Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277

CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile...

Full description

Saved in:
Bibliographic Details
Published inBMC biotechnology Vol. 21; no. 1; p. 15
Main Authors Abdulrachman, Dede, Eurwilaichitr, Lily, Champreda, Verawat, Chantasingh, Duriya, Pootanakit, Kusol
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 11.02.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.
AbstractList CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.
Background CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. Results In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. Conclusions The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.
Abstract Background CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. Results In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. Conclusions The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.
Background CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. Results In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. Conclusions The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi. Keywords: CRISPR/Cpf1, pyrG, 5-FOA, FnCpf1, Gene editing, Filamentous fungi, Aspergillus
CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi.BACKGROUNDCRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi.In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci.RESULTSIn this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci.The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.CONCLUSIONSThe use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.
CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.
ArticleNumber 15
Audience Academic
Author Champreda, Verawat
Eurwilaichitr, Lily
Chantasingh, Duriya
Abdulrachman, Dede
Pootanakit, Kusol
Author_xml – sequence: 1
  givenname: Dede
  surname: Abdulrachman
  fullname: Abdulrachman, Dede
– sequence: 2
  givenname: Lily
  surname: Eurwilaichitr
  fullname: Eurwilaichitr, Lily
– sequence: 3
  givenname: Verawat
  surname: Champreda
  fullname: Champreda, Verawat
– sequence: 4
  givenname: Duriya
  surname: Chantasingh
  fullname: Chantasingh, Duriya
– sequence: 5
  givenname: Kusol
  surname: Pootanakit
  fullname: Pootanakit, Kusol
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33573639$$D View this record in MEDLINE/PubMed
BookMark eNqNk8tu1DAUhiNURC_wAixQJDawSGsnvsQbpGG4jajUalrYWo5zHFxl4mA7FX17PJ1SOhVCIy9s2d__H_v4nMNsb3ADZNlLjI4xrtlJwGUtWIFKXCDEmCjqJ9kBJrwsGKdo78F6PzsM4QohzGvEnmX7VUV5xSpxkDUf4Bp6N65giLkzucrny8XF-fJkPhqch5sQYZUb5_OofAcR2ryDAfLWBj-N0boht0M-CyP4zvb9FHKlpx5UTKvL98t5XnL-PHtqVB_gxd18lH379PFy_qU4Pfu8mM9OC80ZiQU3talbTeuGAqOacEGahhIBojGCaI0oB6NANYRiagQ2lUbMVFyptiwVaaujbLHxbZ26kqO3K-VvpFNW3m4430nlo9U9SMS4pgIwp4SSMkXGtK4Uwy0ivGkIS17vNl7j1Kyg1Sk7XvVbptsng_0hO3ctec0Frcpk8ObOwLufE4QoVzZo6Hs1gJuCLFnFCEGc74CSWpSUMr6-1utH6JWb_JCymiiBBKaopH-pTqW32sG4dEW9NpUzRqv01E3Y439QabSwsjpVmrFpf0vwdkuQmAi_YqemEOTX88XO7OJiuTt79n2bffXwX-4_5E9BJ6DcANq7EDyYewQjue4auekambpG3naNrJOofiTSNqp1daeU2P5_0t_SmhWo
CitedBy_id crossref_primary_10_1016_j_jbiosc_2021_12_017
crossref_primary_10_1007_s43393_021_00045_9
crossref_primary_10_1016_j_biotno_2023_02_003
crossref_primary_10_1007_s00253_022_12178_5
crossref_primary_10_1007_s12275_022_00005_5
crossref_primary_10_1007_s12223_023_01081_9
crossref_primary_10_1016_j_jbiotec_2022_06_011
crossref_primary_10_3389_fbioe_2024_1452496
crossref_primary_10_1007_s11033_023_08239_1
crossref_primary_10_3390_jof9030362
Cites_doi 10.1038/nmeth.1318
10.1002/j.1460-2075.1985.tb03777.x
10.1016/j.biotechadv.2007.12.001
10.1016/j.biotechadv.2011.09.012
10.1002/wrna.1481
10.1016/j.gene.2017.06.019
10.1016/j.cell.2015.09.038
10.1186/s40694-015-0015-1
10.1038/ncomms15179
10.1016/j.cell.2014.05.010
10.1186/s13068-016-0693-9
10.1038/nature17945
10.1186/s12934-016-0613-5
10.1016/j.procbio.2017.02.012
10.1016/j.nbt.2020.02.002
10.1007/BF00330984
10.1371/journal.pone.0210243
10.1186/s40694-019-0069-6
10.1186/s13068-019-1637-y
10.1128/EC.00107-15
10.1073/pnas.1420294112
10.1016/0378-1119(91)90365-I
10.1126/science.1225829
10.1038/nmicrobiol.2017.44
10.1111/jipb.12152
10.1016/j.molcel.2017.03.016
10.1016/j.ijbiomac.2018.07.165
10.1016/j.mib.2017.05.008
10.1126/science.1231143
10.1371/journal.pone.0202868
10.1111/j.1365-2958.2005.04957.x
10.1016/j.fgb.2015.12.007
10.1038/celldisc.2015.7
10.1007/s00253-017-8497-9
10.1016/j.molp.2017.03.001
10.1007/s002940050350
10.1128/IAI.00011-16
10.1016/j.cmi.2017.10.013
10.1038/nrg3001
10.1016/j.biortech.2017.05.004
10.1371/journal.pone.0133085
10.1038/nbt.3737
10.1073/pnas.1715954115
10.1016/j.fgb.2018.01.004
10.1002/bit.24370
10.1093/nar/gkn123
10.1093/bioinformatics/bts199
10.1007/s10529-015-2015-x
10.1002/yea.3278
10.1038/ncomms14406
10.1016/0003-2697(76)90527-3
10.1016/j.mimet.2019.105655
10.1093/nar/gkx1007
10.1016/j.molp.2018.02.005
10.1016/0378-1119(87)90110-7
10.1007/978-1-61779-501-5_9
10.1002/jobm.201800195
10.1155/2013/634317
10.4014/jmb.1406.06050
10.1007/s002940050103
10.1186/s13059-017-1151-0
ContentType Journal Article
Copyright COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
KPI
3V.
7QO
7TB
7U5
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L7M
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s12896-021-00669-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
Gale In Context: Global Issues
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList



Publicly Available Content Database


MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1472-6750
EndPage 15
ExternalDocumentID oai_doaj_org_article_067c59e17545427f81583a61d047bb46
PMC7879532
A653583772
33573639
10_1186_s12896_021_00669_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Thailand
GeographicLocations_xml – name: Thailand
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAG
IAO
IHR
INH
INR
IOV
ISR
ITC
ITG
ITH
KPI
KQ8
LK8
M1P
M48
M7P
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
RVI
SCM
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QO
7TB
7U5
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c764t-7f8f8dc58b5e65c4794bb549e9bf94cc057efaeab4515f91f3c06f37aad22a4d3
IEDL.DBID M48
ISSN 1472-6750
IngestDate Wed Aug 27 01:27:35 EDT 2025
Thu Aug 21 14:29:40 EDT 2025
Mon Jul 21 09:19:03 EDT 2025
Fri Jul 11 05:31:20 EDT 2025
Fri Jul 25 10:44:32 EDT 2025
Tue Jun 17 21:29:06 EDT 2025
Tue Jun 10 20:40:37 EDT 2025
Fri Jun 27 05:09:00 EDT 2025
Fri Jun 27 04:19:22 EDT 2025
Fri Jun 27 03:42:01 EDT 2025
Mon Jul 21 05:34:06 EDT 2025
Tue Jul 01 01:07:05 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 5-FOA
CRISPR/Cpf1
Aspergillus
FnCpf1
Filamentous fungi
Gene editing
pyrG
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c764t-7f8f8dc58b5e65c4794bb549e9bf94cc057efaeab4515f91f3c06f37aad22a4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12896-021-00669-8
PMID 33573639
PQID 2490915025
PQPubID 44068
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_067c59e17545427f81583a61d047bb46
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7879532
proquest_miscellaneous_2636440772
proquest_miscellaneous_2489255676
proquest_journals_2490915025
gale_infotracmisc_A653583772
gale_infotracacademiconefile_A653583772
gale_incontextgauss_KPI_A653583772
gale_incontextgauss_ISR_A653583772
gale_incontextgauss_IOV_A653583772
pubmed_primary_33573639
crossref_primary_10_1186_s12896_021_00669_8
crossref_citationtrail_10_1186_s12896_021_00669_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-11
PublicationDateYYYYMMDD 2021-02-11
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC biotechnology
PublicationTitleAlternate BMC Biotechnol
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References RJ White (669_CR33) 2011; 12
D Ding (669_CR51) 2018; 11
S Suwannarangsee (669_CR1) 2014; 24
G Weidner (669_CR45) 1998; 33
D Klein-Marcuschamer (669_CR6) 2012; 109
KG Vanegas (669_CR36) 2019; 6
C Jöchl (669_CR48) 2008; 36
V Meyer (669_CR8) 2008; 26
Y Li (669_CR5) 2018; 119
J Besser (669_CR11) 2018; 24
H Dong (669_CR18) 2019; 163
669_CR47
A Jiménez (669_CR37) 2020; 57
H Kim (669_CR46) 2017; 8
Y Jiang (669_CR50) 2017; 8
B Zetsche (669_CR27) 2015; 163
DG Gibson (669_CR54) 2009; 6
LMC Leynaud-Kieffer (669_CR9) 2019; 14
JC Nielsen (669_CR3) 2017; 2
MA Swiat (669_CR40) 2017; 45
IL Johnstone (669_CR55) 1985; 4
T Katayama (669_CR17) 2016; 38
Y Gao (669_CR34) 2014; 56
KK Fuller (669_CR16) 2015; 14
R Verwaal (669_CR41) 2018; 35
L Cong (669_CR14) 2013; 339
L Song (669_CR20) 2018; 13
M Arentshorst (669_CR52) 2012
CS Nodvig (669_CR22) 2015; 10
JD Boeke (669_CR42) 1984; 197
P Sarkari (669_CR7) 2017; 245
DC Swarts (669_CR49) 2017; 66
B Zetsche (669_CR29) 2017; 35
H Berger (669_CR57) 2006; 59
J Kuivanen (669_CR19) 2016; 15
C Zhang (669_CR59) 2016; 86
PD Hsu (669_CR13) 2014; 157
M Kearse (669_CR61) 2012; 28
OP Ward (669_CR2) 2012; 30
CS Nodvig (669_CR21) 2018; 115
RP de Vries (669_CR4) 2017; 18
H Deng (669_CR32) 2017; 627
H Qin (669_CR25) 2017; 56
I Fonfara (669_CR31) 2016; 532
TQ Shi (669_CR12) 2017; 101
ZH Li (669_CR39) 2018; 58
669_CR26
M Wang (669_CR30) 2017; 10
EV Koonin (669_CR28) 2017; 37
M Penttilä (669_CR56) 1987; 61
MM Bradford (669_CR60) 1976; 72
Y Vaknin (669_CR58) 2016; 84
K Xie (669_CR35) 2015; 112
R Liu (669_CR23) 2015; 1
SO Ling (669_CR43) 2013; 2013
M Jinek (669_CR15) 2012; 337
669_CR10
C d'Enfert (669_CR44) 1996; 30
T Matsu-Ura (669_CR24) 2015; 2
Q Liu (669_CR38) 2019; 12
669_CR53
References_xml – volume: 6
  start-page: 343
  issue: 5
  year: 2009
  ident: 669_CR54
  publication-title: Nat methods
  doi: 10.1038/nmeth.1318
– volume: 4
  start-page: 1307
  issue: 5
  year: 1985
  ident: 669_CR55
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1985.tb03777.x
– volume: 26
  start-page: 177
  issue: 2
  year: 2008
  ident: 669_CR8
  publication-title: Biotechnol Advances
  doi: 10.1016/j.biotechadv.2007.12.001
– volume: 30
  start-page: 1119
  issue: 5
  year: 2012
  ident: 669_CR2
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2011.09.012
– ident: 669_CR47
  doi: 10.1002/wrna.1481
– volume: 627
  start-page: 212
  year: 2017
  ident: 669_CR32
  publication-title: Gene.
  doi: 10.1016/j.gene.2017.06.019
– volume: 163
  start-page: 759
  issue: 3
  year: 2015
  ident: 669_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 2
  start-page: 4
  year: 2015
  ident: 669_CR24
  publication-title: Fungal Biol Biotechnol
  doi: 10.1186/s40694-015-0015-1
– volume: 8
  start-page: 15179
  year: 2017
  ident: 669_CR50
  publication-title: Nat Commun
  doi: 10.1038/ncomms15179
– volume: 157
  start-page: 1262
  issue: 6
  year: 2014
  ident: 669_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.010
– ident: 669_CR26
  doi: 10.1186/s13068-016-0693-9
– volume: 532
  start-page: 517
  issue: 7600
  year: 2016
  ident: 669_CR31
  publication-title: Nature
  doi: 10.1038/nature17945
– volume: 15
  start-page: 210
  issue: 1
  year: 2016
  ident: 669_CR19
  publication-title: Microbial Cell Factories
  doi: 10.1186/s12934-016-0613-5
– volume: 56
  start-page: 57
  year: 2017
  ident: 669_CR25
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2017.02.012
– volume: 57
  start-page: 29
  year: 2020
  ident: 669_CR37
  publication-title: New biotechnology
  doi: 10.1016/j.nbt.2020.02.002
– volume: 197
  start-page: 345
  issue: 2
  year: 1984
  ident: 669_CR42
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00330984
– volume: 14
  start-page: e0210243
  issue: 1
  year: 2019
  ident: 669_CR9
  publication-title: PloS one
  doi: 10.1371/journal.pone.0210243
– volume: 6
  start-page: 6
  year: 2019
  ident: 669_CR36
  publication-title: Fungal biol Biotechnol
  doi: 10.1186/s40694-019-0069-6
– volume: 12
  start-page: 293
  year: 2019
  ident: 669_CR38
  publication-title: Biotechnology for biofuels
  doi: 10.1186/s13068-019-1637-y
– volume: 14
  start-page: 1073
  issue: 11
  year: 2015
  ident: 669_CR16
  publication-title: Eukaryotic cell
  doi: 10.1128/EC.00107-15
– volume: 112
  start-page: 3570
  issue: 11
  year: 2015
  ident: 669_CR35
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1420294112
– ident: 669_CR53
  doi: 10.1016/0378-1119(91)90365-I
– volume: 337
  start-page: 816
  issue: 6096
  year: 2012
  ident: 669_CR15
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 2
  start-page: 17044
  year: 2017
  ident: 669_CR3
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.44
– volume: 56
  start-page: 343
  issue: 4
  year: 2014
  ident: 669_CR34
  publication-title: J Integr plant biol
  doi: 10.1111/jipb.12152
– volume: 66
  start-page: 221
  issue: 2
  year: 2017
  ident: 669_CR49
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.03.016
– volume: 119
  start-page: 462
  year: 2018
  ident: 669_CR5
  publication-title: Int J biol Macromol
  doi: 10.1016/j.ijbiomac.2018.07.165
– volume: 37
  start-page: 67
  year: 2017
  ident: 669_CR28
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2017.05.008
– volume: 339
  start-page: 819
  issue: 6121
  year: 2013
  ident: 669_CR14
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 13
  start-page: e0202868
  issue: 8
  year: 2018
  ident: 669_CR20
  publication-title: PloS one
  doi: 10.1371/journal.pone.0202868
– volume: 59
  start-page: 433
  issue: 2
  year: 2006
  ident: 669_CR57
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.04957.x
– volume: 86
  start-page: 47
  year: 2016
  ident: 669_CR59
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2015.12.007
– volume: 1
  start-page: 15007
  year: 2015
  ident: 669_CR23
  publication-title: Cell Discov
  doi: 10.1038/celldisc.2015.7
– volume: 101
  start-page: 7435
  issue: 20
  year: 2017
  ident: 669_CR12
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-017-8497-9
– volume: 10
  start-page: 1011
  issue: 7
  year: 2017
  ident: 669_CR30
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2017.03.001
– volume: 33
  start-page: 378
  issue: 5
  year: 1998
  ident: 669_CR45
  publication-title: Curr Genet
  doi: 10.1007/s002940050350
– volume: 84
  start-page: 1866
  issue: 6
  year: 2016
  ident: 669_CR58
  publication-title: Infect Immun
  doi: 10.1128/IAI.00011-16
– volume: 24
  start-page: 335
  issue: 4
  year: 2018
  ident: 669_CR11
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2017.10.013
– volume: 12
  start-page: 459
  issue: 7
  year: 2011
  ident: 669_CR33
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3001
– volume: 245
  start-page: 1327
  issue: Pt B
  year: 2017
  ident: 669_CR7
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2017.05.004
– volume: 10
  start-page: e0133085
  issue: 7
  year: 2015
  ident: 669_CR22
  publication-title: PLoS one
  doi: 10.1371/journal.pone.0133085
– volume: 35
  start-page: 31
  issue: 1
  year: 2017
  ident: 669_CR29
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3737
– ident: 669_CR10
  doi: 10.1073/pnas.1715954115
– volume: 115
  start-page: 78
  year: 2018
  ident: 669_CR21
  publication-title: Fungal genet biol
  doi: 10.1016/j.fgb.2018.01.004
– volume: 109
  start-page: 1083
  issue: 4
  year: 2012
  ident: 669_CR6
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.24370
– volume: 36
  start-page: 2677
  issue: 8
  year: 2008
  ident: 669_CR48
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn123
– volume: 28
  start-page: 1647
  issue: 12
  year: 2012
  ident: 669_CR61
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts199
– volume: 38
  start-page: 637
  issue: 4
  year: 2016
  ident: 669_CR17
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-015-2015-x
– volume: 35
  start-page: 201
  issue: 2
  year: 2018
  ident: 669_CR41
  publication-title: Yeast
  doi: 10.1002/yea.3278
– volume: 8
  start-page: 14406
  year: 2017
  ident: 669_CR46
  publication-title: Nat Commun
  doi: 10.1038/ncomms14406
– volume: 72
  start-page: 248
  issue: 1
  year: 1976
  ident: 669_CR60
  publication-title: Analytical biochem
  doi: 10.1016/0003-2697(76)90527-3
– volume: 163
  start-page: 105655
  year: 2019
  ident: 669_CR18
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2019.105655
– volume: 45
  start-page: 12585
  issue: 21
  year: 2017
  ident: 669_CR40
  publication-title: Nucleic acids res
  doi: 10.1093/nar/gkx1007
– volume: 11
  start-page: 542
  issue: 4
  year: 2018
  ident: 669_CR51
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2018.02.005
– volume: 61
  start-page: 155
  issue: 2
  year: 1987
  ident: 669_CR56
  publication-title: Gene
  doi: 10.1016/0378-1119(87)90110-7
– start-page: 133
  volume-title: Plant fungal pathogens: methods and protocols
  year: 2012
  ident: 669_CR52
  doi: 10.1007/978-1-61779-501-5_9
– volume: 58
  start-page: 1100
  issue: 12
  year: 2018
  ident: 669_CR39
  publication-title: J basic Microbiol
  doi: 10.1002/jobm.201800195
– volume: 2013
  start-page: 634317
  year: 2013
  ident: 669_CR43
  publication-title: Scientific World J
  doi: 10.1155/2013/634317
– volume: 24
  start-page: 1427
  issue: 10
  year: 2014
  ident: 669_CR1
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1406.06050
– volume: 30
  start-page: 76
  issue: 1
  year: 1996
  ident: 669_CR44
  publication-title: Curr Genet
  doi: 10.1007/s002940050103
– volume: 18
  start-page: 28
  issue: 1
  year: 2017
  ident: 669_CR4
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1151-0
SSID ssj0017806
Score 2.3498573
Snippet CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an...
Background CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As...
BACKGROUND: CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As...
Abstract Background CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 15
SubjectTerms 5-FOA
Aspergillus
Aspergillus - genetics
Aspergillus aculeatus
Bacterial Proteins - genetics
Biotechnology
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR
CRISPR-Cas Systems
CRISPR/Cpf1
Deoxyribonucleic acid
DNA
DNA damage
DNA repair
Endonucleases - genetics
Enzymes
Feasibility studies
Filamentous fungi
FnCpf1
Francisella
Fungi
Gene disruption
Gene editing
Gene Editing - methods
Gene Expression Regulation, Fungal
gene targeting
Genes
Genetic aspects
Genetic engineering
genetic vectors
Genome editing
Genomes
Genomics
Homology
Localization
Methods
Microbial genetic engineering
Mutagenesis
Non-homologous end joining
Nuclease
Physiological aspects
Plasmids
pyrG
PyrG gene
Ribonucleic acid
RNA
RNA polymerase
RNA, Guide, CRISPR-Cas Systems
synthetic biology
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxNBFB6kT_og3o1WGUXwQZZkdq77mAZLo6glbaVvw1zbQNiUbvb_e2Z2E7KI7YtvYecbNpz7Sc58g9AnSqJ1kCYLokL66aYMhSXJ8XgVyjK4iRfpcPKPn-Lkgn275Jd7V32lmbCOHrgT3BiiqYN9kOUYZ6WMinBFjSB-wqS1LJNtQ87bNlP9_wdSTcT2iIwS4waicB62hdYZcmxVqEEaymz9f8fkvaQ0HJjcy0DHT9DjvnTE0-4rP0UPQv0MPdojFHyO7N4MEF5HbPBsMT87XYxnN5HgjrUZQ5mKuwHw4DHYT8B-2dy2OXbgZY2niTz8arlatQ02rl1BtIZP50eLGS6lfIEujr-ez06K_haFwknBNgWILCrvuLI8CO4So7y10BWGysaKOQcFW4gmGMugtIkVidRNRKTSGF-Whnn6Eh3U6zq8Rlh67kx00gdPGXfESM6lj46FAJE1ViNEtkLVrqcYTzddrHRuNZTQnSI0KEJnRWg1Ql92e246go070UdJVztkIsfOD8BkdG8y-j6TGaGPSdM60V_Uab7myrRNo-e_fuup4BTA0HL8C3S2uB_0_XQ-AH3uQXEN0nCmP_gAMk3cWwPk4QAJnu6Gy1vT1H2kaTS0z2D-HErXEfqwW0470_RcHdZtwqgqUc1JcQdGUCiNJ_k1rzpr30mZUi4plLIjJAd-MFDDcKVeXmeucpkus6flm_-ht7foYZlduCwIOUQHm9s2vIOScGPfZ-__A-ysWRk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELZgucAB8d7CggxC4oCireP4kRPqVpQtCFh1d9HeLD9LpSopTfP_GSdpaYQotyr-ojQez8sZf4PQW0qCseAmEyJ93LpJfWJIVDyW-zT1duh4PJz89Rs_v84-37CbbsOt6soqtzaxMdSutHGP_BTSBHBtDFz0h9WvJHaNil9XuxYat9EdAp4mlnTJyafdVwQhh3x7UEby0wpscVNyCwk0eNo8kT1n1HD2_22Z91xTv2xyzw9NHqD7XQCJR63EH6JbvniE7u3RCj5GZq8SCJcBazyeTS8vZqfjVSC45W7GEKzitgzcOwyryGO3qNZ1Y0HwosCjSCE-XyyXdYW1rZdgs-HX1dlsjFMhnqDrycer8XnS9VJIrODZJhFBBuksk4Z5zmzklTcGckOfm5Bn1kLY5oP22mQQ4IScBGqHPFChtUtTnTn6FB0VZeGPERaOWR2scN7RjFmiBWPCBZt5D_Y15ANEtpOqbEc0HvtdLFWTcEiuWkEoEIRqBKHkAL3f3bNqaTYOos-irHbISJHdXCjXc9VpnAI3bGHBQXiUsSyF9ydMUs2JG2bCmIwP0JsoaRVJMIpYZTPXdVWp6fcfasQZBTAkHv8CXc7-D_pyMe2B3nWgUMJsWN0df4A5jQxcPeRJDwn6bvvD26WpOntTqT_aMUCvd8PxzlhDV_iyjhiZR8I5wQ9gOIUAedg85lm72nezTCkTFALaARI9PeiJoT9SLH42jOUitrSn6fPDf_0Fups2ypkmhJygo8269i8h5NuYV41e_wbbEVJH
  priority: 102
  providerName: ProQuest
Title Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277
URI https://www.ncbi.nlm.nih.gov/pubmed/33573639
https://www.proquest.com/docview/2490915025
https://www.proquest.com/docview/2489255676
https://www.proquest.com/docview/2636440772
https://pubmed.ncbi.nlm.nih.gov/PMC7879532
https://doaj.org/article/067c59e17545427f81583a61d047bb46
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELb2cYED4k1hqQxC4oDCNvEzB4TaassWtEvV3aKKi-U4dqlUpUvTSPDvGSdpacSyXLhEVfxZUTyeVzr-BqFXJHSJATcZhNL6TzeRDZLQKx6LbRRZ00m5P5x8ds5PJ_TjlE330KbdUb2A-bWpne8nNVkt3v74_vM9KPy7UuElP87BxpaltJAYgweNA7mPDsEzCd_R4Iz-_ldByA7fHJy5dl7DOZUc_n9a6h1X1Syj3PFLg7voTh1Q4m61A-6hPZvdR7d3aAYfoGSnMggvHda4Px5ejMbH_SsX4orLGUPwiquycJti2FUWp_N8VZQWBc8z3PWU4rP5YlHkWJtiATYcfl32xn0cCfEQTQYnl_3ToO6tEBjB6ToQTjqZGiYTZjkznmc-SSBXtHHiYmoMhHHWaasTCgGPi0NHTIc7IrROo0jTlDxCB9kys08QFikz2hmR2pRQZkItGBOpM9RasLcubqFws6jK1MTjvv_FQpUJiOSqEoQCQahSEEq20JvtnKuKduNGdM_Laov0lNnljeVqpmoNVOCWDWxACJcooxG8f8gk0TxMO1QkCeUt9NJLWnlSjMxX3cx0kedq-PmL6nJGAAyJyN9AF-N_gz6Nhg3Q6xrklrAaRtfHIWBNPSNXA3nUQIL-m-bwZmuqjfooSKohEGQQ0LbQi-2wn-lr6jK7LDxGxp6ATvAbMJxAwNwpH_O42u3bVSaECQIBbguJhh40xNAcyebfSgZz4Vvck-jp_5DbM3QrKlU4CsLwCB2sV4V9DoHiOmmjfTEVcJWDD2102Ds5H43b5UeXdmkX4Druff0FIcxnGg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeBAgsCcUBWYu_LPiCUBkJC2lKlKeptsfcRIkV2iGMh_hS_kVnbCbEQ4dRblP2cx7y-GXt2FqGXxLeJApr0_NC4WzeB8RLfOR6LTBAY1dHcbU4-PuGDc_rpgl3soV_rvTCurXIdE8tArTPl7pG3oUwAamNA0e8W3z13apR7uro-QqMyi5H5-QNKtvzt8D3o91UQ9D9MegOvPlXAU4LTlSdsaEOtWJgww5lyE9aTBKokEyU2okpBAmNsbOKEAtXbyLdEdbglIo51EMRUE_jcK-gqJcDkbmd6_-PmqYUIO3y9MSfk7Rxif9niCwU7MHvkhQ3yK88I-JsJtqiw2aa5xXv9W-hmnbDibmVht9GeSe-gG1tjDO-iZKvzCGcWx7g3Hp6djtu9hfVxNSsaQ3KMq7ZzozFYrcF6li-LMmLhWYq7bmT5dDafFzmOVTEHjoBXk8NxDwdC3EPnlyLl-2g_zVLzEGGhmYqtEtpoQpnyY8GY0FZRYyCe26iF_LVQpaoHm7vzNeayLHBCLitFSFCELBUhwxZ6s7lmUY312Ik-dLraIN1I7vKNbDmVtYdLoH0FBg7pGGU0gP_vs5DE3NcdKpKE8hZ64TQt3dCN1HX1TOMiz-Xw8xfZ5YwAGAqdf4HOxv8HjU6HDdDrGmQzkIaK6-0WIFM38auBPGggIb6o5vLaNGUd33L5xxtb6Plm2V3pevZSkxUOE0ZuwJ3gOzCcQELeKb_mQWXtGykTwgSBBLqFRMMPGmporqSzb-WEdGChiJHg0e6f_gxdG0yOj-TR8GT0GF0PSkcNPN8_QPurZWGeQLq5Sp6WPo7R18sOKr8BzGuRCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+CRISPR%2FCpf1+system+for+targeted+gene+disruption+in+Aspergillus+aculeatus+TBRC+277&rft.jtitle=BMC+biotechnology&rft.au=Dede+Abdulrachman&rft.au=Lily+Eurwilaichitr&rft.au=Verawat+Champreda&rft.au=Duriya+Chantasingh&rft.date=2021-02-11&rft.pub=BMC&rft.eissn=1472-6750&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs12896-021-00669-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_067c59e17545427f81583a61d047bb46
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6750&client=summon