Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies

HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeti...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 9; no. 2; p. e1003174
Main Authors Eriksson, Susanne, Graf, Erin H., Dahl, Viktor, Strain, Matthew C., Yukl, Steven A., Lysenko, Elena S., Bosch, Ronald J., Lai, Jun, Chioma, Stanley, Emad, Fatemeh, Abdel-Mohsen, Mohamed, Hoh, Rebecca, Hecht, Frederick, Hunt, Peter, Somsouk, Ma, Wong, Joseph, Johnston, Rowena, Siliciano, Robert F., Richman, Douglas D., O'Doherty, Una, Palmer, Sarah, Deeks, Steven G., Siliciano, Janet D.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+) T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+) T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.
AbstractList HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4 + T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4 + T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4 + T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research. Efforts to cure HIV-1 infection have focused on a small pool of CD4 + T cells that carry viral genetic information in a latent form. These cells persist even in patients on optimal antiretroviral therapy. Novel therapeutic strategies targeting latently infected cells are being developed, and therefore practical assays for measuring latently infected cells are urgently needed. These cells were discovered using a virus culture assay in which the cells are induced to release virus particles that are then expanded in culture. This assay is difficult, time-consuming, and expensive. Here we evaluate alternative approaches for measuring persistent HIV-1, all of which rely on the detection of viral genetic information using the polymerase chain reaction (PCR). None of the PCR-based assays correlated precisely with the virus culture assay. The fundamental problem is that infected cell frequencies determined by PCR are at least 2 logs higher than frequencies determined by the culture assay. Much of this difference may be due to cells carrying defective forms of the virus. These cells may not be eliminated by strategies designed to target latently infected cells. In this situation, successful clearance of latently infected cells might be masked by a large unchanging pool of cells carrying defective HIV-1.
HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+) T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+) T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.
HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+) T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+) T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+) T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+) T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.
HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory [CD4.sup.+] T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting [CD4.sup.+] T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal [CD4.sup.+] T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR- based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.
  HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4+ T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4+ T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4+ T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.
Audience Academic
Author Siliciano, Janet D.
Yukl, Steven A.
Johnston, Rowena
Emad, Fatemeh
Lai, Jun
Deeks, Steven G.
Graf, Erin H.
Wong, Joseph
Bosch, Ronald J.
Lysenko, Elena S.
Abdel-Mohsen, Mohamed
Palmer, Sarah
Strain, Matthew C.
Somsouk, Ma
Siliciano, Robert F.
Hunt, Peter
Dahl, Viktor
Chioma, Stanley
Richman, Douglas D.
O'Doherty, Una
Eriksson, Susanne
Hoh, Rebecca
Hecht, Frederick
AuthorAffiliation 7 Department of Medicine Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
9 Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
5 Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
3 University of California San Diego, La Jolla, California and Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
4 San Francisco VA Medical Center, San Francisco, California, United States of America
National Institutes of Health, National Institute of Allergy and Infectious Diseases, United States of America
1 Department of Diagnostics and Vaccinology, Swedish Institute for Communicable Diseases and Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
8 amfAR, The Foundation for AIDS Research, New York, New York, United States of America
6 Department of Biostatistics, Harvard School of Public Health, Bos
AuthorAffiliation_xml – name: 8 amfAR, The Foundation for AIDS Research, New York, New York, United States of America
– name: 2 Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
– name: 5 Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
– name: 4 San Francisco VA Medical Center, San Francisco, California, United States of America
– name: 9 Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
– name: National Institutes of Health, National Institute of Allergy and Infectious Diseases, United States of America
– name: 1 Department of Diagnostics and Vaccinology, Swedish Institute for Communicable Diseases and Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
– name: 3 University of California San Diego, La Jolla, California and Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
– name: 6 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
– name: 7 Department of Medicine Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
Author_xml – sequence: 1
  givenname: Susanne
  surname: Eriksson
  fullname: Eriksson, Susanne
– sequence: 2
  givenname: Erin H.
  surname: Graf
  fullname: Graf, Erin H.
– sequence: 3
  givenname: Viktor
  surname: Dahl
  fullname: Dahl, Viktor
– sequence: 4
  givenname: Matthew C.
  surname: Strain
  fullname: Strain, Matthew C.
– sequence: 5
  givenname: Steven A.
  surname: Yukl
  fullname: Yukl, Steven A.
– sequence: 6
  givenname: Elena S.
  surname: Lysenko
  fullname: Lysenko, Elena S.
– sequence: 7
  givenname: Ronald J.
  surname: Bosch
  fullname: Bosch, Ronald J.
– sequence: 8
  givenname: Jun
  surname: Lai
  fullname: Lai, Jun
– sequence: 9
  givenname: Stanley
  surname: Chioma
  fullname: Chioma, Stanley
– sequence: 10
  givenname: Fatemeh
  surname: Emad
  fullname: Emad, Fatemeh
– sequence: 11
  givenname: Mohamed
  surname: Abdel-Mohsen
  fullname: Abdel-Mohsen, Mohamed
– sequence: 12
  givenname: Rebecca
  surname: Hoh
  fullname: Hoh, Rebecca
– sequence: 13
  givenname: Frederick
  surname: Hecht
  fullname: Hecht, Frederick
– sequence: 14
  givenname: Peter
  surname: Hunt
  fullname: Hunt, Peter
– sequence: 15
  givenname: Ma
  surname: Somsouk
  fullname: Somsouk, Ma
– sequence: 16
  givenname: Joseph
  surname: Wong
  fullname: Wong, Joseph
– sequence: 17
  givenname: Rowena
  surname: Johnston
  fullname: Johnston, Rowena
– sequence: 18
  givenname: Robert F.
  surname: Siliciano
  fullname: Siliciano, Robert F.
– sequence: 19
  givenname: Douglas D.
  surname: Richman
  fullname: Richman, Douglas D.
– sequence: 20
  givenname: Una
  surname: O'Doherty
  fullname: O'Doherty, Una
– sequence: 21
  givenname: Sarah
  surname: Palmer
  fullname: Palmer, Sarah
– sequence: 22
  givenname: Steven G.
  surname: Deeks
  fullname: Deeks, Steven G.
– sequence: 23
  givenname: Janet D.
  surname: Siliciano
  fullname: Siliciano, Janet D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23459007$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:126344962$$DView record from Swedish Publication Index
BookMark eNqVk99v0zAQxyM0xH7Af4AgEi_wkGLHduzuAamqBqs0QGywV8uxneKRxsFOCvvvubYpWqYJCfnBp8vn-43vdHecHDS-sUnyHKMJJhy_vfF9aFQ9aVvVTTBCBHP6KDnCjJGME04P7sSHyXGMNwhRTHDxJDnMCWVThPhR8mXuV60KqnNrm87A7za6mPoq_WhV7IPdxtcuqDq9tNGGtXchpq5JzxfXGU7PgjJOg9o36VXXG2fj0-Rxpeponw33SfLt_dnX-Xl28fnDYj67yDQvWJcpkytdFKo0YqoqgUVlFMU5Y0wZrIuS5oorzZjgGiuoQeiyhKymhlkDNzlJXu5829pHOXQjSqiQEkp5LoBY7Ajj1Y1sg1upcCu9cnKb8GEpVeicrq1E08qKaSlQiQk1FIm8EiWilBWc80Lk4JXtvOIv2_blyG1I_YDISkYwwgj4d8Pr-nJljbZNBz0cycZfGvddLv1aEsbBgYPB68Eg-J-9jZ1cuahtXavG-n5Xp5gSVmBAX91DH-7GQC0VFOyaysN_9cZUzkg-FXCKTZ2TByg4xq6chgmsHORHgjcjATCd_d0tVR-jXFxd_gf7acy-uNvAv53bjy4ApztABx9jsJXUrttOIrzY1RIjudmTfS_kZk_ksCcgpvfEe_9_yv4AH74W0w
CitedBy_id crossref_primary_10_1371_journal_ppat_1008264
crossref_primary_10_1039_C7IB00112F
crossref_primary_10_1084_jem_20190896
crossref_primary_10_3389_fimmu_2020_01971
crossref_primary_10_1093_jac_dkx434
crossref_primary_10_1007_s00705_023_05800_y
crossref_primary_10_1155_2017_8239428
crossref_primary_10_1186_s12967_020_02368_y
crossref_primary_10_1016_j_antinf_2015_09_001
crossref_primary_10_1097_QAD_0000000000002465
crossref_primary_10_1097_QAD_0000000000000166
crossref_primary_10_1038_nm_4156
crossref_primary_10_1097_QAI_0000000000001381
crossref_primary_10_1097_QAI_0000000000001263
crossref_primary_10_1097_QAI_0000000000002473
crossref_primary_10_1038_s41467_018_06736_7
crossref_primary_10_1038_nrmicro_2016_162
crossref_primary_10_3389_fcimb_2020_00038
crossref_primary_10_1016_j_ijantimicag_2019_08_001
crossref_primary_10_1016_S2055_6640_20_30056_X
crossref_primary_10_2174_1570162X17666190506155222
crossref_primary_10_1016_j_ymeth_2021_03_006
crossref_primary_10_1007_s11904_021_00569_8
crossref_primary_10_1016_j_cell_2014_07_043
crossref_primary_10_1038_s41598_023_37223_9
crossref_primary_10_1097_QAD_0000000000000178
crossref_primary_10_1007_s11904_017_0355_y
crossref_primary_10_1038_srep22555
crossref_primary_10_1016_j_antiviral_2013_09_017
crossref_primary_10_1172_JCI171554
crossref_primary_10_1097_QAD_0000000000002474
crossref_primary_10_1097_COH_0000000000000685
crossref_primary_10_1373_clinchem_2013_219378
crossref_primary_10_3389_fimmu_2024_1509874
crossref_primary_10_1073_pnas_2210584119
crossref_primary_10_1089_aid_2016_0171
crossref_primary_10_1038_s41598_018_28161_y
crossref_primary_10_1038_s41591_021_01590_5
crossref_primary_10_1016_j_virusres_2017_07_008
crossref_primary_10_1016_j_tim_2017_06_002
crossref_primary_10_1128_JVI_03179_15
crossref_primary_10_1016_j_virol_2017_12_036
crossref_primary_10_3390_v12111279
crossref_primary_10_1016_S2055_6640_20_30460_X
crossref_primary_10_1371_journal_pone_0084275
crossref_primary_10_1136_bmjopen_2015_007986
crossref_primary_10_1038_srep23513
crossref_primary_10_1093_cid_ciaa809
crossref_primary_10_1371_journal_pone_0064219
crossref_primary_10_3390_v12020149
crossref_primary_10_1128_JCM_02060_14
crossref_primary_10_3389_fimmu_2017_01405
crossref_primary_10_2217_fvl_2018_0070
crossref_primary_10_1093_infdis_jiaa568
crossref_primary_10_3390_v11121104
crossref_primary_10_1128_JVI_00279_18
crossref_primary_10_1093_infdis_jiab533
crossref_primary_10_1371_journal_pcbi_1006849
crossref_primary_10_1002_JLB_3HI1217_500R
crossref_primary_10_3389_fimmu_2024_1484358
crossref_primary_10_1038_mt_2016_114
crossref_primary_10_1073_pnas_2120326119
crossref_primary_10_1186_s12981_024_00653_0
crossref_primary_10_1080_14656566_2017_1363180
crossref_primary_10_1128_mBio_02268_18
crossref_primary_10_1126_science_aaf6517
crossref_primary_10_1093_jac_dkw306
crossref_primary_10_1097_QAI_0000000000002560
crossref_primary_10_2174_1570162X1802200311104204
crossref_primary_10_1038_srep13811
crossref_primary_10_1002_cyto_b_21974
crossref_primary_10_3389_fimmu_2024_1478703
crossref_primary_10_1097_QAD_0000000000003352
crossref_primary_10_1128_jvi_01431_24
crossref_primary_10_1371_journal_pone_0110731
crossref_primary_10_1371_journal_ppat_1006285
crossref_primary_10_1128_JVI_01790_18
crossref_primary_10_1371_journal_ppat_1006283
crossref_primary_10_1038_s41598_022_07196_2
crossref_primary_10_1016_j_virol_2018_05_018
crossref_primary_10_1128_JVI_00290_16
crossref_primary_10_1016_j_ebiom_2015_06_019
crossref_primary_10_1038_s41467_019_08431_7
crossref_primary_10_1016_j_jcv_2017_03_018
crossref_primary_10_1016_j_jviromet_2014_02_020
crossref_primary_10_3389_fmicb_2016_01944
crossref_primary_10_1093_infdis_jit628
crossref_primary_10_1038_nm_4108
crossref_primary_10_1128_spectrum_00784_22
crossref_primary_10_1097_QAD_0000000000003001
crossref_primary_10_1071_MA14023
crossref_primary_10_1089_aid_2019_0225
crossref_primary_10_1038_nm_4347
crossref_primary_10_1002_jmv_24874
crossref_primary_10_1128_JVI_00553_16
crossref_primary_10_1016_j_jaci_2014_05_026
crossref_primary_10_1128_JVI_01331_20
crossref_primary_10_1097_MOP_0000000000000304
crossref_primary_10_1186_s12879_020_05675_3
crossref_primary_10_1016_S2055_6640_20_30930_4
crossref_primary_10_1093_cid_ciz251
crossref_primary_10_1016_j_patbio_2014_07_007
crossref_primary_10_1111_jmp_12244
crossref_primary_10_3390_diagnostics12010039
crossref_primary_10_1097_QAD_0000000000002169
crossref_primary_10_1371_journal_ppat_1006026
crossref_primary_10_4049_jimmunol_1600343
crossref_primary_10_1016_j_celrep_2022_111311
crossref_primary_10_1097_COH_0000000000000851
crossref_primary_10_1371_journal_ppat_1004071
crossref_primary_10_3389_fcimb_2020_00134
crossref_primary_10_1128_mBio_01186_17
crossref_primary_10_1016_j_ebiom_2016_08_009
crossref_primary_10_1016_S1473_3099_15_70021_6
crossref_primary_10_1016_j_ebiom_2015_07_036
crossref_primary_10_3390_life11121410
crossref_primary_10_1007_s11904_022_00604_2
crossref_primary_10_1089_apc_2016_0232
crossref_primary_10_1089_aid_2017_0071
crossref_primary_10_1371_journal_ppat_1009871
crossref_primary_10_1038_mi_2017_59
crossref_primary_10_3390_v13091858
crossref_primary_10_1089_aid_2018_0118
crossref_primary_10_1128_JCM_01922_18
crossref_primary_10_3389_fimmu_2019_00233
crossref_primary_10_1093_infdis_jiaa298
crossref_primary_10_1080_14737159_2016_1226805
crossref_primary_10_1186_s12977_021_00561_5
crossref_primary_10_1186_s12977_018_0392_7
crossref_primary_10_1186_s12977_018_0448_8
crossref_primary_10_1016_j_ebiom_2016_07_024
crossref_primary_10_1128_JVI_01308_19
crossref_primary_10_1097_COH_0000000000000282
crossref_primary_10_1186_s12879_017_2683_3
crossref_primary_10_3390_genes6040957
crossref_primary_10_1111_jeb_14244
crossref_primary_10_1016_S2352_3018_20_30100_4
crossref_primary_10_1073_pnas_2006816117
crossref_primary_10_1128_jvi_00705_23
crossref_primary_10_20874_2071_0437_2020_51_4_13
crossref_primary_10_1371_journal_ppat_1006359
crossref_primary_10_2217_fmb_2017_0163
crossref_primary_10_1186_s12879_022_07082_2
crossref_primary_10_1371_journal_pone_0111919
crossref_primary_10_1111_imr_12698
crossref_primary_10_1371_journal_ppat_1010845
crossref_primary_10_1016_j_idc_2014_08_007
crossref_primary_10_1016_j_jtbi_2014_06_025
crossref_primary_10_1007_s11904_018_0376_1
crossref_primary_10_1097_QAD_0000000000002083
crossref_primary_10_1016_j_immuni_2024_11_002
crossref_primary_10_1038_s41591_020_1022_1
crossref_primary_10_1016_j_chom_2020_03_014
crossref_primary_10_3390_v14112395
crossref_primary_10_1128_AAC_01815_20
crossref_primary_10_7554_eLife_04742
crossref_primary_10_1073_pnas_1308313110
crossref_primary_10_1371_journal_pcbi_1003871
crossref_primary_10_1371_journal_pone_0160192
crossref_primary_10_1097_COH_0000000000000136
crossref_primary_10_1128_CMR_00015_16
crossref_primary_10_1016_j_molmed_2015_11_004
crossref_primary_10_1128_JCM_01400_20
crossref_primary_10_1002_cpcb_64
crossref_primary_10_1038_nrd_2016_173
crossref_primary_10_1093_infdis_jiy461
crossref_primary_10_1186_s12977_018_0426_1
crossref_primary_10_3390_v15102119
crossref_primary_10_3389_fmicb_2022_862270
crossref_primary_10_3390_v17030366
crossref_primary_10_1371_journal_ppat_1005247
crossref_primary_10_3390_v16020229
crossref_primary_10_1371_journal_ppat_1005000
crossref_primary_10_1016_j_isci_2023_108015
crossref_primary_10_3390_pathogens12020322
crossref_primary_10_1186_s12977_018_0412_7
crossref_primary_10_1038_nprot_2017_079
crossref_primary_10_1128_JVI_00793_20
crossref_primary_10_1371_journal_pone_0175899
crossref_primary_10_1172_jci_insight_93684
crossref_primary_10_1097_QAI_0000000000002287
crossref_primary_10_3389_fimmu_2017_01698
crossref_primary_10_1371_journal_ppat_1005472
crossref_primary_10_1007_s11904_022_00607_z
crossref_primary_10_1080_14760584_2019_1675518
crossref_primary_10_1097_COH_0000000000000483
crossref_primary_10_1093_ofid_ofy032
crossref_primary_10_1128_JVI_01900_14
crossref_primary_10_1128_cmr_00013_23
crossref_primary_10_1186_s12985_019_1276_8
crossref_primary_10_3389_fmicb_2019_02878
crossref_primary_10_1016_j_ymeth_2017_11_014
crossref_primary_10_7554_eLife_03821
crossref_primary_10_1089_aid_2013_1503
crossref_primary_10_1007_s10096_020_03875_y
crossref_primary_10_1038_s43856_024_00553_4
crossref_primary_10_1172_jci_insight_185480
crossref_primary_10_2217_fvl_15_10
crossref_primary_10_1038_srep43231
crossref_primary_10_1097_QAI_0000000000001187
crossref_primary_10_1097_COH_0000000000000127
crossref_primary_10_1073_pnas_1813512115
crossref_primary_10_1097_QAD_0000000000003088
crossref_primary_10_1097_COH_0000000000000123
crossref_primary_10_1093_cid_ciab143
crossref_primary_10_1089_aid_2016_0004
crossref_primary_10_1093_cid_ciy1095
crossref_primary_10_1073_pnas_2117630119
crossref_primary_10_1007_s13365_014_0269_z
crossref_primary_10_1016_j_chom_2016_07_015
crossref_primary_10_1093_infdis_jiy131
crossref_primary_10_1007_s11481_018_9797_2
crossref_primary_10_1371_journal_ppat_1003398
crossref_primary_10_1038_ni_3152
crossref_primary_10_1128_JVI_00609_14
crossref_primary_10_2217_fvl_2016_0130
crossref_primary_10_1371_journal_ppat_1007619
crossref_primary_10_1093_infdis_jiaa089
crossref_primary_10_1016_j_ebiom_2019_02_016
crossref_primary_10_1186_s12977_016_0268_7
crossref_primary_10_1128_mbio_03748_21
crossref_primary_10_3389_fimmu_2018_00344
crossref_primary_10_1371_journal_ppat_1005201
crossref_primary_10_1128_jvi_00445_22
crossref_primary_10_1093_nar_gkad790
crossref_primary_10_3390_v14010135
crossref_primary_10_1002_cpt_1220
crossref_primary_10_1016_j_tim_2016_01_006
crossref_primary_10_1038_s41598_022_13581_8
crossref_primary_10_1016_j_jcv_2023_105632
crossref_primary_10_1371_journal_ppat_1008821
crossref_primary_10_1128_spectrum_00604_22
crossref_primary_10_1097_01_qai_0000437172_08127_0b
crossref_primary_10_1089_aid_2018_0075
crossref_primary_10_1097_QAD_0000000000000723
crossref_primary_10_1093_infdis_jiw648
crossref_primary_10_1093_infdis_jiu344
crossref_primary_10_1128_JVI_00285_18
crossref_primary_10_1186_s12967_016_0807_y
crossref_primary_10_1371_journal_ppat_1005679
crossref_primary_10_1186_s12977_018_0396_3
crossref_primary_10_1016_j_bcp_2020_113937
crossref_primary_10_1016_S2352_3018_16_30054_6
crossref_primary_10_1016_j_jcv_2018_07_008
crossref_primary_10_1089_aid_2017_0234
crossref_primary_10_1097_COH_0b013e328361eaca
crossref_primary_10_1038_srep32947
crossref_primary_10_1371_journal_pone_0139510
crossref_primary_10_3390_ijms241512193
crossref_primary_10_3390_v10100534
crossref_primary_10_1097_QAD_0000000000001937
crossref_primary_10_1097_QAI_0000000000001823
crossref_primary_10_1073_pnas_1811195115
crossref_primary_10_1016_j_ebiom_2017_07_019
crossref_primary_10_1021_acs_analchem_6b05070
crossref_primary_10_1186_s12977_016_0323_4
crossref_primary_10_1371_journal_pcbi_1007482
crossref_primary_10_1097_QAI_0000000000000734
crossref_primary_10_1016_j_jve_2024_100367
crossref_primary_10_1093_cid_ciaa497
crossref_primary_10_3390_v12121443
crossref_primary_10_1038_s41598_018_33749_5
crossref_primary_10_3390_v12090973
crossref_primary_10_1146_annurev_med_011514_023043
crossref_primary_10_1002_cpmc_62
crossref_primary_10_1097_QAD_0000000000001949
crossref_primary_10_1097_QAD_0000000000001948
crossref_primary_10_1007_s11481_018_9795_4
crossref_primary_10_1016_S2055_6640_20_30925_0
crossref_primary_10_1126_scitranslmed_aav3491
crossref_primary_10_1016_j_cytogfr_2019_12_006
crossref_primary_10_1016_j_cell_2013_09_020
crossref_primary_10_1093_infdis_jiv218
crossref_primary_10_1097_QAD_0000000000000625
crossref_primary_10_1093_infdis_jiv219
crossref_primary_10_1371_journal_ppat_1005535
crossref_primary_10_1016_j_ebiom_2020_102853
crossref_primary_10_1093_infdis_jiad381
crossref_primary_10_1155_2017_7515409
crossref_primary_10_1111_imm_12385
crossref_primary_10_1080_14737159_2018_1464393
crossref_primary_10_1128_AAC_01368_17
crossref_primary_10_1126_scitranslmed_aag1048
crossref_primary_10_1186_s12985_024_02300_6
crossref_primary_10_1038_nri_2016_19
crossref_primary_10_1038_s41598_017_01221_5
crossref_primary_10_1007_s12015_021_10298_5
crossref_primary_10_1073_pnas_1419162112
crossref_primary_10_1093_infdis_jiv230
crossref_primary_10_3389_fimmu_2021_720697
crossref_primary_10_1371_journal_ppat_1003347
crossref_primary_10_1016_j_jve_2020_100025
crossref_primary_10_1371_journal_ppat_1005761
crossref_primary_10_1073_pnas_1617789113
crossref_primary_10_1093_cid_ciab565
crossref_primary_10_1172_jci_insight_123052
crossref_primary_10_1089_aid_2017_0153
crossref_primary_10_1089_aid_2017_0274
crossref_primary_10_1186_s12953_024_00230_3
crossref_primary_10_1093_cid_ciu585
crossref_primary_10_1097_QAD_0000000000003908
crossref_primary_10_1128_mbio_01344_23
crossref_primary_10_1016_S2352_3018_18_30012_2
crossref_primary_10_1186_s12879_019_3847_0
crossref_primary_10_1097_QAD_0000000000000763
crossref_primary_10_1007_s12033_018_0114_3
crossref_primary_10_1586_14787210_2014_910112
crossref_primary_10_1089_aid_2013_0132
crossref_primary_10_1038_s41590_022_01371_3
crossref_primary_10_1186_s12977_018_0404_7
crossref_primary_10_1007_s11904_014_0240_x
crossref_primary_10_1007_s12529_019_09804_4
crossref_primary_10_1093_jac_dkx068
crossref_primary_10_2217_fvl_15_92
crossref_primary_10_2174_1570162X18666191231105438
crossref_primary_10_1038_s41577_018_0085_4
crossref_primary_10_1093_cid_civ688
crossref_primary_10_3390_v9110324
crossref_primary_10_1097_QAD_0000000000000658
crossref_primary_10_1097_QAD_0000000000000894
crossref_primary_10_1371_journal_ppat_1005740
crossref_primary_10_1016_j_chom_2019_06_005
crossref_primary_10_3389_fmicb_2018_02131
crossref_primary_10_1111_odi_12412
crossref_primary_10_1515_cclm_2020_0142
crossref_primary_10_1021_acs_jmedchem_5b01233
crossref_primary_10_3390_ijms25052621
crossref_primary_10_3390_genes7120119
crossref_primary_10_1093_infdis_jiu297
crossref_primary_10_1097_QAD_0000000000001748
crossref_primary_10_1002_jmv_70295
crossref_primary_10_7448_IAS_18_1_20497
crossref_primary_10_1016_S2055_6640_20_30870_0
crossref_primary_10_1038_s41598_017_02634_y
crossref_primary_10_1097_QAD_0000000000001510
crossref_primary_10_1186_s12977_018_0395_4
crossref_primary_10_1016_S2352_3018_16_30055_8
crossref_primary_10_1021_ac403061n
crossref_primary_10_1128_JVI_03331_13
crossref_primary_10_1038_srep22183
crossref_primary_10_3390_v14122608
crossref_primary_10_1016_j_antiviral_2018_07_016
crossref_primary_10_1136_bmjopen_2018_028444
crossref_primary_10_2217_fvl_2016_0093
crossref_primary_10_1007_s40506_014_0017_1
crossref_primary_10_1016_j_ebiom_2017_05_006
crossref_primary_10_1016_j_virol_2014_08_018
crossref_primary_10_1038_s41467_024_54116_1
crossref_primary_10_1038_nrmicro3352
crossref_primary_10_1186_s13148_015_0137_6
crossref_primary_10_3389_fmicb_2018_02358
crossref_primary_10_1128_mBio_00876_17
crossref_primary_10_1371_journal_pcbi_1005228
crossref_primary_10_1186_s12977_015_0203_3
crossref_primary_10_1172_JCI80567
crossref_primary_10_1172_JCI80565
crossref_primary_10_3390_v6114581
crossref_primary_10_7554_eLife_18447
crossref_primary_10_1186_s12977_022_00587_3
crossref_primary_10_1097_QCO_0000000000000026
crossref_primary_10_1097_QAD_0000000000000562
crossref_primary_10_1016_j_ebiom_2016_03_004
crossref_primary_10_1016_S2055_6640_20_30497_0
crossref_primary_10_1007_s11904_016_0304_1
crossref_primary_10_1186_s12977_017_0386_x
crossref_primary_10_1371_journal_ppat_1012236
crossref_primary_10_1016_j_jpba_2023_115242
crossref_primary_10_1097_QAI_0000000000001789
crossref_primary_10_3390_v11030269
crossref_primary_10_1128_JCM_00803_14
crossref_primary_10_1093_infdis_jit667
crossref_primary_10_1128_JCM_02904_15
crossref_primary_10_1128_JVI_00242_16
crossref_primary_10_1146_annurev_med_052716_031710
crossref_primary_10_1093_ofid_ofv123
crossref_primary_10_1097_QAI_0000000000001662
crossref_primary_10_1093_infdis_jit307
crossref_primary_10_1128_JVI_01939_13
crossref_primary_10_1002_jia2_25221
crossref_primary_10_1128_JVI_01986_20
crossref_primary_10_1016_j_virol_2017_05_008
crossref_primary_10_3390_v13071235
crossref_primary_10_1074_jbc_M115_652339
crossref_primary_10_1097_QAI_0000000000000687
crossref_primary_10_1093_infdis_jit311
crossref_primary_10_1016_j_chom_2017_03_008
crossref_primary_10_1128_JVI_02086_18
crossref_primary_10_1084_jem_20170193
crossref_primary_10_1016_j_celrep_2023_113053
crossref_primary_10_1093_jac_dkv084
crossref_primary_10_1038_s41586_018_0494_3
crossref_primary_10_1371_journal_pone_0170548
crossref_primary_10_1126_scitranslmed_aaz0802
crossref_primary_10_1186_s12916_015_0517_y
crossref_primary_10_1016_j_micinf_2022_104970
crossref_primary_10_3390_cells9092076
crossref_primary_10_1371_journal_pone_0191613
crossref_primary_10_1172_JCI121678
crossref_primary_10_1016_j_tim_2015_01_013
crossref_primary_10_1016_S2055_6640_20_30932_8
crossref_primary_10_1126_scitranslmed_abh3351
crossref_primary_10_7554_eLife_42426
crossref_primary_10_1126_science_1259452
crossref_primary_10_3389_fmicb_2019_02383
crossref_primary_10_1038_nsmb_3328
crossref_primary_10_1097_QAD_0000000000000478
crossref_primary_10_1128_spectrum_00853_21
crossref_primary_10_1073_pnas_2313209120
crossref_primary_10_1371_journal_ppat_1008074
crossref_primary_10_1146_annurev_virology_101416_041646
crossref_primary_10_1126_scitranslmed_aax6795
crossref_primary_10_1007_s13365_014_0261_7
crossref_primary_10_1371_journal_ppat_1011114
crossref_primary_10_1172_jci_insight_134105
crossref_primary_10_1093_infdis_jiaa532
crossref_primary_10_3389_fmicb_2020_00902
crossref_primary_10_1016_j_cmi_2014_08_004
crossref_primary_10_3390_ijms19092821
crossref_primary_10_1128_JVI_02296_16
crossref_primary_10_1186_s12977_018_0398_1
crossref_primary_10_3390_v6031395
crossref_primary_10_3390_cells11152379
crossref_primary_10_7554_eLife_18889
crossref_primary_10_7554_eLife_49022
crossref_primary_10_1016_j_jviromet_2019_113778
crossref_primary_10_1089_aid_2017_0306
crossref_primary_10_1097_COH_0000000000000809
crossref_primary_10_1038_s41467_018_05157_w
crossref_primary_10_1097_QAD_0000000000002434
crossref_primary_10_1093_infdis_jiw618
crossref_primary_10_1128_JCM_01158_18
crossref_primary_10_1002_rmv_1924
crossref_primary_10_21769_BioProtoc_2334
crossref_primary_10_3389_fmicb_2021_686690
crossref_primary_10_1038_s41598_019_41788_9
crossref_primary_10_1093_infdis_jiaa634
crossref_primary_10_1097_QCO_0000000000000123
crossref_primary_10_1021_acsinfecdis_7b00273
crossref_primary_10_1093_cid_cix478
crossref_primary_10_1128_JVI_01659_19
crossref_primary_10_1093_cid_civ171
crossref_primary_10_1126_scitranslmed_aag1809
crossref_primary_10_1007_s11904_018_0383_2
crossref_primary_10_1128_JVI_00065_19
crossref_primary_10_1186_s13148_019_0735_9
crossref_primary_10_1186_s12977_017_0385_y
crossref_primary_10_1186_s12977_015_0216_y
crossref_primary_10_1093_infdis_jiaa649
crossref_primary_10_1097_COH_0b013e32835fc619
crossref_primary_10_1016_j_annemergmed_2017_01_018
crossref_primary_10_1097_QAD_0000000000003428
crossref_primary_10_1038_s41598_017_16600_1
crossref_primary_10_1146_annurev_pathol_050520_112001
crossref_primary_10_1007_s11904_023_00653_1
crossref_primary_10_1016_S2352_3018_15_00026_0
crossref_primary_10_3390_v13061134
Cites_doi 10.1089/aid.2008.0191
10.1517/14712598.5.11.1421
10.1097/00002030-200301030-00008
10.1126/science.1165706
10.1182/blood.V98.10.3006
10.1073/pnas.0736332100
10.1073/pnas.0804192105
10.1089/104454902760599672
10.1128/JVI.02535-06
10.1371/journal.ppat.1001300
10.1016/j.chom.2008.06.008
10.1073/pnas.95.15.8869
10.1371/journal.ppat.0030046
10.1172/JCI26197
10.1097/QAD.0b013e328350fb3c
10.1128/JVI.71.3.2233-2240.1997
10.1128/JVI.77.21.11708-11717.2003
10.1128/JVI.76.8.4138-4144.2002
10.1126/science.278.5341.1295
10.1038/nri3262
10.1128/JVI.76.8.3739-3747.2002
10.1016/S1074-7613(03)00236-X
10.1073/pnas.94.24.13193
10.1097/QAD.0b013e328340a239
10.1128/JVI.76.24.13077-13082.2002
10.1016/j.virol.2008.05.030
10.1371/journal.ppat.1000495
10.1056/NEJM199709113371101
10.1038/387188a0
10.1128/JVI.00591-06
10.1001/jama.282.17.1627
10.1073/pnas.2233345100
10.1128/JVI.79.8.5203-5210.2005
10.1038/nm880
10.1128/JVI.79.4.2199-2210.2005
10.1073/pnas.0903107106
10.1126/science.280.5362.427
10.1016/j.chom.2008.05.016
10.1007/978-1-59745-170-3_23
10.1016/j.ymeth.2009.01.002
10.1038/nm1295-1284
10.1084/jem.188.1.83
10.1016/S0140-6736(05)67098-5
10.1084/jem.20040874
10.1038/387183a0
10.1172/JCI200522574
10.1371/journal.ppat.1000554
10.1002/jmv.21366
10.1016/0092-8674(90)90802-L
10.1073/pnas.1107729108
10.1093/infdis/jir208
10.1056/NEJM199709113371102
10.1128/JVI.78.12.6122-6133.2004
10.1074/jbc.M402124200
10.1128/JVI.76.21.10942-10950.2002
10.1128/JVI.76.17.8518-8513.2002
10.1038/nature03513
10.1038/71569
10.1086/317615
10.1086/656722
10.1038/nm.2111
10.1038/nature11286
10.1128/JVI.76.16.8118-8123.2002
10.1128/JVI.79.3.1975-1980.2005
10.1097/QAD.0b013e32835a5c2f
10.1126/science.1925601
10.1073/pnas.0800050105
10.1038/nature03501
10.1128/JCM.41.10.4531-4536.2003
10.1128/JCM.37.5.1260-1264.1999
10.1128/JVI.02033-10
10.1074/jbc.M807898200
10.1086/650749
10.1371/journal.pmed.1000321
10.1128/JVI.02568-08
10.1038/8394
10.1073/pnas.96.26.15109
10.1126/science.278.5341.1291
10.1086/649569
10.1086/527324
ContentType Journal Article
Copyright COPYRIGHT 2013 Public Library of Science
2013 Eriksson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, et al. (2013) Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies. PLoS Pathog 9(2): e1003174. doi:10.1371/journal.ppat.1003174
2013 Eriksson et al 2013 Eriksson et al
Copyright_xml – notice: COPYRIGHT 2013 Public Library of Science
– notice: 2013 Eriksson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, et al. (2013) Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies. PLoS Pathog 9(2): e1003174. doi:10.1371/journal.ppat.1003174
– notice: 2013 Eriksson et al 2013 Eriksson et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QL
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1371/journal.ppat.1003174
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ DIrectory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
DocumentTitleAlternate Measures of Latent HIV-1 Eradication Studies
EISSN 1553-7374
ExternalDocumentID 1314344728
oai_doaj_org_article_09fe89b80b134d4082f8b04456777682
oai_swepub_ki_se_531010
PMC3573107
2906546661
A329898962
23459007
10_1371_journal_ppat_1003174
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: PHS HHS
  grantid: P30 AIO27763
– fundername: Howard Hughes Medical Institute
– fundername: NIAID NIH HHS
  grantid: AI69432-S
– fundername: NCRR NIH HHS
  grantid: UL 1 RR024131
– fundername: NIMH NIH HHS
  grantid: P30 MH62246
– fundername: NIAID NIH HHS
  grantid: U19 AI096113
– fundername: NIAID NIH HHS
  grantid: K24 AI069994
– fundername: NIAID NIH HHS
  grantid: AI74621
– fundername: NIAID NIH HHS
  grantid: R37 AI051178
– fundername: NIDDK NIH HHS
  grantid: P30 DK026743
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
3V.
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
PV9
RIG
RZL
WOQ
PMFND
7QL
7U9
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ADTPV
AOWAS
D8T
PUEGO
ZZAVC
AAPBV
ABPTK
ID FETCH-LOGICAL-c765t-ad2ac66abd89af818fda412555ad1c6b42a7ac5587c1a7378cbb6b4c4d5edb4c3
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Sun Oct 01 00:11:17 EDT 2023
Wed Aug 27 01:04:34 EDT 2025
Mon Sep 01 03:30:58 EDT 2025
Thu Aug 21 14:06:27 EDT 2025
Fri Jul 11 08:45:40 EDT 2025
Fri Jul 25 10:45:07 EDT 2025
Tue Jun 17 21:32:48 EDT 2025
Tue Jun 10 20:36:00 EDT 2025
Fri Jun 27 04:25:15 EDT 2025
Fri Jun 27 05:09:47 EDT 2025
Wed Feb 19 02:29:54 EST 2025
Tue Jul 01 00:58:52 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c765t-ad2ac66abd89af818fda412555ad1c6b42a7ac5587c1a7378cbb6b4c4d5edb4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Conceived and designed the experiments: RJ JDS SGD. Performed the experiments: SE EHG VD MCS SAY ESL JL SC FE MAM MS. Analyzed the data: MS SAY RJB JW RFS DDR UOD SP SGD JDS. Contributed reagents/materials/analysis tools: RH FH PH SGD. Wrote the paper: RFS JDS.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1003174
PMID 23459007
PQID 1314344728
PQPubID 1436335
ParticipantIDs plos_journals_1314344728
doaj_primary_oai_doaj_org_article_09fe89b80b134d4082f8b04456777682
swepub_primary_oai_swepub_ki_se_531010
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3573107
proquest_miscellaneous_1314893561
proquest_journals_1314344728
gale_infotracmisc_A329898962
gale_infotracacademiconefile_A329898962
gale_incontextgauss_ISR_A329898962
gale_incontextgauss_ISN_A329898962
pubmed_primary_23459007
crossref_citationtrail_10_1371_journal_ppat_1003174
crossref_primary_10_1371_journal_ppat_1003174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2013
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References B Joos (ref14) 2008; 105
TW Chun (ref43) 2008; 197
DG Brooks (ref23) 2003; 100
TW Chun (ref52) 1998; 95
SA Williams (ref24) 2004; 279
DG Brooks (ref22) 2003; 19
ME Sharkey (ref62) 2000; 6
Y Han (ref77) 2008; 4
DD Richman (ref15) 2009; 323
DD Scripture-Adams (ref17) 2002; 76
J Blazkova (ref29) 2009; 5
TP Brennan (ref71) 2009; 83
JM Murray (ref74) 2012; 26
MC Strain (ref11) 2003; 100
M Guadalupe (ref58) 2003; 77
Y Zhou (ref68) 2005; 79
FX Wang (ref18) 2005; 115
TW Chun (ref5) 1997; 387
Y Han (ref56) 2004; 78
TW Chun (ref54) 2005; 115
D Finzi (ref6) 1997; 278
Q Li (ref59) 2005; 434
M Fischer (ref83) 1999; 37
RT Gandhi (ref50) 2010; 7
JN Blankson (ref36) 2000; 182
U O'Doherty (ref39) 2002; 76
HC Yang (ref30) 2009; 119
SA Yukl (ref44) 2010; 202
TC Pierson (ref63) 2002; 76
JM Brenchley (ref60) 2004; 200
JW Critchfield (ref81) 2007; 81
D Finzi (ref9) 1999; 5
S Xing (ref31) 2011; 85
MC Strain (ref53) 2013
JR Bailey (ref69) 2006; 80
TL Kieffer (ref42) 2005; 79
RS Veazey (ref57) 1998; 280
F Maldarelli (ref67) 2007; 3
RT Davey Jr (ref12) 1999; 96
JA Zack (ref34) 1990; 61
MJ Buzon (ref66) 2010; 16
GK Sahu (ref70) 2009; 81
PA Anton (ref72) 2003; 17
ref78
SM Hammer (ref2) 1997; 337
TC Pierson (ref37) 2002; 76
AS Perelson (ref3) 1997; 387
S Palmer (ref46) 2003; 41
JB Dinoso (ref48) 2009; 106
MK Liszewski (ref80) 2009; 47
MI Bukrinsky (ref35) 1991; 254
TW Chun (ref16) 1998; 188
TW Chun (ref13) 2010; 24
NM Archin (ref26) 2009; 25
RM Gulick (ref1) 1997; 337
TW Chun (ref4) 1995; 1
TW Chun (ref8) 1997; 94
J Kulkosky (ref20) 2001; 98
SE Kauder (ref28) 2009; 5
EH Graf (ref55) 2011; 7
NM Archin (ref32) 2012; 487
S Palmer (ref47) 2008; 105
L Josefsson (ref84) 2011; 108
JK Wong (ref7) 1997; 278
SL Butler (ref64) 2002; 76
JD Siliciano (ref33) 2005; 304
YD Korin (ref21) 2002; 76
BL Shacklett (ref82) 2009; 485
G Lehrman (ref25) 2005; 366
JJ Yu (ref40) 2008; 379
TW Chun (ref73) 2011; 204
JJ Mattapallil (ref61) 2005; 434
D McMahon (ref49) 2010; 50
JD Siliciano (ref10) 2003; 9
AM Mexas (ref38) 2012; 26
RT Gandhi (ref79) 2010; 201
X Contreras (ref27) 2009; 284
G Dornadula (ref45) 1999; 282
SG Deeks (ref51) 2012; 12
G Sanchez (ref41) 1997; 71
M Sharkey (ref65) 2005; 79
G Nunnari (ref19) 2005; 5
T Lenasi (ref76) 2008; 4
G He (ref75) 2002; 21
References_xml – volume: 25
  start-page: 207
  year: 2009
  ident: ref26
  article-title: Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid
  publication-title: AIDS Res Hum Retroviruses
  doi: 10.1089/aid.2008.0191
– volume: 5
  start-page: 1421
  year: 2005
  ident: ref19
  article-title: IL-7 as a potential therapy for HIV-1-infected individuals
  publication-title: Expert Opin Biol Ther
  doi: 10.1517/14712598.5.11.1421
– volume: 17
  start-page: 53
  year: 2003
  ident: ref72
  article-title: Multiple measures of HIV burden in blood and tissue are correlated with each other but not with clinical parameters in aviremic subjects
  publication-title: AIDS
  doi: 10.1097/00002030-200301030-00008
– volume: 323
  start-page: 1304
  year: 2009
  ident: ref15
  article-title: The challenge of finding a cure for HIV infection
  publication-title: Science
  doi: 10.1126/science.1165706
– volume: 98
  start-page: 3006
  year: 2001
  ident: ref20
  article-title: Prostratin: Activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART
  publication-title: Blood
  doi: 10.1182/blood.V98.10.3006
– volume: 100
  start-page: 4819
  year: 2003
  ident: ref11
  article-title: Heterogeneous clearance rates of long-lived lymphocytes infected with HIV: Intrinsic stability predicts lifelong persistence
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0736332100
– volume: 105
  start-page: 16725
  year: 2008
  ident: ref14
  article-title: HIV rebounds from latently infected cells, rather than from continuing low-level replication
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0804192105
– volume: 21
  start-page: 697
  year: 2002
  ident: ref75
  article-title: The regulation of HIV-1 gene expression: The emerging role of chromatin
  publication-title: DNA Cell Biol
  doi: 10.1089/104454902760599672
– year: 2013
  ident: ref53
  article-title: Highly accurate measurement of HIV DNA by droplet digital PCR
  publication-title: PLOS ONE
– volume: 81
  start-page: 5460
  year: 2007
  ident: ref81
  article-title: Multifunctional human immunodeficiency virus (HIV) gag-specific CD8+ T-cell responses in rectal mucosa and peripheral blood mononuclear cells during chronic HIV type 1 infection
  publication-title: J Virol
  doi: 10.1128/JVI.02535-06
– volume: 7
  start-page: e1001300
  year: 2011
  ident: ref55
  article-title: Elite suppressors harbor low levels of integrated HIV DNA and high levels of 2-LTR circular HIV DNA compared to HIV+ patients on and off HAART
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1001300
– volume: 4
  start-page: 134
  year: 2008
  ident: ref77
  article-title: Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.06.008
– volume: 95
  start-page: 8869
  year: 1998
  ident: ref52
  article-title: Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.15.8869
– volume: 3
  start-page: e46
  year: 2007
  ident: ref67
  article-title: ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.0030046
– volume: 115
  start-page: 3250
  year: 2005
  ident: ref54
  article-title: HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir
  publication-title: J Clin Invest
  doi: 10.1172/JCI26197
– volume: 26
  start-page: 543
  year: 2012
  ident: ref74
  article-title: Integrated HIV DNA accumulates prior to treatment while episomal HIV DNA records ongoing transmission afterwards
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e328350fb3c
– volume: 71
  start-page: 2233
  year: 1997
  ident: ref41
  article-title: Accumulation of defective viral genomes in peripheral blood mononuclear cells of human immunodeficiency virus type 1-infected individuals
  publication-title: J Virol
  doi: 10.1128/JVI.71.3.2233-2240.1997
– volume: 77
  start-page: 11708
  year: 2003
  ident: ref58
  article-title: Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy
  publication-title: J Virol
  doi: 10.1128/JVI.77.21.11708-11717.2003
– volume: 76
  start-page: 4138
  year: 2002
  ident: ref63
  article-title: Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication
  publication-title: J Virol
  doi: 10.1128/JVI.76.8.4138-4144.2002
– volume: 278
  start-page: 1295
  year: 1997
  ident: ref6
  article-title: Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy
  publication-title: Science
  doi: 10.1126/science.278.5341.1295
– volume: 12
  start-page: 607
  year: 2012
  ident: ref51
  article-title: Towards an HIV cure: A global scientific strategy
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3262
– volume: 76
  start-page: 3739
  year: 2002
  ident: ref64
  article-title: Human immunodeficiency virus cDNA metabolism: Notable stability of two-long terminal repeat circles
  publication-title: J Virol
  doi: 10.1128/JVI.76.8.3739-3747.2002
– volume: 19
  start-page: 413
  year: 2003
  ident: ref22
  article-title: Molecular characterization, reactivation, and depletion of latent HIV
  publication-title: Immunity
  doi: 10.1016/S1074-7613(03)00236-X
– volume: 94
  start-page: 13193
  year: 1997
  ident: ref8
  article-title: Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.24.13193
– volume: 24
  start-page: 2803
  year: 2010
  ident: ref13
  article-title: Rebound of plasma viremia following cessation of antiretroviral therapy despite profoundly low levels of HIV reservoir: Implications for eradication
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e328340a239
– volume: 76
  start-page: 13077
  year: 2002
  ident: ref17
  article-title: Interleukin-7 induces expression of latent human immunodeficiency virus type 1 with minimal effects on T-cell phenotype
  publication-title: J Virol
  doi: 10.1128/JVI.76.24.13077-13082.2002
– volume: 379
  start-page: 78
  year: 2008
  ident: ref40
  article-title: A more precise HIV integration assay designed to detect small differences finds lower levels of integrated DNA in HAART treated patients
  publication-title: Virology
  doi: 10.1016/j.virol.2008.05.030
– volume: 5
  start-page: e1000495
  year: 2009
  ident: ref28
  article-title: Epigenetic regulation of HIV-1 latency by cytosine methylation
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000495
– volume: 337
  start-page: 725
  year: 1997
  ident: ref2
  article-title: A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS clinical trials group 320 study team
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199709113371101
– volume: 119
  start-page: 3473
  year: 2009
  ident: ref30
  article-title: Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation
  publication-title: J Clin Invest
– volume: 304
  start-page: 3
  year: 2005
  ident: ref33
  article-title: Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals
  publication-title: Methods Mol Biol
– volume: 387
  start-page: 188
  year: 1997
  ident: ref3
  article-title: Decay characteristics of HIV-1-infected compartments during combination therapy
  publication-title: Nature
  doi: 10.1038/387188a0
– volume: 80
  start-page: 6441
  year: 2006
  ident: ref69
  article-title: Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells
  publication-title: J Virol
  doi: 10.1128/JVI.00591-06
– volume: 282
  start-page: 1627
  year: 1999
  ident: ref45
  article-title: Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy
  publication-title: JAMA
  doi: 10.1001/jama.282.17.1627
– volume: 100
  start-page: 12955
  year: 2003
  ident: ref23
  article-title: Identification of T cell-signaling pathways that stimulate latent HIV in primary cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2233345100
– volume: 79
  start-page: 5203
  year: 2005
  ident: ref65
  article-title: In vivo evidence for instability of episomal human immunodeficiency virus type 1 cDNA
  publication-title: J Virol
  doi: 10.1128/JVI.79.8.5203-5210.2005
– volume: 9
  start-page: 727
  year: 2003
  ident: ref10
  article-title: Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells
  publication-title: Nat Med
  doi: 10.1038/nm880
– volume: 79
  start-page: 2199
  year: 2005
  ident: ref68
  article-title: Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells
  publication-title: J Virol
  doi: 10.1128/JVI.79.4.2199-2210.2005
– volume: 106
  start-page: 9403
  year: 2009
  ident: ref48
  article-title: Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0903107106
– volume: 280
  start-page: 427
  year: 1998
  ident: ref57
  article-title: Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection
  publication-title: Science
  doi: 10.1126/science.280.5362.427
– volume: 4
  start-page: 123
  year: 2008
  ident: ref76
  article-title: Transcriptional interference antagonizes proviral gene expression to promote HIV latency
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.05.016
– volume: 485
  start-page: 347
  year: 2009
  ident: ref82
  article-title: Isolating mucosal lymphocytes from biopsy tissue for cellular immunology assays
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-170-3_23
– volume: 47
  start-page: 254
  year: 2009
  ident: ref80
  article-title: Detecting HIV-1 integration by repetitive-sampling alu-gag PCR
  publication-title: Methods
  doi: 10.1016/j.ymeth.2009.01.002
– volume: 1
  start-page: 1284
  year: 1995
  ident: ref4
  article-title: In vivo fate of HIV-1-infected T cells: Quantitative analysis of the transition to stable latency
  publication-title: Nat Med
  doi: 10.1038/nm1295-1284
– volume: 188
  start-page: 83
  year: 1998
  ident: ref16
  article-title: Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines
  publication-title: J Exp Med
  doi: 10.1084/jem.188.1.83
– volume: 366
  start-page: 549
  year: 2005
  ident: ref25
  article-title: Depletion of latent HIV-1 infection in vivo: A proof-of-concept study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)67098-5
– volume: 200
  start-page: 749
  year: 2004
  ident: ref60
  article-title: CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract
  publication-title: J Exp Med
  doi: 10.1084/jem.20040874
– volume: 387
  start-page: 183
  year: 1997
  ident: ref5
  article-title: Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection
  publication-title: Nature
  doi: 10.1038/387183a0
– volume: 115
  start-page: 128
  year: 2005
  ident: ref18
  article-title: IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART
  publication-title: J Clin Invest
  doi: 10.1172/JCI200522574
– volume: 5
  start-page: e1000554
  year: 2009
  ident: ref29
  article-title: CpG methylation controls reactivation of HIV from latency
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000554
– volume: 81
  start-page: 9
  year: 2009
  ident: ref70
  article-title: Low-level plasma HIVs in patients on prolonged suppressive highly active antiretroviral therapy are produced mostly by cells other than CD4 T-cells
  publication-title: J Med Virol
  doi: 10.1002/jmv.21366
– volume: 61
  start-page: 213
  year: 1990
  ident: ref34
  article-title: HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90802-L
– volume: 108
  start-page: 11199
  year: 2011
  ident: ref84
  article-title: Majority of CD4+ T cells from peripheral blood of HIV-1-infected individuals contain only one HIV DNA molecule
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1107729108
– volume: 204
  start-page: 135
  year: 2011
  ident: ref73
  article-title: Relationship between residual plasma viremia and the size of HIV proviral DNA reservoirs in infected individuals receiving effective antiretroviral therapy
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jir208
– volume: 337
  start-page: 734
  year: 1997
  ident: ref1
  article-title: Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199709113371102
– volume: 78
  start-page: 6122
  year: 2004
  ident: ref56
  article-title: Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes
  publication-title: J Virol
  doi: 10.1128/JVI.78.12.6122-6133.2004
– volume: 279
  start-page: 42008
  year: 2004
  ident: ref24
  article-title: Prostratin antagonizes HIV latency by activating NF-kappaB
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M402124200
– volume: 76
  start-page: 10942
  year: 2002
  ident: ref39
  article-title: A sensitive, quantitative assay for human immunodeficiency virus type 1 integration
  publication-title: J Virol
  doi: 10.1128/JVI.76.21.10942-10950.2002
– volume: 76
  start-page: 8518
  year: 2002
  ident: ref37
  article-title: Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection
  publication-title: J Virol
  doi: 10.1128/JVI.76.17.8518-8513.2002
– volume: 434
  start-page: 1148
  year: 2005
  ident: ref59
  article-title: Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells
  publication-title: Nature
  doi: 10.1038/nature03513
– volume: 6
  start-page: 76
  year: 2000
  ident: ref62
  article-title: Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy
  publication-title: Nat Med
  doi: 10.1038/71569
– volume: 182
  start-page: 1636
  year: 2000
  ident: ref36
  article-title: Biphasic decay of latently infected CD4+ T cells in acute human immunodeficiency virus type 1 infection
  publication-title: J Infect Dis
  doi: 10.1086/317615
– volume: 202
  start-page: 1553
  year: 2010
  ident: ref44
  article-title: Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy
  publication-title: J Infect Dis
  doi: 10.1086/656722
– volume: 16
  start-page: 460
  year: 2010
  ident: ref66
  article-title: HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects
  publication-title: Nat Med
  doi: 10.1038/nm.2111
– volume: 487
  start-page: 482
  year: 2012
  ident: ref32
  article-title: Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy
  publication-title: Nature
  doi: 10.1038/nature11286
– ident: ref78
– volume: 76
  start-page: 8118
  year: 2002
  ident: ref21
  article-title: Effects of prostratin on T-cell activation and human immunodeficiency virus latency
  publication-title: J Virol
  doi: 10.1128/JVI.76.16.8118-8123.2002
– volume: 79
  start-page: 1975
  year: 2005
  ident: ref42
  article-title: G→A hypermutation in protease and reverse transcriptase regions of human immunodeficiency virus type 1 residing in resting CD4+ T cells in vivo
  publication-title: J Virol
  doi: 10.1128/JVI.79.3.1975-1980.2005
– volume: 26
  start-page: 2295
  year: 2012
  ident: ref38
  article-title: Concurrent measures of total and integrated HIV DNA monitor reservoirs and ongoing replication in eradication trials
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e32835a5c2f
– volume: 254
  start-page: 423
  year: 1991
  ident: ref35
  article-title: Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection
  publication-title: Science
  doi: 10.1126/science.1925601
– volume: 105
  start-page: 3879
  year: 2008
  ident: ref47
  article-title: Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0800050105
– volume: 434
  start-page: 1093
  year: 2005
  ident: ref61
  article-title: Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection
  publication-title: Nature
  doi: 10.1038/nature03501
– volume: 41
  start-page: 4531
  year: 2003
  ident: ref46
  article-title: New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.41.10.4531-4536.2003
– volume: 37
  start-page: 1260
  year: 1999
  ident: ref83
  article-title: Highly sensitive methods for quantitation of human immunodeficiency virus type 1 RNA from plasma, cells, and tissues
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.37.5.1260-1264.1999
– volume: 85
  start-page: 6060
  year: 2011
  ident: ref31
  article-title: Disulfiram reactivates latent HIV-1 in a bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation
  publication-title: J Virol
  doi: 10.1128/JVI.02033-10
– volume: 284
  start-page: 6782
  year: 2009
  ident: ref27
  article-title: Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M807898200
– volume: 50
  start-page: 912
  year: 2010
  ident: ref49
  article-title: Short-course raltegravir intensification does not reduce persistent low-level viremia in patients with HIV-1 suppression during receipt of combination antiretroviral therapy
  publication-title: Clin Infect Dis
  doi: 10.1086/650749
– volume: 7
  start-page: e1000321
  year: 2010
  ident: ref50
  article-title: The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: A randomized controlled trial
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1000321
– volume: 83
  start-page: 8470
  year: 2009
  ident: ref71
  article-title: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a novel source of residual viremia in patients on antiretroviral therapy
  publication-title: J Virol
  doi: 10.1128/JVI.02568-08
– volume: 5
  start-page: 512
  year: 1999
  ident: ref9
  article-title: Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy
  publication-title: Nat Med
  doi: 10.1038/8394
– volume: 96
  start-page: 15109
  year: 1999
  ident: ref12
  article-title: HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.26.15109
– volume: 278
  start-page: 1291
  year: 1997
  ident: ref7
  article-title: Recovery of replication-competent HIV despite prolonged suppression of plasma viremia
  publication-title: Science
  doi: 10.1126/science.278.5341.1291
– volume: 201
  start-page: 293
  year: 2010
  ident: ref79
  article-title: No evidence for decay of the latent reservoir in HIV-1-infected patients receiving intensive enfuvirtide-containing antiretroviral therapy
  publication-title: J Infect Dis
  doi: 10.1086/649569
– volume: 197
  start-page: 714
  year: 2008
  ident: ref43
  article-title: Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy
  publication-title: J Infect Dis
  doi: 10.1086/527324
SSID ssj0041316
Score 2.572519
Snippet HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small,...
  HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small,...
SourceID plos
doaj
swepub
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1003174
SubjectTerms Acquired immune deficiency syndrome
Adult
Aged
AIDS
Antiretroviral agents
Antiretroviral Therapy, Highly Active
CD4-Positive T-Lymphocytes - drug effects
Clinical trials
Deoxyribonucleic acid
Disease Reservoirs - virology
DNA
DNA, Viral - analysis
DNA, Viral - drug effects
DNA, Viral - genetics
Drug therapy
Experiments
Female
Genomes
Grants
Health aspects
HIV
HIV - genetics
HIV - growth & development
HIV - isolation & purification
HIV Infections - drug therapy
HIV Infections - genetics
HIV Infections - virology
HIV patients
Human immunodeficiency virus
Humans
Infections
Leukocytes, Mononuclear - drug effects
Leukocytes, Mononuclear - virology
Longitudinal Studies
Lymphocytes
Male
Medicine
Middle Aged
Normal distribution
Physiological aspects
Plasma
Polymerase Chain Reaction
Proviruses - genetics
Proviruses - growth & development
Proviruses - isolation & purification
RNA, Viral - analysis
RNA, Viral - drug effects
RNA, Viral - genetics
Statistical methods
T cells
Viral Load - drug effects
Virulence (Microbiology)
Virus Integration - drug effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEOXVhYIMQnAy3SR-JMdSUW2RqMSjqDfL8QNWLMlqs1uJf8_4sQGLol44bRSPV_LMZGacjL8PoRcQ4hSfaUsgOCpCG-pIw1RDnPIMk85U8XPB-zM-P6fvLtjFH1RfvicswgNHxR3OGmfrpq1nbVFR4-mRXd3OKOR9IaBUDtEXct5uMxVjMETmQHrqSXGIqDhPh-YqURwmG71erZSHjwanFjRLSgG7f4zQk9WyH64qP__uosywRkN-OrmDbqfCEh_FBe2hG7a7i25Gqsmf99CH498w31glJBLcO_wjviQM177hd4n9gaT1Zb9YD3jR4fnpF1Jgu1Ymvd3DQ2w9vI_OT95-Pp6TRKdAtOBsQ5QpleZctaZulINE7YyiUN8wpkyheUtLJZRmrBa6AEuJWrct3NXUMGvgt3qAJl3f2X2EQV5A6m9qZRzVDWvgwde8UFQX1FLrpqja6VPqhDXuKS-WMnxAE7DniFqR3goyWWGKyDhrFbE2rpF_4001ynqk7HAD_Ecm_5HX-c8UPfeGlh4Lo_PNNl_Vdhjk6aczeVSVgV2T_1voYyb0Kgm5HharVTrgACrzGFuZ5EEmCU-0zob3vdPt1jyABqCqpVSUNczcOeLVw8_GYf-nvoGus_02ykBpCtXyFD2Mfjvqrayo544VUyQyj84Um490i28BirxiAvYHMPNl9P1sSrr1Ha6shFgPW_9H_8Nkj9GtMpCS-KaiAzTZrLf2CZSGm_ZpiAK_AOdUXvw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXxLuBggJCcDLNw46TEypVqy1SK_FotTfLseOyokpCsovEv2fGcVJFFDglssfZjWc8HtuT7yPkNbg4lUW6ouAcFWUFs7TgqqBWIcOkNelwXHBymi3P2McVX_kNt96nVY4-0Tlq02jcI9-LU5jZGRNJ_r79QZE1Ck9XPYXGTXILocswpUuspgUX-GdHfYrUOFSkWeY_nUtFvOc19a5tFYJIg2kLNpuaHIL_5KcX7WXTXxeE_plLOUMcdbPU0T1y14eX4f5gD_fJjap-QG4PhJO_HpJPB1dg3-GIRxI2NjwZtgrd_fkafiHElLzuZ7Pu-nBdh8vjcxqHh50yfo8v9AmIj8jZ0eHXgyX1pApUi4xvqDKJ0lmmSpMXysJ0bY1iEOVwrkyss5IlSijNeS50DPoSuS5LKNXM8MrANX1MFnVTVzskBHkBAUCRK2OZLngBw19nsWI6ZhWrbEDSsT-l9ojjSHxxKd0xmoCVx9ArErUgvRYCQqdW7YC48R_5D6iqSRbxsl1B011IP_xkVNgqL8o8KuOUGSTZtnkZMYgehYAFVxKQV6hoiYgYNabcXKht38vjL6dyP00cx2b2d6HPM6G3Xsg28LJa-c8coMsQaWsmuTuThHGtZ9U7aHTjO_fyagRAy9EQr69-OVXjQzGNrq6a7SADASrEzAF5Mtjt1G9JypBBVgREzCx61rHzmnr9zQGSp1zAKgFavhlsf9bEF32Hu0qCx4_i6Om___8zcidxpCOYNLRLFptuWz2H0G9TvnDj-zevhldb
  priority: 102
  providerName: ProQuest
Title Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies
URI https://www.ncbi.nlm.nih.gov/pubmed/23459007
https://www.proquest.com/docview/1314344728
https://www.proquest.com/docview/1314893561
https://pubmed.ncbi.nlm.nih.gov/PMC3573107
http://kipublications.ki.se/Default.aspx?queryparsed=id:126344962
https://doaj.org/article/09fe89b80b134d4082f8b04456777682
http://dx.doi.org/10.1371/journal.ppat.1003174
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELe2Tki8IL4XGFVACJ4y5cOJkweEtmlTh7QKBkV9ixzH3ipKUpIWsf-eO9sJiujgKZZ9juTz2T7b59-PkNcwxfHEF9KDyZF7NKPKy2KeeYojw6QqI3NdcDFNJjP6YR7Pd0jH2WoV2G7d2iGf1KxZHv76cfMeBvw7zdrAgq7S4WrFERAazJTRXbIHaxPDoXpB-3sFmLE1GSqS5XgsShL7mO62vwwWK43p38_co9Wybre5pX9HVw4wSPW6dXaf3LMOp3tkLOQB2ZHVQ3LHUFDePCKfTv7Af7vcIpS4tXK_m8NDncZA4KWLD5Wan_Wiad1F5U7Ov3qBKxte2lM_tzUhiY_J7Oz0y8nEszQLnmBJvPZ4GXKRJLwo04wrWMBVySn4PXHMy0AkBQ054yKOUyYC6EGWiqKAXEHLWJbwjZ6QUVVXcp-4IM9A7VnKS0VFFmcwIYgk4FQEVFKpHBJ1-syFxSBHKoxlri_WGOxFjFZy7IXc9oJDvL7WymBw_Ef-GLuql0UEbZ1RN1e5HZC5nymZZkXqF0FES6TdVmnhU_AnGYMtWOiQV9jROWJkVBiEc8U3bZuff57mR1GoWTeT24UuB0JvrZCqobGC24cPoDLE3hpIHgwkYaSLQfE-Gl3X5hY0AN4upSxMoWZniNuLX_bF-FMMrKtkvTEy4LKCF-2Qp8Zue72FEUVOWeYQNrDogWKHJdXiWkOURzGDfQPUfGNsf1DFZn2DlMxhDfAD_9m_W_6c3A01DQmGER2Q0brZyBfgDK6LMdllczYme8en04-XY32kMtZj_jdF7GEu
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiHcDBQLicXKbxE6cHBBqy1a7tLuC0la9GcePsqJKls0uqH-K38g4cbaKKHDqKZE9zmM8nhnb4_kQegkqTiSB1BiUo8A0owZnsciwERZh0ijSbBeMxsngiH44iU9W0K_2LIwNq2x1Yq2oVSntGvlmSMCyU8qi9N30O7aoUXZ3tYXQaMRiT5__hClb9Xb4Hvr3VRTt9g93BtihCmDJkniOhYqETBKRqzQTBuyVUYKCmY9joUKZ5DQSTMg4TpkM4YNZKvMcSiVVsVZwJfDca2iVEpjK9NDqdn_88aDV_WARarBVC8aDGUkSd1iPsHDTycbGdCps2moYTIx2jGGNGbC0DL3pWVld5vb-Gb3ZyXFa28Xd2-iWc2j9rUYC76AVXdxF1xuIy_N76NPORXpxv82A4pfGHzWLk_X98QTe4NsgwNmPcjKr_EnhD4bHOPT7M6HcqqLvQh7vo6MrYfgD1CvKQq8hH-gZuBxZKpShMoszUDgyCQWVIdVUGw-Rlp9cuhznFmrjjNcbdwzmOg1XuO0F7nrBQ3jZatrk-PgP_bbtqiWtzdBdF5SzU-4GPA8yo9MsT4M8JFRZWG-T5gEFf5UxmOJFHnphO5rbHByFDfI5FYuq4sPPY75FohrVM_k70UGH6I0jMiX8rBTuYAWwzOb26lCudyhBk8hO9ZoVuvafK34x5qBlK4iXVz9fVtuH2sC9QpeLhgZcYvDSPfSwkdsl3yJCLWYt8xDrSHSHsd2aYvK1ToFOYgbzEmj5upH9ThNX9A3uNAcbE4TBo39__zN0Y3A42uf7w_HeY3QzqiFPbMjSOurNZwv9BBzPef7UjXYffblqBfMbgKiX8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIhAXxLsLBQLicQqbxE6cHBAqbVe7lK54tNXejOPY7apVsmx2Qf1r_DpmEidVRIFTT4nscR7j8czYHs9HyAtQcTLylHZBOUqXJcy4SSgT10hEmDQZrbcL9ibR6IB9mIbTNfKrOQuDYZWNTqwUdVYoXCMf-BQsO2M8iAfGhkV82h6-m393EUEKd1obOI1aRHb12U-YvpVvx9vQ1y-DYLizvzVyLcKAq3gULl2ZBVJFkUyzOJEGbJfJJAOTH4Yy81WUskByqcIw5sqHj-exSlMoVSwLdQZXCs-9Qq5yGvo4xvi0neyBbahgVxGWx-U0iuyxPcr9gZWSN_O5xATWMKw465jFCj2gtRG9-WlRXuQA_xnH2cl2WlnI4S1y07q2zmYti7fJms7vkGs12OXZXfJ56zzRuNPkQnEK4-zVy5TV_eEM3uBgOODiRzFblM4sd0bjQ9d3dhYys-uLjg1-vEcOLoXd90kvL3K9Thyg5-B8JLHMDFNJmIDqUZEvmfKZZtr0CW34KZTNdo6gG6ei2sLjMOupuSKwF4TthT5x21bzOtvHf-jfY1e1tJiruyooFkfCDn3hJUbHSRp7qU9ZhgDfJk49Bp4r5zDZC_rkOXa0wGwcOcr1kVyVpRh_nYhNGlT4ntHfib50iF5bIlPAzyppj1gAyzDLV4dyo0MJOkV1qtdR6Jp_LsX56IOWjSBeXP2srcaHYghfrotVTQPOMfjrffKgltuWbwFliF7L-4R3JLrD2G5NPjuukqHTkMMMBVq-qmW_08QWncCdFmBtPN97-O_vf0qug1oRH8eT3UfkRlBhn2Ds0gbpLRcr_Rg80GX6pBrqDvl22brlN7lUmsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+measures+of+viral+reservoirs+in+HIV-1+eradication+studies&rft.jtitle=PLoS+pathogens&rft.au=Eriksson%2C+Susanne&rft.au=Graf%2C+Erin+H&rft.au=Dahl%2C+Viktor&rft.au=Strain%2C+Matthew+C&rft.date=2013-02-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=9&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.ppat.1003174&rft.externalDocID=A329898962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon