Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277
CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile...
Saved in:
Published in | BMC biotechnology Vol. 21; no. 1; p. 15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
11.02.2021
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi.
In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci.
The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi. |
---|---|
AbstractList | CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi. Background CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. Results In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. Conclusions The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi. Abstract Background CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. Results In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. Conclusions The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi. Background CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. Results In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. Conclusions The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi. Keywords: CRISPR/Cpf1, pyrG, 5-FOA, FnCpf1, Gene editing, Filamentous fungi, Aspergillus CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi.BACKGROUNDCRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi.In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci.RESULTSIn this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci.The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.CONCLUSIONSThe use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi. CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi. |
ArticleNumber | 15 |
Audience | Academic |
Author | Champreda, Verawat Eurwilaichitr, Lily Chantasingh, Duriya Abdulrachman, Dede Pootanakit, Kusol |
Author_xml | – sequence: 1 givenname: Dede surname: Abdulrachman fullname: Abdulrachman, Dede – sequence: 2 givenname: Lily surname: Eurwilaichitr fullname: Eurwilaichitr, Lily – sequence: 3 givenname: Verawat surname: Champreda fullname: Champreda, Verawat – sequence: 4 givenname: Duriya surname: Chantasingh fullname: Chantasingh, Duriya – sequence: 5 givenname: Kusol surname: Pootanakit fullname: Pootanakit, Kusol |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33573639$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk8tu1DAUhiNURC_wAixQJDawSGsnvsQbpGG4jajUalrYWo5zHFxl4mA7FX17PJ1SOhVCIy9s2d__H_v4nMNsb3ADZNlLjI4xrtlJwGUtWIFKXCDEmCjqJ9kBJrwsGKdo78F6PzsM4QohzGvEnmX7VUV5xSpxkDUf4Bp6N65giLkzucrny8XF-fJkPhqch5sQYZUb5_OofAcR2ryDAfLWBj-N0boht0M-CyP4zvb9FHKlpx5UTKvL98t5XnL-PHtqVB_gxd18lH379PFy_qU4Pfu8mM9OC80ZiQU3talbTeuGAqOacEGahhIBojGCaI0oB6NANYRiagQ2lUbMVFyptiwVaaujbLHxbZ26kqO3K-VvpFNW3m4430nlo9U9SMS4pgIwp4SSMkXGtK4Uwy0ivGkIS17vNl7j1Kyg1Sk7XvVbptsng_0hO3ctec0Frcpk8ObOwLufE4QoVzZo6Hs1gJuCLFnFCEGc74CSWpSUMr6-1utH6JWb_JCymiiBBKaopH-pTqW32sG4dEW9NpUzRqv01E3Y439QabSwsjpVmrFpf0vwdkuQmAi_YqemEOTX88XO7OJiuTt79n2bffXwX-4_5E9BJ6DcANq7EDyYewQjue4auekambpG3naNrJOofiTSNqp1daeU2P5_0t_SmhWo |
CitedBy_id | crossref_primary_10_1016_j_jbiosc_2021_12_017 crossref_primary_10_1007_s43393_021_00045_9 crossref_primary_10_1016_j_biotno_2023_02_003 crossref_primary_10_1007_s00253_022_12178_5 crossref_primary_10_1007_s12275_022_00005_5 crossref_primary_10_1007_s12223_023_01081_9 crossref_primary_10_1016_j_jbiotec_2022_06_011 crossref_primary_10_3389_fbioe_2024_1452496 crossref_primary_10_1007_s11033_023_08239_1 crossref_primary_10_3390_jof9030362 |
Cites_doi | 10.1038/nmeth.1318 10.1002/j.1460-2075.1985.tb03777.x 10.1016/j.biotechadv.2007.12.001 10.1016/j.biotechadv.2011.09.012 10.1002/wrna.1481 10.1016/j.gene.2017.06.019 10.1016/j.cell.2015.09.038 10.1186/s40694-015-0015-1 10.1038/ncomms15179 10.1016/j.cell.2014.05.010 10.1186/s13068-016-0693-9 10.1038/nature17945 10.1186/s12934-016-0613-5 10.1016/j.procbio.2017.02.012 10.1016/j.nbt.2020.02.002 10.1007/BF00330984 10.1371/journal.pone.0210243 10.1186/s40694-019-0069-6 10.1186/s13068-019-1637-y 10.1128/EC.00107-15 10.1073/pnas.1420294112 10.1016/0378-1119(91)90365-I 10.1126/science.1225829 10.1038/nmicrobiol.2017.44 10.1111/jipb.12152 10.1016/j.molcel.2017.03.016 10.1016/j.ijbiomac.2018.07.165 10.1016/j.mib.2017.05.008 10.1126/science.1231143 10.1371/journal.pone.0202868 10.1111/j.1365-2958.2005.04957.x 10.1016/j.fgb.2015.12.007 10.1038/celldisc.2015.7 10.1007/s00253-017-8497-9 10.1016/j.molp.2017.03.001 10.1007/s002940050350 10.1128/IAI.00011-16 10.1016/j.cmi.2017.10.013 10.1038/nrg3001 10.1016/j.biortech.2017.05.004 10.1371/journal.pone.0133085 10.1038/nbt.3737 10.1073/pnas.1715954115 10.1016/j.fgb.2018.01.004 10.1002/bit.24370 10.1093/nar/gkn123 10.1093/bioinformatics/bts199 10.1007/s10529-015-2015-x 10.1002/yea.3278 10.1038/ncomms14406 10.1016/0003-2697(76)90527-3 10.1016/j.mimet.2019.105655 10.1093/nar/gkx1007 10.1016/j.molp.2018.02.005 10.1016/0378-1119(87)90110-7 10.1007/978-1-61779-501-5_9 10.1002/jobm.201800195 10.1155/2013/634317 10.4014/jmb.1406.06050 10.1007/s002940050103 10.1186/s13059-017-1151-0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR KPI 3V. 7QO 7TB 7U5 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L7M LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s12896-021-00669-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science Gale In Context: Global Issues ProQuest Central (Corporate) Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1472-6750 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_067c59e17545427f81583a61d047bb46 PMC7879532 A653583772 33573639 10_1186_s12896_021_00669_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Thailand |
GeographicLocations_xml | – name: Thailand |
GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE I-F IAG IAO IHR INH INR IOV ISR ITC ITG ITH KPI KQ8 LK8 M1P M48 M7P ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV RVI SCM SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7QO 7TB 7U5 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c764t-7f8f8dc58b5e65c4794bb549e9bf94cc057efaeab4515f91f3c06f37aad22a4d3 |
IEDL.DBID | M48 |
ISSN | 1472-6750 |
IngestDate | Wed Aug 27 01:27:35 EDT 2025 Thu Aug 21 14:29:40 EDT 2025 Mon Jul 21 09:19:03 EDT 2025 Fri Jul 11 05:31:20 EDT 2025 Fri Jul 25 10:44:32 EDT 2025 Tue Jun 17 21:29:06 EDT 2025 Tue Jun 10 20:40:37 EDT 2025 Fri Jun 27 05:09:00 EDT 2025 Fri Jun 27 04:19:22 EDT 2025 Fri Jun 27 03:42:01 EDT 2025 Mon Jul 21 05:34:06 EDT 2025 Tue Jul 01 01:07:05 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 5-FOA CRISPR/Cpf1 Aspergillus FnCpf1 Filamentous fungi Gene editing pyrG |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c764t-7f8f8dc58b5e65c4794bb549e9bf94cc057efaeab4515f91f3c06f37aad22a4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12896-021-00669-8 |
PMID | 33573639 |
PQID | 2490915025 |
PQPubID | 44068 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_067c59e17545427f81583a61d047bb46 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7879532 proquest_miscellaneous_2636440772 proquest_miscellaneous_2489255676 proquest_journals_2490915025 gale_infotracmisc_A653583772 gale_infotracacademiconefile_A653583772 gale_incontextgauss_KPI_A653583772 gale_incontextgauss_ISR_A653583772 gale_incontextgauss_IOV_A653583772 pubmed_primary_33573639 crossref_primary_10_1186_s12896_021_00669_8 crossref_citationtrail_10_1186_s12896_021_00669_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-11 |
PublicationDateYYYYMMDD | 2021-02-11 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC biotechnology |
PublicationTitleAlternate | BMC Biotechnol |
PublicationYear | 2021 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | RJ White (669_CR33) 2011; 12 D Ding (669_CR51) 2018; 11 S Suwannarangsee (669_CR1) 2014; 24 G Weidner (669_CR45) 1998; 33 D Klein-Marcuschamer (669_CR6) 2012; 109 KG Vanegas (669_CR36) 2019; 6 C Jöchl (669_CR48) 2008; 36 V Meyer (669_CR8) 2008; 26 Y Li (669_CR5) 2018; 119 J Besser (669_CR11) 2018; 24 H Dong (669_CR18) 2019; 163 669_CR47 A Jiménez (669_CR37) 2020; 57 H Kim (669_CR46) 2017; 8 Y Jiang (669_CR50) 2017; 8 B Zetsche (669_CR27) 2015; 163 DG Gibson (669_CR54) 2009; 6 LMC Leynaud-Kieffer (669_CR9) 2019; 14 JC Nielsen (669_CR3) 2017; 2 MA Swiat (669_CR40) 2017; 45 IL Johnstone (669_CR55) 1985; 4 T Katayama (669_CR17) 2016; 38 Y Gao (669_CR34) 2014; 56 KK Fuller (669_CR16) 2015; 14 R Verwaal (669_CR41) 2018; 35 L Cong (669_CR14) 2013; 339 L Song (669_CR20) 2018; 13 M Arentshorst (669_CR52) 2012 CS Nodvig (669_CR22) 2015; 10 JD Boeke (669_CR42) 1984; 197 P Sarkari (669_CR7) 2017; 245 DC Swarts (669_CR49) 2017; 66 B Zetsche (669_CR29) 2017; 35 H Berger (669_CR57) 2006; 59 J Kuivanen (669_CR19) 2016; 15 C Zhang (669_CR59) 2016; 86 PD Hsu (669_CR13) 2014; 157 M Kearse (669_CR61) 2012; 28 OP Ward (669_CR2) 2012; 30 CS Nodvig (669_CR21) 2018; 115 RP de Vries (669_CR4) 2017; 18 H Deng (669_CR32) 2017; 627 H Qin (669_CR25) 2017; 56 I Fonfara (669_CR31) 2016; 532 TQ Shi (669_CR12) 2017; 101 ZH Li (669_CR39) 2018; 58 669_CR26 M Wang (669_CR30) 2017; 10 EV Koonin (669_CR28) 2017; 37 M Penttilä (669_CR56) 1987; 61 MM Bradford (669_CR60) 1976; 72 Y Vaknin (669_CR58) 2016; 84 K Xie (669_CR35) 2015; 112 R Liu (669_CR23) 2015; 1 SO Ling (669_CR43) 2013; 2013 M Jinek (669_CR15) 2012; 337 669_CR10 C d'Enfert (669_CR44) 1996; 30 T Matsu-Ura (669_CR24) 2015; 2 Q Liu (669_CR38) 2019; 12 669_CR53 |
References_xml | – volume: 6 start-page: 343 issue: 5 year: 2009 ident: 669_CR54 publication-title: Nat methods doi: 10.1038/nmeth.1318 – volume: 4 start-page: 1307 issue: 5 year: 1985 ident: 669_CR55 publication-title: EMBO J doi: 10.1002/j.1460-2075.1985.tb03777.x – volume: 26 start-page: 177 issue: 2 year: 2008 ident: 669_CR8 publication-title: Biotechnol Advances doi: 10.1016/j.biotechadv.2007.12.001 – volume: 30 start-page: 1119 issue: 5 year: 2012 ident: 669_CR2 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2011.09.012 – ident: 669_CR47 doi: 10.1002/wrna.1481 – volume: 627 start-page: 212 year: 2017 ident: 669_CR32 publication-title: Gene. doi: 10.1016/j.gene.2017.06.019 – volume: 163 start-page: 759 issue: 3 year: 2015 ident: 669_CR27 publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 2 start-page: 4 year: 2015 ident: 669_CR24 publication-title: Fungal Biol Biotechnol doi: 10.1186/s40694-015-0015-1 – volume: 8 start-page: 15179 year: 2017 ident: 669_CR50 publication-title: Nat Commun doi: 10.1038/ncomms15179 – volume: 157 start-page: 1262 issue: 6 year: 2014 ident: 669_CR13 publication-title: Cell doi: 10.1016/j.cell.2014.05.010 – ident: 669_CR26 doi: 10.1186/s13068-016-0693-9 – volume: 532 start-page: 517 issue: 7600 year: 2016 ident: 669_CR31 publication-title: Nature doi: 10.1038/nature17945 – volume: 15 start-page: 210 issue: 1 year: 2016 ident: 669_CR19 publication-title: Microbial Cell Factories doi: 10.1186/s12934-016-0613-5 – volume: 56 start-page: 57 year: 2017 ident: 669_CR25 publication-title: Process Biochem doi: 10.1016/j.procbio.2017.02.012 – volume: 57 start-page: 29 year: 2020 ident: 669_CR37 publication-title: New biotechnology doi: 10.1016/j.nbt.2020.02.002 – volume: 197 start-page: 345 issue: 2 year: 1984 ident: 669_CR42 publication-title: Mol Gen Genet doi: 10.1007/BF00330984 – volume: 14 start-page: e0210243 issue: 1 year: 2019 ident: 669_CR9 publication-title: PloS one doi: 10.1371/journal.pone.0210243 – volume: 6 start-page: 6 year: 2019 ident: 669_CR36 publication-title: Fungal biol Biotechnol doi: 10.1186/s40694-019-0069-6 – volume: 12 start-page: 293 year: 2019 ident: 669_CR38 publication-title: Biotechnology for biofuels doi: 10.1186/s13068-019-1637-y – volume: 14 start-page: 1073 issue: 11 year: 2015 ident: 669_CR16 publication-title: Eukaryotic cell doi: 10.1128/EC.00107-15 – volume: 112 start-page: 3570 issue: 11 year: 2015 ident: 669_CR35 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1420294112 – ident: 669_CR53 doi: 10.1016/0378-1119(91)90365-I – volume: 337 start-page: 816 issue: 6096 year: 2012 ident: 669_CR15 publication-title: Science doi: 10.1126/science.1225829 – volume: 2 start-page: 17044 year: 2017 ident: 669_CR3 publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2017.44 – volume: 56 start-page: 343 issue: 4 year: 2014 ident: 669_CR34 publication-title: J Integr plant biol doi: 10.1111/jipb.12152 – volume: 66 start-page: 221 issue: 2 year: 2017 ident: 669_CR49 publication-title: Mol Cell doi: 10.1016/j.molcel.2017.03.016 – volume: 119 start-page: 462 year: 2018 ident: 669_CR5 publication-title: Int J biol Macromol doi: 10.1016/j.ijbiomac.2018.07.165 – volume: 37 start-page: 67 year: 2017 ident: 669_CR28 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2017.05.008 – volume: 339 start-page: 819 issue: 6121 year: 2013 ident: 669_CR14 publication-title: Science doi: 10.1126/science.1231143 – volume: 13 start-page: e0202868 issue: 8 year: 2018 ident: 669_CR20 publication-title: PloS one doi: 10.1371/journal.pone.0202868 – volume: 59 start-page: 433 issue: 2 year: 2006 ident: 669_CR57 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04957.x – volume: 86 start-page: 47 year: 2016 ident: 669_CR59 publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2015.12.007 – volume: 1 start-page: 15007 year: 2015 ident: 669_CR23 publication-title: Cell Discov doi: 10.1038/celldisc.2015.7 – volume: 101 start-page: 7435 issue: 20 year: 2017 ident: 669_CR12 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-017-8497-9 – volume: 10 start-page: 1011 issue: 7 year: 2017 ident: 669_CR30 publication-title: Mol Plant doi: 10.1016/j.molp.2017.03.001 – volume: 33 start-page: 378 issue: 5 year: 1998 ident: 669_CR45 publication-title: Curr Genet doi: 10.1007/s002940050350 – volume: 84 start-page: 1866 issue: 6 year: 2016 ident: 669_CR58 publication-title: Infect Immun doi: 10.1128/IAI.00011-16 – volume: 24 start-page: 335 issue: 4 year: 2018 ident: 669_CR11 publication-title: Clin Microbiol Infect doi: 10.1016/j.cmi.2017.10.013 – volume: 12 start-page: 459 issue: 7 year: 2011 ident: 669_CR33 publication-title: Nat Rev Genet doi: 10.1038/nrg3001 – volume: 245 start-page: 1327 issue: Pt B year: 2017 ident: 669_CR7 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.05.004 – volume: 10 start-page: e0133085 issue: 7 year: 2015 ident: 669_CR22 publication-title: PLoS one doi: 10.1371/journal.pone.0133085 – volume: 35 start-page: 31 issue: 1 year: 2017 ident: 669_CR29 publication-title: Nat Biotechnol doi: 10.1038/nbt.3737 – ident: 669_CR10 doi: 10.1073/pnas.1715954115 – volume: 115 start-page: 78 year: 2018 ident: 669_CR21 publication-title: Fungal genet biol doi: 10.1016/j.fgb.2018.01.004 – volume: 109 start-page: 1083 issue: 4 year: 2012 ident: 669_CR6 publication-title: Biotechnol Bioeng doi: 10.1002/bit.24370 – volume: 36 start-page: 2677 issue: 8 year: 2008 ident: 669_CR48 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn123 – volume: 28 start-page: 1647 issue: 12 year: 2012 ident: 669_CR61 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts199 – volume: 38 start-page: 637 issue: 4 year: 2016 ident: 669_CR17 publication-title: Biotechnol Lett doi: 10.1007/s10529-015-2015-x – volume: 35 start-page: 201 issue: 2 year: 2018 ident: 669_CR41 publication-title: Yeast doi: 10.1002/yea.3278 – volume: 8 start-page: 14406 year: 2017 ident: 669_CR46 publication-title: Nat Commun doi: 10.1038/ncomms14406 – volume: 72 start-page: 248 issue: 1 year: 1976 ident: 669_CR60 publication-title: Analytical biochem doi: 10.1016/0003-2697(76)90527-3 – volume: 163 start-page: 105655 year: 2019 ident: 669_CR18 publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2019.105655 – volume: 45 start-page: 12585 issue: 21 year: 2017 ident: 669_CR40 publication-title: Nucleic acids res doi: 10.1093/nar/gkx1007 – volume: 11 start-page: 542 issue: 4 year: 2018 ident: 669_CR51 publication-title: Mol Plant doi: 10.1016/j.molp.2018.02.005 – volume: 61 start-page: 155 issue: 2 year: 1987 ident: 669_CR56 publication-title: Gene doi: 10.1016/0378-1119(87)90110-7 – start-page: 133 volume-title: Plant fungal pathogens: methods and protocols year: 2012 ident: 669_CR52 doi: 10.1007/978-1-61779-501-5_9 – volume: 58 start-page: 1100 issue: 12 year: 2018 ident: 669_CR39 publication-title: J basic Microbiol doi: 10.1002/jobm.201800195 – volume: 2013 start-page: 634317 year: 2013 ident: 669_CR43 publication-title: Scientific World J doi: 10.1155/2013/634317 – volume: 24 start-page: 1427 issue: 10 year: 2014 ident: 669_CR1 publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1406.06050 – volume: 30 start-page: 76 issue: 1 year: 1996 ident: 669_CR44 publication-title: Curr Genet doi: 10.1007/s002940050103 – volume: 18 start-page: 28 issue: 1 year: 2017 ident: 669_CR4 publication-title: Genome Biol doi: 10.1186/s13059-017-1151-0 |
SSID | ssj0017806 |
Score | 2.3498573 |
Snippet | CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an... Background CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As... BACKGROUND: CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As... Abstract Background CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 15 |
SubjectTerms | 5-FOA Aspergillus Aspergillus - genetics Aspergillus aculeatus Bacterial Proteins - genetics Biotechnology Clustered Regularly Interspaced Short Palindromic Repeats CRISPR CRISPR-Cas Systems CRISPR/Cpf1 Deoxyribonucleic acid DNA DNA damage DNA repair Endonucleases - genetics Enzymes Feasibility studies Filamentous fungi FnCpf1 Francisella Fungi Gene disruption Gene editing Gene Editing - methods Gene Expression Regulation, Fungal gene targeting Genes Genetic aspects Genetic engineering genetic vectors Genome editing Genomes Genomics Homology Localization Methods Microbial genetic engineering Mutagenesis Non-homologous end joining Nuclease Physiological aspects Plasmids pyrG PyrG gene Ribonucleic acid RNA RNA polymerase RNA, Guide, CRISPR-Cas Systems synthetic biology |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxNBFB6kT_og3o1WGUXwQZZkdq77mAZLo6glbaVvw1zbQNiUbvb_e2Z2E7KI7YtvYecbNpz7Sc58g9AnSqJ1kCYLokL66aYMhSXJ8XgVyjK4iRfpcPKPn-Lkgn275Jd7V32lmbCOHrgT3BiiqYN9kOUYZ6WMinBFjSB-wqS1LJNtQ87bNlP9_wdSTcT2iIwS4waicB62hdYZcmxVqEEaymz9f8fkvaQ0HJjcy0DHT9DjvnTE0-4rP0UPQv0MPdojFHyO7N4MEF5HbPBsMT87XYxnN5HgjrUZQ5mKuwHw4DHYT8B-2dy2OXbgZY2niTz8arlatQ02rl1BtIZP50eLGS6lfIEujr-ez06K_haFwknBNgWILCrvuLI8CO4So7y10BWGysaKOQcFW4gmGMugtIkVidRNRKTSGF-Whnn6Eh3U6zq8Rlh67kx00gdPGXfESM6lj46FAJE1ViNEtkLVrqcYTzddrHRuNZTQnSI0KEJnRWg1Ql92e246go070UdJVztkIsfOD8BkdG8y-j6TGaGPSdM60V_Uab7myrRNo-e_fuup4BTA0HL8C3S2uB_0_XQ-AH3uQXEN0nCmP_gAMk3cWwPk4QAJnu6Gy1vT1H2kaTS0z2D-HErXEfqwW0470_RcHdZtwqgqUc1JcQdGUCiNJ_k1rzpr30mZUi4plLIjJAd-MFDDcKVeXmeucpkus6flm_-ht7foYZlduCwIOUQHm9s2vIOScGPfZ-__A-ysWRk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELZgucAB8d7CggxC4oCireP4kRPqVpQtCFh1d9HeLD9LpSopTfP_GSdpaYQotyr-ojQez8sZf4PQW0qCseAmEyJ93LpJfWJIVDyW-zT1duh4PJz89Rs_v84-37CbbsOt6soqtzaxMdSutHGP_BTSBHBtDFz0h9WvJHaNil9XuxYat9EdAp4mlnTJyafdVwQhh3x7UEby0wpscVNyCwk0eNo8kT1n1HD2_22Z91xTv2xyzw9NHqD7XQCJR63EH6JbvniE7u3RCj5GZq8SCJcBazyeTS8vZqfjVSC45W7GEKzitgzcOwyryGO3qNZ1Y0HwosCjSCE-XyyXdYW1rZdgs-HX1dlsjFMhnqDrycer8XnS9VJIrODZJhFBBuksk4Z5zmzklTcGckOfm5Bn1kLY5oP22mQQ4IScBGqHPFChtUtTnTn6FB0VZeGPERaOWR2scN7RjFmiBWPCBZt5D_Y15ANEtpOqbEc0HvtdLFWTcEiuWkEoEIRqBKHkAL3f3bNqaTYOos-irHbISJHdXCjXc9VpnAI3bGHBQXiUsSyF9ydMUs2JG2bCmIwP0JsoaRVJMIpYZTPXdVWp6fcfasQZBTAkHv8CXc7-D_pyMe2B3nWgUMJsWN0df4A5jQxcPeRJDwn6bvvD26WpOntTqT_aMUCvd8PxzlhDV_iyjhiZR8I5wQ9gOIUAedg85lm72nezTCkTFALaARI9PeiJoT9SLH42jOUitrSn6fPDf_0Fups2ypkmhJygo8269i8h5NuYV41e_wbbEVJH priority: 102 providerName: ProQuest |
Title | Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33573639 https://www.proquest.com/docview/2490915025 https://www.proquest.com/docview/2489255676 https://www.proquest.com/docview/2636440772 https://pubmed.ncbi.nlm.nih.gov/PMC7879532 https://doaj.org/article/067c59e17545427f81583a61d047bb46 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELb2cYED4k1hqQxC4oDCNvEzB4TaassWtEvV3aKKi-U4dqlUpUvTSPDvGSdpacSyXLhEVfxZUTyeVzr-BqFXJHSJATcZhNL6TzeRDZLQKx6LbRRZ00m5P5x8ds5PJ_TjlE330KbdUb2A-bWpne8nNVkt3v74_vM9KPy7UuElP87BxpaltJAYgweNA7mPDsEzCd_R4Iz-_ldByA7fHJy5dl7DOZUc_n9a6h1X1Syj3PFLg7voTh1Q4m61A-6hPZvdR7d3aAYfoGSnMggvHda4Px5ejMbH_SsX4orLGUPwiquycJti2FUWp_N8VZQWBc8z3PWU4rP5YlHkWJtiATYcfl32xn0cCfEQTQYnl_3ToO6tEBjB6ToQTjqZGiYTZjkznmc-SSBXtHHiYmoMhHHWaasTCgGPi0NHTIc7IrROo0jTlDxCB9kys08QFikz2hmR2pRQZkItGBOpM9RasLcubqFws6jK1MTjvv_FQpUJiOSqEoQCQahSEEq20JvtnKuKduNGdM_Laov0lNnljeVqpmoNVOCWDWxACJcooxG8f8gk0TxMO1QkCeUt9NJLWnlSjMxX3cx0kedq-PmL6nJGAAyJyN9AF-N_gz6Nhg3Q6xrklrAaRtfHIWBNPSNXA3nUQIL-m-bwZmuqjfooSKohEGQQ0LbQi-2wn-lr6jK7LDxGxp6ATvAbMJxAwNwpH_O42u3bVSaECQIBbguJhh40xNAcyebfSgZz4Vvck-jp_5DbM3QrKlU4CsLwCB2sV4V9DoHiOmmjfTEVcJWDD2102Ds5H43b5UeXdmkX4Druff0FIcxnGg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeBAgsCcUBWYu_LPiCUBkJC2lKlKeptsfcRIkV2iGMh_hS_kVnbCbEQ4dRblP2cx7y-GXt2FqGXxLeJApr0_NC4WzeB8RLfOR6LTBAY1dHcbU4-PuGDc_rpgl3soV_rvTCurXIdE8tArTPl7pG3oUwAamNA0e8W3z13apR7uro-QqMyi5H5-QNKtvzt8D3o91UQ9D9MegOvPlXAU4LTlSdsaEOtWJgww5lyE9aTBKokEyU2okpBAmNsbOKEAtXbyLdEdbglIo51EMRUE_jcK-gqJcDkbmd6_-PmqYUIO3y9MSfk7Rxif9niCwU7MHvkhQ3yK88I-JsJtqiw2aa5xXv9W-hmnbDibmVht9GeSe-gG1tjDO-iZKvzCGcWx7g3Hp6djtu9hfVxNSsaQ3KMq7ZzozFYrcF6li-LMmLhWYq7bmT5dDafFzmOVTEHjoBXk8NxDwdC3EPnlyLl-2g_zVLzEGGhmYqtEtpoQpnyY8GY0FZRYyCe26iF_LVQpaoHm7vzNeayLHBCLitFSFCELBUhwxZ6s7lmUY312Ik-dLraIN1I7vKNbDmVtYdLoH0FBg7pGGU0gP_vs5DE3NcdKpKE8hZ64TQt3dCN1HX1TOMiz-Xw8xfZ5YwAGAqdf4HOxv8HjU6HDdDrGmQzkIaK6-0WIFM38auBPGggIb6o5vLaNGUd33L5xxtb6Plm2V3pevZSkxUOE0ZuwJ3gOzCcQELeKb_mQWXtGykTwgSBBLqFRMMPGmporqSzb-WEdGChiJHg0e6f_gxdG0yOj-TR8GT0GF0PSkcNPN8_QPurZWGeQLq5Sp6WPo7R18sOKr8BzGuRCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+CRISPR%2FCpf1+system+for+targeted+gene+disruption+in+Aspergillus+aculeatus+TBRC+277&rft.jtitle=BMC+biotechnology&rft.au=Dede+Abdulrachman&rft.au=Lily+Eurwilaichitr&rft.au=Verawat+Champreda&rft.au=Duriya+Chantasingh&rft.date=2021-02-11&rft.pub=BMC&rft.eissn=1472-6750&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs12896-021-00669-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_067c59e17545427f81583a61d047bb46 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6750&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6750&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6750&client=summon |