基于预处理共轭梯度法的低复杂度信号检测算法

TN929.5; 大规模多输入多输出系统中,最小均方误差信号检测算法是近似最优的,但由于其涉及矩阵求逆,计算复杂度随着天线数量增加呈指数增长.提出了低复杂度的预处理共轭梯度信号检测算法,该算法通过预处理技术降低矩阵条件数,从而加快共轭梯度信号检测算法的收敛速度.仿真结果显示,该算法在小数量的迭代中能够达到和最小均方误差检测算法相似的误码率,算法复杂度下降了一个数量级.相比直接用共轭梯度法,能够更快收敛到最佳值....

Full description

Saved in:
Bibliographic Details
Published in电信科学 Vol. 32; no. 4; pp. 30 - 35
Main Author 曲桦 梁静 赵季红 王伟华
Format Journal Article
LanguageChinese
Published 中国通信学会 01.04.2016
人民邮电出版社有限公司
西安邮电大学通信与信息工程学院,陕西 西安 710061%西安交通大学软件学院,陕西 西安,710049
西安交通大学软件学院,陕西 西安 710049
Subjects
Online AccessGet full text
ISSN1000-0801
DOI10.11959/j.issn.1000-0801.2016092

Cover

Abstract TN929.5; 大规模多输入多输出系统中,最小均方误差信号检测算法是近似最优的,但由于其涉及矩阵求逆,计算复杂度随着天线数量增加呈指数增长.提出了低复杂度的预处理共轭梯度信号检测算法,该算法通过预处理技术降低矩阵条件数,从而加快共轭梯度信号检测算法的收敛速度.仿真结果显示,该算法在小数量的迭代中能够达到和最小均方误差检测算法相似的误码率,算法复杂度下降了一个数量级.相比直接用共轭梯度法,能够更快收敛到最佳值.
AbstractList TN929.5; 大规模多输入多输出系统中,最小均方误差信号检测算法是近似最优的,但由于其涉及矩阵求逆,计算复杂度随着天线数量增加呈指数增长.提出了低复杂度的预处理共轭梯度信号检测算法,该算法通过预处理技术降低矩阵条件数,从而加快共轭梯度信号检测算法的收敛速度.仿真结果显示,该算法在小数量的迭代中能够达到和最小均方误差检测算法相似的误码率,算法复杂度下降了一个数量级.相比直接用共轭梯度法,能够更快收敛到最佳值.
大规模多输入多输出系统中,最小均方误差信号检测算法是近似最优的,但由于其涉及矩阵求逆,计算复杂度随着天线数量增加呈指数增长。提出了低复杂度的预处理共轭梯度信号检测算法,该算法通过预处理技术降低矩阵条件数,从而加快共轭梯度信号检测算法的收敛速度。仿真结果显示,该算法在小数量的迭代中能够达到和最小均方误差检测算法相似的误码率,算法复杂度下降了一个数量级。相比直接用共轭梯度法,能够更快收敛到最佳值。
Author 曲桦 梁静 赵季红 王伟华
AuthorAffiliation 西安交通大学软件学院,陕西西安710049 西安邮电大学通信与信息工程学院,陕西西安710061
AuthorAffiliation_xml – name: 西安交通大学软件学院,陕西 西安 710049;西安邮电大学通信与信息工程学院,陕西 西安 710061%西安交通大学软件学院,陕西 西安,710049
Author_FL ZHAO Jihong
LIANG Jing
QU Hua
WANG Weihua
Author_FL_xml – sequence: 1
  fullname: QU Hua
– sequence: 2
  fullname: LIANG Jing
– sequence: 3
  fullname: ZHAO Jihong
– sequence: 4
  fullname: WANG Weihua
Author_xml – sequence: 1
  fullname: 曲桦 梁静 赵季红 王伟华
BookMark eNpNj09LwzAYxnOY4Jz7At4UPLYmaZM2J5HhPxh42b2kbTI7NdMFcd5EphdxehFBEHEObyoiIgyGX2bt9FsY3BBPLzy_H8_DOwVyqq4EALMI2ggxwhZqdqK1shGE0II-RDaGiEKGcyD_l02CotZJCLFDXcNQHiymd71Br_3daaXd1vDyND15_eo_ZZ2XtPeYvV0Nb1qDfjvtnme3xyYZfN6nFx_Zw1H2fjZ8vjbCNJiQfFuL4vgWQGVluVJas8obq-ulpbIVeZRYSGAfY58gRgUMQy4Qjb2IIC6YjDmDwiFxLIUnIyZZxF0pqYuoiIj0sE9D6RTA_Kj2gCvJVTWo1fcbygwGcXOr-fupCyEx3szIi7jWgdI6Dij1iUc91zdwbgw366q6l5ia3UaywxuH_6Qf0lR4lA
ClassificationCodes TN929.5
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
NSCOK
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11959/j.issn.1000-0801.2016092
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
国家哲学社会科学文献中心 (National Center for Philosophy and Social Sciences Documentation)
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Low-complexity signal detection algorithm based on preconditioned conjugate gradient method
DocumentTitle_FL Low-complexity signal detection algorithm based on preconditioned conjugate gradient method
EndPage 35
ExternalDocumentID dxkx201604005
668576748
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 国家高技术研究发展计划(“863”计划)基金资助项目(No.2014AA01A706)The National Natural Science Foundation of China; The National High Technology Research and Development Program of China (863 Program)
  funderid: (61371087); (61371087); (2014AA01A706)
GroupedDBID -0Y
2RA
5XA
5XJ
92L
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
GROUPED_DOAJ
U1G
U5S
W92
~WA
NSCOK
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c765-1e282285196e0bbae16d7c51ae9fda90e35ddfe7fc9f9ca4ff6416ec5f7286bf3
ISSN 1000-0801
IngestDate Thu May 29 04:00:33 EDT 2025
Tue Jan 21 20:51:15 EST 2025
Wed Feb 14 10:20:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 4
Keywords 最小均方误差
共轭梯度法
大规模多输入多输出
conjugate gradient method
minimum mean square error
large-scale multiple-input multiple-output
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c765-1e282285196e0bbae16d7c51ae9fda90e35ddfe7fc9f9ca4ff6416ec5f7286bf3
Notes large-scale multiple-input multiple-output; conjugate gradient method; minimum mean square error
For large-scale multiple-input multiple-output system, minimum mean square error signal detection algorithm is near-optimal but involves matrix inversion, and complexity is growing exponentially. So less-complexity signal detection algorithm using preconditioned conjugate gradient method was proposed, the algorithm reduced the condition number of matrix by pretreatment technology, thus speeding up the convergence rate of conjugate gradient signal detection algorithm. The simulation results show that the proposed algorithm can achieve the near-optimal bit error rate performance of minimum mean square error detection algorithm with a small number of iterations, and computation complexity reduces a order of magnitude. Compared with the conjugate gradient method, the proposed algorithm can quickly converge to the optimum value.
11-2103/TN
QU Hua, LIANG Jing, ZHAO Jihong, WANG Weihua( 1. School of Software Engineering, Xi
OpenAccessLink http://dx.doi.org/10.11959/j.issn.1000-0801.2016092
PageCount 6
ParticipantIDs wanfang_journals_dxkx201604005
cass_nssd_668576748
chongqing_primary_668576748
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationTitle 电信科学
PublicationTitleAlternate Telecommunications Science
PublicationTitle_FL Telecommunications Science
PublicationYear 2016
Publisher 中国通信学会
人民邮电出版社有限公司
西安邮电大学通信与信息工程学院,陕西 西安 710061%西安交通大学软件学院,陕西 西安,710049
西安交通大学软件学院,陕西 西安 710049
Publisher_xml – name: 人民邮电出版社有限公司
– name: 中国通信学会
– name: 西安邮电大学通信与信息工程学院,陕西 西安 710061%西安交通大学软件学院,陕西 西安,710049
– name: 西安交通大学软件学院,陕西 西安 710049
SSID ssib023646091
ssj0002912124
ssib001102832
ssib000459930
ssib051374496
ssib036437025
ssib017479463
ssib058759007
Score 1.6591724
Snippet ...
TN929.5;...
SourceID wanfang
cass
chongqing
SourceType Aggregation Database
Publisher
StartPage 30
SubjectTerms 共轭梯度法
大规模多输入多输出
最小均方误差
Title 基于预处理共轭梯度法的低复杂度信号检测算法
URI http://lib.cqvip.com/qk/90580X/201604/668576748.html
https://www.ncpssd.cn/Literature/articleinfo?id=668576748&type=journalArticle
https://d.wanfangdata.com.cn/periodical/dxkx201604005
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9VAEA-lgngRP7FWSwX3VF7NJtmvkyRtHkWopwq9PfLZgvCqtoXSg4hUL2L1IoIgYi3eVEREKBT_mb5X_S-cmaRJbCtqL2HZnf3tfCzZmd3NxLKuOirPEh4nLRW5EKDEcdQydpS2MmHHsVZeJCkT0_RNOXXLuzErZgcGncatpeWleDxZPfS7kqNYFerArviV7H9YtgKFCiiDfeEJFobnP9mYhYKZNgt8Fnr41CELDfMdpj1s8j0qKGZspiXWaMECzkLNgknmT7JQIrHfxibo7kusCVxmBPXyqbuHxIhcAFIvAzVOoxfQtJnPaQjgRxGyi7coEBAqAwT0Q2ZUNUTTLabhPKSsoYAeKgkTWPWrHUQaP2CBQ4PwfS0oPEctAIvG1C0awRG_QHMRH5l3ahKFUiKnwMIE6hWlQdGbOyNcNi7U4FxGaF8g0wgNAAZHB-1AuZaKdAfy7AlDNDaquBYYCpoUXdVIlKU0j8JRUCmaeGzgGDK5M1GW0XglS2MHmRvDPEsSli9xGOM0i4DTmruDjBeTp03EYAZ5dF6ADrkpksmWKyOlINClfsuls96arveFaB0sz9oKj6rIR3NwrTbC0GKN-OMVPl63lHbxg8R9qdDTldsr1OpR2uJjjlJ0NWP6ftgMUYxpnhSTB1258Pi_BECv1jQXD64bJ-2Cu8rz6hSUAuJ5Y5dbJOjdOYaDt0eXVfY4Pm5d2ZPn2p-kAY8vgWgYM7jML3Tn7oJfSp8JdvOoO9fwaGdOWSfLUHTUL94rp62B1fmz1vXem62drfWfG2u9zbXd5497jz7_2P7Q3_jU23rf__Ji99XazvZ6b_Np__VDqNn5_rb37Fv_3YP-1ye7H18CwTlrph3OTEy1yp-stBIlRYtneI8cwi4jM3g7RxmXqUoEjzKTp5GxM1ekaZ6pPDG5SSIvzyWEcFkicuVoGefueWuwu9DNLlijURwJnqUQjwjcNRJGJxloWnD8wTlYYsg6gyrodBcX046UWmAeMT1kDVca6dwpMuw0W0dKHXXK9-5i57dZcPFvBMPWifrdcMkaXLq3nF2GOGIpHqH9txGaPr8AzzTSFA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%A2%84%E5%A4%84%E7%90%86%E5%85%B1%E8%BD%AD%E6%A2%AF%E5%BA%A6%E6%B3%95%E7%9A%84%E4%BD%8E%E5%A4%8D%E6%9D%82%E5%BA%A6%E4%BF%A1%E5%8F%B7%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E7%94%B5%E4%BF%A1%E7%A7%91%E5%AD%A6&rft.au=%E6%9B%B2%E6%A1%A6&rft.au=%E6%A2%81%E9%9D%99&rft.au=%E8%B5%B5%E5%AD%A3%E7%BA%A2&rft.au=%E7%8E%8B%E4%BC%9F%E5%8D%8E&rft.date=2016-04-01&rft.pub=%E8%A5%BF%E5%AE%89%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E9%80%9A%E4%BF%A1%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF+%E8%A5%BF%E5%AE%89+710061%25%E8%A5%BF%E5%AE%89%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E8%BD%AF%E4%BB%B6%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF+%E8%A5%BF%E5%AE%89%2C710049&rft.issn=1000-0801&rft.volume=32&rft.issue=4&rft.spage=30&rft.epage=35&rft_id=info:doi/10.11959%2Fj.issn.1000-0801.2016092&rft.externalDocID=dxkx201604005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90580X%2F90580X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdxkx%2Fdxkx.jpg