ABA-Mediated ROS in Mitochondria Regulate Root Meristem Activity by Controlling PLETHORA Expression in Arabidopsis
Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) prote...
Saved in:
Published in | PLoS genetics Vol. 10; no. 12; p. e1004791 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.12.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis. |
---|---|
AbstractList | Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis. Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis. Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An ab a o verly sensitive mutant, abo8-1 , which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1 . We also found that ABA inhibits the expression of PLETHORA1 ( PLT1 ) and PLT2 , and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis . Abscisic acid (ABA) plays crucial roles in plant growth and development, and also in plant responses to abiotic and biotic stresses. ABA can stimulate the production of reactive oxygen species (ROS) that act as signals in low concentrations, but as cell-damaging agents in high concentrations. A mutation in ABO8 , encoding a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3, leads to hypersensitivity to ABA in root growth, and root tips of the abo8-1 mutants accumulate more ROS than those of the wild type; this accumulation of ROS in abo8-1 root tips is enhanced by ABA treatment. We also found that auxin signaling and/or accumulation is greatly reduced in root tips of the abo8-1 mutants. Addition of the reducing agent GSH to the growth medium partially recovers the root hypersensitivity to ABA, and also the ABA-inhibited expression of PLT1/2 in abo8-1 . Furthermore, the inducible expression of PLT2 largely rescues the root growth defect of abo8-1 with and without ABA treatment. Our results reveal the important roles of ROS in regulating root meristem activity in the ABA signaling pathway. Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis.Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis. Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-7, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-7. We also found that ABA inhibits the expression of PLETHORA7 (PLT7) and PLT2, and that root growth is more sensitive to ABA in the plt7 and plt2 mutants than in the wild type. The expression of PLT7 and PLT2 is significantly reduced in the abo8-7 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-7 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis. |
Audience | Academic |
Author | Zhang, Jing Duan, Ying Hua, Deping Chen, Zhizhong Yang, Li Qin, Yingying He, Junna Gong, Zhizhong |
AuthorAffiliation | 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China 2 National Center for Plant Gene Research, Beijing, China National University of Singapore and Temasek Life Sciences Laboratory, Singapore |
AuthorAffiliation_xml | – name: National University of Singapore and Temasek Life Sciences Laboratory, Singapore – name: 2 National Center for Plant Gene Research, Beijing, China – name: 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China |
Author_xml | – sequence: 1 givenname: Li surname: Yang fullname: Yang, Li – sequence: 2 givenname: Jing surname: Zhang fullname: Zhang, Jing – sequence: 3 givenname: Junna surname: He fullname: He, Junna – sequence: 4 givenname: Yingying surname: Qin fullname: Qin, Yingying – sequence: 5 givenname: Deping surname: Hua fullname: Hua, Deping – sequence: 6 givenname: Ying surname: Duan fullname: Duan, Ying – sequence: 7 givenname: Zhizhong surname: Chen fullname: Chen, Zhizhong – sequence: 8 givenname: Zhizhong surname: Gong fullname: Gong, Zhizhong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25522358$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk1-r0zAYxosc8fzRbyBaEEQvNpOmSdtzIdQxPYPNyc7R25CmaZeRJTNJD2ff3sxtsoqIkoukye95-vLwvpfRmTZaRNFzCIYQZfDdynRWMzXctEIPIQBpVsBH0QXEGA2yFKRnJ-fz6NK5FQAI50X2JDpPME6S8HER2fJDOZiJWjIv6ngxv42ljmfSG740uraSxQvRdiq8xgtjfDwTVjov1nHJvbyXfhtX23hktLdGKanb-Mt0fHczX5Tx-GFjhXPS6J1laVkla7Nx0j2NHjdMOfHssF9FXz-O70Y3g-n802RUTgc8I6kf8JTkoBKE85xwAEmTi6aBOEuaQjQ1YnUlEsKqBsEG5CRlTcYwggjDmtcZSGt0Fb3c-26UcfQQl6OQ5BgigpIsEJM9URu2ohsr18xuqWGS_rwwtqXMesmVoDnCmMOkyFkFUpilRZEQUuUEVlWoQ4Dg9f7wt65ai5qLEAlTPdP-i5ZL2pp7miahWlwEgzcHA2u-d8J5upaOC6WYFqbb1Y2KIsMoJQF9tUdbFkqTujHBke9wWqKCZGGBPFDDP1Bh1WIteWimRob7nuBtTxAYLx58yzrn6OR28R_s539n59_67OsTdimY8ktnVOdDH7k--OI0719BH1s7ANd7gFvjnBUN5dKznU-IQSoKAd3N0bEx6G6O6GGOgjj9TXz0_6vsBw4hIPE |
CitedBy_id | crossref_primary_10_1186_s12284_021_00463_2 crossref_primary_10_1007_s00299_023_03013_w crossref_primary_10_1016_j_plaphy_2024_108352 crossref_primary_10_1186_s12284_019_0364_0 crossref_primary_10_3389_fpls_2022_986414 crossref_primary_10_3390_ijms23094540 crossref_primary_10_3390_antiox13050554 crossref_primary_10_1016_j_tplants_2024_03_005 crossref_primary_10_1007_s00299_016_1961_7 crossref_primary_10_1093_jxb_erab360 crossref_primary_10_3390_cells8121585 crossref_primary_10_1111_pce_14036 crossref_primary_10_1093_pcp_pcz083 crossref_primary_10_3389_fpls_2024_1456414 crossref_primary_10_1016_j_agwat_2021_106987 crossref_primary_10_1093_pcp_pcae108 crossref_primary_10_1093_pcp_pcaa028 crossref_primary_10_1186_s12866_024_03479_y crossref_primary_10_1007_s11103_020_01022_x crossref_primary_10_1093_jxb_erz348 crossref_primary_10_1016_j_xplc_2020_100048 crossref_primary_10_1093_plcell_koac106 crossref_primary_10_3390_proteomes5030022 crossref_primary_10_1105_tpc_20_00301 crossref_primary_10_1371_journal_pgen_1007144 crossref_primary_10_1007_s10577_019_09611_3 crossref_primary_10_1093_aob_mcx082 crossref_primary_10_1016_j_tplants_2018_07_010 crossref_primary_10_1093_jxb_erx172 crossref_primary_10_3389_fpls_2022_1001023 crossref_primary_10_1016_j_plgene_2019_100182 crossref_primary_10_1111_jipb_12506 crossref_primary_10_3390_ijms25179157 crossref_primary_10_1016_j_plaphy_2020_08_045 crossref_primary_10_1093_jxb_erae415 crossref_primary_10_1186_s12870_020_02467_4 crossref_primary_10_3389_fphys_2017_01037 crossref_primary_10_1016_j_jplph_2018_12_005 crossref_primary_10_1111_nph_13882 crossref_primary_10_1016_j_scienta_2021_110643 crossref_primary_10_1093_femsle_fnaa170 crossref_primary_10_1002_fes3_458 crossref_primary_10_15252_embr_201948967 crossref_primary_10_1016_j_jare_2022_04_007 crossref_primary_10_1093_pcp_pcae086 crossref_primary_10_3390_app10186322 crossref_primary_10_1371_journal_pgen_1006175 crossref_primary_10_1111_nph_18657 crossref_primary_10_1111_tpj_14441 crossref_primary_10_1038_s42003_022_03998_2 crossref_primary_10_1093_plphys_kiac601 crossref_primary_10_1016_j_pbi_2015_10_012 crossref_primary_10_1093_jxb_erw171 crossref_primary_10_1007_s00299_021_02721_5 crossref_primary_10_1038_s41598_018_21560_1 crossref_primary_10_3390_plants13111469 crossref_primary_10_1093_jxb_erw331 crossref_primary_10_1016_j_plaphy_2018_04_007 crossref_primary_10_1111_jipb_13020 crossref_primary_10_1007_s11356_021_16241_y crossref_primary_10_1073_pnas_2205305119 crossref_primary_10_3389_fpls_2017_00871 crossref_primary_10_3389_fpls_2020_485932 crossref_primary_10_1016_j_celrep_2017_12_105 crossref_primary_10_3390_toxics12050374 crossref_primary_10_1007_s10811_024_03410_y crossref_primary_10_1016_j_jhazmat_2022_128366 crossref_primary_10_1093_plphys_kiab101 crossref_primary_10_12677_IJE_2023_122026 crossref_primary_10_1007_s00425_023_04283_0 crossref_primary_10_1007_s12374_019_0230_z crossref_primary_10_1016_j_freeradbiomed_2018_04_005 crossref_primary_10_1093_jxb_eraa608 crossref_primary_10_3390_ijms231810656 crossref_primary_10_1016_j_ymeth_2016_07_009 crossref_primary_10_1016_j_plaphy_2023_108273 crossref_primary_10_1016_j_molp_2022_07_010 crossref_primary_10_1016_j_jplph_2023_154000 crossref_primary_10_1111_tpj_16683 crossref_primary_10_3390_agronomy10091323 crossref_primary_10_1016_j_jplph_2023_154082 crossref_primary_10_3390_molecules22010015 crossref_primary_10_1016_j_pbi_2019_04_006 crossref_primary_10_3390_ijms23042063 crossref_primary_10_1016_j_plantsci_2021_110821 crossref_primary_10_1038_s41422_018_0024_8 crossref_primary_10_1080_15592324_2015_1071002 crossref_primary_10_1038_s41438_021_00589_w crossref_primary_10_1007_s00299_024_03281_0 crossref_primary_10_1038_s41467_024_50720_3 crossref_primary_10_1242_dev_175919 crossref_primary_10_3389_fpls_2024_1354418 crossref_primary_10_1016_j_stress_2024_100359 crossref_primary_10_1080_15548627_2018_1520547 crossref_primary_10_1111_pce_13021 crossref_primary_10_3390_plants13172366 crossref_primary_10_1515_hsz_2018_0463 crossref_primary_10_1038_s41598_024_80143_5 crossref_primary_10_1080_15592324_2018_1500069 crossref_primary_10_1093_plphys_kiad516 crossref_primary_10_1093_bbb_zbae195 crossref_primary_10_3389_fpls_2021_772567 crossref_primary_10_1111_tpj_15361 crossref_primary_10_1007_s40502_016_0259_7 crossref_primary_10_1073_pnas_2204862119 crossref_primary_10_1007_s11103_021_01238_5 crossref_primary_10_3390_genes12040525 crossref_primary_10_1093_pcp_pcaa070 crossref_primary_10_1093_jxb_erab274 crossref_primary_10_3390_cells9122576 crossref_primary_10_1007_s40626_021_00212_2 crossref_primary_10_1016_j_sajb_2023_08_006 crossref_primary_10_1016_j_ijbiomac_2024_136753 crossref_primary_10_1080_19420889_2018_1526604 crossref_primary_10_1016_j_plantsci_2022_111369 crossref_primary_10_1093_plphys_kiaa077 crossref_primary_10_1111_jipb_13326 crossref_primary_10_1093_plphys_kiac530 crossref_primary_10_1016_j_nbt_2016_02_008 crossref_primary_10_1093_pcp_pcz153 crossref_primary_10_1016_j_biocel_2017_05_014 crossref_primary_10_1016_j_plaphy_2023_108307 crossref_primary_10_1007_s44154_022_00036_3 crossref_primary_10_3389_fpls_2019_00468 crossref_primary_10_1038_s41598_020_58495_5 crossref_primary_10_1093_aob_mcz184 crossref_primary_10_3389_fpls_2021_659155 crossref_primary_10_1111_pbi_13765 crossref_primary_10_3389_fpls_2024_1462235 crossref_primary_10_3390_ijms23116236 crossref_primary_10_1093_jxb_erz357 crossref_primary_10_15252_embr_202050164 crossref_primary_10_1016_j_jare_2022_11_005 crossref_primary_10_1016_j_plantsci_2020_110604 crossref_primary_10_1371_journal_pgen_1006251 crossref_primary_10_1016_j_bbrc_2015_10_028 crossref_primary_10_1093_plphys_kiac407 crossref_primary_10_3390_ijms21051886 crossref_primary_10_1007_s10725_024_01135_z crossref_primary_10_3389_fpls_2015_01091 crossref_primary_10_1016_j_plantsci_2018_02_005 crossref_primary_10_1111_tpj_14762 crossref_primary_10_1016_j_envexpbot_2022_105188 crossref_primary_10_1007_s12374_016_0052_1 crossref_primary_10_1093_jxb_ery275 crossref_primary_10_1016_j_bbrc_2021_09_022 crossref_primary_10_3389_fpls_2022_882596 crossref_primary_10_1093_jxb_erab332 crossref_primary_10_3390_ijms21124548 crossref_primary_10_1042_BCJ20230026 crossref_primary_10_1111_nph_18287 crossref_primary_10_1146_annurev_arplant_050718_100423 crossref_primary_10_3390_ijms23137427 crossref_primary_10_1111_nph_16786 crossref_primary_10_3389_fpls_2021_660274 crossref_primary_10_1111_tpj_16953 crossref_primary_10_1080_07388551_2023_2286428 crossref_primary_10_1093_jxb_erae161 crossref_primary_10_1038_s44319_025_00412_w crossref_primary_10_3390_ijms221910892 crossref_primary_10_3389_fpls_2024_1330061 crossref_primary_10_3389_fpls_2022_987077 crossref_primary_10_1038_srep43897 crossref_primary_10_3389_fpls_2022_1050132 crossref_primary_10_3390_biology13121033 crossref_primary_10_3389_fpls_2018_00416 crossref_primary_10_1111_jipb_12654 crossref_primary_10_1111_nph_16028 crossref_primary_10_3389_fpls_2019_00522 crossref_primary_10_1016_j_celrep_2017_11_077 crossref_primary_10_1016_j_ygeno_2022_110307 crossref_primary_10_1111_nph_16824 |
Cites_doi | 10.1016/j.plaphy.2009.11.005 10.1111/j.1365-3040.2011.02336.x 10.1105/tpc.110.082420 10.1038/nature06206 10.1073/pnas.94.6.2745 10.1111/j.1365-313X.2011.04883.x 10.1016/j.cub.2008.04.034 10.1038/378062a0 10.1093/jxb/ert152 10.1007/s00425-012-1696-9 10.1111/j.1365-313X.2010.04280.x 10.1016/S0092-8674(03)00924-3 10.1093/mp/sst102 10.1093/nar/gkg153 10.1046/j.1365-313x.1998.00262.x 10.1104/pp.109.141770 10.1093/jxb/ers188 10.1111/j.1365-313X.2012.04998.x 10.1093/nar/gkt337 10.1105/tpc.113.114421 10.1105/tpc.113.117028 10.1105/tpc.109.069906 10.1105/tpc.010471 10.1074/jbc.M113.496828 10.1111/j.1469-8137.2008.02431.x 10.1105/tpc.109.071225 10.1111/j.1365-313X.2010.04258.x 10.1111/j.1365-313X.2009.04082.x 10.1105/tpc.110.075721 10.1111/j.1365-313X.2009.04076.x 10.1242/dev.00359 10.1111/j.1365-313X.2010.04390.x 10.1093/pcp/pcs069 10.1111/j.1365-3040.2011.02387.x 10.1016/j.tplants.2007.01.004 10.1016/S1360-1385(03)00135-3 10.1111/j.1365-3040.2011.02324.x 10.1105/tpc.12.1.97 10.1105/tpc.9.11.1963 10.1016/j.tplants.2011.03.007 10.1093/pcp/pcj051 10.1007/s11103-010-9667-7 10.1105/tpc.112.098707 10.1016/j.tplants.2004.12.002 10.1111/j.1365-313X.2010.04460.x 10.1093/emboj/cdg277 10.1016/j.cell.2004.09.018 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Yang et al 2014 Yang et al 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 10(12): e1004791. doi:10.1371/journal.pgen.1004791 |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Yang et al 2014 Yang et al – notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 10(12): e1004791. doi:10.1371/journal.pgen.1004791 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1004791 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journal Collection |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | ABA-Mediated ROS Regulate Root Growth |
EISSN | 1553-7404 |
ExternalDocumentID | 1685136327 oai_doaj_org_article_8355c1298ab0417499266b861bbbe2e0 PMC4270459 A396767608 25522358 10_1371_journal_pgen_1004791 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB PV9 RIG RZL WOQ PMFND 7X8 5PM PUEGO - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c764t-c4680be6cc86c016f8eff1572f9efd3adbe26abf31f0864af7a531351dcd704d3 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Fri Nov 26 17:13:30 EST 2021 Wed Aug 27 01:30:42 EDT 2025 Thu Aug 21 18:25:07 EDT 2025 Tue Aug 05 09:53:54 EDT 2025 Tue Jun 17 21:35:54 EDT 2025 Tue Jun 10 20:22:17 EDT 2025 Fri Jun 27 05:11:49 EDT 2025 Fri Jun 27 04:32:08 EDT 2025 Fri Jun 27 05:05:25 EDT 2025 Thu May 22 21:05:22 EDT 2025 Mon Jul 21 06:00:13 EDT 2025 Tue Jul 01 04:31:24 EDT 2025 Thu Apr 24 23:03:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c764t-c4680be6cc86c016f8eff1572f9efd3adbe26abf31f0864af7a531351dcd704d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. Conceived and designed the experiments: LY ZG. Performed the experiments: LY JZ JH YQ DH YD. Analyzed the data: LY JZ ZG. Contributed reagents/materials/analysis tools: ZC ZG. Wrote the paper: LY ZG. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1004791 |
PMID | 25522358 |
PQID | 1639975346 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1685136327 doaj_primary_oai_doaj_org_article_8355c1298ab0417499266b861bbbe2e0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4270459 proquest_miscellaneous_1639975346 gale_infotracmisc_A396767608 gale_infotracacademiconefile_A396767608 gale_incontextgauss_ISR_A396767608 gale_incontextgauss_ISN_A396767608 gale_incontextgauss_IOV_A396767608 gale_healthsolutions_A396767608 pubmed_primary_25522358 crossref_citationtrail_10_1371_journal_pgen_1004791 crossref_primary_10_1371_journal_pgen_1004791 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2014 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | P Wang (ref5) 2008; 178 CS Cobbett (ref13) 1998; 16 MJ Iglesias (ref17) 2010; 74 R Mittler (ref2) 2011; 16 Q Zhu (ref43) 2013; 7 N Suzuki (ref3) 2012; 35 T Vernoux (ref14) 2000; 12 N Nakagawa (ref41) 2006; 47 K Overmyer (ref9) 2003; 8 T Bashandy (ref16) 2010; 22 C Galinha (ref27) 2007; 449 H Yuan (ref44) 2012; 70 K Nakajima (ref30) 2002; 14 L Rubinovich (ref11) 2010; 64 T Nakamura (ref32) 2012; 53 K Jiang (ref46) 2003; 130 A Holzle (ref35) 2011; 65 I Keren (ref42) 2012; 71 VB Tognetti (ref4) 2012; 35 K Shibasaki (ref26) 2009; 21 TY Sung (ref37) 2010; 63 JM Kwak (ref18) 2003; 22 A Pencik (ref20) 2013; 25 XY Yang (ref47) 2011; 23 E Benkova (ref25) 2003; 115 P Achard (ref10) 2008; 18 Y Liu (ref21) 2010; 63 T Ban (ref22) 2013; 288 G Mohr (ref40) 2003; 31 MC De Pinto (ref7) 2012; 35 M Aida (ref28) 2004; 119 M Murayama (ref36) 2012; 63 J Tang (ref38) 2010; 61 G Potters (ref8) 2007; 12 J He (ref19) 2012; 24 WA Peer (ref45) 2013; 64 X Yu (ref15) 2013; 25 R Sanchez-Fernandez (ref12) 1997; 94 C van den Berg (ref29) 1995; 378 MC De Tullio (ref1) 2010; 48 T Ulmasov (ref24) 1997; 9 D Verbitskiy (ref39) 2010; 61 W Zhou (ref31) 2010; 22 N Haili (ref34) 2013; 41 EH Meyer (ref23) 2009; 151 AH Millar (ref33) 2005; 10 JA O'Brien (ref6) 2012; 236 19919573 - Plant J. 2010 Feb 1;61(3):446-55 12588857 - Development. 2003 Apr;130(7):1429-38 20661628 - Plant Mol Biol. 2010 Oct;74(3):215-22 22821940 - J Exp Bot. 2012 Sep;63(14):5301-10 21486305 - Plant Cell Environ. 2012 Feb;35(2):259-70 21482172 - Trends Plant Sci. 2011 Jun;16(6):300-9 9807829 - Plant J. 1998 Oct;16(1):73-8 19929879 - Plant J. 2010 Feb 1;61(3):456-66 22248025 - Plant J. 2012 May;70(3):432-44 22429648 - Plant J. 2012 Aug;71(3):413-26 12773379 - EMBO J. 2003 Jun 2;22(11):2623-33 21045165 - Plant Cell. 2010 Nov;22(11):3692-709 20561255 - Plant J. 2010 Sep;63(5):749-65 24047899 - J Biol Chem. 2013 Nov 1;288(44):31540-8 17960244 - Nature. 2007 Oct 25;449(7165):1053-7 22652060 - Plant Cell. 2012 May;24(5):1815-33 7477287 - Nature. 1995 Nov 2;378(6552):62-5 20031434 - Plant Physiol Biochem. 2010 May;48(5):328-36 21406623 - Plant Cell. 2011 Mar;23(3):1093-106 22576772 - Plant Cell Physiol. 2012 Jul;53(7):1171-9 23990142 - Mol Plant. 2014 Feb;7(2):290-310 14651850 - Cell. 2003 Nov 26;115(5):591-602 15454085 - Cell. 2004 Oct 1;119(1):109-20 16621844 - Plant Cell Physiol. 2006 Jun;47(6):772-83 23709674 - J Exp Bot. 2013 Jun;64(9):2629-39 12878018 - Trends Plant Sci. 2003 Jul;8(7):335-42 21143681 - Plant J. 2010 Dec;64(6):1018-27 21251101 - Plant J. 2011 Mar;65(5):737-44 22767200 - Planta. 2012 Sep;236(3):765-79 20497377 - Plant J. 2010 Aug;63(3):499-511 18373649 - New Phytol. 2008;178(4):703-18 21711357 - Plant Cell Environ. 2012 Feb;35(2):234-44 10634910 - Plant Cell. 2000 Jan;12(1):97-110 9401121 - Plant Cell. 1997 Nov;9(11):1963-71 19675153 - Plant Physiol. 2009 Oct;151(2):603-19 20164444 - Plant Cell. 2010 Feb;22(2):376-91 23658225 - Nucleic Acids Res. 2013 Jul;41(13):6650-63 24249834 - Plant Cell. 2013 Nov;25(11):4451-68 21443606 - Plant Cell Environ. 2012 Feb;35(2):321-33 12045282 - Plant Cell. 2002;14 Suppl:S265-76 17287141 - Trends Plant Sci. 2007 Mar;12(3):98-105 18450450 - Curr Biol. 2008 May 6;18(9):656-60 24163311 - Plant Cell. 2013 Oct;25(10):3858-70 20040541 - Plant Cell. 2009 Dec;21(12):3823-38 15642522 - Trends Plant Sci. 2005 Jan;10(1):36-43 11038608 - Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2745-50 12527773 - Nucleic Acids Res. 2003 Jan 15;31(2):647-52 |
References_xml | – volume: 48 start-page: 328 year: 2010 ident: ref1 article-title: Redox regulation of root apical meristem organization: connecting root development to its environment publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2009.11.005 – volume: 35 start-page: 259 year: 2012 ident: ref3 article-title: ROS and redox signalling in the response of plants to abiotic stress publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2011.02336.x – volume: 23 start-page: 1093 year: 2011 ident: ref47 article-title: Arabidopsis kinesin KP1 specifically interacts with VDAC3, a mitochondrial protein, and regulates respiration during seed germination at low temperature publication-title: Plant Cell doi: 10.1105/tpc.110.082420 – volume: 449 start-page: 1053 year: 2007 ident: ref27 article-title: PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development publication-title: Nature doi: 10.1038/nature06206 – volume: 94 start-page: 2745 year: 1997 ident: ref12 article-title: Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.6.2745 – volume: 70 start-page: 432 year: 2012 ident: ref44 article-title: Functional disruption of the pentatricopeptide protein SLG1 affects mitochondrial RNA editing, plant development, and responses to abiotic stresses in Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2011.04883.x – volume: 18 start-page: 656 year: 2008 ident: ref10 article-title: Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species publication-title: Curr Biol doi: 10.1016/j.cub.2008.04.034 – volume: 378 start-page: 62 year: 1995 ident: ref29 article-title: Cell fate in the Arabidopsis root meristem determined by directional signalling publication-title: Nature doi: 10.1038/378062a0 – volume: 64 start-page: 2629 year: 2013 ident: ref45 article-title: Evidence of oxidative attenuation of auxin signalling publication-title: J Exp Bot doi: 10.1093/jxb/ert152 – volume: 236 start-page: 765 year: 2012 ident: ref6 article-title: Reactive oxygen species and their role in plant defence and cell wall metabolism publication-title: Planta doi: 10.1007/s00425-012-1696-9 – volume: 63 start-page: 749 year: 2010 ident: ref21 article-title: ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04280.x – volume: 115 start-page: 591 year: 2003 ident: ref25 article-title: Local, efflux-dependent auxin gradients as a common module for plant organ formation publication-title: Cell doi: 10.1016/S0092-8674(03)00924-3 – volume: 7 start-page: 290 year: 2013 ident: ref43 article-title: The Arabidopsis thaliana RNA Editing Factor SLO2, which Affects the Mitochondrial Electron Transport Chain, Participates in Multiple Stress and Hormone Responses publication-title: Mol Plant doi: 10.1093/mp/sst102 – volume: 31 start-page: 647 year: 2003 ident: ref40 article-title: Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg153 – volume: 16 start-page: 73 year: 1998 ident: ref13 article-title: The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase publication-title: Plant J doi: 10.1046/j.1365-313x.1998.00262.x – volume: 151 start-page: 603 year: 2009 ident: ref23 article-title: Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night publication-title: Plant Physiol doi: 10.1104/pp.109.141770 – volume: 63 start-page: 5301 year: 2012 ident: ref36 article-title: Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing publication-title: J Exp Bot doi: 10.1093/jxb/ers188 – volume: 71 start-page: 413 year: 2012 ident: ref42 article-title: nMAT1, a nuclear-encoded maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function publication-title: Plant J doi: 10.1111/j.1365-313X.2012.04998.x – volume: 41 start-page: 6650 year: 2013 ident: ref34 article-title: The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt337 – volume: 25 start-page: 3858 year: 2013 ident: ref20 article-title: Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid publication-title: Plant Cell doi: 10.1105/tpc.113.114421 – volume: 25 start-page: 4451 year: 2013 ident: ref15 article-title: Plastid-Localized Glutathione Reductase2-Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance publication-title: Plant Cell doi: 10.1105/tpc.113.117028 – volume: 21 start-page: 3823 year: 2009 ident: ref26 article-title: Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms publication-title: Plant Cell doi: 10.1105/tpc.109.069906 – volume: 14 start-page: S265 year: 2002 ident: ref30 article-title: Signaling in and out: control of cell division and differentiation in the shoot and root publication-title: Plant Cell doi: 10.1105/tpc.010471 – volume: 288 start-page: 31540 year: 2013 ident: ref22 article-title: Structure of a PLS-Class Pentatricopeptide Repeat Protein Provides Insights into Mechanism of RNA Recognition publication-title: J Biol Chem doi: 10.1074/jbc.M113.496828 – volume: 178 start-page: 703 year: 2008 ident: ref5 article-title: Guard-cell signalling for hydrogen peroxide and abscisic acid publication-title: New Phytol doi: 10.1111/j.1469-8137.2008.02431.x – volume: 22 start-page: 376 year: 2010 ident: ref16 article-title: Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling publication-title: Plant Cell doi: 10.1105/tpc.109.071225 – volume: 63 start-page: 499 year: 2010 ident: ref37 article-title: The SLO1 PPR protein is required for RNA editing at multiple sites with similar upstream sequences in Arabidopsis mitochondria publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04258.x – volume: 61 start-page: 456 year: 2010 ident: ref38 article-title: The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing publication-title: Plant J doi: 10.1111/j.1365-313X.2009.04082.x – volume: 22 start-page: 3692 year: 2010 ident: ref31 article-title: Arabidopsis Tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche publication-title: Plant Cell doi: 10.1105/tpc.110.075721 – volume: 61 start-page: 446 year: 2010 ident: ref39 article-title: The PPR protein encoded by the LOVASTATIN INSENSITIVE 1 gene is involved in RNA editing at three sites in mitochondria of Arabidopsis thaliana publication-title: Plant J doi: 10.1111/j.1365-313X.2009.04076.x – volume: 130 start-page: 1429 year: 2003 ident: ref46 article-title: Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment publication-title: Development doi: 10.1242/dev.00359 – volume: 64 start-page: 1018 year: 2010 ident: ref11 article-title: The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04390.x – volume: 53 start-page: 1171 year: 2012 ident: ref32 article-title: Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcs069 – volume: 35 start-page: 234 year: 2012 ident: ref7 article-title: Redox regulation in plant programmed cell death publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2011.02387.x – volume: 12 start-page: 98 year: 2007 ident: ref8 article-title: Stress-induced morphogenic responses: growing out of trouble? publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2007.01.004 – volume: 8 start-page: 335 year: 2003 ident: ref9 article-title: Reactive oxygen species and hormonal control of cell death publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(03)00135-3 – volume: 35 start-page: 321 year: 2012 ident: ref4 article-title: Stress homeostasis - the redox and auxin perspective publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2011.02324.x – volume: 12 start-page: 97 year: 2000 ident: ref14 article-title: The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development publication-title: Plant Cell doi: 10.1105/tpc.12.1.97 – volume: 9 start-page: 1963 year: 1997 ident: ref24 article-title: Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements publication-title: Plant Cell doi: 10.1105/tpc.9.11.1963 – volume: 16 start-page: 300 year: 2011 ident: ref2 article-title: ROS signaling: the new wave? publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2011.03.007 – volume: 47 start-page: 772 year: 2006 ident: ref41 article-title: A mutation in At-nMat1a, which encodes a nuclear gene having high similarity to group II intron maturase, causes impaired splicing of mitochondrial NAD4 transcript and altered carbon metabolism in Arabidopsis thaliana publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcj051 – volume: 74 start-page: 215 year: 2010 ident: ref17 article-title: Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis publication-title: Plant Mol Biol doi: 10.1007/s11103-010-9667-7 – volume: 24 start-page: 1815 year: 2012 ident: ref19 article-title: DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling publication-title: Plant Cell doi: 10.1105/tpc.112.098707 – volume: 10 start-page: 36 year: 2005 ident: ref33 article-title: The plant mitochondrial proteome publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2004.12.002 – volume: 65 start-page: 737 year: 2011 ident: ref35 article-title: A RESTORER OF FERTILITY-like PPR gene is required for 5′-end processing of the nad4 mRNA in mitochondria of Arabidopsis thaliana publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04460.x – volume: 22 start-page: 2623 year: 2003 ident: ref18 article-title: NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis publication-title: EMBO J doi: 10.1093/emboj/cdg277 – volume: 119 start-page: 109 year: 2004 ident: ref28 article-title: The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche publication-title: Cell doi: 10.1016/j.cell.2004.09.018 – reference: 16621844 - Plant Cell Physiol. 2006 Jun;47(6):772-83 – reference: 15454085 - Cell. 2004 Oct 1;119(1):109-20 – reference: 12588857 - Development. 2003 Apr;130(7):1429-38 – reference: 20561255 - Plant J. 2010 Sep;63(5):749-65 – reference: 19675153 - Plant Physiol. 2009 Oct;151(2):603-19 – reference: 24249834 - Plant Cell. 2013 Nov;25(11):4451-68 – reference: 22576772 - Plant Cell Physiol. 2012 Jul;53(7):1171-9 – reference: 20031434 - Plant Physiol Biochem. 2010 May;48(5):328-36 – reference: 18450450 - Curr Biol. 2008 May 6;18(9):656-60 – reference: 19919573 - Plant J. 2010 Feb 1;61(3):446-55 – reference: 21406623 - Plant Cell. 2011 Mar;23(3):1093-106 – reference: 24047899 - J Biol Chem. 2013 Nov 1;288(44):31540-8 – reference: 17960244 - Nature. 2007 Oct 25;449(7165):1053-7 – reference: 20661628 - Plant Mol Biol. 2010 Oct;74(3):215-22 – reference: 14651850 - Cell. 2003 Nov 26;115(5):591-602 – reference: 20040541 - Plant Cell. 2009 Dec;21(12):3823-38 – reference: 7477287 - Nature. 1995 Nov 2;378(6552):62-5 – reference: 22652060 - Plant Cell. 2012 May;24(5):1815-33 – reference: 12773379 - EMBO J. 2003 Jun 2;22(11):2623-33 – reference: 22821940 - J Exp Bot. 2012 Sep;63(14):5301-10 – reference: 21482172 - Trends Plant Sci. 2011 Jun;16(6):300-9 – reference: 20497377 - Plant J. 2010 Aug;63(3):499-511 – reference: 12045282 - Plant Cell. 2002;14 Suppl:S265-76 – reference: 22767200 - Planta. 2012 Sep;236(3):765-79 – reference: 19929879 - Plant J. 2010 Feb 1;61(3):456-66 – reference: 15642522 - Trends Plant Sci. 2005 Jan;10(1):36-43 – reference: 21486305 - Plant Cell Environ. 2012 Feb;35(2):259-70 – reference: 11038608 - Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2745-50 – reference: 9807829 - Plant J. 1998 Oct;16(1):73-8 – reference: 22248025 - Plant J. 2012 May;70(3):432-44 – reference: 20164444 - Plant Cell. 2010 Feb;22(2):376-91 – reference: 21711357 - Plant Cell Environ. 2012 Feb;35(2):234-44 – reference: 21251101 - Plant J. 2011 Mar;65(5):737-44 – reference: 22429648 - Plant J. 2012 Aug;71(3):413-26 – reference: 24163311 - Plant Cell. 2013 Oct;25(10):3858-70 – reference: 18373649 - New Phytol. 2008;178(4):703-18 – reference: 23990142 - Mol Plant. 2014 Feb;7(2):290-310 – reference: 12878018 - Trends Plant Sci. 2003 Jul;8(7):335-42 – reference: 12527773 - Nucleic Acids Res. 2003 Jan 15;31(2):647-52 – reference: 21443606 - Plant Cell Environ. 2012 Feb;35(2):321-33 – reference: 10634910 - Plant Cell. 2000 Jan;12(1):97-110 – reference: 17287141 - Trends Plant Sci. 2007 Mar;12(3):98-105 – reference: 21045165 - Plant Cell. 2010 Nov;22(11):3692-709 – reference: 23658225 - Nucleic Acids Res. 2013 Jul;41(13):6650-63 – reference: 9401121 - Plant Cell. 1997 Nov;9(11):1963-71 – reference: 21143681 - Plant J. 2010 Dec;64(6):1018-27 – reference: 23709674 - J Exp Bot. 2013 Jun;64(9):2629-39 |
SSID | ssj0035897 |
Score | 2.5365057 |
Snippet | Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS... Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1004791 |
SubjectTerms | Abscisic acid Abscisic Acid - pharmacology Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biology and Life Sciences Botanical research Cloning Electron Transport Complex I - genetics Electron Transport Complex I - metabolism Ethanol Gene expression Genetic aspects Genetic research Genotype Glycerol Growth hormones Health aspects Homeostasis Introns Meristem - genetics Meristem - metabolism Mitochondria Mitochondria - metabolism Phenotype Plant Development Plant growth Plant Roots - genetics Plant Roots - metabolism Promoter Regions, Genetic Proteins Reactive oxygen species Reactive Oxygen Species - metabolism RNA Splicing Signal Transduction Transcription Factors - genetics Transcription Factors - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journal Collection dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF6KodBL6Ttqk3ZbCj2psbSrlXRUSoJb2rg4Sclt2WdqiGVj2ZD8-85oZWOVQnLoVTsSaGZ29htp5htCPhbJ0NoU_w8yX8Y8ty4uOWz3rLTMGVhRFj8N_DgVowv-7TK73Bn1hTVhgR44KO4QEEJm4FAqlB5ygM9lCUeKLkSitXapa7N1OPM2yVSIwSwrwliVLGNxDml91zTH8uSws9HnBRgIawR4y8-5cyi13P3bCD1YXM-bf8HPv6sod46lkyfkcYcnaRXe4yl54Opn5GGYMHn7nCyroypuu0MAWdLJ-IxOazqDXQxRr7bgfHQZhtE7ChB6RWctc7ObUex3wLESVN_SrpwdG9fpz-_H56PxpKLupiuhrfGR1VLpqZ0vmmnzglycHJ9_GcXdmIXY5IKvYsNFMdROGFMIAwjQF877JMtTXzpvmbKgZ6G0Z4mH_IcrnyvYuCxLrLH5kFv2kgzqee32CFUAAOE6pHHGcy1SpbniRjMvAJUmhY8I2-hZmo6DHEdhXMv2x1oOuUhQm0TryM46EYm3dy0CB8cd8kdowq0sMmi3F8CvZOdX8i6_isg7dAAZ2lG3cUBWrESOOzEsIvKhlUAWjRrLdK7Uumnk1_Gvewidnd5HaNIT-tQJ-TnozKiufwI0jxRePcn9niQEDNNb3kOf3qiukYkA2M0ES_OIvN_4ucS7sACvdvM1ygCShdSWi4i8Cn6_1S9kpSl2XEck7-2IngH6K_X0d0tlzlPwoKx8_T8s9oY8AifjodZonwxWy7U7AMS40m_b4PAHO0hnVw priority: 102 providerName: Directory of Open Access Journals |
Title | ABA-Mediated ROS in Mitochondria Regulate Root Meristem Activity by Controlling PLETHORA Expression in Arabidopsis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25522358 https://www.proquest.com/docview/1639975346 https://pubmed.ncbi.nlm.nih.gov/PMC4270459 https://doaj.org/article/8355c1298ab0417499266b861bbbe2e0 http://dx.doi.org/10.1371/journal.pgen.1004791 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJyReEPcFRjEIiadMTezYyQNC6dSpINpO2Yr2FsW3UakkpWml9d9znKQRQZvYa_w5ao_Psb8TnwtCH0NvoJRv7weJiVzKlXYjCuYeRIpoCSOZsp8GJlM2ntNvV8HVAdr3bG0EWN7q2tl-UvP18uTm9-4LGPznqmsD9_aTTlYgcnvrT7lNZz-Es4lbU53Q9l6BBGHEmwS6u2Z2Dqiqjn-7W_dWy6K8jYr-G1H51xF19gQ9brgljmtleIoOdP4MPay7Te6eo3U8jN1J1ZpDK5zMLvAixxOwaBBCrkARcVI3ptc4KYoNnlRVnPUvHMu6xQQWO3xah7bbJHZ8_n10OZ4lMR7dNOG0uX1lvM7EQhWrclG-QPOz0eXp2G1aLriSM7pxJWXhQGgmZcgksEETamO8gPsm0kaRTAkNyycM8Qz4QjQzPAMjJoGnpOIDqshL1MuLXB8hnAEZhOfg0klDBfMzQTMqBTEMGKoXGgeRvZxT2dQjt20xlml1ycbBL6nFltrVSZvVcZDbzlrV9Tj-gx_aJWyxtpp29aBYX6eNcabAQgMJxCfMxACUBpxAoC0iZJ4Q8H_1wEHvrAKkdWpquyekMYlsvTs2CB30oULYihq5Ddm5zrZlmX6d_bgH6GJ6H1DSAX1qQKYAmcmsyaUAydtyXh3kcQcJm4fsDB9Znd6Lrkw9BhScMOJzB73f63lqZ9lgvFwXW4sBVgtuLmUOelXrfStf8FB9m33tIN6xiM4CdEfyxc-qrDn1QYOC6PXdP-kNegSqQ-toomPU26y3-i1wwo3oowf8ivfR4XA0PU_61ZeVfmX6fwBC_GR3 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABA-Mediated+ROS+in+Mitochondria+Regulate+Root+Meristem+Activity+by+Controlling+PLETHORA+Expression+in+Arabidopsis&rft.jtitle=PLoS+genetics&rft.au=Yang%2C+Li&rft.au=Zhang%2C+Jing&rft.au=He%2C+Junna&rft.au=Qin%2C+Yingying&rft.date=2014-12-01&rft.pub=Public+Library+of+Science&rft.eissn=1553-7404&rft.volume=10&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pgen.1004791&rft.externalDocID=1685136327 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |