Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies
HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeti...
Saved in:
Published in | PLoS pathogens Vol. 9; no. 2; p. e1003174 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.02.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+) T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+) T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research. |
---|---|
AbstractList | HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4
+
T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4
+
T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4
+
T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.
Efforts to cure HIV-1 infection have focused on a small pool of CD4
+
T cells that carry viral genetic information in a latent form. These cells persist even in patients on optimal antiretroviral therapy. Novel therapeutic strategies targeting latently infected cells are being developed, and therefore practical assays for measuring latently infected cells are urgently needed. These cells were discovered using a virus culture assay in which the cells are induced to release virus particles that are then expanded in culture. This assay is difficult, time-consuming, and expensive. Here we evaluate alternative approaches for measuring persistent HIV-1, all of which rely on the detection of viral genetic information using the polymerase chain reaction (PCR). None of the PCR-based assays correlated precisely with the virus culture assay. The fundamental problem is that infected cell frequencies determined by PCR are at least 2 logs higher than frequencies determined by the culture assay. Much of this difference may be due to cells carrying defective forms of the virus. These cells may not be eliminated by strategies designed to target latently infected cells. In this situation, successful clearance of latently infected cells might be masked by a large unchanging pool of cells carrying defective HIV-1. HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+) T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+) T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research. HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+) T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+) T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+) T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+) T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research. HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory [CD4.sup.+] T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting [CD4.sup.+] T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal [CD4.sup.+] T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR- based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research. HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4+ T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4+ T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4+ T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research. |
Audience | Academic |
Author | Siliciano, Janet D. Yukl, Steven A. Johnston, Rowena Emad, Fatemeh Lai, Jun Deeks, Steven G. Graf, Erin H. Wong, Joseph Bosch, Ronald J. Lysenko, Elena S. Abdel-Mohsen, Mohamed Palmer, Sarah Strain, Matthew C. Somsouk, Ma Siliciano, Robert F. Hunt, Peter Dahl, Viktor Chioma, Stanley Richman, Douglas D. O'Doherty, Una Eriksson, Susanne Hoh, Rebecca Hecht, Frederick |
AuthorAffiliation | 7 Department of Medicine Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America 9 Howard Hughes Medical Institute, Baltimore, Maryland, United States of America 5 Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America 3 University of California San Diego, La Jolla, California and Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America 4 San Francisco VA Medical Center, San Francisco, California, United States of America National Institutes of Health, National Institute of Allergy and Infectious Diseases, United States of America 1 Department of Diagnostics and Vaccinology, Swedish Institute for Communicable Diseases and Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden 8 amfAR, The Foundation for AIDS Research, New York, New York, United States of America 6 Department of Biostatistics, Harvard School of Public Health, Bos |
AuthorAffiliation_xml | – name: 8 amfAR, The Foundation for AIDS Research, New York, New York, United States of America – name: 2 Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America – name: 5 Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America – name: 4 San Francisco VA Medical Center, San Francisco, California, United States of America – name: 9 Howard Hughes Medical Institute, Baltimore, Maryland, United States of America – name: National Institutes of Health, National Institute of Allergy and Infectious Diseases, United States of America – name: 1 Department of Diagnostics and Vaccinology, Swedish Institute for Communicable Diseases and Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden – name: 3 University of California San Diego, La Jolla, California and Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America – name: 6 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America – name: 7 Department of Medicine Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America |
Author_xml | – sequence: 1 givenname: Susanne surname: Eriksson fullname: Eriksson, Susanne – sequence: 2 givenname: Erin H. surname: Graf fullname: Graf, Erin H. – sequence: 3 givenname: Viktor surname: Dahl fullname: Dahl, Viktor – sequence: 4 givenname: Matthew C. surname: Strain fullname: Strain, Matthew C. – sequence: 5 givenname: Steven A. surname: Yukl fullname: Yukl, Steven A. – sequence: 6 givenname: Elena S. surname: Lysenko fullname: Lysenko, Elena S. – sequence: 7 givenname: Ronald J. surname: Bosch fullname: Bosch, Ronald J. – sequence: 8 givenname: Jun surname: Lai fullname: Lai, Jun – sequence: 9 givenname: Stanley surname: Chioma fullname: Chioma, Stanley – sequence: 10 givenname: Fatemeh surname: Emad fullname: Emad, Fatemeh – sequence: 11 givenname: Mohamed surname: Abdel-Mohsen fullname: Abdel-Mohsen, Mohamed – sequence: 12 givenname: Rebecca surname: Hoh fullname: Hoh, Rebecca – sequence: 13 givenname: Frederick surname: Hecht fullname: Hecht, Frederick – sequence: 14 givenname: Peter surname: Hunt fullname: Hunt, Peter – sequence: 15 givenname: Ma surname: Somsouk fullname: Somsouk, Ma – sequence: 16 givenname: Joseph surname: Wong fullname: Wong, Joseph – sequence: 17 givenname: Rowena surname: Johnston fullname: Johnston, Rowena – sequence: 18 givenname: Robert F. surname: Siliciano fullname: Siliciano, Robert F. – sequence: 19 givenname: Douglas D. surname: Richman fullname: Richman, Douglas D. – sequence: 20 givenname: Una surname: O'Doherty fullname: O'Doherty, Una – sequence: 21 givenname: Sarah surname: Palmer fullname: Palmer, Sarah – sequence: 22 givenname: Steven G. surname: Deeks fullname: Deeks, Steven G. – sequence: 23 givenname: Janet D. surname: Siliciano fullname: Siliciano, Janet D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23459007$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:126344962$$DView record from Swedish Publication Index |
BookMark | eNqVk99v0zAQxyM0xH7Af4AgEi_wkGLHduzuAamqBqs0QGywV8uxneKRxsFOCvvvubYpWqYJCfnBp8vn-43vdHecHDS-sUnyHKMJJhy_vfF9aFQ9aVvVTTBCBHP6KDnCjJGME04P7sSHyXGMNwhRTHDxJDnMCWVThPhR8mXuV60KqnNrm87A7za6mPoq_WhV7IPdxtcuqDq9tNGGtXchpq5JzxfXGU7PgjJOg9o36VXXG2fj0-Rxpeponw33SfLt_dnX-Xl28fnDYj67yDQvWJcpkytdFKo0YqoqgUVlFMU5Y0wZrIuS5oorzZjgGiuoQeiyhKymhlkDNzlJXu5829pHOXQjSqiQEkp5LoBY7Ajj1Y1sg1upcCu9cnKb8GEpVeicrq1E08qKaSlQiQk1FIm8EiWilBWc80Lk4JXtvOIv2_blyG1I_YDISkYwwgj4d8Pr-nJljbZNBz0cycZfGvddLv1aEsbBgYPB68Eg-J-9jZ1cuahtXavG-n5Xp5gSVmBAX91DH-7GQC0VFOyaysN_9cZUzkg-FXCKTZ2TByg4xq6chgmsHORHgjcjATCd_d0tVR-jXFxd_gf7acy-uNvAv53bjy4ApztABx9jsJXUrttOIrzY1RIjudmTfS_kZk_ksCcgpvfEe_9_yv4AH74W0w |
CitedBy_id | crossref_primary_10_1371_journal_ppat_1008264 crossref_primary_10_1039_C7IB00112F crossref_primary_10_1084_jem_20190896 crossref_primary_10_3389_fimmu_2020_01971 crossref_primary_10_1093_jac_dkx434 crossref_primary_10_1007_s00705_023_05800_y crossref_primary_10_1155_2017_8239428 crossref_primary_10_1186_s12967_020_02368_y crossref_primary_10_1016_j_antinf_2015_09_001 crossref_primary_10_1097_QAD_0000000000002465 crossref_primary_10_1097_QAD_0000000000000166 crossref_primary_10_1038_nm_4156 crossref_primary_10_1097_QAI_0000000000001381 crossref_primary_10_1097_QAI_0000000000001263 crossref_primary_10_1097_QAI_0000000000002473 crossref_primary_10_1038_s41467_018_06736_7 crossref_primary_10_1038_nrmicro_2016_162 crossref_primary_10_3389_fcimb_2020_00038 crossref_primary_10_1016_j_ijantimicag_2019_08_001 crossref_primary_10_1016_S2055_6640_20_30056_X crossref_primary_10_2174_1570162X17666190506155222 crossref_primary_10_1016_j_ymeth_2021_03_006 crossref_primary_10_1007_s11904_021_00569_8 crossref_primary_10_1016_j_cell_2014_07_043 crossref_primary_10_1038_s41598_023_37223_9 crossref_primary_10_1097_QAD_0000000000000178 crossref_primary_10_1007_s11904_017_0355_y crossref_primary_10_1038_srep22555 crossref_primary_10_1016_j_antiviral_2013_09_017 crossref_primary_10_1172_JCI171554 crossref_primary_10_1097_QAD_0000000000002474 crossref_primary_10_1097_COH_0000000000000685 crossref_primary_10_1373_clinchem_2013_219378 crossref_primary_10_3389_fimmu_2024_1509874 crossref_primary_10_1073_pnas_2210584119 crossref_primary_10_1089_aid_2016_0171 crossref_primary_10_1038_s41598_018_28161_y crossref_primary_10_1038_s41591_021_01590_5 crossref_primary_10_1016_j_virusres_2017_07_008 crossref_primary_10_1016_j_tim_2017_06_002 crossref_primary_10_1128_JVI_03179_15 crossref_primary_10_1016_j_virol_2017_12_036 crossref_primary_10_3390_v12111279 crossref_primary_10_1016_S2055_6640_20_30460_X crossref_primary_10_1371_journal_pone_0084275 crossref_primary_10_1136_bmjopen_2015_007986 crossref_primary_10_1038_srep23513 crossref_primary_10_1093_cid_ciaa809 crossref_primary_10_1371_journal_pone_0064219 crossref_primary_10_3390_v12020149 crossref_primary_10_1128_JCM_02060_14 crossref_primary_10_3389_fimmu_2017_01405 crossref_primary_10_2217_fvl_2018_0070 crossref_primary_10_1093_infdis_jiaa568 crossref_primary_10_3390_v11121104 crossref_primary_10_1128_JVI_00279_18 crossref_primary_10_1093_infdis_jiab533 crossref_primary_10_1371_journal_pcbi_1006849 crossref_primary_10_1002_JLB_3HI1217_500R crossref_primary_10_3389_fimmu_2024_1484358 crossref_primary_10_1038_mt_2016_114 crossref_primary_10_1073_pnas_2120326119 crossref_primary_10_1186_s12981_024_00653_0 crossref_primary_10_1080_14656566_2017_1363180 crossref_primary_10_1128_mBio_02268_18 crossref_primary_10_1126_science_aaf6517 crossref_primary_10_1093_jac_dkw306 crossref_primary_10_1097_QAI_0000000000002560 crossref_primary_10_2174_1570162X1802200311104204 crossref_primary_10_1038_srep13811 crossref_primary_10_1002_cyto_b_21974 crossref_primary_10_3389_fimmu_2024_1478703 crossref_primary_10_1097_QAD_0000000000003352 crossref_primary_10_1128_jvi_01431_24 crossref_primary_10_1371_journal_pone_0110731 crossref_primary_10_1371_journal_ppat_1006285 crossref_primary_10_1128_JVI_01790_18 crossref_primary_10_1371_journal_ppat_1006283 crossref_primary_10_1038_s41598_022_07196_2 crossref_primary_10_1016_j_virol_2018_05_018 crossref_primary_10_1128_JVI_00290_16 crossref_primary_10_1016_j_ebiom_2015_06_019 crossref_primary_10_1038_s41467_019_08431_7 crossref_primary_10_1016_j_jcv_2017_03_018 crossref_primary_10_1016_j_jviromet_2014_02_020 crossref_primary_10_3389_fmicb_2016_01944 crossref_primary_10_1093_infdis_jit628 crossref_primary_10_1038_nm_4108 crossref_primary_10_1128_spectrum_00784_22 crossref_primary_10_1097_QAD_0000000000003001 crossref_primary_10_1071_MA14023 crossref_primary_10_1089_aid_2019_0225 crossref_primary_10_1038_nm_4347 crossref_primary_10_1002_jmv_24874 crossref_primary_10_1128_JVI_00553_16 crossref_primary_10_1016_j_jaci_2014_05_026 crossref_primary_10_1128_JVI_01331_20 crossref_primary_10_1097_MOP_0000000000000304 crossref_primary_10_1186_s12879_020_05675_3 crossref_primary_10_1016_S2055_6640_20_30930_4 crossref_primary_10_1093_cid_ciz251 crossref_primary_10_1016_j_patbio_2014_07_007 crossref_primary_10_1111_jmp_12244 crossref_primary_10_3390_diagnostics12010039 crossref_primary_10_1097_QAD_0000000000002169 crossref_primary_10_1371_journal_ppat_1006026 crossref_primary_10_4049_jimmunol_1600343 crossref_primary_10_1016_j_celrep_2022_111311 crossref_primary_10_1097_COH_0000000000000851 crossref_primary_10_1371_journal_ppat_1004071 crossref_primary_10_3389_fcimb_2020_00134 crossref_primary_10_1128_mBio_01186_17 crossref_primary_10_1016_j_ebiom_2016_08_009 crossref_primary_10_1016_S1473_3099_15_70021_6 crossref_primary_10_1016_j_ebiom_2015_07_036 crossref_primary_10_3390_life11121410 crossref_primary_10_1007_s11904_022_00604_2 crossref_primary_10_1089_apc_2016_0232 crossref_primary_10_1089_aid_2017_0071 crossref_primary_10_1371_journal_ppat_1009871 crossref_primary_10_1038_mi_2017_59 crossref_primary_10_3390_v13091858 crossref_primary_10_1089_aid_2018_0118 crossref_primary_10_1128_JCM_01922_18 crossref_primary_10_3389_fimmu_2019_00233 crossref_primary_10_1093_infdis_jiaa298 crossref_primary_10_1080_14737159_2016_1226805 crossref_primary_10_1186_s12977_021_00561_5 crossref_primary_10_1186_s12977_018_0392_7 crossref_primary_10_1186_s12977_018_0448_8 crossref_primary_10_1016_j_ebiom_2016_07_024 crossref_primary_10_1128_JVI_01308_19 crossref_primary_10_1097_COH_0000000000000282 crossref_primary_10_1186_s12879_017_2683_3 crossref_primary_10_3390_genes6040957 crossref_primary_10_1111_jeb_14244 crossref_primary_10_1016_S2352_3018_20_30100_4 crossref_primary_10_1073_pnas_2006816117 crossref_primary_10_1128_jvi_00705_23 crossref_primary_10_20874_2071_0437_2020_51_4_13 crossref_primary_10_1371_journal_ppat_1006359 crossref_primary_10_2217_fmb_2017_0163 crossref_primary_10_1186_s12879_022_07082_2 crossref_primary_10_1371_journal_pone_0111919 crossref_primary_10_1111_imr_12698 crossref_primary_10_1371_journal_ppat_1010845 crossref_primary_10_1016_j_idc_2014_08_007 crossref_primary_10_1016_j_jtbi_2014_06_025 crossref_primary_10_1007_s11904_018_0376_1 crossref_primary_10_1097_QAD_0000000000002083 crossref_primary_10_1016_j_immuni_2024_11_002 crossref_primary_10_1038_s41591_020_1022_1 crossref_primary_10_1016_j_chom_2020_03_014 crossref_primary_10_3390_v14112395 crossref_primary_10_1128_AAC_01815_20 crossref_primary_10_7554_eLife_04742 crossref_primary_10_1073_pnas_1308313110 crossref_primary_10_1371_journal_pcbi_1003871 crossref_primary_10_1371_journal_pone_0160192 crossref_primary_10_1097_COH_0000000000000136 crossref_primary_10_1128_CMR_00015_16 crossref_primary_10_1016_j_molmed_2015_11_004 crossref_primary_10_1128_JCM_01400_20 crossref_primary_10_1002_cpcb_64 crossref_primary_10_1038_nrd_2016_173 crossref_primary_10_1093_infdis_jiy461 crossref_primary_10_1186_s12977_018_0426_1 crossref_primary_10_3390_v15102119 crossref_primary_10_3389_fmicb_2022_862270 crossref_primary_10_3390_v17030366 crossref_primary_10_1371_journal_ppat_1005247 crossref_primary_10_3390_v16020229 crossref_primary_10_1371_journal_ppat_1005000 crossref_primary_10_1016_j_isci_2023_108015 crossref_primary_10_3390_pathogens12020322 crossref_primary_10_1186_s12977_018_0412_7 crossref_primary_10_1038_nprot_2017_079 crossref_primary_10_1128_JVI_00793_20 crossref_primary_10_1371_journal_pone_0175899 crossref_primary_10_1172_jci_insight_93684 crossref_primary_10_1097_QAI_0000000000002287 crossref_primary_10_3389_fimmu_2017_01698 crossref_primary_10_1371_journal_ppat_1005472 crossref_primary_10_1007_s11904_022_00607_z crossref_primary_10_1080_14760584_2019_1675518 crossref_primary_10_1097_COH_0000000000000483 crossref_primary_10_1093_ofid_ofy032 crossref_primary_10_1128_JVI_01900_14 crossref_primary_10_1128_cmr_00013_23 crossref_primary_10_1186_s12985_019_1276_8 crossref_primary_10_3389_fmicb_2019_02878 crossref_primary_10_1016_j_ymeth_2017_11_014 crossref_primary_10_7554_eLife_03821 crossref_primary_10_1089_aid_2013_1503 crossref_primary_10_1007_s10096_020_03875_y crossref_primary_10_1038_s43856_024_00553_4 crossref_primary_10_1172_jci_insight_185480 crossref_primary_10_2217_fvl_15_10 crossref_primary_10_1038_srep43231 crossref_primary_10_1097_QAI_0000000000001187 crossref_primary_10_1097_COH_0000000000000127 crossref_primary_10_1073_pnas_1813512115 crossref_primary_10_1097_QAD_0000000000003088 crossref_primary_10_1097_COH_0000000000000123 crossref_primary_10_1093_cid_ciab143 crossref_primary_10_1089_aid_2016_0004 crossref_primary_10_1093_cid_ciy1095 crossref_primary_10_1073_pnas_2117630119 crossref_primary_10_1007_s13365_014_0269_z crossref_primary_10_1016_j_chom_2016_07_015 crossref_primary_10_1093_infdis_jiy131 crossref_primary_10_1007_s11481_018_9797_2 crossref_primary_10_1371_journal_ppat_1003398 crossref_primary_10_1038_ni_3152 crossref_primary_10_1128_JVI_00609_14 crossref_primary_10_2217_fvl_2016_0130 crossref_primary_10_1371_journal_ppat_1007619 crossref_primary_10_1093_infdis_jiaa089 crossref_primary_10_1016_j_ebiom_2019_02_016 crossref_primary_10_1186_s12977_016_0268_7 crossref_primary_10_1128_mbio_03748_21 crossref_primary_10_3389_fimmu_2018_00344 crossref_primary_10_1371_journal_ppat_1005201 crossref_primary_10_1128_jvi_00445_22 crossref_primary_10_1093_nar_gkad790 crossref_primary_10_3390_v14010135 crossref_primary_10_1002_cpt_1220 crossref_primary_10_1016_j_tim_2016_01_006 crossref_primary_10_1038_s41598_022_13581_8 crossref_primary_10_1016_j_jcv_2023_105632 crossref_primary_10_1371_journal_ppat_1008821 crossref_primary_10_1128_spectrum_00604_22 crossref_primary_10_1097_01_qai_0000437172_08127_0b crossref_primary_10_1089_aid_2018_0075 crossref_primary_10_1097_QAD_0000000000000723 crossref_primary_10_1093_infdis_jiw648 crossref_primary_10_1093_infdis_jiu344 crossref_primary_10_1128_JVI_00285_18 crossref_primary_10_1186_s12967_016_0807_y crossref_primary_10_1371_journal_ppat_1005679 crossref_primary_10_1186_s12977_018_0396_3 crossref_primary_10_1016_j_bcp_2020_113937 crossref_primary_10_1016_S2352_3018_16_30054_6 crossref_primary_10_1016_j_jcv_2018_07_008 crossref_primary_10_1089_aid_2017_0234 crossref_primary_10_1097_COH_0b013e328361eaca crossref_primary_10_1038_srep32947 crossref_primary_10_1371_journal_pone_0139510 crossref_primary_10_3390_ijms241512193 crossref_primary_10_3390_v10100534 crossref_primary_10_1097_QAD_0000000000001937 crossref_primary_10_1097_QAI_0000000000001823 crossref_primary_10_1073_pnas_1811195115 crossref_primary_10_1016_j_ebiom_2017_07_019 crossref_primary_10_1021_acs_analchem_6b05070 crossref_primary_10_1186_s12977_016_0323_4 crossref_primary_10_1371_journal_pcbi_1007482 crossref_primary_10_1097_QAI_0000000000000734 crossref_primary_10_1016_j_jve_2024_100367 crossref_primary_10_1093_cid_ciaa497 crossref_primary_10_3390_v12121443 crossref_primary_10_1038_s41598_018_33749_5 crossref_primary_10_3390_v12090973 crossref_primary_10_1146_annurev_med_011514_023043 crossref_primary_10_1002_cpmc_62 crossref_primary_10_1097_QAD_0000000000001949 crossref_primary_10_1097_QAD_0000000000001948 crossref_primary_10_1007_s11481_018_9795_4 crossref_primary_10_1016_S2055_6640_20_30925_0 crossref_primary_10_1126_scitranslmed_aav3491 crossref_primary_10_1016_j_cytogfr_2019_12_006 crossref_primary_10_1016_j_cell_2013_09_020 crossref_primary_10_1093_infdis_jiv218 crossref_primary_10_1097_QAD_0000000000000625 crossref_primary_10_1093_infdis_jiv219 crossref_primary_10_1371_journal_ppat_1005535 crossref_primary_10_1016_j_ebiom_2020_102853 crossref_primary_10_1093_infdis_jiad381 crossref_primary_10_1155_2017_7515409 crossref_primary_10_1111_imm_12385 crossref_primary_10_1080_14737159_2018_1464393 crossref_primary_10_1128_AAC_01368_17 crossref_primary_10_1126_scitranslmed_aag1048 crossref_primary_10_1186_s12985_024_02300_6 crossref_primary_10_1038_nri_2016_19 crossref_primary_10_1038_s41598_017_01221_5 crossref_primary_10_1007_s12015_021_10298_5 crossref_primary_10_1073_pnas_1419162112 crossref_primary_10_1093_infdis_jiv230 crossref_primary_10_3389_fimmu_2021_720697 crossref_primary_10_1371_journal_ppat_1003347 crossref_primary_10_1016_j_jve_2020_100025 crossref_primary_10_1371_journal_ppat_1005761 crossref_primary_10_1073_pnas_1617789113 crossref_primary_10_1093_cid_ciab565 crossref_primary_10_1172_jci_insight_123052 crossref_primary_10_1089_aid_2017_0153 crossref_primary_10_1089_aid_2017_0274 crossref_primary_10_1186_s12953_024_00230_3 crossref_primary_10_1093_cid_ciu585 crossref_primary_10_1097_QAD_0000000000003908 crossref_primary_10_1128_mbio_01344_23 crossref_primary_10_1016_S2352_3018_18_30012_2 crossref_primary_10_1186_s12879_019_3847_0 crossref_primary_10_1097_QAD_0000000000000763 crossref_primary_10_1007_s12033_018_0114_3 crossref_primary_10_1586_14787210_2014_910112 crossref_primary_10_1089_aid_2013_0132 crossref_primary_10_1038_s41590_022_01371_3 crossref_primary_10_1186_s12977_018_0404_7 crossref_primary_10_1007_s11904_014_0240_x crossref_primary_10_1007_s12529_019_09804_4 crossref_primary_10_1093_jac_dkx068 crossref_primary_10_2217_fvl_15_92 crossref_primary_10_2174_1570162X18666191231105438 crossref_primary_10_1038_s41577_018_0085_4 crossref_primary_10_1093_cid_civ688 crossref_primary_10_3390_v9110324 crossref_primary_10_1097_QAD_0000000000000658 crossref_primary_10_1097_QAD_0000000000000894 crossref_primary_10_1371_journal_ppat_1005740 crossref_primary_10_1016_j_chom_2019_06_005 crossref_primary_10_3389_fmicb_2018_02131 crossref_primary_10_1111_odi_12412 crossref_primary_10_1515_cclm_2020_0142 crossref_primary_10_1021_acs_jmedchem_5b01233 crossref_primary_10_3390_ijms25052621 crossref_primary_10_3390_genes7120119 crossref_primary_10_1093_infdis_jiu297 crossref_primary_10_1097_QAD_0000000000001748 crossref_primary_10_1002_jmv_70295 crossref_primary_10_7448_IAS_18_1_20497 crossref_primary_10_1016_S2055_6640_20_30870_0 crossref_primary_10_1038_s41598_017_02634_y crossref_primary_10_1097_QAD_0000000000001510 crossref_primary_10_1186_s12977_018_0395_4 crossref_primary_10_1016_S2352_3018_16_30055_8 crossref_primary_10_1021_ac403061n crossref_primary_10_1128_JVI_03331_13 crossref_primary_10_1038_srep22183 crossref_primary_10_3390_v14122608 crossref_primary_10_1016_j_antiviral_2018_07_016 crossref_primary_10_1136_bmjopen_2018_028444 crossref_primary_10_2217_fvl_2016_0093 crossref_primary_10_1007_s40506_014_0017_1 crossref_primary_10_1016_j_ebiom_2017_05_006 crossref_primary_10_1016_j_virol_2014_08_018 crossref_primary_10_1038_s41467_024_54116_1 crossref_primary_10_1038_nrmicro3352 crossref_primary_10_1186_s13148_015_0137_6 crossref_primary_10_3389_fmicb_2018_02358 crossref_primary_10_1128_mBio_00876_17 crossref_primary_10_1371_journal_pcbi_1005228 crossref_primary_10_1186_s12977_015_0203_3 crossref_primary_10_1172_JCI80567 crossref_primary_10_1172_JCI80565 crossref_primary_10_3390_v6114581 crossref_primary_10_7554_eLife_18447 crossref_primary_10_1186_s12977_022_00587_3 crossref_primary_10_1097_QCO_0000000000000026 crossref_primary_10_1097_QAD_0000000000000562 crossref_primary_10_1016_j_ebiom_2016_03_004 crossref_primary_10_1016_S2055_6640_20_30497_0 crossref_primary_10_1007_s11904_016_0304_1 crossref_primary_10_1186_s12977_017_0386_x crossref_primary_10_1371_journal_ppat_1012236 crossref_primary_10_1016_j_jpba_2023_115242 crossref_primary_10_1097_QAI_0000000000001789 crossref_primary_10_3390_v11030269 crossref_primary_10_1128_JCM_00803_14 crossref_primary_10_1093_infdis_jit667 crossref_primary_10_1128_JCM_02904_15 crossref_primary_10_1128_JVI_00242_16 crossref_primary_10_1146_annurev_med_052716_031710 crossref_primary_10_1093_ofid_ofv123 crossref_primary_10_1097_QAI_0000000000001662 crossref_primary_10_1093_infdis_jit307 crossref_primary_10_1128_JVI_01939_13 crossref_primary_10_1002_jia2_25221 crossref_primary_10_1128_JVI_01986_20 crossref_primary_10_1016_j_virol_2017_05_008 crossref_primary_10_3390_v13071235 crossref_primary_10_1074_jbc_M115_652339 crossref_primary_10_1097_QAI_0000000000000687 crossref_primary_10_1093_infdis_jit311 crossref_primary_10_1016_j_chom_2017_03_008 crossref_primary_10_1128_JVI_02086_18 crossref_primary_10_1084_jem_20170193 crossref_primary_10_1016_j_celrep_2023_113053 crossref_primary_10_1093_jac_dkv084 crossref_primary_10_1038_s41586_018_0494_3 crossref_primary_10_1371_journal_pone_0170548 crossref_primary_10_1126_scitranslmed_aaz0802 crossref_primary_10_1186_s12916_015_0517_y crossref_primary_10_1016_j_micinf_2022_104970 crossref_primary_10_3390_cells9092076 crossref_primary_10_1371_journal_pone_0191613 crossref_primary_10_1172_JCI121678 crossref_primary_10_1016_j_tim_2015_01_013 crossref_primary_10_1016_S2055_6640_20_30932_8 crossref_primary_10_1126_scitranslmed_abh3351 crossref_primary_10_7554_eLife_42426 crossref_primary_10_1126_science_1259452 crossref_primary_10_3389_fmicb_2019_02383 crossref_primary_10_1038_nsmb_3328 crossref_primary_10_1097_QAD_0000000000000478 crossref_primary_10_1128_spectrum_00853_21 crossref_primary_10_1073_pnas_2313209120 crossref_primary_10_1371_journal_ppat_1008074 crossref_primary_10_1146_annurev_virology_101416_041646 crossref_primary_10_1126_scitranslmed_aax6795 crossref_primary_10_1007_s13365_014_0261_7 crossref_primary_10_1371_journal_ppat_1011114 crossref_primary_10_1172_jci_insight_134105 crossref_primary_10_1093_infdis_jiaa532 crossref_primary_10_3389_fmicb_2020_00902 crossref_primary_10_1016_j_cmi_2014_08_004 crossref_primary_10_3390_ijms19092821 crossref_primary_10_1128_JVI_02296_16 crossref_primary_10_1186_s12977_018_0398_1 crossref_primary_10_3390_v6031395 crossref_primary_10_3390_cells11152379 crossref_primary_10_7554_eLife_18889 crossref_primary_10_7554_eLife_49022 crossref_primary_10_1016_j_jviromet_2019_113778 crossref_primary_10_1089_aid_2017_0306 crossref_primary_10_1097_COH_0000000000000809 crossref_primary_10_1038_s41467_018_05157_w crossref_primary_10_1097_QAD_0000000000002434 crossref_primary_10_1093_infdis_jiw618 crossref_primary_10_1128_JCM_01158_18 crossref_primary_10_1002_rmv_1924 crossref_primary_10_21769_BioProtoc_2334 crossref_primary_10_3389_fmicb_2021_686690 crossref_primary_10_1038_s41598_019_41788_9 crossref_primary_10_1093_infdis_jiaa634 crossref_primary_10_1097_QCO_0000000000000123 crossref_primary_10_1021_acsinfecdis_7b00273 crossref_primary_10_1093_cid_cix478 crossref_primary_10_1128_JVI_01659_19 crossref_primary_10_1093_cid_civ171 crossref_primary_10_1126_scitranslmed_aag1809 crossref_primary_10_1007_s11904_018_0383_2 crossref_primary_10_1128_JVI_00065_19 crossref_primary_10_1186_s13148_019_0735_9 crossref_primary_10_1186_s12977_017_0385_y crossref_primary_10_1186_s12977_015_0216_y crossref_primary_10_1093_infdis_jiaa649 crossref_primary_10_1097_COH_0b013e32835fc619 crossref_primary_10_1016_j_annemergmed_2017_01_018 crossref_primary_10_1097_QAD_0000000000003428 crossref_primary_10_1038_s41598_017_16600_1 crossref_primary_10_1146_annurev_pathol_050520_112001 crossref_primary_10_1007_s11904_023_00653_1 crossref_primary_10_1016_S2352_3018_15_00026_0 crossref_primary_10_3390_v13061134 |
Cites_doi | 10.1089/aid.2008.0191 10.1517/14712598.5.11.1421 10.1097/00002030-200301030-00008 10.1126/science.1165706 10.1182/blood.V98.10.3006 10.1073/pnas.0736332100 10.1073/pnas.0804192105 10.1089/104454902760599672 10.1128/JVI.02535-06 10.1371/journal.ppat.1001300 10.1016/j.chom.2008.06.008 10.1073/pnas.95.15.8869 10.1371/journal.ppat.0030046 10.1172/JCI26197 10.1097/QAD.0b013e328350fb3c 10.1128/JVI.71.3.2233-2240.1997 10.1128/JVI.77.21.11708-11717.2003 10.1128/JVI.76.8.4138-4144.2002 10.1126/science.278.5341.1295 10.1038/nri3262 10.1128/JVI.76.8.3739-3747.2002 10.1016/S1074-7613(03)00236-X 10.1073/pnas.94.24.13193 10.1097/QAD.0b013e328340a239 10.1128/JVI.76.24.13077-13082.2002 10.1016/j.virol.2008.05.030 10.1371/journal.ppat.1000495 10.1056/NEJM199709113371101 10.1038/387188a0 10.1128/JVI.00591-06 10.1001/jama.282.17.1627 10.1073/pnas.2233345100 10.1128/JVI.79.8.5203-5210.2005 10.1038/nm880 10.1128/JVI.79.4.2199-2210.2005 10.1073/pnas.0903107106 10.1126/science.280.5362.427 10.1016/j.chom.2008.05.016 10.1007/978-1-59745-170-3_23 10.1016/j.ymeth.2009.01.002 10.1038/nm1295-1284 10.1084/jem.188.1.83 10.1016/S0140-6736(05)67098-5 10.1084/jem.20040874 10.1038/387183a0 10.1172/JCI200522574 10.1371/journal.ppat.1000554 10.1002/jmv.21366 10.1016/0092-8674(90)90802-L 10.1073/pnas.1107729108 10.1093/infdis/jir208 10.1056/NEJM199709113371102 10.1128/JVI.78.12.6122-6133.2004 10.1074/jbc.M402124200 10.1128/JVI.76.21.10942-10950.2002 10.1128/JVI.76.17.8518-8513.2002 10.1038/nature03513 10.1038/71569 10.1086/317615 10.1086/656722 10.1038/nm.2111 10.1038/nature11286 10.1128/JVI.76.16.8118-8123.2002 10.1128/JVI.79.3.1975-1980.2005 10.1097/QAD.0b013e32835a5c2f 10.1126/science.1925601 10.1073/pnas.0800050105 10.1038/nature03501 10.1128/JCM.41.10.4531-4536.2003 10.1128/JCM.37.5.1260-1264.1999 10.1128/JVI.02033-10 10.1074/jbc.M807898200 10.1086/650749 10.1371/journal.pmed.1000321 10.1128/JVI.02568-08 10.1038/8394 10.1073/pnas.96.26.15109 10.1126/science.278.5341.1291 10.1086/649569 10.1086/527324 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Public Library of Science 2013 Eriksson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, et al. (2013) Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies. PLoS Pathog 9(2): e1003174. doi:10.1371/journal.ppat.1003174 2013 Eriksson et al 2013 Eriksson et al |
Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Eriksson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, et al. (2013) Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies. PLoS Pathog 9(2): e1003174. doi:10.1371/journal.ppat.1003174 – notice: 2013 Eriksson et al 2013 Eriksson et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QL 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.1371/journal.ppat.1003174 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ DIrectory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Medicine |
DocumentTitleAlternate | Measures of Latent HIV-1 Eradication Studies |
EISSN | 1553-7374 |
ExternalDocumentID | 1314344728 oai_doaj_org_article_09fe89b80b134d4082f8b04456777682 oai_swepub_ki_se_531010 PMC3573107 2906546661 A329898962 23459007 10_1371_journal_ppat_1003174 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: PHS HHS grantid: P30 AIO27763 – fundername: Howard Hughes Medical Institute – fundername: NIAID NIH HHS grantid: AI69432-S – fundername: NCRR NIH HHS grantid: UL 1 RR024131 – fundername: NIMH NIH HHS grantid: P30 MH62246 – fundername: NIAID NIH HHS grantid: U19 AI096113 – fundername: NIAID NIH HHS grantid: K24 AI069994 – fundername: NIAID NIH HHS grantid: AI74621 – fundername: NIAID NIH HHS grantid: R37 AI051178 – fundername: NIDDK NIH HHS grantid: P30 DK026743 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW ~8M 3V. CGR CUY CVF ECM EIF H13 IPNFZ M~E NPM PV9 RIG RZL WOQ PMFND 7QL 7U9 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM ADTPV AOWAS D8T PUEGO ZZAVC AAPBV ABPTK |
ID | FETCH-LOGICAL-c765t-ad2ac66abd89af818fda412555ad1c6b42a7ac5587c1a7378cbb6b4c4d5edb4c3 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Oct 01 00:11:17 EDT 2023 Wed Aug 27 01:04:34 EDT 2025 Mon Sep 01 03:30:58 EDT 2025 Thu Aug 21 14:06:27 EDT 2025 Fri Jul 11 08:45:40 EDT 2025 Fri Jul 25 10:45:07 EDT 2025 Tue Jun 17 21:32:48 EDT 2025 Tue Jun 10 20:36:00 EDT 2025 Fri Jun 27 04:25:15 EDT 2025 Fri Jun 27 05:09:47 EDT 2025 Wed Feb 19 02:29:54 EST 2025 Tue Jul 01 00:58:52 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c765t-ad2ac66abd89af818fda412555ad1c6b42a7ac5587c1a7378cbb6b4c4d5edb4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 Conceived and designed the experiments: RJ JDS SGD. Performed the experiments: SE EHG VD MCS SAY ESL JL SC FE MAM MS. Analyzed the data: MS SAY RJB JW RFS DDR UOD SP SGD JDS. Contributed reagents/materials/analysis tools: RH FH PH SGD. Wrote the paper: RFS JDS. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1003174 |
PMID | 23459007 |
PQID | 1314344728 |
PQPubID | 1436335 |
ParticipantIDs | plos_journals_1314344728 doaj_primary_oai_doaj_org_article_09fe89b80b134d4082f8b04456777682 swepub_primary_oai_swepub_ki_se_531010 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3573107 proquest_miscellaneous_1314893561 proquest_journals_1314344728 gale_infotracmisc_A329898962 gale_infotracacademiconefile_A329898962 gale_incontextgauss_ISR_A329898962 gale_incontextgauss_ISN_A329898962 pubmed_primary_23459007 crossref_citationtrail_10_1371_journal_ppat_1003174 crossref_primary_10_1371_journal_ppat_1003174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-01 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2013 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | B Joos (ref14) 2008; 105 TW Chun (ref43) 2008; 197 DG Brooks (ref23) 2003; 100 TW Chun (ref52) 1998; 95 SA Williams (ref24) 2004; 279 DG Brooks (ref22) 2003; 19 ME Sharkey (ref62) 2000; 6 Y Han (ref77) 2008; 4 DD Richman (ref15) 2009; 323 DD Scripture-Adams (ref17) 2002; 76 J Blazkova (ref29) 2009; 5 TP Brennan (ref71) 2009; 83 JM Murray (ref74) 2012; 26 MC Strain (ref11) 2003; 100 M Guadalupe (ref58) 2003; 77 Y Zhou (ref68) 2005; 79 FX Wang (ref18) 2005; 115 TW Chun (ref5) 1997; 387 Y Han (ref56) 2004; 78 TW Chun (ref54) 2005; 115 D Finzi (ref6) 1997; 278 Q Li (ref59) 2005; 434 M Fischer (ref83) 1999; 37 RT Gandhi (ref50) 2010; 7 JN Blankson (ref36) 2000; 182 U O'Doherty (ref39) 2002; 76 HC Yang (ref30) 2009; 119 SA Yukl (ref44) 2010; 202 TC Pierson (ref63) 2002; 76 JM Brenchley (ref60) 2004; 200 JW Critchfield (ref81) 2007; 81 D Finzi (ref9) 1999; 5 S Xing (ref31) 2011; 85 MC Strain (ref53) 2013 JR Bailey (ref69) 2006; 80 TL Kieffer (ref42) 2005; 79 RS Veazey (ref57) 1998; 280 F Maldarelli (ref67) 2007; 3 RT Davey Jr (ref12) 1999; 96 JA Zack (ref34) 1990; 61 MJ Buzon (ref66) 2010; 16 GK Sahu (ref70) 2009; 81 PA Anton (ref72) 2003; 17 ref78 SM Hammer (ref2) 1997; 337 TC Pierson (ref37) 2002; 76 AS Perelson (ref3) 1997; 387 S Palmer (ref46) 2003; 41 JB Dinoso (ref48) 2009; 106 MK Liszewski (ref80) 2009; 47 MI Bukrinsky (ref35) 1991; 254 TW Chun (ref16) 1998; 188 TW Chun (ref13) 2010; 24 NM Archin (ref26) 2009; 25 RM Gulick (ref1) 1997; 337 TW Chun (ref4) 1995; 1 TW Chun (ref8) 1997; 94 J Kulkosky (ref20) 2001; 98 SE Kauder (ref28) 2009; 5 EH Graf (ref55) 2011; 7 NM Archin (ref32) 2012; 487 S Palmer (ref47) 2008; 105 L Josefsson (ref84) 2011; 108 JK Wong (ref7) 1997; 278 SL Butler (ref64) 2002; 76 JD Siliciano (ref33) 2005; 304 YD Korin (ref21) 2002; 76 BL Shacklett (ref82) 2009; 485 G Lehrman (ref25) 2005; 366 JJ Yu (ref40) 2008; 379 TW Chun (ref73) 2011; 204 JJ Mattapallil (ref61) 2005; 434 D McMahon (ref49) 2010; 50 JD Siliciano (ref10) 2003; 9 AM Mexas (ref38) 2012; 26 RT Gandhi (ref79) 2010; 201 X Contreras (ref27) 2009; 284 G Dornadula (ref45) 1999; 282 SG Deeks (ref51) 2012; 12 G Sanchez (ref41) 1997; 71 M Sharkey (ref65) 2005; 79 G Nunnari (ref19) 2005; 5 T Lenasi (ref76) 2008; 4 G He (ref75) 2002; 21 |
References_xml | – volume: 25 start-page: 207 year: 2009 ident: ref26 article-title: Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid publication-title: AIDS Res Hum Retroviruses doi: 10.1089/aid.2008.0191 – volume: 5 start-page: 1421 year: 2005 ident: ref19 article-title: IL-7 as a potential therapy for HIV-1-infected individuals publication-title: Expert Opin Biol Ther doi: 10.1517/14712598.5.11.1421 – volume: 17 start-page: 53 year: 2003 ident: ref72 article-title: Multiple measures of HIV burden in blood and tissue are correlated with each other but not with clinical parameters in aviremic subjects publication-title: AIDS doi: 10.1097/00002030-200301030-00008 – volume: 323 start-page: 1304 year: 2009 ident: ref15 article-title: The challenge of finding a cure for HIV infection publication-title: Science doi: 10.1126/science.1165706 – volume: 98 start-page: 3006 year: 2001 ident: ref20 article-title: Prostratin: Activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART publication-title: Blood doi: 10.1182/blood.V98.10.3006 – volume: 100 start-page: 4819 year: 2003 ident: ref11 article-title: Heterogeneous clearance rates of long-lived lymphocytes infected with HIV: Intrinsic stability predicts lifelong persistence publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0736332100 – volume: 105 start-page: 16725 year: 2008 ident: ref14 article-title: HIV rebounds from latently infected cells, rather than from continuing low-level replication publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804192105 – volume: 21 start-page: 697 year: 2002 ident: ref75 article-title: The regulation of HIV-1 gene expression: The emerging role of chromatin publication-title: DNA Cell Biol doi: 10.1089/104454902760599672 – year: 2013 ident: ref53 article-title: Highly accurate measurement of HIV DNA by droplet digital PCR publication-title: PLOS ONE – volume: 81 start-page: 5460 year: 2007 ident: ref81 article-title: Multifunctional human immunodeficiency virus (HIV) gag-specific CD8+ T-cell responses in rectal mucosa and peripheral blood mononuclear cells during chronic HIV type 1 infection publication-title: J Virol doi: 10.1128/JVI.02535-06 – volume: 7 start-page: e1001300 year: 2011 ident: ref55 article-title: Elite suppressors harbor low levels of integrated HIV DNA and high levels of 2-LTR circular HIV DNA compared to HIV+ patients on and off HAART publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001300 – volume: 4 start-page: 134 year: 2008 ident: ref77 article-title: Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.06.008 – volume: 95 start-page: 8869 year: 1998 ident: ref52 article-title: Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.15.8869 – volume: 3 start-page: e46 year: 2007 ident: ref67 article-title: ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0030046 – volume: 115 start-page: 3250 year: 2005 ident: ref54 article-title: HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir publication-title: J Clin Invest doi: 10.1172/JCI26197 – volume: 26 start-page: 543 year: 2012 ident: ref74 article-title: Integrated HIV DNA accumulates prior to treatment while episomal HIV DNA records ongoing transmission afterwards publication-title: AIDS doi: 10.1097/QAD.0b013e328350fb3c – volume: 71 start-page: 2233 year: 1997 ident: ref41 article-title: Accumulation of defective viral genomes in peripheral blood mononuclear cells of human immunodeficiency virus type 1-infected individuals publication-title: J Virol doi: 10.1128/JVI.71.3.2233-2240.1997 – volume: 77 start-page: 11708 year: 2003 ident: ref58 article-title: Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy publication-title: J Virol doi: 10.1128/JVI.77.21.11708-11717.2003 – volume: 76 start-page: 4138 year: 2002 ident: ref63 article-title: Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication publication-title: J Virol doi: 10.1128/JVI.76.8.4138-4144.2002 – volume: 278 start-page: 1295 year: 1997 ident: ref6 article-title: Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy publication-title: Science doi: 10.1126/science.278.5341.1295 – volume: 12 start-page: 607 year: 2012 ident: ref51 article-title: Towards an HIV cure: A global scientific strategy publication-title: Nat Rev Immunol doi: 10.1038/nri3262 – volume: 76 start-page: 3739 year: 2002 ident: ref64 article-title: Human immunodeficiency virus cDNA metabolism: Notable stability of two-long terminal repeat circles publication-title: J Virol doi: 10.1128/JVI.76.8.3739-3747.2002 – volume: 19 start-page: 413 year: 2003 ident: ref22 article-title: Molecular characterization, reactivation, and depletion of latent HIV publication-title: Immunity doi: 10.1016/S1074-7613(03)00236-X – volume: 94 start-page: 13193 year: 1997 ident: ref8 article-title: Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.24.13193 – volume: 24 start-page: 2803 year: 2010 ident: ref13 article-title: Rebound of plasma viremia following cessation of antiretroviral therapy despite profoundly low levels of HIV reservoir: Implications for eradication publication-title: AIDS doi: 10.1097/QAD.0b013e328340a239 – volume: 76 start-page: 13077 year: 2002 ident: ref17 article-title: Interleukin-7 induces expression of latent human immunodeficiency virus type 1 with minimal effects on T-cell phenotype publication-title: J Virol doi: 10.1128/JVI.76.24.13077-13082.2002 – volume: 379 start-page: 78 year: 2008 ident: ref40 article-title: A more precise HIV integration assay designed to detect small differences finds lower levels of integrated DNA in HAART treated patients publication-title: Virology doi: 10.1016/j.virol.2008.05.030 – volume: 5 start-page: e1000495 year: 2009 ident: ref28 article-title: Epigenetic regulation of HIV-1 latency by cytosine methylation publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000495 – volume: 337 start-page: 725 year: 1997 ident: ref2 article-title: A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS clinical trials group 320 study team publication-title: N Engl J Med doi: 10.1056/NEJM199709113371101 – volume: 119 start-page: 3473 year: 2009 ident: ref30 article-title: Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation publication-title: J Clin Invest – volume: 304 start-page: 3 year: 2005 ident: ref33 article-title: Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals publication-title: Methods Mol Biol – volume: 387 start-page: 188 year: 1997 ident: ref3 article-title: Decay characteristics of HIV-1-infected compartments during combination therapy publication-title: Nature doi: 10.1038/387188a0 – volume: 80 start-page: 6441 year: 2006 ident: ref69 article-title: Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells publication-title: J Virol doi: 10.1128/JVI.00591-06 – volume: 282 start-page: 1627 year: 1999 ident: ref45 article-title: Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy publication-title: JAMA doi: 10.1001/jama.282.17.1627 – volume: 100 start-page: 12955 year: 2003 ident: ref23 article-title: Identification of T cell-signaling pathways that stimulate latent HIV in primary cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2233345100 – volume: 79 start-page: 5203 year: 2005 ident: ref65 article-title: In vivo evidence for instability of episomal human immunodeficiency virus type 1 cDNA publication-title: J Virol doi: 10.1128/JVI.79.8.5203-5210.2005 – volume: 9 start-page: 727 year: 2003 ident: ref10 article-title: Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells publication-title: Nat Med doi: 10.1038/nm880 – volume: 79 start-page: 2199 year: 2005 ident: ref68 article-title: Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells publication-title: J Virol doi: 10.1128/JVI.79.4.2199-2210.2005 – volume: 106 start-page: 9403 year: 2009 ident: ref48 article-title: Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0903107106 – volume: 280 start-page: 427 year: 1998 ident: ref57 article-title: Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection publication-title: Science doi: 10.1126/science.280.5362.427 – volume: 4 start-page: 123 year: 2008 ident: ref76 article-title: Transcriptional interference antagonizes proviral gene expression to promote HIV latency publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.05.016 – volume: 485 start-page: 347 year: 2009 ident: ref82 article-title: Isolating mucosal lymphocytes from biopsy tissue for cellular immunology assays publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-170-3_23 – volume: 47 start-page: 254 year: 2009 ident: ref80 article-title: Detecting HIV-1 integration by repetitive-sampling alu-gag PCR publication-title: Methods doi: 10.1016/j.ymeth.2009.01.002 – volume: 1 start-page: 1284 year: 1995 ident: ref4 article-title: In vivo fate of HIV-1-infected T cells: Quantitative analysis of the transition to stable latency publication-title: Nat Med doi: 10.1038/nm1295-1284 – volume: 188 start-page: 83 year: 1998 ident: ref16 article-title: Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines publication-title: J Exp Med doi: 10.1084/jem.188.1.83 – volume: 366 start-page: 549 year: 2005 ident: ref25 article-title: Depletion of latent HIV-1 infection in vivo: A proof-of-concept study publication-title: Lancet doi: 10.1016/S0140-6736(05)67098-5 – volume: 200 start-page: 749 year: 2004 ident: ref60 article-title: CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract publication-title: J Exp Med doi: 10.1084/jem.20040874 – volume: 387 start-page: 183 year: 1997 ident: ref5 article-title: Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection publication-title: Nature doi: 10.1038/387183a0 – volume: 115 start-page: 128 year: 2005 ident: ref18 article-title: IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART publication-title: J Clin Invest doi: 10.1172/JCI200522574 – volume: 5 start-page: e1000554 year: 2009 ident: ref29 article-title: CpG methylation controls reactivation of HIV from latency publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000554 – volume: 81 start-page: 9 year: 2009 ident: ref70 article-title: Low-level plasma HIVs in patients on prolonged suppressive highly active antiretroviral therapy are produced mostly by cells other than CD4 T-cells publication-title: J Med Virol doi: 10.1002/jmv.21366 – volume: 61 start-page: 213 year: 1990 ident: ref34 article-title: HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure publication-title: Cell doi: 10.1016/0092-8674(90)90802-L – volume: 108 start-page: 11199 year: 2011 ident: ref84 article-title: Majority of CD4+ T cells from peripheral blood of HIV-1-infected individuals contain only one HIV DNA molecule publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1107729108 – volume: 204 start-page: 135 year: 2011 ident: ref73 article-title: Relationship between residual plasma viremia and the size of HIV proviral DNA reservoirs in infected individuals receiving effective antiretroviral therapy publication-title: J Infect Dis doi: 10.1093/infdis/jir208 – volume: 337 start-page: 734 year: 1997 ident: ref1 article-title: Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy publication-title: N Engl J Med doi: 10.1056/NEJM199709113371102 – volume: 78 start-page: 6122 year: 2004 ident: ref56 article-title: Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes publication-title: J Virol doi: 10.1128/JVI.78.12.6122-6133.2004 – volume: 279 start-page: 42008 year: 2004 ident: ref24 article-title: Prostratin antagonizes HIV latency by activating NF-kappaB publication-title: J Biol Chem doi: 10.1074/jbc.M402124200 – volume: 76 start-page: 10942 year: 2002 ident: ref39 article-title: A sensitive, quantitative assay for human immunodeficiency virus type 1 integration publication-title: J Virol doi: 10.1128/JVI.76.21.10942-10950.2002 – volume: 76 start-page: 8518 year: 2002 ident: ref37 article-title: Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection publication-title: J Virol doi: 10.1128/JVI.76.17.8518-8513.2002 – volume: 434 start-page: 1148 year: 2005 ident: ref59 article-title: Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells publication-title: Nature doi: 10.1038/nature03513 – volume: 6 start-page: 76 year: 2000 ident: ref62 article-title: Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy publication-title: Nat Med doi: 10.1038/71569 – volume: 182 start-page: 1636 year: 2000 ident: ref36 article-title: Biphasic decay of latently infected CD4+ T cells in acute human immunodeficiency virus type 1 infection publication-title: J Infect Dis doi: 10.1086/317615 – volume: 202 start-page: 1553 year: 2010 ident: ref44 article-title: Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy publication-title: J Infect Dis doi: 10.1086/656722 – volume: 16 start-page: 460 year: 2010 ident: ref66 article-title: HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects publication-title: Nat Med doi: 10.1038/nm.2111 – volume: 487 start-page: 482 year: 2012 ident: ref32 article-title: Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy publication-title: Nature doi: 10.1038/nature11286 – ident: ref78 – volume: 76 start-page: 8118 year: 2002 ident: ref21 article-title: Effects of prostratin on T-cell activation and human immunodeficiency virus latency publication-title: J Virol doi: 10.1128/JVI.76.16.8118-8123.2002 – volume: 79 start-page: 1975 year: 2005 ident: ref42 article-title: G→A hypermutation in protease and reverse transcriptase regions of human immunodeficiency virus type 1 residing in resting CD4+ T cells in vivo publication-title: J Virol doi: 10.1128/JVI.79.3.1975-1980.2005 – volume: 26 start-page: 2295 year: 2012 ident: ref38 article-title: Concurrent measures of total and integrated HIV DNA monitor reservoirs and ongoing replication in eradication trials publication-title: AIDS doi: 10.1097/QAD.0b013e32835a5c2f – volume: 254 start-page: 423 year: 1991 ident: ref35 article-title: Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection publication-title: Science doi: 10.1126/science.1925601 – volume: 105 start-page: 3879 year: 2008 ident: ref47 article-title: Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0800050105 – volume: 434 start-page: 1093 year: 2005 ident: ref61 article-title: Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection publication-title: Nature doi: 10.1038/nature03501 – volume: 41 start-page: 4531 year: 2003 ident: ref46 article-title: New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma publication-title: J Clin Microbiol doi: 10.1128/JCM.41.10.4531-4536.2003 – volume: 37 start-page: 1260 year: 1999 ident: ref83 article-title: Highly sensitive methods for quantitation of human immunodeficiency virus type 1 RNA from plasma, cells, and tissues publication-title: J Clin Microbiol doi: 10.1128/JCM.37.5.1260-1264.1999 – volume: 85 start-page: 6060 year: 2011 ident: ref31 article-title: Disulfiram reactivates latent HIV-1 in a bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation publication-title: J Virol doi: 10.1128/JVI.02033-10 – volume: 284 start-page: 6782 year: 2009 ident: ref27 article-title: Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells publication-title: J Biol Chem doi: 10.1074/jbc.M807898200 – volume: 50 start-page: 912 year: 2010 ident: ref49 article-title: Short-course raltegravir intensification does not reduce persistent low-level viremia in patients with HIV-1 suppression during receipt of combination antiretroviral therapy publication-title: Clin Infect Dis doi: 10.1086/650749 – volume: 7 start-page: e1000321 year: 2010 ident: ref50 article-title: The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: A randomized controlled trial publication-title: PLoS Med doi: 10.1371/journal.pmed.1000321 – volume: 83 start-page: 8470 year: 2009 ident: ref71 article-title: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a novel source of residual viremia in patients on antiretroviral therapy publication-title: J Virol doi: 10.1128/JVI.02568-08 – volume: 5 start-page: 512 year: 1999 ident: ref9 article-title: Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy publication-title: Nat Med doi: 10.1038/8394 – volume: 96 start-page: 15109 year: 1999 ident: ref12 article-title: HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.26.15109 – volume: 278 start-page: 1291 year: 1997 ident: ref7 article-title: Recovery of replication-competent HIV despite prolonged suppression of plasma viremia publication-title: Science doi: 10.1126/science.278.5341.1291 – volume: 201 start-page: 293 year: 2010 ident: ref79 article-title: No evidence for decay of the latent reservoir in HIV-1-infected patients receiving intensive enfuvirtide-containing antiretroviral therapy publication-title: J Infect Dis doi: 10.1086/649569 – volume: 197 start-page: 714 year: 2008 ident: ref43 article-title: Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy publication-title: J Infect Dis doi: 10.1086/527324 |
SSID | ssj0041316 |
Score | 2.572519 |
Snippet | HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small,... HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small,... |
SourceID | plos doaj swepub pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1003174 |
SubjectTerms | Acquired immune deficiency syndrome Adult Aged AIDS Antiretroviral agents Antiretroviral Therapy, Highly Active CD4-Positive T-Lymphocytes - drug effects Clinical trials Deoxyribonucleic acid Disease Reservoirs - virology DNA DNA, Viral - analysis DNA, Viral - drug effects DNA, Viral - genetics Drug therapy Experiments Female Genomes Grants Health aspects HIV HIV - genetics HIV - growth & development HIV - isolation & purification HIV Infections - drug therapy HIV Infections - genetics HIV Infections - virology HIV patients Human immunodeficiency virus Humans Infections Leukocytes, Mononuclear - drug effects Leukocytes, Mononuclear - virology Longitudinal Studies Lymphocytes Male Medicine Middle Aged Normal distribution Physiological aspects Plasma Polymerase Chain Reaction Proviruses - genetics Proviruses - growth & development Proviruses - isolation & purification RNA, Viral - analysis RNA, Viral - drug effects RNA, Viral - genetics Statistical methods T cells Viral Load - drug effects Virulence (Microbiology) Virus Integration - drug effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEOXVhYIMQnAy3SR-JMdSUW2RqMSjqDfL8QNWLMlqs1uJf8_4sQGLol44bRSPV_LMZGacjL8PoRcQ4hSfaUsgOCpCG-pIw1RDnPIMk85U8XPB-zM-P6fvLtjFH1RfvicswgNHxR3OGmfrpq1nbVFR4-mRXd3OKOR9IaBUDtEXct5uMxVjMETmQHrqSXGIqDhPh-YqURwmG71erZSHjwanFjRLSgG7f4zQk9WyH64qP__uosywRkN-OrmDbqfCEh_FBe2hG7a7i25Gqsmf99CH498w31glJBLcO_wjviQM177hd4n9gaT1Zb9YD3jR4fnpF1Jgu1Ymvd3DQ2w9vI_OT95-Pp6TRKdAtOBsQ5QpleZctaZulINE7YyiUN8wpkyheUtLJZRmrBa6AEuJWrct3NXUMGvgt3qAJl3f2X2EQV5A6m9qZRzVDWvgwde8UFQX1FLrpqja6VPqhDXuKS-WMnxAE7DniFqR3goyWWGKyDhrFbE2rpF_4001ynqk7HAD_Ecm_5HX-c8UPfeGlh4Lo_PNNl_Vdhjk6aczeVSVgV2T_1voYyb0Kgm5HharVTrgACrzGFuZ5EEmCU-0zob3vdPt1jyABqCqpVSUNczcOeLVw8_GYf-nvoGus_02ykBpCtXyFD2Mfjvqrayo544VUyQyj84Um490i28BirxiAvYHMPNl9P1sSrr1Ha6shFgPW_9H_8Nkj9GtMpCS-KaiAzTZrLf2CZSGm_ZpiAK_AOdUXvw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXxLuBggJCcDLNw46TEypVqy1SK_FotTfLseOyokpCsovEv2fGcVJFFDglssfZjWc8HtuT7yPkNbg4lUW6ouAcFWUFs7TgqqBWIcOkNelwXHBymi3P2McVX_kNt96nVY4-0Tlq02jcI9-LU5jZGRNJ_r79QZE1Ck9XPYXGTXILocswpUuspgUX-GdHfYrUOFSkWeY_nUtFvOc19a5tFYJIg2kLNpuaHIL_5KcX7WXTXxeE_plLOUMcdbPU0T1y14eX4f5gD_fJjap-QG4PhJO_HpJPB1dg3-GIRxI2NjwZtgrd_fkafiHElLzuZ7Pu-nBdh8vjcxqHh50yfo8v9AmIj8jZ0eHXgyX1pApUi4xvqDKJ0lmmSpMXysJ0bY1iEOVwrkyss5IlSijNeS50DPoSuS5LKNXM8MrANX1MFnVTVzskBHkBAUCRK2OZLngBw19nsWI6ZhWrbEDSsT-l9ojjSHxxKd0xmoCVx9ArErUgvRYCQqdW7YC48R_5D6iqSRbxsl1B011IP_xkVNgqL8o8KuOUGSTZtnkZMYgehYAFVxKQV6hoiYgYNabcXKht38vjL6dyP00cx2b2d6HPM6G3Xsg28LJa-c8coMsQaWsmuTuThHGtZ9U7aHTjO_fyagRAy9EQr69-OVXjQzGNrq6a7SADASrEzAF5Mtjt1G9JypBBVgREzCx61rHzmnr9zQGSp1zAKgFavhlsf9bEF32Hu0qCx4_i6Om___8zcidxpCOYNLRLFptuWz2H0G9TvnDj-zevhldb priority: 102 providerName: ProQuest |
Title | Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23459007 https://www.proquest.com/docview/1314344728 https://www.proquest.com/docview/1314893561 https://pubmed.ncbi.nlm.nih.gov/PMC3573107 http://kipublications.ki.se/Default.aspx?queryparsed=id:126344962 https://doaj.org/article/09fe89b80b134d4082f8b04456777682 http://dx.doi.org/10.1371/journal.ppat.1003174 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELe2Tki8IL4XGFVACJ4y5cOJkweEtmlTh7QKBkV9ixzH3ipKUpIWsf-eO9sJiujgKZZ9juTz2T7b59-PkNcwxfHEF9KDyZF7NKPKy2KeeYojw6QqI3NdcDFNJjP6YR7Pd0jH2WoV2G7d2iGf1KxZHv76cfMeBvw7zdrAgq7S4WrFERAazJTRXbIHaxPDoXpB-3sFmLE1GSqS5XgsShL7mO62vwwWK43p38_co9Wybre5pX9HVw4wSPW6dXaf3LMOp3tkLOQB2ZHVQ3LHUFDePCKfTv7Af7vcIpS4tXK_m8NDncZA4KWLD5Wan_Wiad1F5U7Ov3qBKxte2lM_tzUhiY_J7Oz0y8nEszQLnmBJvPZ4GXKRJLwo04wrWMBVySn4PXHMy0AkBQ054yKOUyYC6EGWiqKAXEHLWJbwjZ6QUVVXcp-4IM9A7VnKS0VFFmcwIYgk4FQEVFKpHBJ1-syFxSBHKoxlri_WGOxFjFZy7IXc9oJDvL7WymBw_Ef-GLuql0UEbZ1RN1e5HZC5nymZZkXqF0FES6TdVmnhU_AnGYMtWOiQV9jROWJkVBiEc8U3bZuff57mR1GoWTeT24UuB0JvrZCqobGC24cPoDLE3hpIHgwkYaSLQfE-Gl3X5hY0AN4upSxMoWZniNuLX_bF-FMMrKtkvTEy4LKCF-2Qp8Zue72FEUVOWeYQNrDogWKHJdXiWkOURzGDfQPUfGNsf1DFZn2DlMxhDfAD_9m_W_6c3A01DQmGER2Q0brZyBfgDK6LMdllczYme8en04-XY32kMtZj_jdF7GEu |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiHcDBQLicXKbxE6cHBBqy1a7tLuC0la9GcePsqJKls0uqH-K38g4cbaKKHDqKZE9zmM8nhnb4_kQegkqTiSB1BiUo8A0owZnsciwERZh0ijSbBeMxsngiH44iU9W0K_2LIwNq2x1Yq2oVSntGvlmSMCyU8qi9N30O7aoUXZ3tYXQaMRiT5__hClb9Xb4Hvr3VRTt9g93BtihCmDJkniOhYqETBKRqzQTBuyVUYKCmY9joUKZ5DQSTMg4TpkM4YNZKvMcSiVVsVZwJfDca2iVEpjK9NDqdn_88aDV_WARarBVC8aDGUkSd1iPsHDTycbGdCps2moYTIx2jGGNGbC0DL3pWVld5vb-Gb3ZyXFa28Xd2-iWc2j9rUYC76AVXdxF1xuIy_N76NPORXpxv82A4pfGHzWLk_X98QTe4NsgwNmPcjKr_EnhD4bHOPT7M6HcqqLvQh7vo6MrYfgD1CvKQq8hH-gZuBxZKpShMoszUDgyCQWVIdVUGw-Rlp9cuhznFmrjjNcbdwzmOg1XuO0F7nrBQ3jZatrk-PgP_bbtqiWtzdBdF5SzU-4GPA8yo9MsT4M8JFRZWG-T5gEFf5UxmOJFHnphO5rbHByFDfI5FYuq4sPPY75FohrVM_k70UGH6I0jMiX8rBTuYAWwzOb26lCudyhBk8hO9ZoVuvafK34x5qBlK4iXVz9fVtuH2sC9QpeLhgZcYvDSPfSwkdsl3yJCLWYt8xDrSHSHsd2aYvK1ToFOYgbzEmj5upH9ThNX9A3uNAcbE4TBo39__zN0Y3A42uf7w_HeY3QzqiFPbMjSOurNZwv9BBzPef7UjXYffblqBfMbgKiX8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIhAXxLsLBQLicQqbxE6cHBAqbVe7lK54tNXejOPY7apVsmx2Qf1r_DpmEidVRIFTT4nscR7j8czYHs9HyAtQcTLylHZBOUqXJcy4SSgT10hEmDQZrbcL9ibR6IB9mIbTNfKrOQuDYZWNTqwUdVYoXCMf-BQsO2M8iAfGhkV82h6-m393EUEKd1obOI1aRHb12U-YvpVvx9vQ1y-DYLizvzVyLcKAq3gULl2ZBVJFkUyzOJEGbJfJJAOTH4Yy81WUskByqcIw5sqHj-exSlMoVSwLdQZXCs-9Qq5yGvo4xvi0neyBbahgVxGWx-U0iuyxPcr9gZWSN_O5xATWMKw465jFCj2gtRG9-WlRXuQA_xnH2cl2WlnI4S1y07q2zmYti7fJms7vkGs12OXZXfJ56zzRuNPkQnEK4-zVy5TV_eEM3uBgOODiRzFblM4sd0bjQ9d3dhYys-uLjg1-vEcOLoXd90kvL3K9Thyg5-B8JLHMDFNJmIDqUZEvmfKZZtr0CW34KZTNdo6gG6ei2sLjMOupuSKwF4TthT5x21bzOtvHf-jfY1e1tJiruyooFkfCDn3hJUbHSRp7qU9ZhgDfJk49Bp4r5zDZC_rkOXa0wGwcOcr1kVyVpRh_nYhNGlT4ntHfib50iF5bIlPAzyppj1gAyzDLV4dyo0MJOkV1qtdR6Jp_LsX56IOWjSBeXP2srcaHYghfrotVTQPOMfjrffKgltuWbwFliF7L-4R3JLrD2G5NPjuukqHTkMMMBVq-qmW_08QWncCdFmBtPN97-O_vf0qug1oRH8eT3UfkRlBhn2Ds0gbpLRcr_Rg80GX6pBrqDvl22brlN7lUmsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+measures+of+viral+reservoirs+in+HIV-1+eradication+studies&rft.jtitle=PLoS+pathogens&rft.au=Eriksson%2C+Susanne&rft.au=Graf%2C+Erin+H&rft.au=Dahl%2C+Viktor&rft.au=Strain%2C+Matthew+C&rft.date=2013-02-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=9&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.ppat.1003174&rft.externalDocID=A329898962 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |