanford University – sequence: 18 givenname: Daniela S. A. surname: Goltsman fullname: Goltsman, Daniela S. A. organization: Department of Microbiology & Immunology, Stanford University – sequence: 19 givenname: Mikayla A. surname: Borton fullname: Borton, Mikayla A. organization: Department of Soil and Crop Sciences, Colorado State University – sequence: 20 givenname: Allison surname: Sharrar fullname: Sharrar, Allison organization: Earth and Planetary Science, University of California Berkeley – sequence: 21 givenname: Alexander L. surname: Jaffe fullname: Jaffe, Alexander L. organization: Innovative Genomics Institute, University of California Berkeley – sequence: 22 givenname: Tara C. surname: Nelson fullname: Nelson, Tara C. organization: Department of Civil and Mineral Engineering, University of Toronto – sequence: 23 givenname: Rose surname: Kantor fullname: Kantor, Rose organization: Innovative Genomics Institute, University of California Berkeley – sequence: 24 givenname: Ray surname: Keren fullname: Keren, Ray organization: Innovative Genomics Institute, University of California Berkeley – sequence: 25 givenname: Katherine R. surname: Lane fullname: Lane, Katherine R. organization: Innovative Genomics Institute, University of California Berkeley – sequence: 26 givenname: Ibrahim F. surname: Farag fullname: Farag, Ibrahim F. organization: Innovative Genomics Institute, University of California Berkeley – sequence: 27 givenname: Shufei surname: Lei fullname: Lei, Shufei organization: Earth and Planetary Science, University of California Berkeley – sequence: 28 givenname: Kari surname: Finstad fullname: Finstad, Kari organization: Environmental Science, Policy and Management, University of California Berkeley – sequence: 29 givenname: Ronald surname: Amundson fullname: Amundson, Ronald organization: Environmental Science, Policy and Management, University of California Berkeley – sequence: 30 givenname: Karthik surname: Anantharaman fullname: Anantharaman, Karthik organization: Earth and Planetary Science, University of California Berkeley – sequence: 31 givenname: Jinglie surname: Zhou fullname: Zhou, Jinglie organization: DOE Joint Genome Institute – sequence: 32 givenname: Alexander J. surname: Probst fullname: Probst, Alexander J. organization: Innovative Genomics Institute, University of California Berkeley – sequence: 33 givenname: Mary E. surname: Power fullname: Power, Mary E. organization: Integrative Biology, University of California Berkeley – sequence: 34 givenname: Susannah G. surname: Tringe fullname: Tringe, Susannah G. organization: DOE Joint Genome Institute – sequence: 35 givenname: Wen-Jun surname: Li fullname: Li, Wen-Jun organization: School of Life Sciences, Sun Yat-Sen University – sequence: 36 givenname: Kelly surname: Wrighton fullname: Wrighton, Kelly organization: Department of Soil and Crop Sciences, Colorado State University – sequence: 37 givenname: Sue surname: Harrison fullname: Harrison, Sue organization: Centre for Bioprocess Engineering Research, University of Cape Town – sequence: 38 givenname: Michael surname: Morowitz fullname: Morowitz, Michael organization: Department of Surgery, University of Pittsburgh School of Medicine – sequence: 39 givenname: David A. surname: Relman fullname: Relman, David A. organization: Department of Microbiology & Immunology, Stanford University – sequence: 40 givenname: Jennifer A. surname: Doudna fullname: Doudna, Jennifer A. organization: Innovative Genomics Institute, University of California Berkeley – sequence: 41 givenname: Anne-Catherine surname: Lehours fullname: Lehours, Anne-Catherine organization: Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, CNRS – sequence: 42 givenname: Lesley surname: Warren fullname: Warren, Lesley organization: Department of Civil and Mineral Engineering, University of Toronto – sequence: 43 givenname: Jamie H. D. surname: Cate fullname: Cate, Jamie H. D. organization: Innovative Genomics Institute, University of California Berkeley – sequence: 44 givenname: Joanne M. surname: Santini fullname: Santini, Joanne M. organization: Institute of Structural and Molecular Biology, University College London – sequence: 45 givenname: Jillian F. surname: Banfield fullname: Banfield, Jillian F. email: jbanfield@berkeley.edu organization: Innovative Genomics Institute, University of California Berkeley, Earth and Planetary Science, University of California Berkeley, Environmental Science, Policy and Management, University of California Berkeley, School of Earth Sciences, University of Melbourne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32051592$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1609112$$D View this record in Osti.gov |
BookMark | eNp9ks1u1DAUhS1URH_gAdigqGxAKMX_STaVRqMClSqQoIil5Tg3GVeJPY0dRHe8Bq_Hk-BhStuppiiLxMl3jm98zj7acd4BQs8JPiKYlW8DJ6KUOaY4pxgXOX-E9ggvZM5lWeygPYxpmeOSyV20H8IFxliQgj9Bu4ymJ1HRPSTnvW4gZL7NFlMH2XKhu7RsRz9k2ow-hOxEj3Hx--evkIHx4SpEGMJT9LjVfYBn1_cD9PXdyfn8Q3726f3pfHaWm0KKmNeVLIDzpubAKa7bkrWVgFYaKbWhVSlYIWpouBZCUiYE5YQVUBtWCaYbKtgBOl77Lqd6gMaAi6Pu1XK0gx6vlNdWbX5xdqE6_10VRNKSkmRwuDbwIVoVjI1gFsY7ByYqInFFCE3Qq-tdRn85QYhqsMFA32sHfgoqjcYLJtM8CX15D73w0-jSGSRKVhxXDPNbqtM9KOtan4YzK1M1k5QQXFUUJyrfQnXgIP1JSrq16fUGf7iFN0t7qe5CR1ugdDUwWLPV9fWGIDERfsROTyGo0y-fN9k3D7Oz82_zj5v0i7vh3aT2r30JIGvgb9FGaG8QgtWq4WrdcJUarlYNV6ujLe5pUqY6Wr_K3_b_VdK1MqRdXAfjbXQPi_4A7WMIZg |
CitedBy_id | crossref_primary_10_1111_ele_13630 crossref_primary_10_3390_microorganisms12040713 crossref_primary_10_1093_nar_gkac1168 crossref_primary_10_1016_j_tim_2020_06_004 crossref_primary_10_1089_phage_2024_0050 crossref_primary_10_1016_j_copbio_2020_08_015 crossref_primary_10_1038_s41467_024_53778_1 crossref_primary_10_1038_s41467_023_37396_x crossref_primary_10_1038_s41564_023_01598_2 crossref_primary_10_3390_v14061336 crossref_primary_10_1093_nar_gkab859 crossref_primary_10_1371_journal_pcbi_1009428 crossref_primary_10_1186_s40168_021_01017_w crossref_primary_10_1038_s41564_024_01616_x crossref_primary_10_1016_j_virusres_2020_198168 crossref_primary_10_3390_ijms25137388 crossref_primary_10_1016_j_watres_2024_122580 crossref_primary_10_3390_v13030506 crossref_primary_10_1128_mBio_00466_21 crossref_primary_10_1016_j_cell_2024_08_028 crossref_primary_10_1016_j_jbc_2024_107295 crossref_primary_10_1093_molbev_msad244 crossref_primary_10_1111_1462_2920_15186 crossref_primary_10_1126_science_abb1400 crossref_primary_10_1128_aem_00884_24 crossref_primary_10_1093_ve_veab100 crossref_primary_10_3390_v15122330 crossref_primary_10_1038_s41564_022_01150_8 crossref_primary_10_1186_s40168_023_01585_z crossref_primary_10_1093_femsml_uqae011 crossref_primary_10_14293_S2199_1006_1_SOR_2023_0001_v1 crossref_primary_10_1016_j_celrep_2022_110376 crossref_primary_10_1128_spectrum_04200_23 crossref_primary_10_1128_JB_00362_20 crossref_primary_10_1016_j_foodres_2021_110779 crossref_primary_10_1016_j_talanta_2024_126849 crossref_primary_10_1007_s11427_023_2608_5 crossref_primary_10_1038_s41421_021_00371_1 crossref_primary_10_1111_1462_2920_15034 crossref_primary_10_1093_nar_gkaa621 crossref_primary_10_3389_fmicb_2021_778199 crossref_primary_10_1007_s00792_024_01377_9 crossref_primary_10_1038_s41396_022_01188_w crossref_primary_10_3390_ijms24108623 crossref_primary_10_1038_s41564_024_01740_8 crossref_primary_10_3390_antibiotics10091085 crossref_primary_10_1146_annurev_virology_091919_072020 crossref_primary_10_7554_eLife_60482 crossref_primary_10_1038_s41467_023_41699_4 crossref_primary_10_3390_v14102305 crossref_primary_10_1016_j_biotechadv_2023_108261 crossref_primary_10_3390_v13020150 crossref_primary_10_7717_peerj_11088 crossref_primary_10_1038_s41396_022_01214_x crossref_primary_10_1038_s41421_023_00612_5 crossref_primary_10_1038_s41589_020_00700_7 crossref_primary_10_3390_biom13040610 crossref_primary_10_1007_s11427_021_2057_0 crossref_primary_10_1038_s41586_023_05824_z crossref_primary_10_1186_s40168_020_00889_8 crossref_primary_10_1186_s40168_025_02053_6 crossref_primary_10_1371_journal_pbio_3001792 crossref_primary_10_1038_s41396_021_01132_4 crossref_primary_10_1007_s11427_023_2566_8 crossref_primary_10_1021_acschembio_3c00051 crossref_primary_10_1038_s41467_022_32979_6 crossref_primary_10_1016_j_aqrep_2024_102450 crossref_primary_10_1038_s41467_024_53418_8 crossref_primary_10_1038_s41594_020_0499_0 crossref_primary_10_1101_gr_258640_119 crossref_primary_10_1038_s41587_020_00774_7 crossref_primary_10_1016_j_cub_2023_05_056 crossref_primary_10_1042_BST20221486 crossref_primary_10_1128_jb_00268_22 crossref_primary_10_1111_prd_12363 crossref_primary_10_1128_spectrum_01711_22 crossref_primary_10_1146_annurev_genet_022620_101840 crossref_primary_10_1038_s41598_021_80990_6 crossref_primary_10_1016_j_tim_2022_05_003 crossref_primary_10_1039_D2TB02610D crossref_primary_10_33848_fopr628996 crossref_primary_10_3389_fmicb_2022_946070 crossref_primary_10_1080_10643389_2025_2457980 crossref_primary_10_1146_annurev_virology_113023_110757 crossref_primary_10_1186_s13567_024_01341_7 crossref_primary_10_1007_s13562_020_00606_4 crossref_primary_10_1128_msystems_01358_21 crossref_primary_10_7554_eLife_71402 crossref_primary_10_3390_v12040410 crossref_primary_10_1093_mam_ozae044_1063 crossref_primary_10_1016_j_chom_2024_04_016 crossref_primary_10_3390_v12091035 crossref_primary_10_1099_mgen_0_000781 crossref_primary_10_3389_fcell_2020_622103 crossref_primary_10_1016_j_soilbio_2022_108569 crossref_primary_10_3389_fmicb_2021_660351 crossref_primary_10_1111_1751_7915_14257 crossref_primary_10_1128_aem_01581_23 crossref_primary_10_3390_ijms242015302 crossref_primary_10_1016_j_jhazmat_2023_132299 crossref_primary_10_1093_gbe_evac034 crossref_primary_10_1016_j_watres_2024_122253 crossref_primary_10_3390_ijms222212460 crossref_primary_10_1146_annurev_genet_022120_112523 crossref_primary_10_1007_s40259_021_00480_z crossref_primary_10_1016_j_heliyon_2024_e40342 crossref_primary_10_3390_ijms24108941 crossref_primary_10_3389_fphys_2022_983245 crossref_primary_10_1038_s41564_022_01243_4 crossref_primary_10_1038_s41522_021_00196_6 crossref_primary_10_1016_j_cell_2025_02_013 crossref_primary_10_1042_EBC20240037 crossref_primary_10_1097_JS9_0000000000001081 crossref_primary_10_1111_1751_7915_14464 crossref_primary_10_3390_microorganisms11092167 crossref_primary_10_3390_v15020420 crossref_primary_10_1099_jgv_0_001997 crossref_primary_10_1128_msystems_01105_23 crossref_primary_10_3389_fonc_2024_1469319 crossref_primary_10_1094_PBIOMES_03_24_0033_FI crossref_primary_10_1073_pnas_2216822120 crossref_primary_10_1016_j_virusres_2022_198881 crossref_primary_10_1038_s41467_024_49872_z crossref_primary_10_3389_fcell_2022_834646 crossref_primary_10_1016_j_copbio_2020_09_008 crossref_primary_10_1038_s41589_024_01659_5 crossref_primary_10_1093_jxb_erad072 crossref_primary_10_3389_fmolb_2024_1395450 crossref_primary_10_1016_j_micres_2022_127000 crossref_primary_10_1038_s41586_023_05826_x crossref_primary_10_1038_s41396_021_00932_y crossref_primary_10_1089_phage_2020_0014 crossref_primary_10_3389_fmicb_2021_741600 crossref_primary_10_1111_jipb_13063 crossref_primary_10_1016_j_isci_2021_102875 crossref_primary_10_1016_j_jes_2022_07_018 crossref_primary_10_1016_j_jmb_2020_05_016 crossref_primary_10_3390_ijms231912053 crossref_primary_10_1128_mBio_03454_20 crossref_primary_10_1016_j_chom_2021_10_004 crossref_primary_10_1080_15476286_2023_2244791 crossref_primary_10_1016_j_cell_2021_01_029 crossref_primary_10_1007_s12268_020_1382_6 crossref_primary_10_1007_s12033_022_00567_0 crossref_primary_10_1016_j_celrep_2021_109132 crossref_primary_10_1038_s41594_023_01094_5 crossref_primary_10_1093_bioinformatics_btac776 crossref_primary_10_1126_sciadv_adg4015 crossref_primary_10_1094_PBIOMES_11_21_0073_RVW crossref_primary_10_3390_microorganisms8060932 crossref_primary_10_1038_s41586_022_05256_1 crossref_primary_10_1038_s41586_021_04332_2 crossref_primary_10_1016_j_mib_2023_102417 crossref_primary_10_1186_s12985_025_02646_5 crossref_primary_10_3390_biology10060530 crossref_primary_10_1016_j_jes_2022_06_012 crossref_primary_10_17116_rosrino20212901123 crossref_primary_10_1016_j_molp_2020_08_008 crossref_primary_10_1038_s41467_023_36526_9 crossref_primary_10_3390_v14020181 crossref_primary_10_1038_s41579_020_0341_z crossref_primary_10_1016_j_watres_2022_118237 crossref_primary_10_1186_s40168_022_01441_6 crossref_primary_10_1038_s43705_021_00064_6 crossref_primary_10_1038_s41467_023_40835_4 crossref_primary_10_1038_s41564_022_01128_6 crossref_primary_10_1186_s40168_024_02017_2 crossref_primary_10_1038_s41396_021_00994_y crossref_primary_10_1016_j_crfs_2024_100748 crossref_primary_10_1371_journal_pcbi_1008972 crossref_primary_10_1016_j_coviro_2021_05_008 crossref_primary_10_1016_j_watbs_2022_100062 crossref_primary_10_1016_j_synbio_2020_09_003 crossref_primary_10_1038_s41564_021_01039_y crossref_primary_10_1111_1462_2920_16527 crossref_primary_10_1007_s00438_025_02239_5 crossref_primary_10_3389_fmicb_2021_691847 crossref_primary_10_1038_s41586_023_05962_4 crossref_primary_10_3390_v12070721 crossref_primary_10_1089_crispr_2021_29118_abo crossref_primary_10_1098_rstb_2020_0460 crossref_primary_10_1016_j_isci_2020_101439 crossref_primary_10_1038_s41564_021_00928_6 crossref_primary_10_1038_s41598_023_32078_6 crossref_primary_10_1016_j_sbi_2022_102466 crossref_primary_10_1016_j_tim_2020_05_021 crossref_primary_10_2147_IDR_S330560 crossref_primary_10_22141_2312_413X_9_5_6_2021_246691 crossref_primary_10_3390_v14091977 crossref_primary_10_1371_journal_pgen_1011595 crossref_primary_10_1038_s41467_021_25678_1 crossref_primary_10_1016_j_biotechadv_2024_108382 crossref_primary_10_3390_microorganisms11102454 crossref_primary_10_1016_j_cell_2022_11_017 crossref_primary_10_1134_S0006297921040064 crossref_primary_10_1186_s40793_024_00549_6 crossref_primary_10_1128_msphere_00407_23 crossref_primary_10_2217_fmb_2020_0161 crossref_primary_10_1038_s41564_024_01839_y crossref_primary_10_3389_fmicb_2022_940525 crossref_primary_10_3390_v12080881 crossref_primary_10_1016_j_drudis_2023_103793 crossref_primary_10_1038_s41564_020_0779_9 crossref_primary_10_3390_v13010063 crossref_primary_10_1098_rstb_2020_0472 crossref_primary_10_3390_bioengineering10010035 crossref_primary_10_3390_microorganisms12010118 crossref_primary_10_1038_s41467_020_20199_9 crossref_primary_10_1038_s41579_021_00663_z crossref_primary_10_1016_j_psj_2024_103756 crossref_primary_10_1038_s41579_022_00811_z crossref_primary_10_1002_lno_11924 crossref_primary_10_1038_s41579_021_00648_y crossref_primary_10_1098_rstb_2020_0468 crossref_primary_10_1038_s41467_020_18850_6 crossref_primary_10_3389_fmicb_2022_858064 crossref_primary_10_1038_s41467_021_24707_3 crossref_primary_10_31857_S0320972521040060 crossref_primary_10_1016_j_watres_2024_122302 crossref_primary_10_1038_s10038_020_00841_6 crossref_primary_10_1016_j_nantod_2024_102326 crossref_primary_10_3390_v15061348 crossref_primary_10_1089_ast_2021_0119 crossref_primary_10_22625_2072_6732_2022_14_2_47_54 crossref_primary_10_1038_s41594_021_00632_3 crossref_primary_10_1038_s41598_023_48634_z crossref_primary_10_1146_annurev_micro_041222_124727 crossref_primary_10_1038_s43705_022_00111_w crossref_primary_10_1016_j_cell_2022_10_020 crossref_primary_10_3389_fmicb_2023_1132403 crossref_primary_10_3389_fmicb_2021_641317 crossref_primary_10_1038_s41396_023_01404_1 crossref_primary_10_1088_1748_9326_ac59a9 crossref_primary_10_1038_s44298_024_00060_2 crossref_primary_10_3390_v14061148 crossref_primary_10_1038_s41579_023_00870_w crossref_primary_10_7555_JBR_35_20200184 crossref_primary_10_7717_peerj_13241 crossref_primary_10_1007_s00284_025_04110_7 crossref_primary_10_1186_s40168_022_01416_7 crossref_primary_10_1073_pnas_2023202118 crossref_primary_10_1371_journal_pone_0283676 crossref_primary_10_1038_s41522_024_00554_0 crossref_primary_10_1111_1462_2920_14979 crossref_primary_10_3390_microorganisms11030693 crossref_primary_10_1016_j_soilbio_2025_109791 crossref_primary_10_1128_msystems_00952_24 crossref_primary_10_1007_s10123_021_00208_7 crossref_primary_10_1128_mbio_01766_23 crossref_primary_10_1038_s41467_024_50811_1 crossref_primary_10_3390_biom12081061 crossref_primary_10_1038_s41467_024_51230_y crossref_primary_10_1038_s41579_020_00444_0 crossref_primary_10_1053_j_gastro_2022_05_048 crossref_primary_10_3390_biom13010110 crossref_primary_10_1093_nar_gkac1220 crossref_primary_10_1016_j_chom_2023_11_015 crossref_primary_10_1016_j_tibs_2021_11_007 crossref_primary_10_1038_s41422_022_00771_2 crossref_primary_10_1186_s12943_022_01552_6 crossref_primary_10_1021_acssynbio_4c00154 crossref_primary_10_1051_medsci_2022166 crossref_primary_10_3389_fmicb_2022_946251 crossref_primary_10_1038_s41598_024_58226_0 crossref_primary_10_1038_s41467_020_19415_3 crossref_primary_10_3389_frmbi_2024_1408203 crossref_primary_10_1093_ismeco_ycaf021 crossref_primary_10_1038_s41467_021_21350_w crossref_primary_10_3389_fcimb_2021_686090 crossref_primary_10_3390_ijms232012146 crossref_primary_10_1080_1040841X_2024_2321480 crossref_primary_10_1007_s00705_024_06215_z crossref_primary_10_1038_s41575_021_00536_z crossref_primary_10_1186_s40168_023_01672_1 crossref_primary_10_1007_s12088_024_01204_x crossref_primary_10_1089_crispr_2023_0006 crossref_primary_10_1128_msystems_01521_24 crossref_primary_10_1007_s00248_022_02167_6 crossref_primary_10_1093_nar_gkab006 crossref_primary_10_1038_s41467_021_22900_y crossref_primary_10_1038_s41586_024_07598_4 crossref_primary_10_1111_1462_2920_70040 crossref_primary_10_1038_s41579_021_00574_z crossref_primary_10_1021_acssynbio_1c00181 crossref_primary_10_1016_j_virusres_2022_198913 crossref_primary_10_1097_CM9_0000000000002382 crossref_primary_10_1186_s40168_024_01984_w crossref_primary_10_1093_nar_gkac341 |
Cites_doi | 10.1038/s41564-018-0166-y 10.1093/nar/gku971 10.1186/s12864-016-2627-0 10.1126/science.aav7271 10.1111/j.1432-1033.1981.tb05563.x 10.1101/gr.2289704 10.1016/j.molcel.2015.10.008 10.7717/peerj.3243 10.1093/bioinformatics/btq003 10.1093/nar/25.5.955 10.1111/j.1365-2958.1995.tb02405.x 10.1093/nar/gkn238 10.1038/nmeth.3176 10.1073/pnas.95.12.6854 10.1093/bioinformatics/btv582 10.1093/nar/30.7.1575 10.1146/annurev-micro-102215-095431 10.1038/nbt.3704 10.1038/nrmicro3569 10.1016/B978-0-12-386497-0.00005-0 10.1038/nature19366 10.3389/fmicb.2018.00856 10.1186/s13062-017-0193-2 10.1371/journal.pbio.1001177 10.1038/s41579-018-0117-x 10.1093/nar/gkv1070 10.1093/nar/gkw975 10.1093/bioinformatics/btw006 10.1093/nar/gks1234 10.1126/science.1134196 10.1126/science.1250691 10.1038/nmeth.1818 10.1038/nmeth.1923 10.1093/nar/gkv1271 10.1126/science.aav4294 10.1126/science.1130441 10.1038/ismej.2013.249 10.1093/bioinformatics/btr316 10.1093/nar/gkt1223 10.1038/ismej.2017.126 10.1093/molbev/msu300 10.1093/oxfordjournals.molbev.a025626 10.1016/j.chom.2019.01.008 10.1006/jmbi.2000.4315 10.1016/j.chom.2019.01.017 10.1111/j.1365-2958.1992.tb02205.x 10.1038/nature11927 10.1093/molbev/mst010 10.1016/j.celrep.2017.07.064 10.1101/gr.213959.116 10.1093/nar/27.23.4636 10.1016/j.molcel.2016.12.023 10.1038/s41564-018-0190-y 10.1126/science.aal2130 10.1016/S0079-6603(08)60085-9 10.1093/bioinformatics/btq675 10.1002/jcc.20084 10.1038/nmicrobiol.2016.85 10.1038/s41467-019-08672-6 10.1038/ismej.2013.4 10.1371/journal.ppat.1004219 10.1016/j.mib.2014.11.019 10.1038/nmeth.1701 10.1093/bioinformatics/bts174 10.1038/s41579-018-0076-2 10.1038/nature21059 10.1016/j.molcel.2018.02.028 10.1093/nar/gkh152 10.1006/jmbi.1998.1909 10.1038/nrmicro.2016.184 10.7554/eLife.05477 10.1038/nature19094 10.1038/s41564-018-0338-9 10.1016/S0022-2836(05)80360-2 10.1074/jbc.M116.724062 10.1038/s41586-019-1786-y 10.1093/bioinformatics/btq461 10.1093/bioinformatics/btu033 10.1038/nature15254 10.1016/j.ymeth.2017.12.004 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2020 Nature Publishing Group Copyright Nature Publishing Group Feb 20, 2020 |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: Copyright Nature Publishing Group Feb 20, 2020 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – sequence: 0 name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OIOZB OTOTI 5PM |
DOI | 10.1038/s41586-020-2007-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context: Middle School (subscription) ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary Curriculum ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database ProQuest Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 431 |
ExternalDocumentID | PMC7162821 1609112 A621109920 32051592 10_1038_s41586_020_2007_4 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI092531 – fundername: NIGMS NIH HHS grantid: R01 GM109454 – fundername: NIAID NIH HHS grantid: U01 AI142817 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 0B8 1CY 1VW 354 3EH 3O- 3V. 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 AGEZK B-7 OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c765t-b967e44db4e420bf83f95ef6c66ac2985375bed4a556235524137ebc3953ad253 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 13:44:15 EDT 2025 Thu Dec 05 06:35:14 EST 2024 Fri Jul 11 06:41:58 EDT 2025 Fri Jul 25 09:03:15 EDT 2025 Tue Jun 17 21:06:28 EDT 2025 Thu Jun 12 23:53:45 EDT 2025 Tue Jun 10 15:32:06 EDT 2025 Tue Jun 10 20:26:03 EDT 2025 Fri Jun 27 04:38:50 EDT 2025 Fri Jun 27 04:05:46 EDT 2025 Wed Feb 19 02:07:02 EST 2025 Tue Jul 01 01:21:18 EDT 2025 Thu Apr 24 23:10:02 EDT 2025 Fri Feb 21 02:38:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7795 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c765t-b967e44db4e420bf83f95ef6c66ac2985375bed4a556235524137ebc3953ad253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Novo Nordisk Foundation USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division Paul Allen Foundation Frontiers Group AC02-05CH11231; APSF-2012-10-05; 1349278; GRT00048468; 1342701; CHE-1740549 National Institutes of Health (NIH) National Research Foundation of South Africa National Science Foundation (NSF) Alfred P. Sloan Foundation German Science Foundation Innovative Genomics Institute |
OpenAccessLink | https://www.nature.com/articles/s41586-020-2007-4 |
PMID | 32051592 |
PQID | 2369409304 |
PQPubID | 40569 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7162821 osti_scitechconnect_1609112 proquest_miscellaneous_2354736253 proquest_journals_2369409304 gale_infotracmisc_A621109920 gale_infotracgeneralonefile_A621109920 gale_infotraccpiq_621109920 gale_infotracacademiconefile_A621109920 gale_incontextgauss_ISR_A621109920 gale_incontextgauss_ATWCN_A621109920 pubmed_primary_32051592 crossref_primary_10_1038_s41586_020_2007_4 crossref_citationtrail_10_1038_s41586_020_2007_4 springer_journals_10_1038_s41586_020_2007_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200220 |
PublicationDateYYYYMMDD | 2020-02-20 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200220 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – sequence: 0 name: Nature Publishing Group – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Peabody, Laird, Vlasschaert, Lo, Brinkman (CR66) 2016; 44 Shmakov (CR24) 2017; 15 Buchfink, Xie, Huson (CR84) 2015; 12 Farwell, Roberts, Rabinowitz (CR19) 1992; 6 Seed, Lazinski, Calderwood, Camilli (CR26) 2013; 494 Subramanian (CR39) 1983; 28 Darling, Mau, Blattner, Perna (CR76) 2004; 14 Mendoza (CR35) 2020; 577 Harrington (CR25) 2018; 362 Jaafar, Kieft (CR37) 2019; 17 Devoto (CR9) 2019; 4 Hauser, Steinegger, Söding (CR60) 2016; 32 Brown, Hughes (CR30) 1995; 16 Nguyen, Schmidt, von Haeseler, Minh (CR74) 2015; 32 Biswas, Staals, Morales, Fineran, Brown (CR77) 2016; 17 Luo, Mullis, Leenay, Beisel (CR27) 2015; 43 Langmead, Salzberg (CR52) 2012; 9 Altschul, Gish, Miller, Myers, Lipman (CR83) 1990; 215 Gogokhia (CR36) 2019; 25 Woese (CR38) 1998; 95 Paez-Espino (CR15) 2017; 45 Smoot, Ono, Ruscheinski, Wang, Ideker (CR86) 2011; 27 Remmert, Biegert, Hauser, Söding (CR61) 2012; 9 Emerson (CR4) 2018; 3 van Duin, Wijnands (CR18) 1981; 118 Chaikeeratisak (CR34) 2017; 20 Karsenti (CR42) 2011; 9 Bernardes, Vieira, Zaverucha, Carbone (CR64) 2016; 32 Penadés, Chen, Quiles-Puchalt, Carpena, Novick (CR6) 2015; 23 Nakabachi (CR12) 2006; 314 CR48 Pawluk (CR32) 2016; 1 Pettersen (CR41) 2004; 25 CR47 Shmakov (CR80) 2015; 60 Delcher, Harmon, Kasif, White, Salzberg (CR69) 1999; 27 Sørensen, Fricke, Pedersen (CR20) 1998; 280 Castelle (CR10) 2018; 16 Grazziotin, Koonin, Kristensen (CR57) 2017; 45 Cole, Barber, Barton (CR71) 2008; 36 Smargon (CR82) 2017; 65 Enright, Van Dongen, Ouzounis (CR62) 2002; 30 Krogh, Larsson, von Heijne, Sonnhammer (CR67) 2001; 305 Shkoporov, Hill (CR8) 2019; 25 Raveh-Sadka (CR49) 2015; 4 Yan (CR81) 2018; 70 Lowe, Eddy (CR58) 1997; 25 Stamatakis (CR85) 2014; 30 Petersen, Brunak, von Heijne, Nielsen (CR65) 2011; 8 Olm, Brown, Brooks, Banfield (CR75) 2017; 11 Dutilh (CR68) 2011; 27 Makarova (CR79) 2015; 13 Paez-Espino (CR14) 2016; 536 Breitbart, Bonnain, Malki, Sawaya (CR2) 2018; 3 Stachler, Marchfelder (CR28) 2016; 291 Haft (CR56) 2013; 41 Roux (CR43) 2016; 537 Bondy-Denomy (CR31) 2015; 526 Brown, Olm, Thomas, Banfield (CR53) 2016; 34 CR51 Huang, Niu, Gao, Fu, Li (CR72) 2010; 26 Steinegger, Meier, Biegert (CR70) 2019; 20 Pérez-Brocal (CR11) 2006; 314 Peng, Leung, Yiu, Chin (CR44) 2012; 28 Nurk, Meleshko, Korobeynikov, Pevzner (CR45) 2017; 27 Balcazar (CR5) 2014; 10 Bolduc (CR50) 2017; 5 Ivanova (CR16) 2014; 344 Chaikeeratisak (CR33) 2017; 355 Rascovan, Duraisamy, Desnues (CR3) 2016; 70 Lobry (CR13) 1996; 13 Brown-Jaque (CR7) 2018; 9 Frank (CR21) 2013; 7 Finn (CR55) 2014; 42 Yan (CR23) 2019; 363 Toms, Barrangou (CR29) 2017; 12 Edgar (CR46) 2010; 26 Wrighton (CR54) 2014; 8 Katoh, Standley (CR73) 2013; 30 Loveland, Korostelev (CR40) 2018; 137 Yuan, Gao (CR1) 2017; 8 Kanehisa, Sato, Kawashima, Furumichi, Tanabe (CR63) 2016; 44 Burstein (CR78) 2017; 542 Laslett, Canback (CR59) 2004; 32 Janssen, Hayes (CR22) 2012; 86 Mizuno (CR17) 2019; 10 JR Penadés (2007_CR6) 2015; 23 D Laslett (2007_CR59) 2004; 32 M Remmert (2007_CR61) 2012; 9 L-T Nguyen (2007_CR74) 2015; 32 R Edgar (2007_CR46) 2010; 26 AR Subramanian (2007_CR39) 1983; 28 KD Seed (2007_CR26) 2013; 494 AL Grazziotin (2007_CR57) 2017; 45 V Chaikeeratisak (2007_CR34) 2017; 20 B Buchfink (2007_CR84) 2015; 12 ACE Darling (2007_CR76) 2004; 14 S Nurk (2007_CR45) 2017; 27 JA Frank (2007_CR21) 2013; 7 M Kanehisa (2007_CR63) 2016; 44 AN Shkoporov (2007_CR8) 2019; 25 V Chaikeeratisak (2007_CR33) 2017; 355 T Raveh-Sadka (2007_CR49) 2015; 4 TN Petersen (2007_CR65) 2011; 8 2007_CR47 JS Bernardes (2007_CR64) 2016; 32 2007_CR48 M Breitbart (2007_CR2) 2018; 3 MA Farwell (2007_CR19) 1992; 6 C Woese (2007_CR38) 1998; 95 M Brown-Jaque (2007_CR7) 2018; 9 S Shmakov (2007_CR80) 2015; 60 WX Yan (2007_CR81) 2018; 70 N Rascovan (2007_CR3) 2016; 70 V Pérez-Brocal (2007_CR11) 2006; 314 DH Haft (2007_CR56) 2013; 41 B Bolduc (2007_CR50) 2017; 5 AA Smargon (2007_CR82) 2017; 65 BD Janssen (2007_CR22) 2012; 86 C Cole (2007_CR71) 2008; 36 TM Lowe (2007_CR58) 1997; 25 A Krogh (2007_CR67) 2001; 305 JL Balcazar (2007_CR5) 2014; 10 WX Yan (2007_CR23) 2019; 363 AJ Enright (2007_CR62) 2002; 30 KL Brown (2007_CR30) 1995; 16 A Biswas (2007_CR77) 2016; 17 KC Wrighton (2007_CR54) 2014; 8 ME Smoot (2007_CR86) 2011; 27 MA Sørensen (2007_CR20) 1998; 280 Y Huang (2007_CR72) 2010; 26 D Burstein (2007_CR78) 2017; 542 A Toms (2007_CR29) 2017; 12 AL Delcher (2007_CR69) 1999; 27 CM Mizuno (2007_CR17) 2019; 10 NN Ivanova (2007_CR16) 2014; 344 KS Makarova (2007_CR79) 2015; 13 J van Duin (2007_CR18) 1981; 118 ZA Jaafar (2007_CR37) 2019; 17 Y Yuan (2007_CR1) 2017; 8 AE Devoto (2007_CR9) 2019; 4 K Katoh (2007_CR73) 2013; 30 A-E Stachler (2007_CR28) 2016; 291 RD Finn (2007_CR55) 2014; 42 MA Peabody (2007_CR66) 2016; 44 SF Altschul (2007_CR83) 1990; 215 Y Peng (2007_CR44) 2012; 28 CT Brown (2007_CR53) 2016; 34 AB Loveland (2007_CR40) 2018; 137 M Hauser (2007_CR60) 2016; 32 A Nakabachi (2007_CR12) 2006; 314 A Stamatakis (2007_CR85) 2014; 30 B Langmead (2007_CR52) 2012; 9 SD Mendoza (2007_CR35) 2020; 577 D Paez-Espino (2007_CR14) 2016; 536 E Karsenti (2007_CR42) 2011; 9 JB Emerson (2007_CR4) 2018; 3 LB Harrington (2007_CR25) 2018; 362 MR Olm (2007_CR75) 2017; 11 A Pawluk (2007_CR32) 2016; 1 JR Lobry (2007_CR13) 1996; 13 EF Pettersen (2007_CR41) 2004; 25 S Roux (2007_CR43) 2016; 537 2007_CR51 M Steinegger (2007_CR70) 2019; 20 D Paez-Espino (2007_CR15) 2017; 45 L Gogokhia (2007_CR36) 2019; 25 CJ Castelle (2007_CR10) 2018; 16 ML Luo (2007_CR27) 2015; 43 S Shmakov (2007_CR24) 2017; 15 J Bondy-Denomy (2007_CR31) 2015; 526 BE Dutilh (2007_CR68) 2011; 27 |
References_xml | – volume: 3 start-page: 754 year: 2018 end-page: 766 ident: CR2 article-title: Phage puppet masters of the marine microbial realm publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0166-y – volume: 43 start-page: 674 year: 2015 end-page: 681 ident: CR27 article-title: Repurposing endogenous type I CRISPR–Cas systems for programmable gene repression publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku971 – volume: 17 year: 2016 ident: CR77 article-title: CRISPRDetect: a flexible algorithm to define CRISPR arrays publication-title: BMC Genomics doi: 10.1186/s12864-016-2627-0 – volume: 363 start-page: 88 year: 2019 end-page: 91 ident: CR23 article-title: Functionally diverse type V CRISPR–Cas systems publication-title: Science doi: 10.1126/science.aav7271 – volume: 118 start-page: 615 year: 1981 end-page: 619 ident: CR18 article-title: The function of ribosomal protein S21 in protein synthesis publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1981.tb05563.x – volume: 14 start-page: 1394 year: 2004 end-page: 1403 ident: CR76 article-title: Mauve: multiple alignment of conserved genomic sequence with rearrangements publication-title: Genome Res. doi: 10.1101/gr.2289704 – volume: 60 start-page: 385 year: 2015 end-page: 397 ident: CR80 article-title: Discovery and functional characterization of diverse class 2 CRISPR–Cas systems publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.10.008 – volume: 5 start-page: e3243 year: 2017 ident: CR50 article-title: vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect and publication-title: PeerJ doi: 10.7717/peerj.3243 – volume: 26 start-page: 680 year: 2010 end-page: 682 ident: CR72 article-title: CD-HIT suite: a web server for clustering and comparing biological sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq003 – volume: 25 start-page: 955 year: 1997 end-page: 964 ident: CR58 article-title: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.5.955 – volume: 16 start-page: 397 year: 1995 end-page: 404 ident: CR30 article-title: The role of anti-sigma factors in gene regulation publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1995.tb02405.x – ident: CR51 – volume: 45 start-page: D457 year: 2017 end-page: D465 ident: CR15 article-title: IMG/VR: a database of cultured and uncultured DNA viruses and retroviruses publication-title: Nucleic Acids Res. – volume: 36 start-page: W197 year: 2008 end-page: W201 ident: CR71 article-title: The Jpred 3 secondary structure prediction server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn238 – volume: 12 start-page: 59 year: 2015 end-page: 60 ident: CR84 article-title: Fast and sensitive protein alignment using DIAMOND publication-title: Nat. Methods doi: 10.1038/nmeth.3176 – volume: 95 start-page: 6854 year: 1998 end-page: 6859 ident: CR38 article-title: The universal ancestor publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.12.6854 – volume: 32 start-page: 345 year: 2016 end-page: 353 ident: CR64 article-title: A multi-objective optimization approach accurately resolves protein domain architectures publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv582 – volume: 30 start-page: 1575 year: 2002 end-page: 1584 ident: CR62 article-title: An efficient algorithm for large-scale detection of protein families publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.7.1575 – volume: 70 start-page: 125 year: 2016 end-page: 141 ident: CR3 article-title: Metagenomics and the human virome in asymptomatic individuals publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-102215-095431 – volume: 34 start-page: 1256 year: 2016 end-page: 1263 ident: CR53 article-title: Measurement of bacterial replication rates in microbial communities publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3704 – volume: 13 start-page: 722 year: 2015 end-page: 736 ident: CR79 article-title: An updated evolutionary classification of CRISPR–Cas systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3569 – volume: 86 start-page: 151 year: 2012 end-page: 191 ident: CR22 article-title: The tmRNA ribosome-rescue system publication-title: Adv. Protein Chem. Struct. Biol. doi: 10.1016/B978-0-12-386497-0.00005-0 – volume: 537 start-page: 689 year: 2016 end-page: 693 ident: CR43 article-title: Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses publication-title: Nature doi: 10.1038/nature19366 – volume: 9 start-page: 856 year: 2018 ident: CR7 article-title: Detection of bacteriophage particles containing antibiotic resistance genes in the sputum of cystic fibrosis patients publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00856 – volume: 12 year: 2017 ident: CR29 article-title: On the global CRISPR array behavior in class I systems publication-title: Biol. Direct doi: 10.1186/s13062-017-0193-2 – volume: 9 start-page: e1001177 year: 2011 ident: CR42 article-title: A holistic approach to marine eco-systems biology publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001177 – volume: 17 start-page: 110 year: 2019 end-page: 123 ident: CR37 article-title: Viral RNA structure-based strategies to manipulate translation publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0117-x – volume: 44 start-page: D457 year: 2016 end-page: D462 ident: CR63 article-title: KEGG as a reference resource for gene and protein annotation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1070 – volume: 45 start-page: D491 year: 2017 end-page: D498 ident: CR57 article-title: Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw975 – volume: 32 start-page: 1323 year: 2016 end-page: 1330 ident: CR60 article-title: MMseqs software suite for fast and deep clustering and searching of large protein sequence sets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw006 – volume: 41 start-page: D387 year: 2013 end-page: D395 ident: CR56 article-title: TIGRFAMs and genome properties in 2013 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1234 – volume: 314 start-page: 267 year: 2006 ident: CR12 article-title: The 160-kilobase genome of the bacterial endosymbiont publication-title: Science doi: 10.1126/science.1134196 – volume: 344 start-page: 909 year: 2014 end-page: 913 ident: CR16 article-title: Stop codon reassignments in the wild publication-title: Science doi: 10.1126/science.1250691 – volume: 9 start-page: 173 year: 2012 end-page: 175 ident: CR61 article-title: HHblits: lightning-fast iterative protein sequence searching by HMM–HMM alignment publication-title: Nat. Methods doi: 10.1038/nmeth.1818 – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: CR52 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 44 start-page: D663 year: 2016 end-page: D668 ident: CR66 article-title: PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1271 – volume: 362 start-page: 839 year: 2018 end-page: 842 ident: CR25 article-title: Programmed DNA destruction by miniature CRISPR–Cas14 enzymes publication-title: Science doi: 10.1126/science.aav4294 – volume: 314 start-page: 312 year: 2006 end-page: 313 ident: CR11 article-title: A small microbial genome: the end of a long symbiotic relationship? publication-title: Science doi: 10.1126/science.1130441 – volume: 8 start-page: 1452 year: 2014 end-page: 1463 ident: CR54 article-title: Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer publication-title: ISME J. doi: 10.1038/ismej.2013.249 – volume: 27 start-page: 1929 year: 2011 end-page: 1933 ident: CR68 article-title: FACIL: fast and accurate genetic code inference and logo publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr316 – volume: 42 start-page: D222 year: 2014 end-page: D230 ident: CR55 article-title: Pfam: the protein families database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1223 – volume: 11 start-page: 2864 year: 2017 end-page: 2868 ident: CR75 article-title: dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication publication-title: ISME J. doi: 10.1038/ismej.2017.126 – volume: 32 start-page: 268 year: 2015 end-page: 274 ident: CR74 article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu300 – volume: 13 start-page: 660 year: 1996 end-page: 665 ident: CR13 article-title: Asymmetric substitution patterns in the two DNA strands of bacteria publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a025626 – volume: 25 start-page: 285 year: 2019 end-page: 299 ident: CR36 article-title: Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.01.008 – volume: 305 start-page: 567 year: 2001 end-page: 580 ident: CR67 article-title: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.4315 – volume: 25 start-page: 195 year: 2019 end-page: 209 ident: CR8 article-title: Bacteriophages of the human gut: the “known unknown” of the microbiome publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.01.017 – volume: 6 start-page: 3375 year: 1992 end-page: 3383 ident: CR19 article-title: The effect of ribosomal protein S1 from and on protein synthesis in vitro by and publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1992.tb02205.x – volume: 494 start-page: 489 year: 2013 end-page: 491 ident: CR26 article-title: A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity publication-title: Nature doi: 10.1038/nature11927 – volume: 30 start-page: 772 year: 2013 end-page: 780 ident: CR73 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 20 start-page: 473 year: 2019 ident: CR70 article-title: HH-suite3 for fast remote homology detection and deep protein annotation publication-title: Bioinformatics – volume: 20 start-page: 1563 year: 2017 end-page: 1571 ident: CR34 article-title: The phage nucleus and tubulin spindle are conserved among large phages publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.07.064 – volume: 27 start-page: 824 year: 2017 end-page: 834 ident: CR45 article-title: A. metaSPAdes: a new versatile metagenomic assembler publication-title: Genome Res. doi: 10.1101/gr.213959.116 – ident: CR47 – volume: 27 start-page: 4636 year: 1999 end-page: 4641 ident: CR69 article-title: Improved microbial gene identification with GLIMMER publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.23.4636 – volume: 65 start-page: 618 year: 2017 end-page: 630 ident: CR82 article-title: Cas13b is a Type VI-B CRISPR-associated RNA-guided RNAse differentially regulated by accessory proteins Csx27 and Csx28 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.12.023 – volume: 3 start-page: 870 year: 2018 end-page: 880 ident: CR4 article-title: Host-linked soil viral ecology along a permafrost thaw gradient publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0190-y – volume: 355 start-page: 194 year: 2017 end-page: 197 ident: CR33 article-title: Assembly of a nucleus-like structure during viral replication in bacteria publication-title: Science doi: 10.1126/science.aal2130 – volume: 28 start-page: 101 year: 1983 end-page: 142 ident: CR39 article-title: Structure and functions of ribosomal protein S1 publication-title: Prog. Nucleic Acid Res. Mol. Biol. doi: 10.1016/S0079-6603(08)60085-9 – volume: 27 start-page: 431 year: 2011 end-page: 432 ident: CR86 article-title: Cytoscape 2.8: new features for data integration and network visualization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq675 – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: CR41 article-title: UCSF Chimera—a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 1 start-page: 16085 year: 2016 ident: CR32 article-title: Inactivation of CRISPR–Cas systems by anti-CRISPR proteins in diverse bacterial species publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.85 – volume: 10 year: 2019 ident: CR17 article-title: Numerous cultivated and uncultivated viruses encode ribosomal proteins publication-title: Nat. Commun. doi: 10.1038/s41467-019-08672-6 – volume: 7 start-page: 1150 year: 2013 end-page: 1160 ident: CR21 article-title: Structure and function of a cyanophage-encoded peptide deformylase publication-title: ISME J. doi: 10.1038/ismej.2013.4 – volume: 10 start-page: e1004219 year: 2014 ident: CR5 article-title: Bacteriophages as vehicles for antibiotic resistance genes in the environment publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004219 – volume: 23 start-page: 171 year: 2015 end-page: 178 ident: CR6 article-title: Bacteriophage-mediated spread of bacterial virulence genes publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2014.11.019 – volume: 8 start-page: 785 year: 2011 end-page: 786 ident: CR65 article-title: SignalP 4.0: discriminating signal peptides from transmembrane regions publication-title: Nat. Methods doi: 10.1038/nmeth.1701 – volume: 28 start-page: 1420 year: 2012 end-page: 1428 ident: CR44 article-title: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts174 – volume: 16 start-page: 629 year: 2018 end-page: 645 ident: CR10 article-title: Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0076-2 – volume: 542 start-page: 237 year: 2017 end-page: 241 ident: CR78 article-title: New CRISPR–Cas systems from uncultivated microbes publication-title: Nature doi: 10.1038/nature21059 – volume: 70 start-page: 327 year: 2018 end-page: 339 ident: CR81 article-title: Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.02.028 – ident: CR48 – volume: 8 start-page: 403 year: 2017 ident: CR1 article-title: Jumbo bacteriophages: an overview publication-title: Front. Microbiol. – volume: 32 start-page: 11 year: 2004 end-page: 16 ident: CR59 article-title: ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh152 – volume: 280 start-page: 561 year: 1998 end-page: 569 ident: CR20 article-title: Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in in vivo publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.1909 – volume: 15 start-page: 169 year: 2017 end-page: 182 ident: CR24 article-title: Diversity and evolution of class 2 CRISPR–Cas systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.184 – volume: 4 start-page: e05477 year: 2015 ident: CR49 article-title: Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development publication-title: eLife doi: 10.7554/eLife.05477 – volume: 536 start-page: 425 year: 2016 end-page: 430 ident: CR14 article-title: Uncovering Earth’s virome publication-title: Nature doi: 10.1038/nature19094 – volume: 4 start-page: 693 year: 2019 end-page: 700 ident: CR9 article-title: Megaphages infect and variants are widespread in gut microbiomes publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0338-9 – volume: 215 start-page: 403 year: 1990 end-page: 410 ident: CR83 article-title: Basic local alignment search tool publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80360-2 – volume: 291 start-page: 15226 year: 2016 end-page: 15242 ident: CR28 article-title: Gene repression in Haloarchaea using the CRISPR (clustered regularly interspaced short palindromic repeats)–Cas I-B system publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.724062 – volume: 577 start-page: 244 year: 2020 end-page: 248 ident: CR35 article-title: A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases publication-title: Nature doi: 10.1038/s41586-019-1786-y – volume: 26 start-page: 2460 year: 2010 end-page: 2461 ident: CR46 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 30 start-page: 1312 year: 2014 end-page: 1313 ident: CR85 article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 526 start-page: 136 year: 2015 end-page: 139 ident: CR31 article-title: Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins publication-title: Nature doi: 10.1038/nature15254 – volume: 137 start-page: 55 year: 2018 end-page: 66 ident: CR40 article-title: Structural dynamics of protein S1 on the 70S ribosome visualized by ensemble cryo-EM publication-title: Methods doi: 10.1016/j.ymeth.2017.12.004 – volume: 70 start-page: 125 year: 2016 ident: 2007_CR3 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-102215-095431 – ident: 2007_CR51 – volume: 25 start-page: 195 year: 2019 ident: 2007_CR8 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.01.017 – volume: 314 start-page: 312 year: 2006 ident: 2007_CR11 publication-title: Science doi: 10.1126/science.1130441 – volume: 95 start-page: 6854 year: 1998 ident: 2007_CR38 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.12.6854 – volume: 30 start-page: 1312 year: 2014 ident: 2007_CR85 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 12 year: 2017 ident: 2007_CR29 publication-title: Biol. Direct doi: 10.1186/s13062-017-0193-2 – volume: 137 start-page: 55 year: 2018 ident: 2007_CR40 publication-title: Methods doi: 10.1016/j.ymeth.2017.12.004 – volume: 23 start-page: 171 year: 2015 ident: 2007_CR6 publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2014.11.019 – volume: 537 start-page: 689 year: 2016 ident: 2007_CR43 publication-title: Nature doi: 10.1038/nature19366 – volume: 3 start-page: 870 year: 2018 ident: 2007_CR4 publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0190-y – volume: 30 start-page: 772 year: 2013 ident: 2007_CR73 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 17 start-page: 110 year: 2019 ident: 2007_CR37 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0117-x – volume: 4 start-page: e05477 year: 2015 ident: 2007_CR49 publication-title: eLife doi: 10.7554/eLife.05477 – volume: 42 start-page: D222 year: 2014 ident: 2007_CR55 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1223 – volume: 20 start-page: 473 year: 2019 ident: 2007_CR70 publication-title: Bioinformatics – volume: 6 start-page: 3375 year: 1992 ident: 2007_CR19 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1992.tb02205.x – volume: 43 start-page: 674 year: 2015 ident: 2007_CR27 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku971 – volume: 1 start-page: 16085 year: 2016 ident: 2007_CR32 publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.85 – volume: 32 start-page: 1323 year: 2016 ident: 2007_CR60 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw006 – volume: 363 start-page: 88 year: 2019 ident: 2007_CR23 publication-title: Science doi: 10.1126/science.aav7271 – volume: 26 start-page: 2460 year: 2010 ident: 2007_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 36 start-page: W197 year: 2008 ident: 2007_CR71 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn238 – volume: 344 start-page: 909 year: 2014 ident: 2007_CR16 publication-title: Science doi: 10.1126/science.1250691 – volume: 65 start-page: 618 year: 2017 ident: 2007_CR82 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.12.023 – volume: 355 start-page: 194 year: 2017 ident: 2007_CR33 publication-title: Science doi: 10.1126/science.aal2130 – volume: 45 start-page: D457 year: 2017 ident: 2007_CR15 publication-title: Nucleic Acids Res. – volume: 25 start-page: 285 year: 2019 ident: 2007_CR36 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.01.008 – volume: 28 start-page: 101 year: 1983 ident: 2007_CR39 publication-title: Prog. Nucleic Acid Res. Mol. Biol. doi: 10.1016/S0079-6603(08)60085-9 – volume: 494 start-page: 489 year: 2013 ident: 2007_CR26 publication-title: Nature doi: 10.1038/nature11927 – volume: 9 start-page: e1001177 year: 2011 ident: 2007_CR42 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001177 – volume: 32 start-page: 11 year: 2004 ident: 2007_CR59 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh152 – volume: 27 start-page: 431 year: 2011 ident: 2007_CR86 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq675 – volume: 12 start-page: 59 year: 2015 ident: 2007_CR84 publication-title: Nat. Methods doi: 10.1038/nmeth.3176 – volume: 44 start-page: D457 year: 2016 ident: 2007_CR63 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1070 – ident: 2007_CR48 – volume: 60 start-page: 385 year: 2015 ident: 2007_CR80 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.10.008 – volume: 118 start-page: 615 year: 1981 ident: 2007_CR18 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1981.tb05563.x – volume: 9 start-page: 856 year: 2018 ident: 2007_CR7 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00856 – volume: 314 start-page: 267 year: 2006 ident: 2007_CR12 publication-title: Science doi: 10.1126/science.1134196 – volume: 28 start-page: 1420 year: 2012 ident: 2007_CR44 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts174 – volume: 70 start-page: 327 year: 2018 ident: 2007_CR81 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.02.028 – volume: 32 start-page: 268 year: 2015 ident: 2007_CR74 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu300 – volume: 11 start-page: 2864 year: 2017 ident: 2007_CR75 publication-title: ISME J. doi: 10.1038/ismej.2017.126 – volume: 536 start-page: 425 year: 2016 ident: 2007_CR14 publication-title: Nature doi: 10.1038/nature19094 – volume: 9 start-page: 357 year: 2012 ident: 2007_CR52 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 45 start-page: D491 year: 2017 ident: 2007_CR57 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw975 – volume: 13 start-page: 722 year: 2015 ident: 2007_CR79 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3569 – volume: 3 start-page: 754 year: 2018 ident: 2007_CR2 publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0166-y – volume: 8 start-page: 785 year: 2011 ident: 2007_CR65 publication-title: Nat. Methods doi: 10.1038/nmeth.1701 – volume: 15 start-page: 169 year: 2017 ident: 2007_CR24 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.184 – volume: 27 start-page: 4636 year: 1999 ident: 2007_CR69 publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.23.4636 – volume: 17 year: 2016 ident: 2007_CR77 publication-title: BMC Genomics doi: 10.1186/s12864-016-2627-0 – volume: 542 start-page: 237 year: 2017 ident: 2007_CR78 publication-title: Nature doi: 10.1038/nature21059 – ident: 2007_CR47 – volume: 215 start-page: 403 year: 1990 ident: 2007_CR83 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80360-2 – volume: 30 start-page: 1575 year: 2002 ident: 2007_CR62 publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.7.1575 – volume: 32 start-page: 345 year: 2016 ident: 2007_CR64 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv582 – volume: 7 start-page: 1150 year: 2013 ident: 2007_CR21 publication-title: ISME J. doi: 10.1038/ismej.2013.4 – volume: 10 year: 2019 ident: 2007_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08672-6 – volume: 8 start-page: 1452 year: 2014 ident: 2007_CR54 publication-title: ISME J. doi: 10.1038/ismej.2013.249 – volume: 16 start-page: 397 year: 1995 ident: 2007_CR30 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1995.tb02405.x – volume: 27 start-page: 824 year: 2017 ident: 2007_CR45 publication-title: Genome Res. doi: 10.1101/gr.213959.116 – volume: 13 start-page: 660 year: 1996 ident: 2007_CR13 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a025626 – volume: 526 start-page: 136 year: 2015 ident: 2007_CR31 publication-title: Nature doi: 10.1038/nature15254 – volume: 8 start-page: 403 year: 2017 ident: 2007_CR1 publication-title: Front. Microbiol. – volume: 4 start-page: 693 year: 2019 ident: 2007_CR9 publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0338-9 – volume: 86 start-page: 151 year: 2012 ident: 2007_CR22 publication-title: Adv. Protein Chem. Struct. Biol. doi: 10.1016/B978-0-12-386497-0.00005-0 – volume: 280 start-page: 561 year: 1998 ident: 2007_CR20 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.1909 – volume: 26 start-page: 680 year: 2010 ident: 2007_CR72 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq003 – volume: 362 start-page: 839 year: 2018 ident: 2007_CR25 publication-title: Science doi: 10.1126/science.aav4294 – volume: 16 start-page: 629 year: 2018 ident: 2007_CR10 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0076-2 – volume: 305 start-page: 567 year: 2001 ident: 2007_CR67 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.4315 – volume: 25 start-page: 955 year: 1997 ident: 2007_CR58 publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.5.955 – volume: 291 start-page: 15226 year: 2016 ident: 2007_CR28 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.724062 – volume: 20 start-page: 1563 year: 2017 ident: 2007_CR34 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.07.064 – volume: 5 start-page: e3243 year: 2017 ident: 2007_CR50 publication-title: PeerJ doi: 10.7717/peerj.3243 – volume: 25 start-page: 1605 year: 2004 ident: 2007_CR41 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 34 start-page: 1256 year: 2016 ident: 2007_CR53 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3704 – volume: 44 start-page: D663 year: 2016 ident: 2007_CR66 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1271 – volume: 14 start-page: 1394 year: 2004 ident: 2007_CR76 publication-title: Genome Res. doi: 10.1101/gr.2289704 – volume: 27 start-page: 1929 year: 2011 ident: 2007_CR68 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr316 – volume: 41 start-page: D387 year: 2013 ident: 2007_CR56 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1234 – volume: 10 start-page: e1004219 year: 2014 ident: 2007_CR5 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004219 – volume: 577 start-page: 244 year: 2020 ident: 2007_CR35 publication-title: Nature doi: 10.1038/s41586-019-1786-y – volume: 9 start-page: 173 year: 2012 ident: 2007_CR61 publication-title: Nat. Methods doi: 10.1038/nmeth.1818 |
SSID | ssj0005174 |
Score | 2.6819658 |
Snippet | Bacteriophages typically have small genomes
1
and depend on their bacterial hosts for replication
2
. Here we sequenced DNA from diverse ecosystems and found... Bacteriophages typically have small genomes and depend on their bacterial hosts for replication . Here we sequenced DNA from diverse ecosystems and found... Bacteriophages typically have small genomes.sup.1 and depend on their bacterial hosts for replication.sup.2. Here we sequenced DNA from diverse ecosystems and... Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found... Bacteriophages typically have small genomes and depend on their bacterial hosts for replication. Here we sequenced DNA from diverse ecosystems and found... |
SourceID | pubmedcentral osti proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 425 |
SubjectTerms | 45 45/23 631/326/1321 631/326/171 631/326/2565/2142 Amino Acyl-tRNA Synthetases - genetics Analysis Animals Bacteria Bacteria - genetics Bacteria - virology Bacteriophages Bacteriophages - classification Bacteriophages - genetics Bacteriophages - isolation & purification Bacteriophages - metabolism BASIC BIOLOGICAL SCIENCES Biodiversity Biosynthesis Built environment CRISPR CRISPR-Cas Systems - genetics Deoxyribonucleic acid DNA Earth, Planet Ecosystem Ecosystems Elongation Evolution, Molecular Gene Expression Regulation, Bacterial Gene Expression Regulation, Viral Genes Genetic aspects Genetic diversity Genome, Viral - genetics Genomes Host range Host Specificity Humanities and Social Sciences Humans Lake sediments Lakes Lakes - virology Microbiomes Molecular Sequence Annotation multidisciplinary Natural history Nucleotide sequence Oceans Oceans and Seas Phages Phylogeny Plasmids Prophages - genetics Protein Biosynthesis Proteins Ribosomal proteins Ribosomal Proteins - genetics RNA, Transfer - genetics Science Science (multidisciplinary) Seawater - virology Sediments Soil Microbiology Taxonomy Transcription factors Transcription, Genetic Translation Translation elongation Translation initiation tRNA tRNA Ala Urban environments |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKIiQuiJZXaEEBVbyqiCR-H1dRq4JED9CK3qzYcXYrVclCdu_8Df4ev4SZPLakXZC4xl8c73jGnlmPvyFkH6ZZOOlElGtGI8YtmJRlcaSVU6VS3IsCLwp_OhHHZ-zjOT_fIslwF6ZN2m8pLdtlesgOe9_ARqMwXTbu_l1jt8htZG7HeCsT2VVWxzXi5eEgk6qbXYy2on5BntRgWZu8zZtJk9dOTtsN6eg-udd7kuG0G_s22fLVDrnTZnS6Zods91bbhG96aum3D4jILvMCHtVlOF_NfLiYw3LShHjHJMzbUYaHIIz5rx8_mxAC047nuXlIzo4OT7PjqK-cEDkp-DKyWkjPWGGZZ2lsS0VLzX0pnBC5SzVs0ZJbX7Cco_vDOR6uSW8d1ZzmRcrpIzKp6so_IaHUkktwgkRRSlaUuVW2dF4muvAFd4kKSDwI0bieVhyrW1ya9nibKtPJ3YDcsealNCwg79avLDpOjX-B93FmDHJVVJgMM8tXTWOmp1-zEzMVGL9qncYBebkJ9uHL5xHodQ8qaxijy_srCPBLkQVrhNwdId3i4pv5o_XVqHXWTeOmbvZGQDBdN_4KqpsBZwcZex2mNrmlSQQ4cUkKLw9aaPqFpTEpFRpCchqDYF6sm7FfTJarfL1CDBaUhsCWBuRxp7RrOdMUi_po6FyO1HkNQLrxcUt1MW9px5FrTKVJQA4Gxb8a1l-n7-l_oXfJ3RTtEykD4j0yWX5f-Wfg9C3t89bMfwN7bUqv priority: 102 providerName: Springer Nature |
Title | Clades of huge phages from across Earth’s ecosystems |
URI | https://link.springer.com/article/10.1038/s41586-020-2007-4 https://www.ncbi.nlm.nih.gov/pubmed/32051592 https://www.proquest.com/docview/2369409304 https://www.proquest.com/docview/2354736253 https://www.osti.gov/servlets/purl/1609112 https://pubmed.ncbi.nlm.nih.gov/PMC7162821 |
Volume | 578 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdYJyReEBtfYaMKaGLAFC0f_nxCpWoZSFRobGJvVuI47aQp6Uj7_3OXuC0ZZS-VWl9cx77z3fnOvyPkCJaZG2F4kCqaBJRlIFIZDQMljSykZJbneFH4-4SfXdJvV-zKHbjVLq1ytSc2G3VeGTwjP40TrsAXAe_70_w2wKpRGF11JTR2yG4EmgZTuuT4yybF4w4K8yqqmcjTGhSXxPTbsD2tox295HbnXgVits30_DeD8k4YtdFO4yfksTMr_UHLB3vkgS33ycMmvdPU-2TPiXDtv3c40x-eEjq8SXP4qSr82XJq_fkM9pbaxwsnftqM0h8BY82Oax981BbyuX5GLseji-FZ4IooBEZwtggyxYWlNM-opXGYFTIpFLMFN5ynJlagrQXLbE5ThpYQYxhnEzYziWJJmscseU56ZVXal8QXSjAB9hDPC0HzIs1kVhgrIpXbnJlIeiRcTaE2DmEcC13c6CbSnUjdzrqGWcfyl0JTj3xcPzJv4TXuIz7CddEIW1FiXsw0Xda1Hlz8Gk70gKMrq1QceuTtNrKvP887RMeOqKhgjCZ1txHgTREQq0N50KE08-tb_Vfru07rtF3Ebd0cdghBik33X5DZNNg9CN5rMMvJLHTEwZ6LYnh4xYPa7TG13kiER96sm7FfzJsrbbVEGqwtDT5u4pEXLcuu5zmJsb6Pgs5Fh5nXBIg83m0pr2cNAjnCjsk48sjJiu03w_rv8r26_yUOyKMYxRHhAsJD0lv8XtrXYPAtsj7ZEVcCPuUw6jcS3ie7n0eTH-fwbciHfwBRX0-w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5VQQheEC2XaQGDCuWQVR97eB8QikJDQts8QCr6ttjrdVKpslOcCPGn-I3M-EhwCX3ra3a8We_MzuGd-YaQXWAz10JzJ5I0cCiL4UjF1HVkqMM0DJnhCRYKH4_44IR-PmWnG-R3UwuDaZWNTiwVdZJr_Ea-7wdcQiwC0feH2YWDXaPwdrVpoVGJxaH59RNCtuL98CPw96Xv9w_GvYFTdxVwtOBs7sSSC0NpElNDfTdOwyCVzKRccx5pX4L5Eiw2CY0YugaM4cWTMLEOJAuixMcuEaDyb9AALDlWpvc_rVJKLqE-N7eoQbhfgKEMMd3Xrb4O0pYdrK1BJ4djvc7V_Tdj89K1bWkN-3fJndqNtbuV3G2SDZNtkZtlOqkutshmrTIK-3WNa_3mHqG98yiBn_LUni4mxp5NQZcVNha42FG5SvsABHm6V9gQE1cQ08V9cnIt2_uAdLI8M4-ILaRgAvwvnqSCJmkUh3GqjfBkYhKmvdAibrOFSteI5thY41yVN-tBqKpdV7Dr2G5TKGqRt8tHZhWcx1XEu8gXhTAZGebhTKJFUaju-FtvpLocQ2cpfdciL9aRDb9-aRHt1URpDmvUUV39AG-KAFwtyu0WpZ6dXai_Rl-1RicVE9dNs9MiBK2h2_-CwqbAz0KwYI1ZVXquPA7-o-fDw40MqlqnFWp1Ai3yfDmM82KeXmbyBdJgL2uIqQOLPKxEdrnPgY_9hCRMLlrCvCRApPP2SHY2LRHPEeYs9D2LvGvEfrWs_7Lv8dUv8YzcGoyPj9TRcHS4TW77eDQRqsDdIZ35j4V5As7mPH5annCbfL9ulfIHJoaHnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5VQSBeEC2XaQGDCuWQFcfe8wGhKG3UUIgQtKJvi71eJ5UqO8WJEH-NX8eMj7QuoW99zY43653bO_sNIdvAZm6E4V6kaOhRFoNKxdT3lDQylZJZnuBF4c9jvn9EPx6z4zXyp7kLg2WVjU0sDXWSG_xG3g1CriAXgey7m9ZlEV92hx9mZx52kMKT1qadRiUiB_b3L0jfivejXeD1yyAY7h0O9r26w4BnBGdzL1ZcWEqTmFoa-HEqw1Qxm3LDeWQCBa5MsNgmNGIYJjCGh1DCxiZULIySADtGgPm_IUIhUcfk4EJ5ySUE6OZENZTdApymxNJfv_pSSFs-sfYMnRxUfFXY-2_15qUj3NIzDu-SO3VI6_YrGVwnazbbIDfL0lJTbJD12nwU7usa4_rNPUIHp1ECP-WpO11MrDubgl0rXLzs4kblKt09EOrpTuFCflzBTRf3ydG1bO8D0snyzD4irlCCCYjFeJIKmqRRLOPUWNFTiU2Y6UmH-M0WalOjm2OTjVNdnrKHUle7rmHXsfWm0NQhb5ePzCpoj6uIt5EvGiEzMhS-SbQoCt0__D4Y6z7HNFqpwHfIi1Vko29fW0Q7NVGawxpNVN-EgDdFMK4W5WaL0sxOzvSF0Vet0UnFxFXTbLUIwYKY9r-gsGmIuRA42GCFlZnrHodYshfAw40M6tq-FfpcGx3yfDmM82LNXmbzBdJgX2vIr0OHPKxEdrnPYYC9hRRMLlrCvCRA1PP2SHYyLdHPEfJMBj2HvGvE_nxZ_2Xf46tf4hm5BcZEfxqNDzbJ7QA1E1EL_C3Smf9c2CcQd87jp6WCu-THdVuUv4y0i6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clades+of+huge+phages+from+across+Earth%E2%80%99s+ecosystems&rft.jtitle=Nature+%28London%29&rft.au=Al-Shayeb%2C+Basem&rft.au=Sachdeva%2C+Rohan&rft.au=Chen%2C+Lin-Xing&rft.au=Ward%2C+Fred&rft.date=2020-02-20&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=578&rft.issue=7795&rft.spage=425&rft.epage=431&rft_id=info:doi/10.1038%2Fs41586-020-2007-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_020_2007_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |