ABA-Mediated ROS in Mitochondria Regulate Root Meristem Activity by Controlling PLETHORA Expression in Arabidopsis

Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) prote...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 10; no. 12; p. e1004791
Main Authors Yang, Li, Zhang, Jing, He, Junna, Qin, Yingying, Hua, Deping, Duan, Ying, Chen, Zhizhong, Gong, Zhizhong
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.12.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis.
AbstractList Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis.
  Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis.
Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An ab a o verly sensitive mutant, abo8-1 , which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1 . We also found that ABA inhibits the expression of PLETHORA1 ( PLT1 ) and PLT2 , and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis . Abscisic acid (ABA) plays crucial roles in plant growth and development, and also in plant responses to abiotic and biotic stresses. ABA can stimulate the production of reactive oxygen species (ROS) that act as signals in low concentrations, but as cell-damaging agents in high concentrations. A mutation in ABO8 , encoding a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3, leads to hypersensitivity to ABA in root growth, and root tips of the abo8-1 mutants accumulate more ROS than those of the wild type; this accumulation of ROS in abo8-1 root tips is enhanced by ABA treatment. We also found that auxin signaling and/or accumulation is greatly reduced in root tips of the abo8-1 mutants. Addition of the reducing agent GSH to the growth medium partially recovers the root hypersensitivity to ABA, and also the ABA-inhibited expression of PLT1/2 in abo8-1 . Furthermore, the inducible expression of PLT2 largely rescues the root growth defect of abo8-1 with and without ABA treatment. Our results reveal the important roles of ROS in regulating root meristem activity in the ABA signaling pathway.
Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis.Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis.
Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-7, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-7. We also found that ABA inhibits the expression of PLETHORA7 (PLT7) and PLT2, and that root growth is more sensitive to ABA in the plt7 and plt2 mutants than in the wild type. The expression of PLT7 and PLT2 is significantly reduced in the abo8-7 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-7 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis.
Audience Academic
Author Zhang, Jing
Duan, Ying
Hua, Deping
Chen, Zhizhong
Yang, Li
Qin, Yingying
He, Junna
Gong, Zhizhong
AuthorAffiliation 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
2 National Center for Plant Gene Research, Beijing, China
National University of Singapore and Temasek Life Sciences Laboratory, Singapore
AuthorAffiliation_xml – name: National University of Singapore and Temasek Life Sciences Laboratory, Singapore
– name: 2 National Center for Plant Gene Research, Beijing, China
– name: 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
Author_xml – sequence: 1
  givenname: Li
  surname: Yang
  fullname: Yang, Li
– sequence: 2
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
– sequence: 3
  givenname: Junna
  surname: He
  fullname: He, Junna
– sequence: 4
  givenname: Yingying
  surname: Qin
  fullname: Qin, Yingying
– sequence: 5
  givenname: Deping
  surname: Hua
  fullname: Hua, Deping
– sequence: 6
  givenname: Ying
  surname: Duan
  fullname: Duan, Ying
– sequence: 7
  givenname: Zhizhong
  surname: Chen
  fullname: Chen, Zhizhong
– sequence: 8
  givenname: Zhizhong
  surname: Gong
  fullname: Gong, Zhizhong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25522358$$D View this record in MEDLINE/PubMed
BookMark eNqVk1-r0zAYxosc8fzRbyBaEEQvNpOmSdtzIdQxPYPNyc7R25CmaZeRJTNJD2ff3sxtsoqIkoukye95-vLwvpfRmTZaRNFzCIYQZfDdynRWMzXctEIPIQBpVsBH0QXEGA2yFKRnJ-fz6NK5FQAI50X2JDpPME6S8HER2fJDOZiJWjIv6ngxv42ljmfSG740uraSxQvRdiq8xgtjfDwTVjov1nHJvbyXfhtX23hktLdGKanb-Mt0fHczX5Tx-GFjhXPS6J1laVkla7Nx0j2NHjdMOfHssF9FXz-O70Y3g-n802RUTgc8I6kf8JTkoBKE85xwAEmTi6aBOEuaQjQ1YnUlEsKqBsEG5CRlTcYwggjDmtcZSGt0Fb3c-26UcfQQl6OQ5BgigpIsEJM9URu2ohsr18xuqWGS_rwwtqXMesmVoDnCmMOkyFkFUpilRZEQUuUEVlWoQ4Dg9f7wt65ai5qLEAlTPdP-i5ZL2pp7miahWlwEgzcHA2u-d8J5upaOC6WYFqbb1Y2KIsMoJQF9tUdbFkqTujHBke9wWqKCZGGBPFDDP1Bh1WIteWimRob7nuBtTxAYLx58yzrn6OR28R_s539n59_67OsTdimY8ktnVOdDH7k--OI0719BH1s7ANd7gFvjnBUN5dKznU-IQSoKAd3N0bEx6G6O6GGOgjj9TXz0_6vsBw4hIPE
CitedBy_id crossref_primary_10_1186_s12284_021_00463_2
crossref_primary_10_1007_s00299_023_03013_w
crossref_primary_10_1016_j_plaphy_2024_108352
crossref_primary_10_1186_s12284_019_0364_0
crossref_primary_10_3389_fpls_2022_986414
crossref_primary_10_3390_ijms23094540
crossref_primary_10_3390_antiox13050554
crossref_primary_10_1016_j_tplants_2024_03_005
crossref_primary_10_1007_s00299_016_1961_7
crossref_primary_10_1093_jxb_erab360
crossref_primary_10_3390_cells8121585
crossref_primary_10_1111_pce_14036
crossref_primary_10_1093_pcp_pcz083
crossref_primary_10_3389_fpls_2024_1456414
crossref_primary_10_1016_j_agwat_2021_106987
crossref_primary_10_1093_pcp_pcae108
crossref_primary_10_1093_pcp_pcaa028
crossref_primary_10_1186_s12866_024_03479_y
crossref_primary_10_1007_s11103_020_01022_x
crossref_primary_10_1093_jxb_erz348
crossref_primary_10_1016_j_xplc_2020_100048
crossref_primary_10_1093_plcell_koac106
crossref_primary_10_3390_proteomes5030022
crossref_primary_10_1105_tpc_20_00301
crossref_primary_10_1371_journal_pgen_1007144
crossref_primary_10_1007_s10577_019_09611_3
crossref_primary_10_1093_aob_mcx082
crossref_primary_10_1016_j_tplants_2018_07_010
crossref_primary_10_1093_jxb_erx172
crossref_primary_10_3389_fpls_2022_1001023
crossref_primary_10_1016_j_plgene_2019_100182
crossref_primary_10_1111_jipb_12506
crossref_primary_10_3390_ijms25179157
crossref_primary_10_1016_j_plaphy_2020_08_045
crossref_primary_10_1093_jxb_erae415
crossref_primary_10_1186_s12870_020_02467_4
crossref_primary_10_3389_fphys_2017_01037
crossref_primary_10_1016_j_jplph_2018_12_005
crossref_primary_10_1111_nph_13882
crossref_primary_10_1016_j_scienta_2021_110643
crossref_primary_10_1093_femsle_fnaa170
crossref_primary_10_1002_fes3_458
crossref_primary_10_15252_embr_201948967
crossref_primary_10_1016_j_jare_2022_04_007
crossref_primary_10_1093_pcp_pcae086
crossref_primary_10_3390_app10186322
crossref_primary_10_1371_journal_pgen_1006175
crossref_primary_10_1111_nph_18657
crossref_primary_10_1111_tpj_14441
crossref_primary_10_1038_s42003_022_03998_2
crossref_primary_10_1093_plphys_kiac601
crossref_primary_10_1016_j_pbi_2015_10_012
crossref_primary_10_1093_jxb_erw171
crossref_primary_10_1007_s00299_021_02721_5
crossref_primary_10_1038_s41598_018_21560_1
crossref_primary_10_3390_plants13111469
crossref_primary_10_1093_jxb_erw331
crossref_primary_10_1016_j_plaphy_2018_04_007
crossref_primary_10_1111_jipb_13020
crossref_primary_10_1007_s11356_021_16241_y
crossref_primary_10_1073_pnas_2205305119
crossref_primary_10_3389_fpls_2017_00871
crossref_primary_10_3389_fpls_2020_485932
crossref_primary_10_1016_j_celrep_2017_12_105
crossref_primary_10_3390_toxics12050374
crossref_primary_10_1007_s10811_024_03410_y
crossref_primary_10_1016_j_jhazmat_2022_128366
crossref_primary_10_1093_plphys_kiab101
crossref_primary_10_12677_IJE_2023_122026
crossref_primary_10_1007_s00425_023_04283_0
crossref_primary_10_1007_s12374_019_0230_z
crossref_primary_10_1016_j_freeradbiomed_2018_04_005
crossref_primary_10_1093_jxb_eraa608
crossref_primary_10_3390_ijms231810656
crossref_primary_10_1016_j_ymeth_2016_07_009
crossref_primary_10_1016_j_plaphy_2023_108273
crossref_primary_10_1016_j_molp_2022_07_010
crossref_primary_10_1016_j_jplph_2023_154000
crossref_primary_10_1111_tpj_16683
crossref_primary_10_3390_agronomy10091323
crossref_primary_10_1016_j_jplph_2023_154082
crossref_primary_10_3390_molecules22010015
crossref_primary_10_1016_j_pbi_2019_04_006
crossref_primary_10_3390_ijms23042063
crossref_primary_10_1016_j_plantsci_2021_110821
crossref_primary_10_1038_s41422_018_0024_8
crossref_primary_10_1080_15592324_2015_1071002
crossref_primary_10_1038_s41438_021_00589_w
crossref_primary_10_1007_s00299_024_03281_0
crossref_primary_10_1038_s41467_024_50720_3
crossref_primary_10_1242_dev_175919
crossref_primary_10_3389_fpls_2024_1354418
crossref_primary_10_1016_j_stress_2024_100359
crossref_primary_10_1080_15548627_2018_1520547
crossref_primary_10_1111_pce_13021
crossref_primary_10_3390_plants13172366
crossref_primary_10_1515_hsz_2018_0463
crossref_primary_10_1038_s41598_024_80143_5
crossref_primary_10_1080_15592324_2018_1500069
crossref_primary_10_1093_plphys_kiad516
crossref_primary_10_1093_bbb_zbae195
crossref_primary_10_3389_fpls_2021_772567
crossref_primary_10_1111_tpj_15361
crossref_primary_10_1007_s40502_016_0259_7
crossref_primary_10_1073_pnas_2204862119
crossref_primary_10_1007_s11103_021_01238_5
crossref_primary_10_3390_genes12040525
crossref_primary_10_1093_pcp_pcaa070
crossref_primary_10_1093_jxb_erab274
crossref_primary_10_3390_cells9122576
crossref_primary_10_1007_s40626_021_00212_2
crossref_primary_10_1016_j_sajb_2023_08_006
crossref_primary_10_1016_j_ijbiomac_2024_136753
crossref_primary_10_1080_19420889_2018_1526604
crossref_primary_10_1016_j_plantsci_2022_111369
crossref_primary_10_1093_plphys_kiaa077
crossref_primary_10_1111_jipb_13326
crossref_primary_10_1093_plphys_kiac530
crossref_primary_10_1016_j_nbt_2016_02_008
crossref_primary_10_1093_pcp_pcz153
crossref_primary_10_1016_j_biocel_2017_05_014
crossref_primary_10_1016_j_plaphy_2023_108307
crossref_primary_10_1007_s44154_022_00036_3
crossref_primary_10_3389_fpls_2019_00468
crossref_primary_10_1038_s41598_020_58495_5
crossref_primary_10_1093_aob_mcz184
crossref_primary_10_3389_fpls_2021_659155
crossref_primary_10_1111_pbi_13765
crossref_primary_10_3389_fpls_2024_1462235
crossref_primary_10_3390_ijms23116236
crossref_primary_10_1093_jxb_erz357
crossref_primary_10_15252_embr_202050164
crossref_primary_10_1016_j_jare_2022_11_005
crossref_primary_10_1016_j_plantsci_2020_110604
crossref_primary_10_1371_journal_pgen_1006251
crossref_primary_10_1016_j_bbrc_2015_10_028
crossref_primary_10_1093_plphys_kiac407
crossref_primary_10_3390_ijms21051886
crossref_primary_10_1007_s10725_024_01135_z
crossref_primary_10_3389_fpls_2015_01091
crossref_primary_10_1016_j_plantsci_2018_02_005
crossref_primary_10_1111_tpj_14762
crossref_primary_10_1016_j_envexpbot_2022_105188
crossref_primary_10_1007_s12374_016_0052_1
crossref_primary_10_1093_jxb_ery275
crossref_primary_10_1016_j_bbrc_2021_09_022
crossref_primary_10_3389_fpls_2022_882596
crossref_primary_10_1093_jxb_erab332
crossref_primary_10_3390_ijms21124548
crossref_primary_10_1042_BCJ20230026
crossref_primary_10_1111_nph_18287
crossref_primary_10_1146_annurev_arplant_050718_100423
crossref_primary_10_3390_ijms23137427
crossref_primary_10_1111_nph_16786
crossref_primary_10_3389_fpls_2021_660274
crossref_primary_10_1111_tpj_16953
crossref_primary_10_1080_07388551_2023_2286428
crossref_primary_10_1093_jxb_erae161
crossref_primary_10_1038_s44319_025_00412_w
crossref_primary_10_3390_ijms221910892
crossref_primary_10_3389_fpls_2024_1330061
crossref_primary_10_3389_fpls_2022_987077
crossref_primary_10_1038_srep43897
crossref_primary_10_3389_fpls_2022_1050132
crossref_primary_10_3390_biology13121033
crossref_primary_10_3389_fpls_2018_00416
crossref_primary_10_1111_jipb_12654
crossref_primary_10_1111_nph_16028
crossref_primary_10_3389_fpls_2019_00522
crossref_primary_10_1016_j_celrep_2017_11_077
crossref_primary_10_1016_j_ygeno_2022_110307
crossref_primary_10_1111_nph_16824
Cites_doi 10.1016/j.plaphy.2009.11.005
10.1111/j.1365-3040.2011.02336.x
10.1105/tpc.110.082420
10.1038/nature06206
10.1073/pnas.94.6.2745
10.1111/j.1365-313X.2011.04883.x
10.1016/j.cub.2008.04.034
10.1038/378062a0
10.1093/jxb/ert152
10.1007/s00425-012-1696-9
10.1111/j.1365-313X.2010.04280.x
10.1016/S0092-8674(03)00924-3
10.1093/mp/sst102
10.1093/nar/gkg153
10.1046/j.1365-313x.1998.00262.x
10.1104/pp.109.141770
10.1093/jxb/ers188
10.1111/j.1365-313X.2012.04998.x
10.1093/nar/gkt337
10.1105/tpc.113.114421
10.1105/tpc.113.117028
10.1105/tpc.109.069906
10.1105/tpc.010471
10.1074/jbc.M113.496828
10.1111/j.1469-8137.2008.02431.x
10.1105/tpc.109.071225
10.1111/j.1365-313X.2010.04258.x
10.1111/j.1365-313X.2009.04082.x
10.1105/tpc.110.075721
10.1111/j.1365-313X.2009.04076.x
10.1242/dev.00359
10.1111/j.1365-313X.2010.04390.x
10.1093/pcp/pcs069
10.1111/j.1365-3040.2011.02387.x
10.1016/j.tplants.2007.01.004
10.1016/S1360-1385(03)00135-3
10.1111/j.1365-3040.2011.02324.x
10.1105/tpc.12.1.97
10.1105/tpc.9.11.1963
10.1016/j.tplants.2011.03.007
10.1093/pcp/pcj051
10.1007/s11103-010-9667-7
10.1105/tpc.112.098707
10.1016/j.tplants.2004.12.002
10.1111/j.1365-313X.2010.04460.x
10.1093/emboj/cdg277
10.1016/j.cell.2004.09.018
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Yang et al 2014 Yang et al
2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 10(12): e1004791. doi:10.1371/journal.pgen.1004791
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Yang et al 2014 Yang et al
– notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 10(12): e1004791. doi:10.1371/journal.pgen.1004791
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1004791
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journal Collection
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate ABA-Mediated ROS Regulate Root Growth
EISSN 1553-7404
ExternalDocumentID 1685136327
oai_doaj_org_article_8355c1298ab0417499266b861bbbe2e0
PMC4270459
A396767608
25522358
10_1371_journal_pgen_1004791
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
WOQ
PMFND
7X8
5PM
PUEGO
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c764t-c4680be6cc86c016f8eff1572f9efd3adbe26abf31f0864af7a531351dcd704d3
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:13:30 EST 2021
Wed Aug 27 01:30:42 EDT 2025
Thu Aug 21 18:25:07 EDT 2025
Tue Aug 05 09:53:54 EDT 2025
Tue Jun 17 21:35:54 EDT 2025
Tue Jun 10 20:22:17 EDT 2025
Fri Jun 27 05:11:49 EDT 2025
Fri Jun 27 04:32:08 EDT 2025
Fri Jun 27 05:05:25 EDT 2025
Thu May 22 21:05:22 EDT 2025
Mon Jul 21 06:00:13 EDT 2025
Tue Jul 01 04:31:24 EDT 2025
Thu Apr 24 23:03:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c764t-c4680be6cc86c016f8eff1572f9efd3adbe26abf31f0864af7a531351dcd704d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
Conceived and designed the experiments: LY ZG. Performed the experiments: LY JZ JH YQ DH YD. Analyzed the data: LY JZ ZG. Contributed reagents/materials/analysis tools: ZC ZG. Wrote the paper: LY ZG.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1004791
PMID 25522358
PQID 1639975346
PQPubID 23479
ParticipantIDs plos_journals_1685136327
doaj_primary_oai_doaj_org_article_8355c1298ab0417499266b861bbbe2e0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4270459
proquest_miscellaneous_1639975346
gale_infotracmisc_A396767608
gale_infotracacademiconefile_A396767608
gale_incontextgauss_ISR_A396767608
gale_incontextgauss_ISN_A396767608
gale_incontextgauss_IOV_A396767608
gale_healthsolutions_A396767608
pubmed_primary_25522358
crossref_citationtrail_10_1371_journal_pgen_1004791
crossref_primary_10_1371_journal_pgen_1004791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P Wang (ref5) 2008; 178
CS Cobbett (ref13) 1998; 16
MJ Iglesias (ref17) 2010; 74
R Mittler (ref2) 2011; 16
Q Zhu (ref43) 2013; 7
N Suzuki (ref3) 2012; 35
T Vernoux (ref14) 2000; 12
N Nakagawa (ref41) 2006; 47
K Overmyer (ref9) 2003; 8
T Bashandy (ref16) 2010; 22
C Galinha (ref27) 2007; 449
H Yuan (ref44) 2012; 70
K Nakajima (ref30) 2002; 14
L Rubinovich (ref11) 2010; 64
T Nakamura (ref32) 2012; 53
K Jiang (ref46) 2003; 130
A Holzle (ref35) 2011; 65
I Keren (ref42) 2012; 71
VB Tognetti (ref4) 2012; 35
K Shibasaki (ref26) 2009; 21
TY Sung (ref37) 2010; 63
JM Kwak (ref18) 2003; 22
A Pencik (ref20) 2013; 25
XY Yang (ref47) 2011; 23
E Benkova (ref25) 2003; 115
P Achard (ref10) 2008; 18
Y Liu (ref21) 2010; 63
T Ban (ref22) 2013; 288
G Mohr (ref40) 2003; 31
MC De Pinto (ref7) 2012; 35
M Aida (ref28) 2004; 119
M Murayama (ref36) 2012; 63
J Tang (ref38) 2010; 61
G Potters (ref8) 2007; 12
J He (ref19) 2012; 24
WA Peer (ref45) 2013; 64
X Yu (ref15) 2013; 25
R Sanchez-Fernandez (ref12) 1997; 94
C van den Berg (ref29) 1995; 378
MC De Tullio (ref1) 2010; 48
T Ulmasov (ref24) 1997; 9
D Verbitskiy (ref39) 2010; 61
W Zhou (ref31) 2010; 22
N Haili (ref34) 2013; 41
EH Meyer (ref23) 2009; 151
AH Millar (ref33) 2005; 10
JA O'Brien (ref6) 2012; 236
19919573 - Plant J. 2010 Feb 1;61(3):446-55
12588857 - Development. 2003 Apr;130(7):1429-38
20661628 - Plant Mol Biol. 2010 Oct;74(3):215-22
22821940 - J Exp Bot. 2012 Sep;63(14):5301-10
21486305 - Plant Cell Environ. 2012 Feb;35(2):259-70
21482172 - Trends Plant Sci. 2011 Jun;16(6):300-9
9807829 - Plant J. 1998 Oct;16(1):73-8
19929879 - Plant J. 2010 Feb 1;61(3):456-66
22248025 - Plant J. 2012 May;70(3):432-44
22429648 - Plant J. 2012 Aug;71(3):413-26
12773379 - EMBO J. 2003 Jun 2;22(11):2623-33
21045165 - Plant Cell. 2010 Nov;22(11):3692-709
20561255 - Plant J. 2010 Sep;63(5):749-65
24047899 - J Biol Chem. 2013 Nov 1;288(44):31540-8
17960244 - Nature. 2007 Oct 25;449(7165):1053-7
22652060 - Plant Cell. 2012 May;24(5):1815-33
7477287 - Nature. 1995 Nov 2;378(6552):62-5
20031434 - Plant Physiol Biochem. 2010 May;48(5):328-36
21406623 - Plant Cell. 2011 Mar;23(3):1093-106
22576772 - Plant Cell Physiol. 2012 Jul;53(7):1171-9
23990142 - Mol Plant. 2014 Feb;7(2):290-310
14651850 - Cell. 2003 Nov 26;115(5):591-602
15454085 - Cell. 2004 Oct 1;119(1):109-20
16621844 - Plant Cell Physiol. 2006 Jun;47(6):772-83
23709674 - J Exp Bot. 2013 Jun;64(9):2629-39
12878018 - Trends Plant Sci. 2003 Jul;8(7):335-42
21143681 - Plant J. 2010 Dec;64(6):1018-27
21251101 - Plant J. 2011 Mar;65(5):737-44
22767200 - Planta. 2012 Sep;236(3):765-79
20497377 - Plant J. 2010 Aug;63(3):499-511
18373649 - New Phytol. 2008;178(4):703-18
21711357 - Plant Cell Environ. 2012 Feb;35(2):234-44
10634910 - Plant Cell. 2000 Jan;12(1):97-110
9401121 - Plant Cell. 1997 Nov;9(11):1963-71
19675153 - Plant Physiol. 2009 Oct;151(2):603-19
20164444 - Plant Cell. 2010 Feb;22(2):376-91
23658225 - Nucleic Acids Res. 2013 Jul;41(13):6650-63
24249834 - Plant Cell. 2013 Nov;25(11):4451-68
21443606 - Plant Cell Environ. 2012 Feb;35(2):321-33
12045282 - Plant Cell. 2002;14 Suppl:S265-76
17287141 - Trends Plant Sci. 2007 Mar;12(3):98-105
18450450 - Curr Biol. 2008 May 6;18(9):656-60
24163311 - Plant Cell. 2013 Oct;25(10):3858-70
20040541 - Plant Cell. 2009 Dec;21(12):3823-38
15642522 - Trends Plant Sci. 2005 Jan;10(1):36-43
11038608 - Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2745-50
12527773 - Nucleic Acids Res. 2003 Jan 15;31(2):647-52
References_xml – volume: 48
  start-page: 328
  year: 2010
  ident: ref1
  article-title: Redox regulation of root apical meristem organization: connecting root development to its environment
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2009.11.005
– volume: 35
  start-page: 259
  year: 2012
  ident: ref3
  article-title: ROS and redox signalling in the response of plants to abiotic stress
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2011.02336.x
– volume: 23
  start-page: 1093
  year: 2011
  ident: ref47
  article-title: Arabidopsis kinesin KP1 specifically interacts with VDAC3, a mitochondrial protein, and regulates respiration during seed germination at low temperature
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.082420
– volume: 449
  start-page: 1053
  year: 2007
  ident: ref27
  article-title: PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development
  publication-title: Nature
  doi: 10.1038/nature06206
– volume: 94
  start-page: 2745
  year: 1997
  ident: ref12
  article-title: Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.6.2745
– volume: 70
  start-page: 432
  year: 2012
  ident: ref44
  article-title: Functional disruption of the pentatricopeptide protein SLG1 affects mitochondrial RNA editing, plant development, and responses to abiotic stresses in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2011.04883.x
– volume: 18
  start-page: 656
  year: 2008
  ident: ref10
  article-title: Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2008.04.034
– volume: 378
  start-page: 62
  year: 1995
  ident: ref29
  article-title: Cell fate in the Arabidopsis root meristem determined by directional signalling
  publication-title: Nature
  doi: 10.1038/378062a0
– volume: 64
  start-page: 2629
  year: 2013
  ident: ref45
  article-title: Evidence of oxidative attenuation of auxin signalling
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert152
– volume: 236
  start-page: 765
  year: 2012
  ident: ref6
  article-title: Reactive oxygen species and their role in plant defence and cell wall metabolism
  publication-title: Planta
  doi: 10.1007/s00425-012-1696-9
– volume: 63
  start-page: 749
  year: 2010
  ident: ref21
  article-title: ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04280.x
– volume: 115
  start-page: 591
  year: 2003
  ident: ref25
  article-title: Local, efflux-dependent auxin gradients as a common module for plant organ formation
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00924-3
– volume: 7
  start-page: 290
  year: 2013
  ident: ref43
  article-title: The Arabidopsis thaliana RNA Editing Factor SLO2, which Affects the Mitochondrial Electron Transport Chain, Participates in Multiple Stress and Hormone Responses
  publication-title: Mol Plant
  doi: 10.1093/mp/sst102
– volume: 31
  start-page: 647
  year: 2003
  ident: ref40
  article-title: Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg153
– volume: 16
  start-page: 73
  year: 1998
  ident: ref13
  article-title: The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1998.00262.x
– volume: 151
  start-page: 603
  year: 2009
  ident: ref23
  article-title: Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.141770
– volume: 63
  start-page: 5301
  year: 2012
  ident: ref36
  article-title: Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ers188
– volume: 71
  start-page: 413
  year: 2012
  ident: ref42
  article-title: nMAT1, a nuclear-encoded maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2012.04998.x
– volume: 41
  start-page: 6650
  year: 2013
  ident: ref34
  article-title: The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt337
– volume: 25
  start-page: 3858
  year: 2013
  ident: ref20
  article-title: Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.114421
– volume: 25
  start-page: 4451
  year: 2013
  ident: ref15
  article-title: Plastid-Localized Glutathione Reductase2-Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.117028
– volume: 21
  start-page: 3823
  year: 2009
  ident: ref26
  article-title: Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.069906
– volume: 14
  start-page: S265
  year: 2002
  ident: ref30
  article-title: Signaling in and out: control of cell division and differentiation in the shoot and root
  publication-title: Plant Cell
  doi: 10.1105/tpc.010471
– volume: 288
  start-page: 31540
  year: 2013
  ident: ref22
  article-title: Structure of a PLS-Class Pentatricopeptide Repeat Protein Provides Insights into Mechanism of RNA Recognition
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.496828
– volume: 178
  start-page: 703
  year: 2008
  ident: ref5
  article-title: Guard-cell signalling for hydrogen peroxide and abscisic acid
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2008.02431.x
– volume: 22
  start-page: 376
  year: 2010
  ident: ref16
  article-title: Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.071225
– volume: 63
  start-page: 499
  year: 2010
  ident: ref37
  article-title: The SLO1 PPR protein is required for RNA editing at multiple sites with similar upstream sequences in Arabidopsis mitochondria
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04258.x
– volume: 61
  start-page: 456
  year: 2010
  ident: ref38
  article-title: The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.04082.x
– volume: 22
  start-page: 3692
  year: 2010
  ident: ref31
  article-title: Arabidopsis Tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.075721
– volume: 61
  start-page: 446
  year: 2010
  ident: ref39
  article-title: The PPR protein encoded by the LOVASTATIN INSENSITIVE 1 gene is involved in RNA editing at three sites in mitochondria of Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.04076.x
– volume: 130
  start-page: 1429
  year: 2003
  ident: ref46
  article-title: Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment
  publication-title: Development
  doi: 10.1242/dev.00359
– volume: 64
  start-page: 1018
  year: 2010
  ident: ref11
  article-title: The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04390.x
– volume: 53
  start-page: 1171
  year: 2012
  ident: ref32
  article-title: Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcs069
– volume: 35
  start-page: 234
  year: 2012
  ident: ref7
  article-title: Redox regulation in plant programmed cell death
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2011.02387.x
– volume: 12
  start-page: 98
  year: 2007
  ident: ref8
  article-title: Stress-induced morphogenic responses: growing out of trouble?
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2007.01.004
– volume: 8
  start-page: 335
  year: 2003
  ident: ref9
  article-title: Reactive oxygen species and hormonal control of cell death
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(03)00135-3
– volume: 35
  start-page: 321
  year: 2012
  ident: ref4
  article-title: Stress homeostasis - the redox and auxin perspective
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2011.02324.x
– volume: 12
  start-page: 97
  year: 2000
  ident: ref14
  article-title: The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.1.97
– volume: 9
  start-page: 1963
  year: 1997
  ident: ref24
  article-title: Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements
  publication-title: Plant Cell
  doi: 10.1105/tpc.9.11.1963
– volume: 16
  start-page: 300
  year: 2011
  ident: ref2
  article-title: ROS signaling: the new wave?
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2011.03.007
– volume: 47
  start-page: 772
  year: 2006
  ident: ref41
  article-title: A mutation in At-nMat1a, which encodes a nuclear gene having high similarity to group II intron maturase, causes impaired splicing of mitochondrial NAD4 transcript and altered carbon metabolism in Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcj051
– volume: 74
  start-page: 215
  year: 2010
  ident: ref17
  article-title: Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-010-9667-7
– volume: 24
  start-page: 1815
  year: 2012
  ident: ref19
  article-title: DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.098707
– volume: 10
  start-page: 36
  year: 2005
  ident: ref33
  article-title: The plant mitochondrial proteome
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2004.12.002
– volume: 65
  start-page: 737
  year: 2011
  ident: ref35
  article-title: A RESTORER OF FERTILITY-like PPR gene is required for 5′-end processing of the nad4 mRNA in mitochondria of Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04460.x
– volume: 22
  start-page: 2623
  year: 2003
  ident: ref18
  article-title: NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis
  publication-title: EMBO J
  doi: 10.1093/emboj/cdg277
– volume: 119
  start-page: 109
  year: 2004
  ident: ref28
  article-title: The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche
  publication-title: Cell
  doi: 10.1016/j.cell.2004.09.018
– reference: 16621844 - Plant Cell Physiol. 2006 Jun;47(6):772-83
– reference: 15454085 - Cell. 2004 Oct 1;119(1):109-20
– reference: 12588857 - Development. 2003 Apr;130(7):1429-38
– reference: 20561255 - Plant J. 2010 Sep;63(5):749-65
– reference: 19675153 - Plant Physiol. 2009 Oct;151(2):603-19
– reference: 24249834 - Plant Cell. 2013 Nov;25(11):4451-68
– reference: 22576772 - Plant Cell Physiol. 2012 Jul;53(7):1171-9
– reference: 20031434 - Plant Physiol Biochem. 2010 May;48(5):328-36
– reference: 18450450 - Curr Biol. 2008 May 6;18(9):656-60
– reference: 19919573 - Plant J. 2010 Feb 1;61(3):446-55
– reference: 21406623 - Plant Cell. 2011 Mar;23(3):1093-106
– reference: 24047899 - J Biol Chem. 2013 Nov 1;288(44):31540-8
– reference: 17960244 - Nature. 2007 Oct 25;449(7165):1053-7
– reference: 20661628 - Plant Mol Biol. 2010 Oct;74(3):215-22
– reference: 14651850 - Cell. 2003 Nov 26;115(5):591-602
– reference: 20040541 - Plant Cell. 2009 Dec;21(12):3823-38
– reference: 7477287 - Nature. 1995 Nov 2;378(6552):62-5
– reference: 22652060 - Plant Cell. 2012 May;24(5):1815-33
– reference: 12773379 - EMBO J. 2003 Jun 2;22(11):2623-33
– reference: 22821940 - J Exp Bot. 2012 Sep;63(14):5301-10
– reference: 21482172 - Trends Plant Sci. 2011 Jun;16(6):300-9
– reference: 20497377 - Plant J. 2010 Aug;63(3):499-511
– reference: 12045282 - Plant Cell. 2002;14 Suppl:S265-76
– reference: 22767200 - Planta. 2012 Sep;236(3):765-79
– reference: 19929879 - Plant J. 2010 Feb 1;61(3):456-66
– reference: 15642522 - Trends Plant Sci. 2005 Jan;10(1):36-43
– reference: 21486305 - Plant Cell Environ. 2012 Feb;35(2):259-70
– reference: 11038608 - Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2745-50
– reference: 9807829 - Plant J. 1998 Oct;16(1):73-8
– reference: 22248025 - Plant J. 2012 May;70(3):432-44
– reference: 20164444 - Plant Cell. 2010 Feb;22(2):376-91
– reference: 21711357 - Plant Cell Environ. 2012 Feb;35(2):234-44
– reference: 21251101 - Plant J. 2011 Mar;65(5):737-44
– reference: 22429648 - Plant J. 2012 Aug;71(3):413-26
– reference: 24163311 - Plant Cell. 2013 Oct;25(10):3858-70
– reference: 18373649 - New Phytol. 2008;178(4):703-18
– reference: 23990142 - Mol Plant. 2014 Feb;7(2):290-310
– reference: 12878018 - Trends Plant Sci. 2003 Jul;8(7):335-42
– reference: 12527773 - Nucleic Acids Res. 2003 Jan 15;31(2):647-52
– reference: 21443606 - Plant Cell Environ. 2012 Feb;35(2):321-33
– reference: 10634910 - Plant Cell. 2000 Jan;12(1):97-110
– reference: 17287141 - Trends Plant Sci. 2007 Mar;12(3):98-105
– reference: 21045165 - Plant Cell. 2010 Nov;22(11):3692-709
– reference: 23658225 - Nucleic Acids Res. 2013 Jul;41(13):6650-63
– reference: 9401121 - Plant Cell. 1997 Nov;9(11):1963-71
– reference: 21143681 - Plant J. 2010 Dec;64(6):1018-27
– reference: 23709674 - J Exp Bot. 2013 Jun;64(9):2629-39
SSID ssj0035897
Score 2.5365057
Snippet Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS...
  Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1004791
SubjectTerms Abscisic acid
Abscisic Acid - pharmacology
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biology and Life Sciences
Botanical research
Cloning
Electron Transport Complex I - genetics
Electron Transport Complex I - metabolism
Ethanol
Gene expression
Genetic aspects
Genetic research
Genotype
Glycerol
Growth hormones
Health aspects
Homeostasis
Introns
Meristem - genetics
Meristem - metabolism
Mitochondria
Mitochondria - metabolism
Phenotype
Plant Development
Plant growth
Plant Roots - genetics
Plant Roots - metabolism
Promoter Regions, Genetic
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
RNA Splicing
Signal Transduction
Transcription Factors - genetics
Transcription Factors - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journal Collection
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF6KodBL6Ttqk3ZbCj2psbSrlXRUSoJb2rg4Sclt2WdqiGVj2ZD8-85oZWOVQnLoVTsSaGZ29htp5htCPhbJ0NoU_w8yX8Y8ty4uOWz3rLTMGVhRFj8N_DgVowv-7TK73Bn1hTVhgR44KO4QEEJm4FAqlB5ygM9lCUeKLkSitXapa7N1OPM2yVSIwSwrwliVLGNxDml91zTH8uSws9HnBRgIawR4y8-5cyi13P3bCD1YXM-bf8HPv6sod46lkyfkcYcnaRXe4yl54Opn5GGYMHn7nCyroypuu0MAWdLJ-IxOazqDXQxRr7bgfHQZhtE7ChB6RWctc7ObUex3wLESVN_SrpwdG9fpz-_H56PxpKLupiuhrfGR1VLpqZ0vmmnzglycHJ9_GcXdmIXY5IKvYsNFMdROGFMIAwjQF877JMtTXzpvmbKgZ6G0Z4mH_IcrnyvYuCxLrLH5kFv2kgzqee32CFUAAOE6pHHGcy1SpbniRjMvAJUmhY8I2-hZmo6DHEdhXMv2x1oOuUhQm0TryM46EYm3dy0CB8cd8kdowq0sMmi3F8CvZOdX8i6_isg7dAAZ2lG3cUBWrESOOzEsIvKhlUAWjRrLdK7Uumnk1_Gvewidnd5HaNIT-tQJ-TnozKiufwI0jxRePcn9niQEDNNb3kOf3qiukYkA2M0ES_OIvN_4ucS7sACvdvM1ygCShdSWi4i8Cn6_1S9kpSl2XEck7-2IngH6K_X0d0tlzlPwoKx8_T8s9oY8AifjodZonwxWy7U7AMS40m_b4PAHO0hnVw
  priority: 102
  providerName: Directory of Open Access Journals
Title ABA-Mediated ROS in Mitochondria Regulate Root Meristem Activity by Controlling PLETHORA Expression in Arabidopsis
URI https://www.ncbi.nlm.nih.gov/pubmed/25522358
https://www.proquest.com/docview/1639975346
https://pubmed.ncbi.nlm.nih.gov/PMC4270459
https://doaj.org/article/8355c1298ab0417499266b861bbbe2e0
http://dx.doi.org/10.1371/journal.pgen.1004791
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJyReEPcFRjEIiadMTezYyQNC6dSpINpO2Yr2FsW3UakkpWml9d9znKQRQZvYa_w5ao_Psb8TnwtCH0NvoJRv7weJiVzKlXYjCuYeRIpoCSOZsp8GJlM2ntNvV8HVAdr3bG0EWN7q2tl-UvP18uTm9-4LGPznqmsD9_aTTlYgcnvrT7lNZz-Es4lbU53Q9l6BBGHEmwS6u2Z2Dqiqjn-7W_dWy6K8jYr-G1H51xF19gQ9brgljmtleIoOdP4MPay7Te6eo3U8jN1J1ZpDK5zMLvAixxOwaBBCrkARcVI3ptc4KYoNnlRVnPUvHMu6xQQWO3xah7bbJHZ8_n10OZ4lMR7dNOG0uX1lvM7EQhWrclG-QPOz0eXp2G1aLriSM7pxJWXhQGgmZcgksEETamO8gPsm0kaRTAkNyycM8Qz4QjQzPAMjJoGnpOIDqshL1MuLXB8hnAEZhOfg0klDBfMzQTMqBTEMGKoXGgeRvZxT2dQjt20xlml1ycbBL6nFltrVSZvVcZDbzlrV9Tj-gx_aJWyxtpp29aBYX6eNcabAQgMJxCfMxACUBpxAoC0iZJ4Q8H_1wEHvrAKkdWpquyekMYlsvTs2CB30oULYihq5Ddm5zrZlmX6d_bgH6GJ6H1DSAX1qQKYAmcmsyaUAydtyXh3kcQcJm4fsDB9Znd6Lrkw9BhScMOJzB73f63lqZ9lgvFwXW4sBVgtuLmUOelXrfStf8FB9m33tIN6xiM4CdEfyxc-qrDn1QYOC6PXdP-kNegSqQ-toomPU26y3-i1wwo3oowf8ivfR4XA0PU_61ZeVfmX6fwBC_GR3
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABA-Mediated+ROS+in+Mitochondria+Regulate+Root+Meristem+Activity+by+Controlling+PLETHORA+Expression+in+Arabidopsis&rft.jtitle=PLoS+genetics&rft.au=Yang%2C+Li&rft.au=Zhang%2C+Jing&rft.au=He%2C+Junna&rft.au=Qin%2C+Yingying&rft.date=2014-12-01&rft.pub=Public+Library+of+Science&rft.eissn=1553-7404&rft.volume=10&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pgen.1004791&rft.externalDocID=1685136327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon