A role for BCL2L13 and autophagy in germline purifying selection of mtDNA

Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mut...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 19; no. 1; p. e1010573
Main Authors Kremer, Laura S., Bozhilova, Lyuba V., Rubalcava-Gracia, Diana, Filograna, Roberta, Upadhyay, Mamta, Koolmeister, Camilla, Chinnery, Patrick F., Larsson, Nils-Göran
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.01.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNA Ala gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin , Bcl2l13 , Ulk1 , and Ulk2 . Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2 , while no statistically significant impact is seen for knockout of Parkin . This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes.
AbstractList Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNAAla gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin, Bcl2l13, Ulk1, and Ulk2. Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2, while no statistically significant impact is seen for knockout of Parkin. This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes.
Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNA Ala gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin , Bcl2l13 , Ulk1 , and Ulk2 . Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2 , while no statistically significant impact is seen for knockout of Parkin . This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes. We have addressed the role of autophagy on purifying selection of mtDNA by mating different autophagy-deficient mouse models, including knockouts of Parkin , Bcl2l13 , Ulk1 , and Ulk2 , to female mice with high levels of the pathogenic tRNA Ala gene mutation. We identified a robust effect of Bcl2l13 on the selection process, weaker effects of Ulk1 and Ulk2 , whereas Parkin had no statistically significant impact. Our study thus provides strong experimental evidence for distinctive roles of autophagy in germline purifying selection of mtDNA. Furthermore, the experimental strategy and statistical methods we have developed in the manuscript provide a novel framework for future studies of the enigmatic purifying selection process in mammals.
Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNA.sup.Ala gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin, Bcl2l13, Ulk1, and Ulk2. Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2, while no statistically significant impact is seen for knockout of Parkin. This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes.
Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNAAla gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin, Bcl2l13, Ulk1, and Ulk2. Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2, while no statistically significant impact is seen for knockout of Parkin. This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes.Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNAAla gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin, Bcl2l13, Ulk1, and Ulk2. Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2, while no statistically significant impact is seen for knockout of Parkin. This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes.
Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNA Ala gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin , Bcl2l13 , Ulk1 , and Ulk2 . Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2 , while no statistically significant impact is seen for knockout of Parkin . This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes.
Audience Academic
Author Koolmeister, Camilla
Upadhyay, Mamta
Chinnery, Patrick F.
Filograna, Roberta
Kremer, Laura S.
Larsson, Nils-Göran
Rubalcava-Gracia, Diana
Bozhilova, Lyuba V.
AuthorAffiliation 3 Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
1 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
2 MRC Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
University of Cologne, GERMANY
AuthorAffiliation_xml – name: 3 Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
– name: 2 MRC Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
– name: 1 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
– name: University of Cologne, GERMANY
Author_xml – sequence: 1
  givenname: Laura S.
  surname: Kremer
  fullname: Kremer, Laura S.
– sequence: 2
  givenname: Lyuba V.
  orcidid: 0000-0003-2784-2040
  surname: Bozhilova
  fullname: Bozhilova, Lyuba V.
– sequence: 3
  givenname: Diana
  surname: Rubalcava-Gracia
  fullname: Rubalcava-Gracia, Diana
– sequence: 4
  givenname: Roberta
  surname: Filograna
  fullname: Filograna, Roberta
– sequence: 5
  givenname: Mamta
  orcidid: 0000-0001-7092-0468
  surname: Upadhyay
  fullname: Upadhyay, Mamta
– sequence: 6
  givenname: Camilla
  surname: Koolmeister
  fullname: Koolmeister, Camilla
– sequence: 7
  givenname: Patrick F.
  orcidid: 0000-0002-7065-6617
  surname: Chinnery
  fullname: Chinnery, Patrick F.
– sequence: 8
  givenname: Nils-Göran
  orcidid: 0000-0001-5100-996X
  surname: Larsson
  fullname: Larsson, Nils-Göran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36608143$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:151938532$$DView record from Swedish Publication Index
BookMark eNqVk0tv1DAUhSNURGnhHyCIhIRgMYM9fiUskIbyGmnUSry2luNcZ1w89hAnQP89DpOipqoQyAtbN985jo99j7IDHzxk2QOM5pgI_Pw89K1Xbr5rwM8xwogJciu7ixkjM0ERPbiyPsyOYjxHiLCiFHeyQ8I5KjAld7PVMm-Dg9yENn91sl6sMcmVr3PVd2G3Uc1Fbn3eQLt11kO-61trLqxv8ggOdGeDz4PJt93r0-W97LZRLsL9cT7OPr998-nk_Wx99m51slzPtOC0mwFRFC24KEslVE14zQtuKm000oYQLpQWlal1hUhZUagMYAKYKU04ZRgoJ8fZo73vzoUoxxSiXAghKCEFWSRitSfqoM7lrrVb1V7IoKz8XQhtI1XbWe1AIqOhpAYbWimKiSpJxSrKaiALoQSjyWu294o_YNdXE7ex9DWtQFJasAIl_uX4d321hVqD71rlJrLpF283sgnfZVkwzBBOBk9HgzZ86yF2cmujBueUh9AP5-S4FLwshiQeX0NvTmOkGpUObL0JaV89mMqlIIyXuEBFouY3UGnUsLU6vTxjU30ieDYRJKaDn12j-hjl6uOH_2BP_509-zJln1xhN6Bct4nB9cO7jFPw4dVb-XMdl32QgBd7QLchxhaM1LZTg0-KwTqJkRya7jJgOTSdHJsuiek18aX_X2W_AEwvLj8
CitedBy_id crossref_primary_10_1093_hmg_ddae059
crossref_primary_10_1038_s41467_024_55559_2
crossref_primary_10_1016_j_ajps_2024_100927
crossref_primary_10_1038_s43587_024_00672_6
crossref_primary_10_1038_s43587_024_00701_4
crossref_primary_10_1126_sciadv_adr0690
crossref_primary_10_1093_humupd_dmaf004
crossref_primary_10_1126_sciadv_adi4038
Cites_doi 10.1016/j.celrep.2014.05.020
10.1016/j.cmet.2013.09.015
10.1038/s41586-019-1213-4
10.1006/bbrc.1998.8546
10.1111/dgd.12420
10.1016/j.ajhg.2008.07.004
10.1016/0027-5107(64)90047-8
10.1093/nar/gkt969
10.1038/nature12474
10.1016/j.celrep.2016.08.037
10.1126/scisignal.aai9248
10.1083/jcb.200809125
10.1101/SQB.1997.062.01.021
10.1093/dnares/dsy042
10.1080/15548627.2022.2038501
10.1038/nrg2396
10.1002/ana.24362
10.1146/annurev-genom-121420-081805
10.1016/j.devcel.2009.06.013
10.1038/sj.onc.1202988
10.1002/em.20586
10.1073/pnas.1107969108
10.1126/sciadv.aav9824
10.1073/pnas.0401297101
10.1016/j.devcel.2009.06.014
10.1016/j.tcb.2018.07.004
10.1007/s00125-005-1680-z
10.1038/s41556-021-00669-y
10.1042/EBC20170021
10.1007/s13224-011-0013-z
10.1016/j.neuron.2015.06.034
10.1371/journal.pgen.1004670
10.1126/sciadv.abi5657
10.1038/ncomms8527
10.3390/cells9040837
10.1016/j.cmet.2022.10.005
ContentType Journal Article
Copyright Copyright: © 2023 Kremer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Kremer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Kremer et al 2023 Kremer et al
Copyright_xml – notice: Copyright: © 2023 Kremer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Kremer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Kremer et al 2023 Kremer et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1371/journal.pgen.1010573
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE

MEDLINE - Academic
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Purifying selection of mtDNA and autophagy
EISSN 1553-7404
ExternalDocumentID 2777433832
oai_doaj_org_article_0fce94f1f4ba413a93b5b45de327a754
oai_swepub_ki_se_448580
PMC9851501
A735691808
36608143
10_1371_journal_pgen_1010573
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GrantInformation_xml – fundername: Department of Health
  grantid: BRC-1215-20014
– fundername: Medical Research Council
  grantid: MR/M008886/1
– fundername: Medical Research Council
  grantid: MR/S005021/1
– fundername: Medical Research Council
  grantid: MC_UU_00028/7
– fundername: Medical Research Council
  grantid: MC_PC_13047
– fundername: Wellcome Trust
  grantid: 212219/Z/18/Z
– fundername: Medical Research Council
  grantid: MR/S035699/1
– fundername: Medical Research Council
  grantid: MC_UU_00015/9
– fundername: Medical Research Council
  grantid: MC_UP_1501/2
– fundername: Medical Research Council
  grantid: MC_UU_00015/7
– fundername: ;
  grantid: 2019.0109
– fundername: ;
  grantid: BRC-1215-20014
– fundername: ;
  grantid: AS-PG-18b-022
– fundername: ;
  grantid: RPG-2018-408
– fundername: ;
  grantid: ALTF 570-2019
– fundername: ;
  grantid: 2015-00418
– fundername: ;
  grantid: 2016-741366
– fundername: ;
  grantid: MC_UU_00028/7
– fundername: ;
  grantid: 212219/Z/18/Z
– fundername: ;
  grantid: MR/S035699/1
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTPV
AOWAS
D8T
PUEGO
ZZAVC
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c764t-e3a4026799a7ad36d686fbcfc0cf3367ac7bfdcb039b4ebfe13e15ac36451e463
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Sun Nov 05 00:20:31 EDT 2023
Wed Aug 27 01:27:03 EDT 2025
Mon Aug 25 03:37:54 EDT 2025
Thu Aug 21 18:38:50 EDT 2025
Fri Jul 11 10:58:30 EDT 2025
Fri Jul 25 12:07:55 EDT 2025
Tue Jun 17 21:28:22 EDT 2025
Tue Jun 10 20:37:23 EDT 2025
Fri Jun 27 06:04:45 EDT 2025
Fri Jun 27 05:54:11 EDT 2025
Fri Jun 27 05:52:37 EDT 2025
Thu May 22 21:21:12 EDT 2025
Mon Jul 21 06:08:16 EDT 2025
Tue Jul 01 03:42:13 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright: © 2023 Kremer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c764t-e3a4026799a7ad36d686fbcfc0cf3367ac7bfdcb039b4ebfe13e15ac36451e463
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
I have read the journal’s policy and the authors of this manuscript have the following competing interests: N.G.L. is inventor of the C5024T mutant mouse licensed to the pharmaceutical industry by the Max Planck Society. N.G.L. is a scientific founder and holds stock in Pretzel Therapeutics Inc. The other authors have no competing interests.
ORCID 0000-0001-7092-0468
0000-0003-2784-2040
0000-0002-7065-6617
0000-0001-5100-996X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1010573
PMID 36608143
PQID 2777433832
PQPubID 1436339
PageCount e1010573
ParticipantIDs plos_journals_2777433832
doaj_primary_oai_doaj_org_article_0fce94f1f4ba413a93b5b45de327a754
swepub_primary_oai_swepub_ki_se_448580
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9851501
proquest_miscellaneous_2761976986
proquest_journals_2777433832
gale_infotracmisc_A735691808
gale_infotracacademiconefile_A735691808
gale_incontextgauss_ISR_A735691808
gale_incontextgauss_ISN_A735691808
gale_incontextgauss_IOV_A735691808
gale_healthsolutions_A735691808
pubmed_primary_36608143
crossref_citationtrail_10_1371_journal_pgen_1010573
crossref_primary_10_1371_journal_pgen_1010573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-06
PublicationDateYYYYMMDD 2023-01-06
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References JM Palozzi (pgen.1010573.ref032) 2022; 34
HR Elliott (pgen.1010573.ref001) 2008; 83
S Altshuler-Keylin (pgen.1010573.ref010) 2017; 10
C Chang (pgen.1010573.ref020) 2021; 23
E Hagström (pgen.1010573.ref004) 2014; 42
DC Wallace (pgen.1010573.ref029) 2010; 51
GS Gorman (pgen.1010573.ref002) 2015; 77
K Tostes (pgen.1010573.ref033) 2022; 18
R Filograna (pgen.1010573.ref006) 2019; 5
T Murakawa (pgen.1010573.ref015) 2015; 6
X Ma (pgen.1010573.ref012) 2020; 9
K Okamoto (pgen.1010573.ref016) 2009; 17
AA Toye (pgen.1010573.ref028) 2005; 48
SP Jeedigunta (pgen.1010573.ref035) 2021; 22
M Lewandoski (pgen.1010573.ref038) 1997; 62
H Zhang (pgen.1010573.ref007) 2021; 7
SP Burr (pgen.1010573.ref005) 2018; 60
HJ Muller (pgen.1010573.ref036) 1964; 1
H Cheong (pgen.1010573.ref034) 2011; 108
JB Stewart (pgen.1010573.ref009) 2008; 9
S. Navani (pgen.1010573.ref024) 2011
E Villa (pgen.1010573.ref011) 2018; 28
AM Pickrell (pgen.1010573.ref014) 2015; 87
M Zachari (pgen.1010573.ref019) 2017; 61
JM Ross (pgen.1010573.ref030) 2013; 501
J Yan (pgen.1010573.ref018) 1998; 246
T Lieber (pgen.1010573.ref021) 2019; 570
D Narendra (pgen.1010573.ref013) 2008; 183
pgen.1010573.ref023
JP Burgstaller (pgen.1010573.ref026) 2014; 7
B Ma (pgen.1010573.ref025) 2019; 26
R Von Coelln (pgen.1010573.ref037) 2004; 101
T Kanki (pgen.1010573.ref017) 2009; 17
JHK Kauppila (pgen.1010573.ref008) 2016; 16
JB Stewart (pgen.1010573.ref003) 2014; 10
M Keogh (pgen.1010573.ref031) 2013; 18
J Yan (pgen.1010573.ref022) 1999; 18
W Wei (pgen.1010573.ref027) 2019; 364
References_xml – volume: 7
  start-page: 2031
  year: 2014
  ident: pgen.1010573.ref026
  article-title: MtDNA Segregation in Heteroplasmic Tissues Is Common InVivo and Modulated by Haplotype Differences and Developmental Stage
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.05.020
– volume: 18
  start-page: 463
  year: 2013
  ident: pgen.1010573.ref031
  article-title: Hereditary mtDNA heteroplasmy: A baseline for aging?
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.09.015
– volume: 570
  start-page: 380
  year: 2019
  ident: pgen.1010573.ref021
  article-title: Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline
  publication-title: Nature
  doi: 10.1038/s41586-019-1213-4
– volume: 246
  start-page: 222
  year: 1998
  ident: pgen.1010573.ref018
  article-title: Identification of mouse ULK1, a novel protein kinase structurally related to C. elegans UNC-51
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1998.8546
– volume: 60
  start-page: 21
  year: 2018
  ident: pgen.1010573.ref005
  article-title: Mitochondrial DNA Heteroplasmy and Purifying Selection in the Mammalian Female Germ Line
  publication-title: Dev Growth Differ
  doi: 10.1111/dgd.12420
– volume: 83
  start-page: 254
  year: 2008
  ident: pgen.1010573.ref001
  article-title: Pathogenic Mitochondrial DNA Mutations Are Common in the General Population
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2008.07.004
– volume: 1
  start-page: 2
  year: 1964
  ident: pgen.1010573.ref036
  article-title: The relation of recombination to mutational advance
  publication-title: Mutat Res—Fundam Mol Mech Mutagen
  doi: 10.1016/0027-5107(64)90047-8
– volume: 42
  start-page: 1111
  year: 2014
  ident: pgen.1010573.ref004
  article-title: No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt969
– volume: 501
  start-page: 412
  year: 2013
  ident: pgen.1010573.ref030
  article-title: Germline mitochondrial DNA mutations aggravate ageing and can impair brain development
  publication-title: Nature
  doi: 10.1038/nature12474
– volume: 16
  start-page: 2980
  year: 2016
  ident: pgen.1010573.ref008
  article-title: A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.08.037
– volume: 10
  year: 2017
  ident: pgen.1010573.ref010
  article-title: Mitochondrial homeostasis in adipose tissue remodeling
  publication-title: Sci Signal
  doi: 10.1126/scisignal.aai9248
– volume: 183
  start-page: 795
  year: 2008
  ident: pgen.1010573.ref013
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200809125
– volume: 364
  year: 2019
  ident: pgen.1010573.ref027
  article-title: Germline selection shapes human mitochondrial DNA diversity
  publication-title: Science
– volume: 62
  start-page: 159
  year: 1997
  ident: pgen.1010573.ref038
  article-title: Analysis of Fgf8 gene function in vertebrate development
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/SQB.1997.062.01.021
– volume: 26
  start-page: 105
  year: 2019
  ident: pgen.1010573.ref025
  article-title: Molecular characteristics of early-stage female germ cells revealed by RNA sequencing of low-input cells and analysis of genome-wide DNA methylation
  publication-title: DNA Res
  doi: 10.1093/dnares/dsy042
– volume: 18
  start-page: 2397
  year: 2022
  ident: pgen.1010573.ref033
  article-title: Autophagy deficiency abolishes liver mitochondrial DNA segregation
  publication-title: Autophagy
  doi: 10.1080/15548627.2022.2038501
– volume: 9
  start-page: 657
  year: 2008
  ident: pgen.1010573.ref009
  article-title: Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2396
– volume: 77
  start-page: 753
  year: 2015
  ident: pgen.1010573.ref002
  article-title: Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.24362
– volume: 22
  start-page: 55
  year: 2021
  ident: pgen.1010573.ref035
  article-title: Avoiding Extinction: Recent Advances in Understanding Mechanisms of Mitochondrial DNA Purifying Selection in the Germline
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev-genom-121420-081805
– volume: 17
  start-page: 87
  year: 2009
  ident: pgen.1010573.ref016
  article-title: Mitochondria-Anchored Receptor Atg32 Mediates Degradation of Mitochondria via Selective Autophagy
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2009.06.013
– volume: 18
  start-page: 5850
  year: 1999
  ident: pgen.1010573.ref022
  article-title: Mouse ULK2, a novel member of the UNC-51-like protein kinases: Unique features of functional domains
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1202988
– volume: 51
  start-page: 440
  year: 2010
  ident: pgen.1010573.ref029
  article-title: Mitochondrial DNA mutations in disease and aging
  publication-title: Environ Mol Mutagen
  doi: 10.1002/em.20586
– volume: 108
  start-page: 11121
  year: 2011
  ident: pgen.1010573.ref034
  article-title: Ammonia-induced autophagy is independent of ULK1/ULK2 kinases
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1107969108
– ident: pgen.1010573.ref023
– volume: 5
  year: 2019
  ident: pgen.1010573.ref006
  article-title: Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aav9824
– volume: 101
  start-page: 10744
  year: 2004
  ident: pgen.1010573.ref037
  article-title: Loss of locus coeruleus neurons and reduced startle in parkin null mice
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0401297101
– volume: 17
  start-page: 98
  year: 2009
  ident: pgen.1010573.ref017
  article-title: Atg32 Is a Mitochondrial Protein that Confers Selectivity during Mitophagy
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2009.06.014
– volume: 28
  start-page: 882
  year: 2018
  ident: pgen.1010573.ref011
  article-title: No Parkin Zone: Mitophagy without Parkin
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2018.07.004
– volume: 48
  start-page: 675
  year: 2005
  ident: pgen.1010573.ref028
  article-title: A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-005-1680-z
– volume: 23
  start-page: 450
  year: 2021
  ident: pgen.1010573.ref020
  article-title: Autophagosome biogenesis comes out of the black box
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-021-00669-y
– volume: 61
  start-page: 585
  year: 2017
  ident: pgen.1010573.ref019
  article-title: The mammalian ULK1 complex and autophagy initiation
  publication-title: Essays Biochem
  doi: 10.1042/EBC20170021
– start-page: 27
  year: 2011
  ident: pgen.1010573.ref024
  article-title: The human protein atlas
  publication-title: Journal of Obstetrics and Gynecology of India
  doi: 10.1007/s13224-011-0013-z
– volume: 87
  start-page: 371
  year: 2015
  ident: pgen.1010573.ref014
  article-title: Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.034
– volume: 10
  year: 2014
  ident: pgen.1010573.ref003
  article-title: Keeping mtDNA in Shape between Generations
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004670
– volume: 7
  start-page: 5657
  year: 2021
  ident: pgen.1010573.ref007
  article-title: Mitochondrial DNA heteroplasmy is modulated during oocyte development propagating mutation transmission
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abi5657
– volume: 6
  start-page: 1
  year: 2015
  ident: pgen.1010573.ref015
  article-title: Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation
  publication-title: Nat Commun
  doi: 10.1038/ncomms8527
– volume: 9
  start-page: 837
  year: 2020
  ident: pgen.1010573.ref012
  article-title: Role and Mechanisms of Mitophagy in Liver Diseases
  publication-title: Cells
  doi: 10.3390/cells9040837
– volume: 34
  start-page: 1809
  year: 2022
  ident: pgen.1010573.ref032
  article-title: Mitochondrial DNA quality control in the female germline requires a unique programmed mitophagy
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2022.10.005
SSID ssj0035897
Score 2.4501085
Snippet Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as...
SourceID plos
doaj
swepub
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1010573
SubjectTerms Analysis
Animal models
Animals
Autophagy
Autophagy (Cytology)
Autophagy - genetics
Biology and Life Sciences
Cell death
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Engineering and Technology
Female
Females
Gene expression
Gene mutations
Genetic aspects
Genetic engineering
Genetic research
Germ Cells - metabolism
Health aspects
Infectious Disease Transmission, Vertical
Kinases
Mammals - genetics
Methods
Mice
Mitochondria
Mitochondria - genetics
Mitochondrial diseases
Mitochondrial DNA
Molecular modelling
Mothers
Mutation
Parkin protein
Prevention
Proteins
Proto-Oncogene Proteins c-bcl-2 - genetics
Proto-Oncogene Proteins c-bcl-2 - metabolism
Recombination
Research and Analysis Methods
Risk factors
Statistical analysis
Stochasticity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hSEhcEO8GCiwIwcl07X36mBaqFpUgAUW9WfsMEcWJmuTQf8_srmNhUak9cLO8s5Y8MzsPe-YbhN6AS3LKE1loUoaCOaIK0JtQEMeN8F5RJ2Nz8uepODpln8742V-jvmJNWIYHzozbI8H6moUyMKPB4OqaGm4Yd55WUkuekEDB522TqWyDKVd5rArntJCQ1ndNc1SWe52M3i9BQDF3jYiAA6eUsPt7Cz1ani9WV4Wf_1ZRDrBGk386vIfudoElnuQXuo9u-fYBup1HTV4-RMcTHAsJMcSoeP_gpDopKdatw3oTkQX07BLPWzwDMx3DTrzcXMxTAxRepTk5IDy8CPj3-sN08gidHn78fnBUdGMUCisFWxeeahbnTNW1ltpR4YQSwdhgiQ2UCqmtNMFZQ2htmDfBl9SXXNv4g7L0TNDHaNQuWr-DsHREuIor4x1lynITSKiJAp8WAhNajBHd8rGxHcZ4HHVx3qQfZxJyjcyNJnK_6bg_RkW_a5kxNq6h348i6mkjQna6AXrTdHrTXKc3Y_QyCrjJ7ab9OW8mknJRl4qoMXqdKCJKRhvLcGZ6s1o1x19-3IDo2_QmRF8HRO86orAAnlnd9UcA5yNE14Byd0AJBsEOlneizm5Zt2oqCTF-_BRRwc6tHl-9_Kpfjg-N9XetX2wiDSTaUtQKRPwkq33PfioExJUMxCIHB2Ign-FKO_-ZkMxriPc5KcfobT46gy3drV9w5RvGFFfk6f-Q_DN0p4JINX1HE7totL7Y-OcQWa7Ni2RE_gBSU3SY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9NAFB5BEBIXxN5AgQEhOJmOPatPKC1ULSpBAopys8azpBHFDnFy6L9nnj0xsqigN8vzxrLe_mb5HkKvQkiyyhGZaJL6hFmikqA3PiGWl8I5Ra2Ey8mfpuLolH2c8VlccGviscqtT2wdta0NrJHvZTIkKlBPZe-WvxLoGgW7q7GFxnV0A6DLQKvlrC-4KFddcxXOaSJDcR-vzlGZ7kVJvV0GMUEFC7iAg9DUIvj3fnq0PK-by5LQv89SDhBH2yh1eAfdjuklnnT6cBddc9U9dLNrOHlxHx1PMBwnxCFTxfsHJ9lJSrGuLNYbwBfQ8wu8qPA8OGtIPvFys1q016Bw03bLCSLEtcc_1--nkwfo9PDDt4OjJDZTSIwUbJ04qhl0m8pzLbWlwgolfGm8IcZTKqQ2svTWlITmJXOldyl1KdcGtilTxwR9iEZVXbkdhKUlwmZclc5SpgwvPfE5USGyec-EFmNEt3wsTEQah4YX50W7fSZDxdFxowDuF5H7Y5T0s5Yd0sZ_6PdBRD0t4GS3L-rVvIhmVxBvXM586lmpQ7jWOS15ybh1NJNacjZGz0HARXfptLf2YiIpF3mqiBqjly0FYGVUcBhnrjdNUxx__n4Foq_TqxB9GRC9iUS-DjwzOt6SCJwHoK4B5e6AMrgFMxjeAZ3dsq4p_hhQmLnV48uHX_TD8FE4hVe5egM0odyWIldBxI86te_ZT4UI2SULYpEDgxjIZzhSLc5aPPM8ZP2cpGP0ujOdwZT46kd4cgVjiivy-N___wTdykIm2q6TiV00Wq827mnIHNfls9Y9_AY8BGu4
  priority: 102
  providerName: ProQuest
Title A role for BCL2L13 and autophagy in germline purifying selection of mtDNA
URI https://www.ncbi.nlm.nih.gov/pubmed/36608143
https://www.proquest.com/docview/2777433832
https://www.proquest.com/docview/2761976986
https://pubmed.ncbi.nlm.nih.gov/PMC9851501
http://kipublications.ki.se/Default.aspx?queryparsed=id:151938532
https://doaj.org/article/0fce94f1f4ba413a93b5b45de327a754
http://dx.doi.org/10.1371/journal.pgen.1010573
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8IL5XGMUgBE-ZnNixnQeE2rFpQ1tBg6K-Rf4sFSUtTSvR_x7bSSNFdGJvUXwXKffhO3_c7wB440KS5gaxSKDYRkQjHjm7sRHSqaTGcKyZL06-GtLzEfk0Tsd7YNuztRZguXNp5_tJjZaz4z-_Nx-cw78PXRtYvGU6XjiR-9Wox_jbBwcuNjHf0-CKNOcKOOUZqwvobuJsBaiA49_M1p3FbF7uSkX_vVHZwh0NsersPrhXJ5mwX1nFA7BniofgTtV2cvMIXPShv1QIXb4KByeXyWWMoSg0FGuPMiAmGzgt4MRN2T4FhYv1chqKoWAZeuY4RcK5hb9WH4f9x2B0dvrt5DyqWypEilGyigwWxPecyjLBhMZUU06tVFYhZTGmTCgmrVYS4UwSI62JsYlTofxhZWwIxU9Ap5gX5hBAphHVScql0ZhwlUqLbIa4i2_WEipoF-CtHHNV4437thezPByiMbfuqKSRe-nntfS7IGq4FhXexn_oB15FDa1Hyw4v5stJXjtfjqwyGbGxJVK4oC0yLFNJUm1wwgRLSRe89ArOq9LTxufzPsMpzWKOeBe8DhQeMaPwV3ImYl2W-cXn77cg-jq8DdF1i-hdTWTnTmZK1LUSTvIerqtFedSidJODag0fepvdiq7ME-byfb8tkTjOrR3vHn7VDPuP-rt4hZmvPY1bdDOacafip5XZN-LHlLockzi1sJZDtPTTHimmPwKqeeZy_xTFXfC2cp0WS_3qp3syOSE85ejZzb_2HNxNXC4adsroEeislmvzwuWOK9kD-2zMeuBgcDr8ct0LOzC9MEX8BXRmcUQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VIgQXxN5AoQNiOZmOPasPCKUtVUPTIEGLcjPjWUJFsUOTCPVP8Rt5YztGFhX00lvk-caK3nvzFs9bEHoOJskqR2SkSewjZomKQG58RCzPhXOKWhmKkw9GYu-IvR_z8Qr6tayFCWmVS51YKWpbmvCNfDOR4KiEeCp5O_0RhalR4XZ1OUKjFot9d_YTQrbZm8EO8PdFkuy-O9zei5qpApGRgs0jRzULY5fSVEttqbBCCZ8bb4jxlAqpjcy9NTmhac5c7l1MXcy1Cfd1sWOCwnuvoKtgeEkI9uS4DfAoV_UwF85pJGlKmlI9KuPNRjJeT0EsQsQc-hB2TGE1MaC1C6vTk3J2ntP7d-5mp8NpZRV3b6GbjTuL-7X83UYrrriDrtUDLs_uokEfh_RFDJ4x3toeJsOYYl1YrBehn4GenOHjAk_AOARnF08Xp8dV2RWeVdN5QGRw6fH3-c6ofw8dXQqZ76PVoizcGsLSEmETrnJnKVOG5574lCiwpN4zoUUP0SUdM9N0Ng8DNk6y6rpOQoRTUyML1M8a6vdQ1O6a1p09_oPfCixqsaEvd_WgPJ1kzTHPiDcuZT72LNfgHuiU5jxn3DqaSC0566GNwOCsLnJttUvWl5SLNFZE9dCzChF6cxQh-WeiF7NZNvjw-QKgT6OLgD52QK8akC-BZkY3VRlA-dAYrINc7yBBDZnO8lqQ2SXpZtmfAws7l3J8_vLTdjm8NGT9Fa5cBAyE91KkClj8oBb7lvxUCPBmGbBFdg5Ehz_dleL4a9U_PYUog5O4h17WR6ezpXn0DX65jDHFFXn47_-_ga7vHR4Ms-FgtP8I3UjAC66-0Yl1tDo_XbjH4LXO8yeVqsDoy2Xrpt-7Gao5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVCAuiL2BQgfEcjIde1YfEEo3NbSEqlDUmxnPEiqKHZpEqH-NX8cbL0EWCHrpLfJ8Y0XvvXmL5y0IPQOTZJUjMtIk9hGzREUgNz4ilufCOUWtDMXJ70Zi94i9PebHS-hnWwsT0ipbnVgpalua8I18PZHgqIR4Kln3TVrEwdbOm8n3KEyQCjet7TiNWkT23PkPCN-mr4dbwOvnSbKz_XFzN2omDERGCjaLHNUsjGBKUy21pcIKJXxuvCHGUyqkNjL31uSEpjlzuXcxdTHXJtzdxY4JCu-9gpZliIp6aHlje3Rw2NoBylU92oVzGkmakqZwj8p4vZGTVxMQkhA_h66EHcNYzQ9YWIne5LSc_s0F_jOTs9PvtLKROzfRjca5xYNaGm-hJVfcRlfrcZfnd9BwgEMyIwY_GW9s7if7McW6sFjPQ3cDPT7HJwUeg6kIri-ezM9OqiIsPK1m9YAA4dLjb7Ot0eAuOroUQt9DvaIs3ArC0hJhE65yZylThuee-JQosKveM6FFH9GWjplp-pyHcRunWXV5JyHeqamRBepnDfX7KFrsmtR9Pv6D3wgsWmBDl-7qQXk2zppDnxFvXMp87FmuwVnQKc15zrh1NJFactZHa4HBWV3yutA12UBSLtJYEdVHTytE6NRRBJkf6_l0mg3ff7oA6MPoIqDDDuhlA_Il0MzopkYDKB_ahHWQqx0kKCXTWV4JMtuSbpr9Pr6ws5Xjvy8_WSyHl4YcwMKV84CBYF-KVAGL79divyA_FQJ8WwZskZ0D0eFPd6U4-VJ1U08h5uAk7qMX9dHpbGkefYVfLmNMcUUe_Pv_r6FroJey_eFo7yG6noBLXH2wE6uoNzubu0fgws7yx42uwOjzZaunXwG9r9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+role+for+BCL2L13+and+autophagy+in+germline+purifying+selection+of+mtDNA&rft.jtitle=PLoS+genetics&rft.au=Kremer%2C+Laura&rft.au=Lyuba+V.+Bozhilova+https%3A%2F%2Forcid.org%2F0000-0003-2784-2040&rft.au=Rubalcava-Gracia%2C+Diana&rft.au=Filograna%2C+Roberta&rft.date=2023-01-06&rft.pub=Public+Library+of+Science&rft.eissn=1553-7404&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pgen.1010573&rft.externalDocID=2777433832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon