Meiotic Crossover Control by Concerted Action of Rad51-Dmc1 in Homolog Template Bias and Robust Homeostatic Regulation

During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast im...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 9; no. 12; p. e1003978
Main Authors Lao, Jessica P., Cloud, Veronica, Huang, Chu-Chun, Grubb, Jennifer, Thacker, Drew, Lee, Chih-Ying, Dresser, Michael E., Hunter, Neil, Bishop, Douglas K.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.12.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination.
AbstractList During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination. Meiosis is the specialized cell division that produces gametes by precisely reducing the chromosome copy number from two to one. Accurate segregation of homologous chromosome pairs requires they be connected by crossing-over, the precise breakage and exchange of chromosome arms that is carried out by a process called recombination. Recombination is regulated so each pair of homologous chromosomes becomes connected by at least one crossover. We studied the roles of two recombination proteins, Rad51 and Dmc1, which can act directly to join homologous DNA molecules. Our evidence supports the idea that Dmc1 is the dominant joining activity, while Rad51 acts indirectly with other proteins to support and regulate Dmc1. Furthermore, Hed1, an inhibitor of Rad51's DNA joining activity, is also shown to enhance the efficiency of crossing-over. Cells in which Rad51 is activated to promote DNA joining in place of Dmc1 have unregulated and inefficient crossing-over that often leaves chromosome pairs without the requisite crossover. Despite these defects, most cells that use Rad51 in place of Dmc1 complete meiosis and produce high levels of crossovers. Our results indicate that compensatory processes ensure that meiotic cells accumulate high levels of crossover intermediates before progressing to the first round of chromosome segregation.
  During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination.
During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination.During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination.
During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination.
During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a Dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Superresolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Redl, into clusters along lateral elements of synaptonemal complexes;this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination.
Audience Academic
Author Dresser, Michael E.
Lao, Jessica P.
Lee, Chih-Ying
Hunter, Neil
Cloud, Veronica
Huang, Chu-Chun
Bishop, Douglas K.
Thacker, Drew
Grubb, Jennifer
AuthorAffiliation 2 Genetics Graduate Group, University of California, Davis, Davis, California, United States of America
8 Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
National Cancer Institute, United States of America
1 Howard Hughes Medical Institute and Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
4 Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
5 Weil Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
6 Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
9 Department of Molecular & Cellular Biology, University of California, Davis, Davis, California, United States of America
7 Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma Cit
AuthorAffiliation_xml – name: 10 Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, California, United States of America
– name: 1 Howard Hughes Medical Institute and Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
– name: 2 Genetics Graduate Group, University of California, Davis, Davis, California, United States of America
– name: 6 Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
– name: 7 Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
– name: 11 Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
– name: 8 Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
– name: 5 Weil Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
– name: 4 Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
– name: 3 Committee on Genetics, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
– name: 9 Department of Molecular & Cellular Biology, University of California, Davis, Davis, California, United States of America
– name: National Cancer Institute, United States of America
Author_xml – sequence: 1
  givenname: Jessica P.
  surname: Lao
  fullname: Lao, Jessica P.
– sequence: 2
  givenname: Veronica
  surname: Cloud
  fullname: Cloud, Veronica
– sequence: 3
  givenname: Chu-Chun
  surname: Huang
  fullname: Huang, Chu-Chun
– sequence: 4
  givenname: Jennifer
  surname: Grubb
  fullname: Grubb, Jennifer
– sequence: 5
  givenname: Drew
  surname: Thacker
  fullname: Thacker, Drew
– sequence: 6
  givenname: Chih-Ying
  surname: Lee
  fullname: Lee, Chih-Ying
– sequence: 7
  givenname: Michael E.
  surname: Dresser
  fullname: Dresser, Michael E.
– sequence: 8
  givenname: Neil
  surname: Hunter
  fullname: Hunter, Neil
– sequence: 9
  givenname: Douglas K.
  surname: Bishop
  fullname: Bishop, Douglas K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24367271$$D View this record in MEDLINE/PubMed
BookMark eNqVk12L1DAUhousuB_6D0QLgujFjE2TNs1eCOP4sQOrC-PqbUjTk06GtBmbdHD_venO7DIVEaUXPSTP--bwcs5pdNTaFqLoKUqmCFP0Zm37rhVmuqmhnaIkwYwWD6ITlGV4QklCjg7q4-jUuXVgsoLRR9FxSnBOU4pOou1n0NZrGc8765zdQhfPbes7a-LyZigldB6qeCa9tm1sVbwUVYYm7xuJYt3GF7axxtbxNTQbIzzE77RwsWireGnL3vkBAOu8GN5YQt0HKBg9jh4qYRw82f_Pom8fP1zPLyaXV58W89nlRNKc-EmpJKVFVaa5UiUlDFKEoKwoxioraF5QlgnEcJXlgBQAY6VEUlBEZAkoSSU-i57vfDfGOr6PzHFEaJBiSnAgFjuismLNN51uRHfDrdD89sB2NRddaN4AL1MmQvJAaKmIVKhMQpkCrUKvKStQ8Hq7f60vG6gkhCCFGZmOb1q94rXdclzkRZYWweDV3qCzP3pwnjfaSTBGtGD7oW-W0JSliAT0xQ6tRWhNt8oGRzngfIYzWuShUxao6R-o8FXQaBkGSulwPhK8HgkC4-Gnr0XvHF98Xf4H--Xf2avvY_blAbsCYfzKWdMPg-PG4LPDvO-DvhvvAJAdIIfp7kDdIyjhwxbdjQQftojvtyjIzn-TSe1v5zakp83fxb8AwUwipg
CitedBy_id crossref_primary_10_1111_brv_12680
crossref_primary_10_1016_j_yexcr_2014_08_024
crossref_primary_10_1093_nar_gkaa406
crossref_primary_10_14348_molcells_2016_0069
crossref_primary_10_1111_tpj_14505
crossref_primary_10_1371_journal_pgen_1010322
crossref_primary_10_7554_eLife_21900
crossref_primary_10_7554_eLife_40372
crossref_primary_10_1371_journal_pgen_1005653
crossref_primary_10_1371_journal_pgen_1006226
crossref_primary_10_1146_annurev_genet_120213_092304
crossref_primary_10_1038_cddis_2015_75
crossref_primary_10_1073_pnas_1920368117
crossref_primary_10_1016_j_dnarep_2021_103114
crossref_primary_10_1016_j_mrfmmm_2017_06_007
crossref_primary_10_1016_j_bbamcr_2023_119526
crossref_primary_10_1371_journal_pgen_1005369
crossref_primary_10_1007_s12275_019_8541_9
crossref_primary_10_1016_j_molcel_2020_02_001
crossref_primary_10_1146_annurev_arplant_050213_035923
crossref_primary_10_1146_annurev_genet_071719_020235
crossref_primary_10_1371_journal_pgen_1008919
crossref_primary_10_1111_nph_20181
crossref_primary_10_1016_j_dnarep_2018_08_018
crossref_primary_10_15252_embj_201798728
crossref_primary_10_1038_s44318_024_00318_8
crossref_primary_10_1093_genetics_iyab102
crossref_primary_10_1093_nar_gkaa587
crossref_primary_10_1534_genetics_114_172320
crossref_primary_10_1093_plcell_koae292
crossref_primary_10_1016_j_isci_2022_105439
crossref_primary_10_15252_embj_201695895
crossref_primary_10_1371_journal_pgen_1005478
crossref_primary_10_1016_j_semcdb_2016_01_042
crossref_primary_10_1136_jmedgenet_2018_105513
crossref_primary_10_1016_j_molcel_2020_06_015
crossref_primary_10_1093_genetics_iyad125
crossref_primary_10_1371_journal_pgen_1008905
crossref_primary_10_1002_yea_3227
crossref_primary_10_1093_nar_gky1273
crossref_primary_10_1093_nar_gku1219
crossref_primary_10_1073_pnas_2007192118
crossref_primary_10_1093_nar_gkab566
crossref_primary_10_1002_iub_1877
crossref_primary_10_1074_jbc_M115_666289
crossref_primary_10_1146_annurev_genet_061323_044915
crossref_primary_10_1016_j_tplants_2019_12_017
crossref_primary_10_1073_pnas_1514265112
crossref_primary_10_1534_g3_118_200641
crossref_primary_10_1371_journal_pgen_1008217
crossref_primary_10_1002_yea_3512
crossref_primary_10_7554_eLife_19669
crossref_primary_10_1093_nar_gky1160
crossref_primary_10_1371_journal_pbio_1002369
crossref_primary_10_3389_fcell_2022_1097446
crossref_primary_10_1371_journal_pgen_1010407
crossref_primary_10_1111_mec_13932
crossref_primary_10_1074_jbc_M114_558601
crossref_primary_10_1534_genetics_117_300359
crossref_primary_10_1093_nar_gkx1196
crossref_primary_10_3390_ijms252312861
crossref_primary_10_1074_jbc_RA118_006146
crossref_primary_10_1093_nar_gkad281
crossref_primary_10_3390_genes14112017
crossref_primary_10_1371_journal_pgen_1005335
crossref_primary_10_1016_j_devcel_2021_06_012
crossref_primary_10_1007_s00294_019_00937_3
crossref_primary_10_1242_jcs_161554
crossref_primary_10_4161_15384101_2014_991185
crossref_primary_10_7554_eLife_57720
crossref_primary_10_1101_gad_328062_119
crossref_primary_10_1534_genetics_119_302427
crossref_primary_10_3390_genes13020200
crossref_primary_10_1093_nar_gkw034
crossref_primary_10_1038_s41467_020_20258_1
crossref_primary_10_1007_s00412_019_00709_5
crossref_primary_10_1266_ggs_89_169
crossref_primary_10_3390_genes11010071
crossref_primary_10_1093_biolre_ioac040
crossref_primary_10_1093_genetics_iyae106
crossref_primary_10_1371_journal_pone_0134297
crossref_primary_10_1093_nar_gkad537
crossref_primary_10_1146_annurev_biophys_100121_075228
crossref_primary_10_1371_journal_pgen_1004104
crossref_primary_10_1007_s12275_022_1635_9
crossref_primary_10_1016_j_semcdb_2016_01_008
crossref_primary_10_1101_gad_342873_120
crossref_primary_10_1111_febs_13280
crossref_primary_10_1093_g3journal_jkab111
crossref_primary_10_1101_gr_278024_123
crossref_primary_10_1016_j_celrep_2023_112953
crossref_primary_10_1111_febs_13317
crossref_primary_10_18699_VJGB_23_15
crossref_primary_10_1016_j_dnarep_2023_103613
crossref_primary_10_1016_j_devcel_2020_04_010
crossref_primary_10_1093_nar_gkae083
crossref_primary_10_1371_journal_pgen_1005301
crossref_primary_10_1007_s00497_022_00443_6
crossref_primary_10_1093_nar_gkad154
Cites_doi 10.1101/gad.1638708
10.1016/j.tcb.2011.03.004
10.1038/nature08868
10.1016/0092-8674(92)90446-J
10.1101/gad.1422506
10.1371/journal.pone.0065875
10.1016/S0092-8674(00)80378-5
10.1101/gad.1227304
10.1093/genetics/132.2.387
10.4161/cc.9.3.10773
10.1016/j.molcel.2010.11.032
10.1016/j.cell.2008.01.035
10.1016/j.molcel.2013.08.008
10.1007/978-1-62703-565-1_6
10.1083/jcb.201104121
10.1016/j.cub.2004.04.030
10.1364/OE.16.009614
10.1038/nature10508
10.1074/jbc.M601073200
10.1159/000080598
10.1371/journal.pgen.1002305
10.1093/genetics/121.3.445
10.1016/S1534-5807(03)00357-5
10.1016/0092-8674(94)90438-3
10.1101/gad.1563007
10.1534/genetics.111.129031
10.1073/pnas.97.20.10814
10.1016/S0092-8674(04)00292-2
10.1016/j.devcel.2011.08.012
10.1126/science.1212424
10.1101/gad.11.1.106
10.1083/jcb.136.5.957
10.1073/pnas.0404195101
10.1534/genetics.105.050658
10.1371/journal.pbio.0050299
10.1101/gad.213652.113
10.1016/0092-8674(90)90524-I
10.1016/S0092-8674(01)00500-1
10.1016/j.cell.2012.03.023
10.1534/genetics.110.115501
10.1016/j.cub.2004.11.038
10.1016/j.devcel.2008.07.006
10.1371/journal.pgen.0020012
10.1073/pnas.0711864105
10.1128/MCB.00416-07
10.1038/nature03872
10.1093/genetics/153.2.621
10.1146/annurev.genet.33.1.603
10.1093/genetics/34.5.607
10.1093/genetics/153.2.607
10.1086/279534
10.1046/j.1365-2443.1999.00273.x
10.1016/j.cell.2007.05.035
10.1016/j.molcel.2009.09.029
10.1098/rsob.130019
10.1016/j.cell.2010.11.015
10.1016/0092-8674(94)90172-4
10.1074/jbc.M111.297309
10.1007/978-1-59745-527-5_4
10.1093/genetics/37.2.175
10.1073/pnas.0913435107
10.1016/j.devcel.2008.08.009
10.1371/journal.pgen.1000557
10.1126/science.1183112
10.1016/j.cell.2006.05.044
10.1007/BF00292222
10.1016/j.cell.2012.01.052
10.1371/journal.pgen.1001329
10.1128/MCB.22.9.3078-3088.2002
10.1073/pnas.1117937108
10.1046/j.1365-2443.1997.1480347.x
10.1101/gad.5.12b.2392
10.1093/genetics/147.2.533
10.1016/0092-8674(93)90114-6
10.1534/genetics.104.95596
10.1016/0092-8674(94)90038-8
10.1038/ncb2451
10.1016/0092-8674(92)90447-K
10.1074/jbc.M105563200
10.4161/cc.22396
10.1126/science.1219379
10.1534/genetics.104.027961
10.1016/0092-8674(95)90191-4
10.1371/journal.pbio.1000519
10.1126/science.3535068
10.1091/mbc.E03-07-0499
10.1371/journal.pbio.1000520
10.1007/7050_2007_026
10.1101/gad.1711408
10.1016/S0092-8674(01)00430-5
10.1126/science.1108283
10.1083/jcb.106.3.567
10.1083/jcb.128.4.455
10.1016/j.molcel.2007.12.014
10.1093/nar/20.3.449
10.1016/S0092-8674(01)00416-0
10.1038/ng1588
10.1038/ncomms2678
10.1371/journal.pgen.1003545
10.1128/MCB.26.8.2913-2923.2006
10.1016/j.cell.2011.02.009
ContentType Journal Article
Copyright COPYRIGHT 2013 Public Library of Science
2013 Lao et al 2013 Lao et al
2013 Lao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lao JP, Cloud V, Huang C-C, Grubb J, Thacker D, et al. (2013) Meiotic Crossover Control by Concerted Action of Rad51-Dmc1 in Homolog Template Bias and Robust Homeostatic Regulation. PLoS Genet 9(12): e1003978. doi:10.1371/journal.pgen.1003978
Copyright_xml – notice: COPYRIGHT 2013 Public Library of Science
– notice: 2013 Lao et al 2013 Lao et al
– notice: 2013 Lao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lao JP, Cloud V, Huang C-C, Grubb J, Thacker D, et al. (2013) Meiotic Crossover Control by Concerted Action of Rad51-Dmc1 in Homolog Template Bias and Robust Homeostatic Regulation. PLoS Genet 9(12): e1003978. doi:10.1371/journal.pgen.1003978
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1003978
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Rad51-Dmc1 Cooperation Regulates Crossovers
EISSN 1553-7404
ExternalDocumentID 1477953743
oai_doaj_org_article_b29a371e47bf4cf1b0e472e7d7642981
PMC3868528
A357863719
24367271
10_1371_journal_pgen_1003978
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM050936
– fundername: NIGMS NIH HHS
  grantid: R01 GM050936
– fundername: NIGMS NIH HHS
  grantid: GM074223
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM074223
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
WOQ
PMFND
7X8
5PM
PUEGO
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c764t-bfc778db26ffb749e211ebd733f58768795a193d56e1fee99bc1ca714cbe102c3
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:13:32 EST 2021
Wed Aug 27 00:29:13 EDT 2025
Thu Aug 21 13:55:42 EDT 2025
Mon Jul 21 09:44:23 EDT 2025
Tue Jun 17 21:01:23 EDT 2025
Tue Jun 10 20:33:14 EDT 2025
Fri Jun 27 03:59:49 EDT 2025
Fri Jun 27 03:56:01 EDT 2025
Fri Jun 27 04:39:24 EDT 2025
Thu May 22 20:59:25 EDT 2025
Mon Jul 21 05:53:28 EDT 2025
Tue Jul 01 04:23:50 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c764t-bfc778db26ffb749e211ebd733f58768795a193d56e1fee99bc1ca714cbe102c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: JPL VC CCH DT NH DKB. Performed the experiments: JPL VC CCH JG DT CYL. Analyzed the data: JPL VC CCH DT MED NH DKB. Wrote the paper: JPL VC CCH DT MED NH DKB.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1003978
PMID 24367271
PQID 1490729214
PQPubID 23479
ParticipantIDs plos_journals_1477953743
doaj_primary_oai_doaj_org_article_b29a371e47bf4cf1b0e472e7d7642981
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3868528
proquest_miscellaneous_1490729214
gale_infotracmisc_A357863719
gale_infotracacademiconefile_A357863719
gale_incontextgauss_ISR_A357863719
gale_incontextgauss_ISN_A357863719
gale_incontextgauss_IOV_A357863719
gale_healthsolutions_A357863719
pubmed_primary_24367271
crossref_primary_10_1371_journal_pgen_1003978
crossref_citationtrail_10_1371_journal_pgen_1003978
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2013
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References KJ Hillers (ref25) 2004; 14
SY Chen (ref17) 2008; 15
L Wan (ref68) 2004; 15
E Alani (ref11) 1990; 61
S Zanders (ref87) 2011; 188
L Zhang (ref27) 2011; 108
FW Stahl (ref95) 2009; 557
M Sym (ref72) 1995; 128
A Shinohara (ref6) 1992; 69
KP Kim (ref44) 2010; 143
JA Carballo (ref31) 2013; 9
A Shinohara (ref5) 2004; 107
L Kauppi (ref98) 2013; 27
AJ MacQueen (ref51) 2011; 21
LC Kadyk (ref35) 1992; 132
GV Borner (ref37) 2004; 117
T Sakuno (ref13) 2011; 21
ME Dresser (ref105) 1988; 106
EL Hong (ref8) 2001; 276
E Martini (ref18) 2006; 126
K Zakharyevich (ref41) 2012; 149
SH Leem (ref50) 1992; 20
V Busygina (ref86) 2012; 287
AH Sturtevant (ref24) 1915
H Tsubouchi (ref10) 2003; 5
S Gray (ref29) 2013; 3
DK Bishop (ref45) 1999; 4
MJ Neale (ref83) 2005; 436
A Schwacha (ref32) 1997; 90
P Chi (ref62) 2007; 21
I Roig (ref16) 2008; 15
ME Dresser (ref104) 1980; 76
EF Joyce (ref28) 2011; 195
S Hong (ref101) 2013; 51
DY Lui (ref9) 2006; 173
PM Carlton (ref96) 2006; 2
RJ Pezza (ref61) 2006; 281
DK Bishop (ref79) 2012; 11
B Kemp (ref91) 2004; 18
S Keeney (ref2) 2008; 2
HP Papazian (ref77) 1952; 37
DK Bishop (ref4) 1994; 79
M Bzymek (ref34) 2010; 464
BM Weiner (ref52) 1994; 77
JP Lao (ref106) 2008; 29
H Niu (ref67) 2007; 27
M Sym (ref71) 1993; 72
YK Chen (ref63) 2004; 101
HJ Muller (ref23) 1916; 50
JP Lao (ref100) 2013; 1054
GH Jones (ref22) 1984; 38
JA Carballo (ref65) 2008; 132
A Sourirajan (ref99) 2008; 22
JM Grushcow (ref56) 1999; 153
D Zickler (ref12) 1999; 33
JP Lao (ref33) 2010; 8
N Joshi (ref74) 2009; 5
D Wildanger (ref75) 2008; 16
DA Thompson (ref64) 1999; 153
DK Bishop (ref7) 1992; 69
R Yokoo (ref21) 2012; 149
NM Hollingsworth (ref88) 1989; 121
A Malkova (ref78) 2004; 168
PS Cheslock (ref92) 2005; 37
T Tsubouchi (ref69) 2005; 308
GV Borner (ref73) 2008; 105
Y Hirose (ref14) 2011; 7
DD Perkins (ref102) 1949; 34
M Shinohara (ref82) 2000; 97
F Cole (ref15) 2012; 14
J Pan (ref57) 2011; 144
M Hayashi (ref97) 2010; 186
N Hunter (ref54) 2001; 106
H Tsubouchi (ref58) 2002; 22
H Tsubouchi (ref47) 2006; 20
A Shinohara (ref81) 1997; 2
B Rockmill (ref49) 1991; 5
AM Villeneuve (ref84) 2001; 106
T Allers (ref40) 2001; 106
ME Dresser (ref80) 1997; 147
H Sasanuma (ref85) 2013; 4
B Argunhan (ref30) 2013; 8
JL Youds (ref19) 2010; 327
AV Smith (ref70) 1997; 136
SD Oh (ref55) 2007; 130
ref1
A Schwacha (ref103) 1994; 76
L Xu (ref89) 1997; 11
L Newnham (ref93) 2010; 107
J Lange (ref26) 2011; 479
AaKN Schwacha (ref53) 1994; 76
T Goldfarb (ref66) 2010; 8
V Cloud (ref46) 2012; 337
JM Henry (ref60) 2006; 26
C Zierhut (ref59) 2004; 14
H Niu (ref43) 2009; 36
F Stahl (ref76) 2008; 180
V Busygina (ref48) 2008; 22
K Zakharyevich (ref3) 2010; 40
A Schwacha (ref36) 1995; 83
NM Hollingsworth (ref90) 2010; 9
E Martini (ref42) 2011; 7
MS McMahill (ref39) 2007; 5
DK Bishop (ref38) 2004; 117
DS Dawson (ref94) 1986; 234
S Rosu (ref20) 2011; 334
8287479 - Cell. 1994 Jan 14;76(1):51-63
16648640 - Genetics. 2006 Jul;173(3):1207-22
16581767 - Mol Cell Biol. 2006 Apr;26(8):2913-23
8521495 - Cell. 1995 Dec 1;83(5):783-91
6545727 - Symp Soc Exp Biol. 1984;38:293-320
11461701 - Cell. 2001 Jul 13;106(1):47-57
21920317 - Dev Cell. 2011 Sep 13;21(3):534-45
15467365 - Cytogenet Genome Res. 2004;107(3-4):201-7
16675459 - J Biol Chem. 2006 Jul 7;281(27):18426-34
22024169 - J Cell Biol. 2011 Oct 31;195(3):359-67
17526735 - Mol Cell Biol. 2007 Aug;27(15):5456-67
15066280 - Cell. 2004 Apr 2;117(1):29-45
21531561 - Trends Cell Biol. 2011 Jul;21(7):393-400
15951820 - Nat Genet. 2005 Jul;37(7):756-60
9427283 - Genes Cells. 1997 Oct;2(10):615-29
24465222 - PLoS Genet. 2014 Jan;10(1):e1004104
17988174 - PLoS Biol. 2007 Nov 6;5(11):e299
10511544 - Genetics. 1999 Oct;153(2):621-41
1581961 - Cell. 1992 May 1;69(3):457-70
16873061 - Cell. 2006 Jul 28;126(2):285-95
21980306 - PLoS Genet. 2011 Sep;7(9):e1002305
10526232 - Genes Cells. 1999 Aug;4(8):425-44
16818607 - Genes Dev. 2006 Jul 1;20(13):1766-75
20976046 - PLoS Biol. 2010;8(10):e1000519
20090416 - Cell Cycle. 2010 Feb 1;9(3):436-7
15120066 - Curr Biol. 2004 May 4;14(9):752-62
11551925 - J Biol Chem. 2001 Nov 9;276(45):41906-12
2450094 - J Cell Biol. 1988 Mar;106(3):567-73
23913287 - Methods Mol Biol. 2013;1054:105-20
22123968 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20036-41
1581960 - Cell. 1992 May 1;69(3):439-56
18794232 - Genetics. 2008 Sep;180(1):1-6
7860625 - J Cell Biol. 1995 Feb;128(4):455-66
15289462 - Genes Dev. 2004 Aug 15;18(16):1946-51
18575529 - Opt Express. 2008 Jun 23;16(13):9614-21
23825959 - PLoS Genet. 2013 Jun;9(6):e1003545
18313389 - Mol Cell. 2008 Feb 29;29(4):517-24
19629172 - PLoS Genet. 2009 Jul;5(7):e1000557
17247336 - Genetics. 1949 Sep;34(5):607-26
15454526 - Genetics. 2004 Sep;168(1):49-63
18329363 - Cell. 2008 Mar 7;132(5):758-70
11005857 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10814-9
3535068 - Science. 1986 Nov 7;234(4777):713-7
23575680 - Nat Commun. 2013;4:1676
22955832 - Science. 2012 Sep 7;337(6099):1222-5
22002603 - Nature. 2011 Nov 10;479(7372):237-40
21423721 - PLoS Genet. 2011 Mar;7(3):e1001329
20348905 - Nature. 2010 Apr 8;464(7290):937-41
10511543 - Genetics. 1999 Oct;153(2):607-20
14595109 - Mol Biol Cell. 2004 Jan;15(1):11-23
15879219 - Science. 2005 May 6;308(5723):870-3
9000054 - Genes Dev. 1997 Jan 1;11(1):106-18
11461702 - Cell. 2001 Jul 13;106(1):59-70
18691940 - Dev Cell. 2008 Sep;15(3):401-15
22500800 - Cell. 2012 Apr 13;149(2):334-47
16107854 - Nature. 2005 Aug 18;436(7053):1053-7
20592266 - Genetics. 2010 Sep;186(1):45-58
23902647 - Open Biol. 2013 Jul;3(7):130019
23762445 - PLoS One. 2013;8(6):e65875
21376234 - Cell. 2011 Mar 4;144(5):719-31
17662941 - Cell. 2007 Jul 27;130(2):259-72
11572770 - Cell. 2001 Sep 21;106(6):647-50
15249670 - Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10572-7
19917248 - Mol Cell. 2009 Nov 13;36(3):393-404
21172664 - Mol Cell. 2010 Dec 22;40(6):1001-15
17247384 - Genetics. 1952 Mar;37(2):175-88
18347097 - Genes Dev. 2008 Mar 15;22(6):786-95
22464324 - Cell. 2012 Mar 30;149(1):75-87
23599345 - Genes Dev. 2013 Apr 15;27(8):873-86
16462941 - PLoS Genet. 2006 Feb;2(2):e12
2185891 - Cell. 1990 May 4;61(3):419-36
14667413 - Dev Cell. 2003 Dec;5(6):915-25
9060462 - J Cell Biol. 1997 Mar 10;136(5):957-67
9335591 - Genetics. 1997 Oct;147(2):533-44
7916652 - Cell. 1993 Feb 12;72(3):365-78
22144627 - Science. 2011 Dec 2;334(6060):1286-9
21145459 - Cell. 2010 Dec 10;143(6):924-37
19799175 - Methods Mol Biol. 2009;557:35-53
1427035 - Genetics. 1992 Oct;132(2):387-402
20976044 - PLoS Biol. 2010;8(10):e1000520
23973374 - Mol Cell. 2013 Aug 22;51(4):440-53
17639080 - Genes Dev. 2007 Jul 15;21(14):1747-57
21927624 - Genome Dyn Stab. 2008 Jan 1;2:81-123
15620632 - Curr Biol. 2004 Dec 29;14(24):R1036-7
10690419 - Annu Rev Genet. 1999;33:603-754
7528104 - Cell. 1994 Dec 16;79(6):1081-92
9323140 - Cell. 1997 Sep 19;90(6):1123-35
15066278 - Cell. 2004 Apr 2;117(1):9-15
18804427 - Dev Cell. 2008 Sep;15(3):331-2
2653960 - Genetics. 1989 Mar;121(3):445-62
20080752 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):781-5
22388890 - Nat Cell Biol. 2012 Apr;14(4):424-30
18832066 - Genes Dev. 2008 Oct 1;22(19):2627-32
23075494 - Cell Cycle. 2012 Nov 15;11(22):4105-6
6153596 - Chromosoma. 1980;76(1):1-22
8020104 - Cell. 1994 Jul 1;77(7):977-91
22115747 - J Biol Chem. 2012 Jan 6;287(2):1566-75
1752435 - Genes Dev. 1991 Dec;5(12B):2392-404
18305165 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3327-32
21515575 - Genetics. 2011 Jul;188(3):511-21
1741279 - Nucleic Acids Res. 1992 Feb 11;20(3):449-57
11940665 - Mol Cell Biol. 2002 May;22(9):3078-88
20203049 - Science. 2010 Mar 5;327(5970):1254-8
References_xml – ident: ref1
– volume: 117
  start-page: 9
  year: 2004
  ident: ref38
  article-title: Early decision; meiotic crossover interference prior to stable strand exchange and synapsis
  publication-title: Cell
– volume: 22
  start-page: 786
  year: 2008
  ident: ref48
  article-title: Hed1 regulates Rad51-mediated recombination via a novel mechanism
  publication-title: Genes Dev
  doi: 10.1101/gad.1638708
– volume: 21
  start-page: 393
  year: 2011
  ident: ref51
  article-title: Checkpoint mechanisms: the puppet masters of meiotic prophase
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2011.03.004
– volume: 464
  start-page: 937
  year: 2010
  ident: ref34
  article-title: Double Holliday junctions are intermediates of DNA break repair
  publication-title: Nature
  doi: 10.1038/nature08868
– volume: 69
  start-page: 439
  year: 1992
  ident: ref7
  article-title: DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90446-J
– volume: 20
  start-page: 1766
  year: 2006
  ident: ref47
  article-title: Budding yeast Hed1 down-regulates the mitotic recombination machinery when meiotic recombination is impaired
  publication-title: Genes Dev
  doi: 10.1101/gad.1422506
– volume: 8
  start-page: e65875
  year: 2013
  ident: ref30
  article-title: Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0065875
– volume: 90
  start-page: 1123
  year: 1997
  ident: ref32
  article-title: Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80378-5
– volume: 18
  start-page: 1946
  year: 2004
  ident: ref91
  article-title: A role for centromere pairing in meiotic chromosome segregation
  publication-title: Genes Dev
  doi: 10.1101/gad.1227304
– volume: 132
  start-page: 387
  year: 1992
  ident: ref35
  article-title: Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/132.2.387
– volume: 9
  start-page: 436
  year: 2010
  ident: ref90
  article-title: Phosphorylation and the creation of interhomolog bias during meiosis in yeast
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.3.10773
– volume: 40
  start-page: 1001
  year: 2010
  ident: ref3
  article-title: Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.11.032
– volume: 38
  start-page: 293
  year: 1984
  ident: ref22
  article-title: The control of chiasma distribution
  publication-title: Symp Soc Exp Biol
– volume: 132
  start-page: 758
  year: 2008
  ident: ref65
  article-title: Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.035
– volume: 51
  start-page: 440
  year: 2013
  ident: ref101
  article-title: The logic and mechanism of homologous recombination partner choice
  publication-title: Molecular cell
  doi: 10.1016/j.molcel.2013.08.008
– volume: 1054
  start-page: 105
  year: 2013
  ident: ref100
  article-title: Native/Denaturing two-dimensional DNA electrophoresis and its application to the analysis of recombination intermediates
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-565-1_6
– volume: 195
  start-page: 359
  year: 2011
  ident: ref28
  article-title: Drosophila ATM and ATR have distinct activities in the regulation of meiotic DNA damage and repair
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201104121
– volume: 14
  start-page: 752
  year: 2004
  ident: ref59
  article-title: Mnd1 is required for meiotic interhomolog repair
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2004.04.030
– volume: 16
  start-page: 9614
  year: 2008
  ident: ref75
  article-title: STED microscopy with a supercontinuum laser source
  publication-title: Opt Express
  doi: 10.1364/OE.16.009614
– volume: 479
  start-page: 237
  year: 2011
  ident: ref26
  article-title: ATM controls meiotic double-strand-break formation
  publication-title: Nature
  doi: 10.1038/nature10508
– volume: 281
  start-page: 18426
  year: 2006
  ident: ref61
  article-title: Molecular activities of meiosis-specific proteins Hop2, Mnd1, and the Hop2-Mnd1 complex
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M601073200
– volume: 107
  start-page: 201
  year: 2004
  ident: ref5
  article-title: Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination
  publication-title: Cytogenet Genome Res
  doi: 10.1159/000080598
– volume: 7
  start-page: e1002305
  year: 2011
  ident: ref42
  article-title: Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002305
– volume: 121
  start-page: 445
  year: 1989
  ident: ref88
  article-title: HOP1: a yeast meiotic pairing gene
  publication-title: Genetics
  doi: 10.1093/genetics/121.3.445
– volume: 5
  start-page: 915
  year: 2003
  ident: ref10
  article-title: The importance of genetic recombination for fidelity of chromosome pairing in meiosis
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(03)00357-5
– volume: 77
  start-page: 977
  year: 1994
  ident: ref52
  article-title: Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90438-3
– volume: 21
  start-page: 1747
  year: 2007
  ident: ref62
  article-title: Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase
  publication-title: Genes Dev
  doi: 10.1101/gad.1563007
– volume: 188
  start-page: 511
  year: 2011
  ident: ref87
  article-title: Pch2 modulates chromatid partner choice during meiotic double-strand break repair in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1534/genetics.111.129031
– volume: 97
  start-page: 10814
  year: 2000
  ident: ref82
  article-title: Tid1/Rdh54 promotes colocalization of rad51 and dmc1 during meiotic recombination
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.20.10814
– volume: 117
  start-page: 29
  year: 2004
  ident: ref37
  article-title: Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00292-2
– volume: 21
  start-page: 534
  year: 2011
  ident: ref13
  article-title: Repositioning of aurora B promoted by chiasmata ensures sister chromatid mono-orientation in meiosis I
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2011.08.012
– volume: 334
  start-page: 1286
  year: 2011
  ident: ref20
  article-title: Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number
  publication-title: Science
  doi: 10.1126/science.1212424
– volume: 11
  start-page: 106
  year: 1997
  ident: ref89
  article-title: Meiotic cells monitor the status of the interhomolog recombination complex
  publication-title: Genes Dev
  doi: 10.1101/gad.11.1.106
– volume: 136
  start-page: 957
  year: 1997
  ident: ref70
  article-title: The yeast Red1 protein localizes to the cores of meiotic chromosomes
  publication-title: J Cell Biol
  doi: 10.1083/jcb.136.5.957
– volume: 101
  start-page: 10572
  year: 2004
  ident: ref63
  article-title: Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0404195101
– volume: 173
  start-page: 1207
  year: 2006
  ident: ref9
  article-title: Analysis of close stable homolog juxtaposition during meiosis in mutants of Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1534/genetics.105.050658
– volume: 5
  start-page: e299
  year: 2007
  ident: ref39
  article-title: Synthesis-dependent strand annealing in meiosis
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050299
– volume: 27
  start-page: 873
  year: 2013
  ident: ref98
  article-title: Numerical constraints and feedback control of double-strand breaks in mouse meiosis
  publication-title: Genes Dev
  doi: 10.1101/gad.213652.113
– volume: 61
  start-page: 419
  year: 1990
  ident: ref11
  article-title: Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90524-I
– volume: 106
  start-page: 647
  year: 2001
  ident: ref84
  article-title: Whence meiosis?
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00500-1
– volume: 149
  start-page: 334
  year: 2012
  ident: ref41
  article-title: Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.023
– volume: 186
  start-page: 45
  year: 2010
  ident: ref97
  article-title: The synaptonemal complex shapes the crossover landscape through cooperative assembly, crossover promotion and crossover inhibition during Caenorhabditis elegans meiosis
  publication-title: Genetics
  doi: 10.1534/genetics.110.115501
– volume: 14
  start-page: R1036
  year: 2004
  ident: ref25
  article-title: Crossover interference
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2004.11.038
– volume: 15
  start-page: 401
  year: 2008
  ident: ref17
  article-title: Global analysis of the meiotic crossover landscape
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2008.07.006
– volume: 2
  start-page: e12
  year: 2006
  ident: ref96
  article-title: A link between meiotic prophase progression and crossover control
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020012
– volume: 105
  start-page: 3327
  year: 2008
  ident: ref73
  article-title: Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0711864105
– volume: 27
  start-page: 5456
  year: 2007
  ident: ref67
  article-title: Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00416-07
– volume: 436
  start-page: 1053
  year: 2005
  ident: ref83
  article-title: Endonucleolytic processing of covalent protein-linked DNA double-strand breaks
  publication-title: Nature
  doi: 10.1038/nature03872
– volume: 153
  start-page: 621
  year: 1999
  ident: ref64
  article-title: Genetic control of recombination partner preference in yeast meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination [In Process Citation]
  publication-title: Genetics
  doi: 10.1093/genetics/153.2.621
– volume: 33
  start-page: 603
  year: 1999
  ident: ref12
  article-title: Meiotic chromosomes: integrating structure and function
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.33.1.603
– volume: 34
  start-page: 607
  year: 1949
  ident: ref102
  article-title: Biochemical mutants in the smut fungus Ustilago maydis
  publication-title: Genetics
  doi: 10.1093/genetics/34.5.607
– start-page: 234
  year: 1915
  ident: ref24
  article-title: The behavior of chromosomes as studied through linkage
  publication-title: Z Abstam Vererbung
– volume: 153
  start-page: 607
  year: 1999
  ident: ref56
  article-title: Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice
  publication-title: Genetics
  doi: 10.1093/genetics/153.2.607
– volume: 50
  start-page: 193
  year: 1916
  ident: ref23
  article-title: The mechanism of crossing over
  publication-title: Am Nat
  doi: 10.1086/279534
– volume: 4
  start-page: 425
  year: 1999
  ident: ref45
  article-title: High copy number suppression of the meiotic arrest caused by a dmc1 mutation: REC114 imposes an early recombination block and RAD54 promotes a DMC1-independent DSB repair pathway
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.1999.00273.x
– volume: 130
  start-page: 259
  year: 2007
  ident: ref55
  article-title: BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.035
– volume: 36
  start-page: 393
  year: 2009
  ident: ref43
  article-title: Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.09.029
– volume: 3
  start-page: 130019
  year: 2013
  ident: ref29
  article-title: Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR)
  publication-title: Open Biol
  doi: 10.1098/rsob.130019
– volume: 143
  start-page: 924
  year: 2010
  ident: ref44
  article-title: Sister cohesion and structural axis components mediate homolog bias of meiotic recombination
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.015
– volume: 76
  start-page: 51
  year: 1994
  ident: ref53
  article-title: Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90172-4
– volume: 287
  start-page: 1566
  year: 2012
  ident: ref86
  article-title: Novel attributes of Hed1 affect dynamics and activity of the Rad51 presynaptic filament during meiotic recombination
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.297309
– volume: 557
  start-page: 35
  year: 2009
  ident: ref95
  article-title: Methods for analysis of crossover interference in Saccharomyces cerevisiae
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-527-5_4
– volume: 37
  start-page: 178
  year: 1952
  ident: ref77
  article-title: The Analysis of Tetrad Data
  publication-title: Genetics
  doi: 10.1093/genetics/37.2.175
– volume: 107
  start-page: 781
  year: 2010
  ident: ref93
  article-title: The synaptonemal complex protein, Zip1, promotes the segregation of nonexchange chromosomes at meiosis I
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0913435107
– volume: 15
  start-page: 331
  year: 2008
  ident: ref16
  article-title: Probing meiotic recombination decisions
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2008.08.009
– volume: 5
  start-page: e1000557
  year: 2009
  ident: ref74
  article-title: Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000557
– volume: 327
  start-page: 1254
  year: 2010
  ident: ref19
  article-title: RTEL-1 enforces meiotic crossover interference and homeostasis
  publication-title: Science
  doi: 10.1126/science.1183112
– volume: 126
  start-page: 285
  year: 2006
  ident: ref18
  article-title: Crossover homeostasis in yeast meiosis
  publication-title: Cell
  doi: 10.1016/j.cell.2006.05.044
– volume: 76
  start-page: 1
  year: 1980
  ident: ref104
  article-title: Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). IV. Light and electron microscopy of synapsis and nucleolar development by silver staining
  publication-title: Chromosoma
  doi: 10.1007/BF00292222
– volume: 149
  start-page: 75
  year: 2012
  ident: ref21
  article-title: COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.052
– volume: 7
  start-page: e1001329
  year: 2011
  ident: ref14
  article-title: Chiasmata promote monopolar attachment of sister chromatids and their co-segregation toward the proper pole during meiosis I
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001329
– volume: 22
  start-page: 3078
  year: 2002
  ident: ref58
  article-title: The Mnd1 protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.22.9.3078-3088.2002
– volume: 108
  start-page: 20036
  year: 2011
  ident: ref27
  article-title: Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1117937108
– volume: 2
  start-page: 615
  year: 1997
  ident: ref81
  article-title: Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.1997.1480347.x
– volume: 5
  start-page: 2392
  year: 1991
  ident: ref49
  article-title: A meiosis-specific protein kinase homolog required for chromosome synapsis and recombination
  publication-title: Genes Dev
  doi: 10.1101/gad.5.12b.2392
– volume: 147
  start-page: 533
  year: 1997
  ident: ref80
  article-title: DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway
  publication-title: Genetics
  doi: 10.1093/genetics/147.2.533
– volume: 72
  start-page: 365
  year: 1993
  ident: ref71
  article-title: Zip1 is a synaptonemal complex protein required for meiotic chromosome synapsis
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90114-6
– volume: 180
  start-page: 1
  year: 2008
  ident: ref76
  article-title: The phage mating theory, with lessons for yeast geneticists
  publication-title: Genetics
  doi: 10.1534/genetics.104.95596
– volume: 79
  start-page: 1081
  year: 1994
  ident: ref4
  article-title: RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90038-8
– volume: 14
  start-page: 424
  year: 2012
  ident: ref15
  article-title: Homeostatic control of recombination is implemented progressively in mouse meiosis
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2451
– volume: 69
  start-page: 457
  year: 1992
  ident: ref6
  article-title: Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90447-K
– volume: 76
  start-page: 51
  year: 1994
  ident: ref103
  article-title: Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90172-4
– volume: 276
  start-page: 41906
  year: 2001
  ident: ref8
  article-title: Saccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA (ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M105563200
– volume: 11
  start-page: 4105
  year: 2012
  ident: ref79
  article-title: Rad51, the lead in mitotic recombinational DNA repair, plays a supporting role in budding yeast meiosis
  publication-title: Cell Cycle
  doi: 10.4161/cc.22396
– volume: 337
  start-page: 1222
  year: 2012
  ident: ref46
  article-title: Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis
  publication-title: Science
  doi: 10.1126/science.1219379
– volume: 168
  start-page: 49
  year: 2004
  ident: ref78
  article-title: Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII
  publication-title: Genetics
  doi: 10.1534/genetics.104.027961
– volume: 83
  start-page: 783
  year: 1995
  ident: ref36
  article-title: Identification of double Holliday junctions as intermediates in meiotic recombination
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90191-4
– volume: 8
  start-page: e1000519
  year: 2010
  ident: ref33
  article-title: Trying to avoid your sister
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000519
– volume: 234
  start-page: 713
  year: 1986
  ident: ref94
  article-title: An alternative pathway for meiotic chromosome segregation in yeast
  publication-title: Science
  doi: 10.1126/science.3535068
– volume: 15
  start-page: 11
  year: 2004
  ident: ref68
  article-title: Mek1 kinase activity functions downstream of RED1 in the regulation of meiotic double strand break repair in budding yeast
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E03-07-0499
– volume: 8
  start-page: e1000520
  year: 2010
  ident: ref66
  article-title: Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000520
– volume: 2
  start-page: 81
  year: 2008
  ident: ref2
  article-title: Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis
  publication-title: Genome Dyn Stab
  doi: 10.1007/7050_2007_026
– volume: 22
  start-page: 2627
  year: 2008
  ident: ref99
  article-title: Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis
  publication-title: Genes Dev
  doi: 10.1101/gad.1711408
– volume: 106
  start-page: 59
  year: 2001
  ident: ref54
  article-title: The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00430-5
– volume: 308
  start-page: 870
  year: 2005
  ident: ref69
  article-title: A synaptonemal complex protein promotes homology-independent centromere coupling
  publication-title: Science
  doi: 10.1126/science.1108283
– volume: 106
  start-page: 567
  year: 1988
  ident: ref105
  article-title: Meiotic chromosome behavior in spread preparations of yeast
  publication-title: J Cell Biol
  doi: 10.1083/jcb.106.3.567
– volume: 128
  start-page: 455
  year: 1995
  ident: ref72
  article-title: Zip1-induced changes in synaptonemal complex structure and polycomplex assembly
  publication-title: J Cell Biol
  doi: 10.1083/jcb.128.4.455
– volume: 29
  start-page: 517
  year: 2008
  ident: ref106
  article-title: Rad52 promotes postinvasion steps of meiotic double-strand-break repair
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.12.014
– volume: 20
  start-page: 449
  year: 1992
  ident: ref50
  article-title: The MRE4 gene encodes a novel protein kinase homologue required for meiotic recombination in Saccharomyces cerevisiae
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/20.3.449
– volume: 106
  start-page: 47
  year: 2001
  ident: ref40
  article-title: Differential timing and control of noncrossover and crossover recombination during meiosis
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00416-0
– volume: 37
  start-page: 756
  year: 2005
  ident: ref92
  article-title: The roles of MAD1, MAD2 and MAD3 in meiotic progression and the segregation of nonexchange chromosomes
  publication-title: Nat Genet
  doi: 10.1038/ng1588
– volume: 4
  start-page: 1676
  year: 2013
  ident: ref85
  article-title: A new protein complex promoting the assembly of Rad51 filaments
  publication-title: Nat Commun
  doi: 10.1038/ncomms2678
– volume: 9
  start-page: e1003545
  year: 2013
  ident: ref31
  article-title: Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003545
– volume: 26
  start-page: 2913
  year: 2006
  ident: ref60
  article-title: Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.26.8.2913-2923.2006
– volume: 144
  start-page: 719
  year: 2011
  ident: ref57
  article-title: A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.009
– reference: 14595109 - Mol Biol Cell. 2004 Jan;15(1):11-23
– reference: 7860625 - J Cell Biol. 1995 Feb;128(4):455-66
– reference: 2653960 - Genetics. 1989 Mar;121(3):445-62
– reference: 22002603 - Nature. 2011 Nov 10;479(7372):237-40
– reference: 21172664 - Mol Cell. 2010 Dec 22;40(6):1001-15
– reference: 8020104 - Cell. 1994 Jul 1;77(7):977-91
– reference: 20203049 - Science. 2010 Mar 5;327(5970):1254-8
– reference: 21927624 - Genome Dyn Stab. 2008 Jan 1;2:81-123
– reference: 1752435 - Genes Dev. 1991 Dec;5(12B):2392-404
– reference: 15620632 - Curr Biol. 2004 Dec 29;14(24):R1036-7
– reference: 8521495 - Cell. 1995 Dec 1;83(5):783-91
– reference: 23575680 - Nat Commun. 2013;4:1676
– reference: 22115747 - J Biol Chem. 2012 Jan 6;287(2):1566-75
– reference: 9335591 - Genetics. 1997 Oct;147(2):533-44
– reference: 16107854 - Nature. 2005 Aug 18;436(7053):1053-7
– reference: 15249670 - Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10572-7
– reference: 16675459 - J Biol Chem. 2006 Jul 7;281(27):18426-34
– reference: 11551925 - J Biol Chem. 2001 Nov 9;276(45):41906-12
– reference: 23825959 - PLoS Genet. 2013 Jun;9(6):e1003545
– reference: 18329363 - Cell. 2008 Mar 7;132(5):758-70
– reference: 22500800 - Cell. 2012 Apr 13;149(2):334-47
– reference: 16873061 - Cell. 2006 Jul 28;126(2):285-95
– reference: 15467365 - Cytogenet Genome Res. 2004;107(3-4):201-7
– reference: 11005857 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10814-9
– reference: 21920317 - Dev Cell. 2011 Sep 13;21(3):534-45
– reference: 17526735 - Mol Cell Biol. 2007 Aug;27(15):5456-67
– reference: 20976046 - PLoS Biol. 2010;8(10):e1000519
– reference: 17988174 - PLoS Biol. 2007 Nov 6;5(11):e299
– reference: 20090416 - Cell Cycle. 2010 Feb 1;9(3):436-7
– reference: 7528104 - Cell. 1994 Dec 16;79(6):1081-92
– reference: 8287479 - Cell. 1994 Jan 14;76(1):51-63
– reference: 9427283 - Genes Cells. 1997 Oct;2(10):615-29
– reference: 21980306 - PLoS Genet. 2011 Sep;7(9):e1002305
– reference: 21145459 - Cell. 2010 Dec 10;143(6):924-37
– reference: 22388890 - Nat Cell Biol. 2012 Apr;14(4):424-30
– reference: 18691940 - Dev Cell. 2008 Sep;15(3):401-15
– reference: 23599345 - Genes Dev. 2013 Apr 15;27(8):873-86
– reference: 9000054 - Genes Dev. 1997 Jan 1;11(1):106-18
– reference: 6545727 - Symp Soc Exp Biol. 1984;38:293-320
– reference: 10690419 - Annu Rev Genet. 1999;33:603-754
– reference: 17639080 - Genes Dev. 2007 Jul 15;21(14):1747-57
– reference: 15951820 - Nat Genet. 2005 Jul;37(7):756-60
– reference: 7916652 - Cell. 1993 Feb 12;72(3):365-78
– reference: 22123968 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20036-41
– reference: 18804427 - Dev Cell. 2008 Sep;15(3):331-2
– reference: 18305165 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3327-32
– reference: 15454526 - Genetics. 2004 Sep;168(1):49-63
– reference: 20080752 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):781-5
– reference: 23075494 - Cell Cycle. 2012 Nov 15;11(22):4105-6
– reference: 11572770 - Cell. 2001 Sep 21;106(6):647-50
– reference: 21531561 - Trends Cell Biol. 2011 Jul;21(7):393-400
– reference: 17247384 - Genetics. 1952 Mar;37(2):175-88
– reference: 23913287 - Methods Mol Biol. 2013;1054:105-20
– reference: 16462941 - PLoS Genet. 2006 Feb;2(2):e12
– reference: 22024169 - J Cell Biol. 2011 Oct 31;195(3):359-67
– reference: 19629172 - PLoS Genet. 2009 Jul;5(7):e1000557
– reference: 14667413 - Dev Cell. 2003 Dec;5(6):915-25
– reference: 15066280 - Cell. 2004 Apr 2;117(1):29-45
– reference: 9323140 - Cell. 1997 Sep 19;90(6):1123-35
– reference: 21423721 - PLoS Genet. 2011 Mar;7(3):e1001329
– reference: 6153596 - Chromosoma. 1980;76(1):1-22
– reference: 21515575 - Genetics. 2011 Jul;188(3):511-21
– reference: 19799175 - Methods Mol Biol. 2009;557:35-53
– reference: 18794232 - Genetics. 2008 Sep;180(1):1-6
– reference: 24465222 - PLoS Genet. 2014 Jan;10(1):e1004104
– reference: 1427035 - Genetics. 1992 Oct;132(2):387-402
– reference: 20592266 - Genetics. 2010 Sep;186(1):45-58
– reference: 18575529 - Opt Express. 2008 Jun 23;16(13):9614-21
– reference: 1581960 - Cell. 1992 May 1;69(3):439-56
– reference: 16648640 - Genetics. 2006 Jul;173(3):1207-22
– reference: 1741279 - Nucleic Acids Res. 1992 Feb 11;20(3):449-57
– reference: 18313389 - Mol Cell. 2008 Feb 29;29(4):517-24
– reference: 2185891 - Cell. 1990 May 4;61(3):419-36
– reference: 19917248 - Mol Cell. 2009 Nov 13;36(3):393-404
– reference: 20976044 - PLoS Biol. 2010;8(10):e1000520
– reference: 15066278 - Cell. 2004 Apr 2;117(1):9-15
– reference: 22144627 - Science. 2011 Dec 2;334(6060):1286-9
– reference: 16581767 - Mol Cell Biol. 2006 Apr;26(8):2913-23
– reference: 23762445 - PLoS One. 2013;8(6):e65875
– reference: 9060462 - J Cell Biol. 1997 Mar 10;136(5):957-67
– reference: 22955832 - Science. 2012 Sep 7;337(6099):1222-5
– reference: 11461701 - Cell. 2001 Jul 13;106(1):47-57
– reference: 23973374 - Mol Cell. 2013 Aug 22;51(4):440-53
– reference: 11940665 - Mol Cell Biol. 2002 May;22(9):3078-88
– reference: 3535068 - Science. 1986 Nov 7;234(4777):713-7
– reference: 2450094 - J Cell Biol. 1988 Mar;106(3):567-73
– reference: 10511544 - Genetics. 1999 Oct;153(2):621-41
– reference: 17247336 - Genetics. 1949 Sep;34(5):607-26
– reference: 17662941 - Cell. 2007 Jul 27;130(2):259-72
– reference: 18832066 - Genes Dev. 2008 Oct 1;22(19):2627-32
– reference: 16818607 - Genes Dev. 2006 Jul 1;20(13):1766-75
– reference: 20348905 - Nature. 2010 Apr 8;464(7290):937-41
– reference: 23902647 - Open Biol. 2013 Jul;3(7):130019
– reference: 18347097 - Genes Dev. 2008 Mar 15;22(6):786-95
– reference: 1581961 - Cell. 1992 May 1;69(3):457-70
– reference: 11461702 - Cell. 2001 Jul 13;106(1):59-70
– reference: 15289462 - Genes Dev. 2004 Aug 15;18(16):1946-51
– reference: 10511543 - Genetics. 1999 Oct;153(2):607-20
– reference: 10526232 - Genes Cells. 1999 Aug;4(8):425-44
– reference: 15879219 - Science. 2005 May 6;308(5723):870-3
– reference: 22464324 - Cell. 2012 Mar 30;149(1):75-87
– reference: 21376234 - Cell. 2011 Mar 4;144(5):719-31
– reference: 15120066 - Curr Biol. 2004 May 4;14(9):752-62
SSID ssj0035897
Score 2.4595618
Snippet During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by...
  During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1003978
SubjectTerms Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell division
Chromatids - genetics
Chromosome Pairing - genetics
Chromosome Segregation - genetics
Chromosomes
Crossing Over, Genetic
Deoxyribonucleic acid
DNA
DNA Breaks, Double-Stranded
DNA repair
DNA Repair - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Genetic recombination
Genetic research
Homeostasis
Homologous Recombination - genetics
Homology (Biology)
Meiosis
Meiosis - genetics
Microscopy
Proteins
Rad51 Recombinase - genetics
Rad51 Recombinase - metabolism
Ratios
Regulation
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Synaptonemal Complex - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF_G606iqCT7Hdr2zyWD9KFVqhWulb2N3stgfX5LjcCf3vndnNHRcR2gffwu1vN2RmbjJDZn5DyDsjrLUq2Nx4qXKppcyrKvi8YUZ5xRur4zCY45Pi6Ex-O1fnW6O-sCYs0QMnwe1ZXhmhmZfaBukCs_twyb1uNETOVWy65vDOWydTyQcLVaaxKkqJXENaPzTNwUF7g44-zEFBWCMg4oi1rZdS5O7feOjJfNb1_wo__66i3HotHT4g94d4kh6k53hI7vj2EbmbJkxePya_j_20gyUab4zlmnQoTqf2Gi-dX0DMSVN7A-0CPTWNYvnnK8fotKWX3RWeRJHBagZhKbVT01PTNnTR2VW_RIDvsCsJ7rFIc-3hoCfk7PDLz09H-TBqIXcgx2Vug9O6bCwvQrBaVh7yQm8bLURQ4C9xIrmBUK9RhWfB-6qyjjmjmXTWQ4jixFMyabvW7xBqbel1wVix77gsZWN4oQwkhaYxkAyHMiNiLevaDTzkOA5jVsePaxrykSS6GjVUDxrKSL7ZNU88HDfgP6IaN1hk0Y4_gG3Vg23VN9lWRl6jEdSpJXXjC-oDpAgqYGeVkbcRgUwaLZbqXJhV39dfv_-6BejHyW1ApyPQ-wEUOpCZM0MPBUgeabxGyN0REpyGGy3voF2vRddDBqhBxwLiyYy8Wdt6jbuwCK_13QoxFfLMcyYz8izZ_ka-XAr8pg8i06N_xUgB45V2ehnpzEVZlIqXz_-Hxl6QexznlcR6o10yWS5W_iVEjUv7KjqIP-aqasE
  priority: 102
  providerName: Directory of Open Access Journals
Title Meiotic Crossover Control by Concerted Action of Rad51-Dmc1 in Homolog Template Bias and Robust Homeostatic Regulation
URI https://www.ncbi.nlm.nih.gov/pubmed/24367271
https://www.proquest.com/docview/1490729214
https://pubmed.ncbi.nlm.nih.gov/PMC3868528
https://doaj.org/article/b29a371e47bf4cf1b0e472e7d7642981
http://dx.doi.org/10.1371/journal.pgen.1003978
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa2Tki8IH4vMIpBSDxlmhM7Th4Q2mDTQGpBhaK-RbZjb5W6pCQtov89d0kaETRgb1H92anO5_NdfL6PkFcq1FoLp31lufC55NxPEmf9jClhRZBpWZPBjMbR-ZR_nInZDtlytrYCrK4N7ZBPalouDn9-37yFBf-mZm2QbNvpcAkix1N_2GLjXbIHe5PEpTri3blCKOKGbkWI0JcQ7reX6f42Sm-zqmv6d5Z7sFwU1XVu6Z_Zlb9tV2d3yZ3Wz6THjWLcIzs2v09uNcyTmwfkx8jOC2ii9YsxjZO2SetUb_DR2BJ8Udpce6CFoxOVCea_vzKMznN6WVzhSBQrWy3AXaV6riqq8oyWhV5XKwTYAm8rwTvKhu8eBnpIpmenX9-d-y0Fg29kxFe-dkbKONNB5JyWPLEQL1qdyTB0AuwoMpUrcAEzEVnmrE0SbZhRknGjLbguJnxEBnmR231CtY6tjBiLjkzAY56pIBIKgkWVKQiSXeyRcCvr1LT1yZEmY5HWh24S4pRGdCnOUNrOkEf8rteyqc_xH_wJTmOHxera9Q9FeZG2izXVQaJgAMuldtw4po_gMbAyA5kEScw88hyVIG2uqnY2Ij3G0kER9Ew88rJGYIWNHFN4LtS6qtIPn77dAPRlfBPQpAd63YJcATIzqr1bAZLH8l495EEPCcbE9Jr3Ua-3oqsgMpQwxyH4mR55sdX1FHthcl5uizViEqw_HzDukceN7nfyDXiIZ_0gMtlbFb0J6Lfk88u6zHkYR7EI4if__sdPye0AGUrqDKMDMliVa_sM_MSVHpJdOZNDsndyOv48GdZfW4a1OfgFsPZrgw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meiotic+crossover+control+by+concerted+action+of+Rad51-Dmc1+in+homolog+template+bias+and+robust+homeostatic+regulation&rft.jtitle=PLoS+genetics&rft.au=Lao%2C+Jessica+P&rft.au=Cloud%2C+Veronica&rft.au=Huang%2C+Chu-Chun&rft.au=Grubb%2C+Jennifer&rft.date=2013-12-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=9&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pgen.1003978&rft.externalDocID=A357863719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon