The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochro...
Saved in:
Published in | PLoS genetics Vol. 10; no. 6; p. e1004416 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.06.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth. |
---|---|
AbstractList | The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of PHYTOCHROME INTERACTING FACTORS (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor LONG HYPOCOTYL 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G- box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth. The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of PHYTOCHROME INTERACTING FACTORS (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor LONG HYPOCOTYL 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth. The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of PHYTOCHROME INTERACTING FACTORS (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor LONG HYPOCOTYL 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis -element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth. Plants, as sessile and photosynthetic organisms, have to constantly adjust their growth and development in response to the environment. While light and temperature are recognized as the most prominent environmental factors modulating plant photosynthetic metabolism, how the seasonal and daily adjustments are achieved is not understood. Global climate alterations will bring together the combination of light and temperature changes and will require an understanding of signal convergence. If we are to mitigate the impact of variable weather patterns on agriculture, it is critical to advance our understanding of the basis of plant responses to environmental variations. In our study we show that the antagonistic activity of key plant transcription factors involved in phytochrome red light photoreceptors signaling (PIFs and HY5) optimize photosynthetic pigment production in response to environmental cues. These light and temperature responsive transcription factors operate in cooperation with the circadian clock to regulate photosynthetic pigment production through a common gene promoter element. The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth.The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth. |
Audience | Academic |
Author | Rodríguez-Concepción, Manuel Johansson, Henrik Stewart, Kelly Bou-Torrent, Jordi Halliday, Karen J. Steel, Gavin Toledo-Ortiz, Gabriela Lee, Keun Pyo |
AuthorAffiliation | 1 Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom 3 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain Peking University, China 2 Plant Physiology, Justus Liebig University, Senckernbergstr, Giessen, Germany |
AuthorAffiliation_xml | – name: 1 Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom – name: 2 Plant Physiology, Justus Liebig University, Senckernbergstr, Giessen, Germany – name: 3 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain – name: Peking University, China |
Author_xml | – sequence: 1 givenname: Gabriela surname: Toledo-Ortiz fullname: Toledo-Ortiz, Gabriela – sequence: 2 givenname: Henrik surname: Johansson fullname: Johansson, Henrik – sequence: 3 givenname: Keun Pyo surname: Lee fullname: Lee, Keun Pyo – sequence: 4 givenname: Jordi surname: Bou-Torrent fullname: Bou-Torrent, Jordi – sequence: 5 givenname: Kelly surname: Stewart fullname: Stewart, Kelly – sequence: 6 givenname: Gavin surname: Steel fullname: Steel, Gavin – sequence: 7 givenname: Manuel surname: Rodríguez-Concepción fullname: Rodríguez-Concepción, Manuel – sequence: 8 givenname: Karen J. surname: Halliday fullname: Halliday, Karen J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24922306$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk12L1DAUhousuB_6D0QLgujFjGnz1e6FsAzu7sDoLusoeBXS9rTNkknGJBX335s6szIjIkouEpLnfZO8nHOcHBhrIEmeZmiaYZ69ubWDM1JP1x2YaYYQIRl7kBxllOIJJ4gc7KwPk2PvbxHCtCj5o-QwJ2WeY8SOEr3sIb38QifX8_P0BrpBy2DdXfreNoOGdGata5SRAXy6UF0fUmmadAmrNTgZBjcSJjirU9um170N1t-Z0ENQdXoBBtKlk8bXTq2DsuZx8rCV2sOT7XySfDp_t5xdThZXF_PZ2WJSc0bChGGMGiA8azhnDeVl1RAKUPIGFXWbM9JKzHFeEIzKoq2rCmEsJVQsJlCVOMcnyfON71pbL7ZBeZFRwmmJcUYjMd8QjZW3Yu3USro7YaUSPzes64R08RMaBGO8QDkgkAUlFRQF5rIpoWorJDmjJHq93d42VCtoaoiBSL1nun9iVC86-00QRCmhLBq82ho4-3UAH8RK-Rq0lgbsML4bU5ZjRnhEX2zQTsanKdPa6FiPuDjDRV5SxDIUqekfqDgaWKk6llGr4v6e4PWeIDIBvodODt6L-ceb_2A__Dt79XmffbnD9iB16L3Vw1g4fh98tpv3r6DvizoCpxugdtZ7B62oVZCjT4xBaZEhMXbQfWGIsYPEtoOimPwmvvf_q-wHnhwefw |
CitedBy_id | crossref_primary_10_1016_j_devcel_2019_04_030 crossref_primary_10_2174_0113892037261763230925034348 crossref_primary_10_1016_j_scienta_2024_113414 crossref_primary_10_1038_s42003_021_02283_y crossref_primary_10_1093_jxb_erae356 crossref_primary_10_48130_tia_0024_0019 crossref_primary_10_1093_plphys_kiae002 crossref_primary_10_1093_jxb_erae119 crossref_primary_10_1134_S1021443720060102 crossref_primary_10_1016_j_fochms_2022_100128 crossref_primary_10_1016_j_cub_2017_12_021 crossref_primary_10_1038_nplants_2015_190 crossref_primary_10_1093_jxb_erad265 crossref_primary_10_1093_plcell_koae111 crossref_primary_10_1111_pce_13467 crossref_primary_10_3389_fpls_2018_00720 crossref_primary_10_1093_mp_ssu109 crossref_primary_10_1111_ppl_12865 crossref_primary_10_1371_journal_pgen_1007157 crossref_primary_10_1016_j_molp_2016_08_007 crossref_primary_10_1016_j_ymben_2021_12_014 crossref_primary_10_1146_annurev_arplant_043014_115619 crossref_primary_10_1007_s11676_017_0414_7 crossref_primary_10_1186_s43897_022_00023_2 crossref_primary_10_1016_j_indcrop_2024_119795 crossref_primary_10_1073_pnas_1418483111 crossref_primary_10_1111_php_12535 crossref_primary_10_1007_s13562_020_00623_3 crossref_primary_10_3390_ijms160819055 crossref_primary_10_1016_j_jphotobiol_2023_112673 crossref_primary_10_1016_j_pbi_2017_03_011 crossref_primary_10_1111_pbi_14522 crossref_primary_10_1111_tpj_16653 crossref_primary_10_1016_j_molp_2020_02_004 crossref_primary_10_1080_07352689_2017_1355661 crossref_primary_10_1016_j_hpj_2022_05_003 crossref_primary_10_1016_j_plantsci_2022_111569 crossref_primary_10_1126_scisignal_adf7318 crossref_primary_10_1016_j_postharvbio_2023_112568 crossref_primary_10_1080_15592324_2016_1184808 crossref_primary_10_1007_s12298_022_01142_2 crossref_primary_10_1093_hr_uhad199 crossref_primary_10_1111_tpj_14476 crossref_primary_10_1093_pcp_pcae119 crossref_primary_10_1111_php_12663 crossref_primary_10_1111_nph_16800 crossref_primary_10_1111_nph_19516 crossref_primary_10_1111_pbi_13568 crossref_primary_10_1016_j_biortech_2021_125150 crossref_primary_10_1016_j_molp_2020_11_019 crossref_primary_10_1016_j_molp_2021_05_023 crossref_primary_10_1146_annurev_arplant_050718_095919 crossref_primary_10_1016_j_molp_2018_04_005 crossref_primary_10_1080_09553002_2022_2087927 crossref_primary_10_3389_fpls_2024_1430639 crossref_primary_10_1093_plcell_koab060 crossref_primary_10_1038_hortres_2017_23 crossref_primary_10_1016_j_jia_2023_04_002 crossref_primary_10_1016_j_xplc_2025_101264 crossref_primary_10_3389_fpls_2017_01394 crossref_primary_10_1038_s41598_023_31466_2 crossref_primary_10_1111_nph_17327 crossref_primary_10_1016_j_jia_2023_09_029 crossref_primary_10_1093_jxb_erx020 crossref_primary_10_1016_j_plaphy_2024_108813 crossref_primary_10_1038_s42003_020_01474_3 crossref_primary_10_1007_s00344_021_10374_7 crossref_primary_10_1186_s12870_023_04326_4 crossref_primary_10_1016_j_isci_2019_04_002 crossref_primary_10_1016_j_isci_2019_04_005 crossref_primary_10_3390_ijms23116027 crossref_primary_10_1186_s12870_020_02808_3 crossref_primary_10_1038_s41477_023_01377_1 crossref_primary_10_1093_jxb_eraa566 crossref_primary_10_1111_pce_12914 crossref_primary_10_3390_plants14010046 crossref_primary_10_3389_fpls_2021_631810 crossref_primary_10_3390_plants7040102 crossref_primary_10_1016_j_hpj_2022_01_007 crossref_primary_10_1016_j_molp_2017_11_003 crossref_primary_10_3389_fpls_2019_01017 crossref_primary_10_1093_jxb_ery242 crossref_primary_10_1007_s12298_024_01427_8 crossref_primary_10_1270_jsbbs_20102 crossref_primary_10_1016_j_plantsci_2019_110331 crossref_primary_10_1016_j_jplph_2017_09_001 crossref_primary_10_1038_s42003_023_05435_4 crossref_primary_10_1016_j_foodchem_2021_129550 crossref_primary_10_1111_nph_17149 crossref_primary_10_3389_fpls_2017_01527 crossref_primary_10_3390_genes14112098 crossref_primary_10_1007_s43630_022_00270_8 crossref_primary_10_1016_j_cub_2015_12_066 crossref_primary_10_1007_s00344_023_11207_5 crossref_primary_10_1093_jxb_erae276 crossref_primary_10_1186_s12870_021_02965_z crossref_primary_10_1080_07388551_2020_1869686 crossref_primary_10_1073_pnas_2304513120 crossref_primary_10_1016_j_plantsci_2020_110541 crossref_primary_10_5194_acp_17_15045_2017 crossref_primary_10_3390_ijms23084145 crossref_primary_10_1016_j_scienta_2021_109995 crossref_primary_10_1111_pce_12690 crossref_primary_10_1016_j_plaphy_2023_107746 crossref_primary_10_1016_j_molp_2021_03_009 crossref_primary_10_1016_j_plantsci_2021_111073 crossref_primary_10_1016_j_scienta_2022_111201 crossref_primary_10_1016_j_bbrep_2024_101815 crossref_primary_10_1016_j_plaphy_2024_109096 crossref_primary_10_3389_fpls_2019_01288 crossref_primary_10_1016_j_ecoenv_2024_116329 crossref_primary_10_1021_acs_jafc_3c05662 crossref_primary_10_3390_ijms22031184 crossref_primary_10_1093_plcell_koaf010 crossref_primary_10_17660_ActaHortic_2024_1411_24 crossref_primary_10_2139_ssrn_4058205 crossref_primary_10_1016_j_envexpbot_2022_105190 crossref_primary_10_1111_tpj_13467 crossref_primary_10_3390_molecules27196171 crossref_primary_10_1016_j_foodchem_2023_135690 crossref_primary_10_1016_j_cub_2016_11_004 crossref_primary_10_1038_s41467_021_24018_7 crossref_primary_10_1111_nph_15754 crossref_primary_10_3390_plants13040498 crossref_primary_10_1016_j_pbi_2018_09_006 crossref_primary_10_1111_nph_16963 crossref_primary_10_1016_j_nexus_2023_100241 crossref_primary_10_1111_jipb_13169 crossref_primary_10_3390_horticulturae11020152 crossref_primary_10_9787_KJBS_2020_52_4_281 crossref_primary_10_1016_j_synbio_2022_01_002 crossref_primary_10_1093_plphys_kiab206 crossref_primary_10_1007_s12038_020_00070_1 crossref_primary_10_1038_s41477_020_0725_0 crossref_primary_10_1093_pcp_pcac022 crossref_primary_10_1093_plcell_koac078 crossref_primary_10_3390_plants11243410 crossref_primary_10_1007_s11557_024_01973_1 crossref_primary_10_3389_fpls_2023_1124750 crossref_primary_10_1016_j_bbalip_2020_158664 crossref_primary_10_1007_s00438_020_01707_4 crossref_primary_10_1038_s41598_023_41987_5 crossref_primary_10_3390_ijms26010361 crossref_primary_10_1111_jipb_13076 crossref_primary_10_1111_pce_14299 crossref_primary_10_1038_s41598_017_18073_8 crossref_primary_10_3389_fpls_2017_00780 crossref_primary_10_1093_pcp_pcy132 crossref_primary_10_3390_agronomy7010025 crossref_primary_10_1111_jipb_13630 crossref_primary_10_1111_nph_15989 crossref_primary_10_3389_fpls_2021_772727 crossref_primary_10_3390_plants11030395 crossref_primary_10_1007_s00425_016_2478_6 crossref_primary_10_1016_j_hpj_2023_02_016 crossref_primary_10_1038_s41477_018_0294_7 crossref_primary_10_1038_s41467_019_12369_1 crossref_primary_10_1105_tpc_19_00480 crossref_primary_10_1093_hr_uhad098 crossref_primary_10_1016_j_plantsci_2022_111583 crossref_primary_10_1021_acs_jafc_8b01613 crossref_primary_10_1016_j_pbi_2015_05_022 crossref_primary_10_1146_annurev_arplant_062923_023852 crossref_primary_10_1016_j_pbi_2018_05_001 crossref_primary_10_1111_php_13574 crossref_primary_10_3109_07388551_2016_1141391 crossref_primary_10_1093_plphys_kiac511 crossref_primary_10_1016_j_redox_2015_01_010 crossref_primary_10_1186_s12870_017_1068_5 crossref_primary_10_3390_ijms241713201 crossref_primary_10_1111_aab_12659 crossref_primary_10_1186_s12870_020_02816_3 crossref_primary_10_3390_ijms19092506 crossref_primary_10_1016_j_sajb_2024_02_005 crossref_primary_10_1073_pnas_2115682119 crossref_primary_10_1111_pce_14947 crossref_primary_10_3389_fpls_2025_1542830 crossref_primary_10_1016_j_scienta_2022_111076 crossref_primary_10_1111_pce_14944 crossref_primary_10_1038_s41467_019_13045_0 crossref_primary_10_1016_j_tplants_2021_07_020 crossref_primary_10_1038_s41467_021_23728_2 crossref_primary_10_1080_28347056_2024_2330972 crossref_primary_10_1016_j_celrep_2014_11_043 crossref_primary_10_3390_molecules27248852 crossref_primary_10_1038_nplants_2016_161 crossref_primary_10_1016_j_xplc_2024_100833 crossref_primary_10_1111_pbi_13272 crossref_primary_10_1016_j_pbi_2016_03_008 crossref_primary_10_1111_tpj_13094 crossref_primary_10_1080_11263504_2024_2375333 crossref_primary_10_1093_jxb_erab475 crossref_primary_10_3390_ijms24098323 crossref_primary_10_1111_tpj_14071 crossref_primary_10_1186_s12284_024_00687_y crossref_primary_10_3389_fpls_2021_720800 crossref_primary_10_1016_j_plantsci_2018_11_013 crossref_primary_10_1242_dev_192625 crossref_primary_10_1016_j_molp_2016_11_007 crossref_primary_10_1371_journal_pgen_1006333 crossref_primary_10_1016_j_ijbiomac_2020_01_013 crossref_primary_10_1111_tpj_14996 crossref_primary_10_1093_hr_uhac022 crossref_primary_10_3390_ijms21197350 crossref_primary_10_1093_pcp_pcab007 crossref_primary_10_1016_j_celrep_2024_114696 crossref_primary_10_1186_s43897_023_00070_3 crossref_primary_10_3390_ijms232012650 crossref_primary_10_1016_j_cub_2020_02_017 crossref_primary_10_1093_jxb_erad443 crossref_primary_10_1093_plphys_kiae184 crossref_primary_10_1111_jipb_13837 crossref_primary_10_1111_nph_20457 crossref_primary_10_3389_fpls_2022_803441 crossref_primary_10_1016_j_tplants_2015_06_010 crossref_primary_10_1111_nph_17280 crossref_primary_10_1038_s41598_020_63952_2 crossref_primary_10_1186_s12870_015_0566_6 crossref_primary_10_1038_s41467_019_11990_4 crossref_primary_10_3389_fpls_2021_724133 crossref_primary_10_3390_ijms23063215 crossref_primary_10_1016_j_jplph_2021_153613 crossref_primary_10_1007_s42994_022_00088_z crossref_primary_10_3389_fpls_2017_02087 crossref_primary_10_1016_j_fochms_2021_100021 crossref_primary_10_1016_j_plantsci_2020_110760 crossref_primary_10_1093_hr_uhac013 crossref_primary_10_3389_fpls_2021_692024 crossref_primary_10_1016_j_plantsci_2023_111693 crossref_primary_10_1093_jxb_ery074 crossref_primary_10_1093_jxb_erae402 crossref_primary_10_3389_fpls_2020_581666 crossref_primary_10_1111_tpj_15384 crossref_primary_10_3389_fpls_2022_1035233 crossref_primary_10_1111_nph_14682 crossref_primary_10_3390_ijms25137308 crossref_primary_10_1111_tpj_16598 crossref_primary_10_1093_bfgp_elaa007 crossref_primary_10_1016_j_ijbiomac_2024_137195 crossref_primary_10_1080_21541264_2020_1820299 crossref_primary_10_1186_s12870_025_06067_y crossref_primary_10_1093_jxb_erac220 crossref_primary_10_3390_plants13050700 crossref_primary_10_1007_s13580_020_00298_8 crossref_primary_10_1016_j_bbrc_2020_04_011 crossref_primary_10_1111_php_12729 crossref_primary_10_1111_tpj_13882 crossref_primary_10_3389_fpls_2021_808960 crossref_primary_10_1093_jxb_erae409 crossref_primary_10_1002_ppp3_10218 crossref_primary_10_1093_hr_uhad219 crossref_primary_10_1016_j_plantsci_2021_111086 crossref_primary_10_1111_nph_17839 crossref_primary_10_1111_ppl_13100 crossref_primary_10_1111_nph_18198 crossref_primary_10_1093_jxb_erab045 crossref_primary_10_3389_fpls_2022_980237 crossref_primary_10_1093_jxb_erz533 crossref_primary_10_1039_c8pp00136g crossref_primary_10_1093_hr_uhad160 crossref_primary_10_1146_annurev_arplant_080720_093057 crossref_primary_10_1016_j_celrep_2016_12_046 crossref_primary_10_1093_jxb_erab283 crossref_primary_10_1016_j_postharvbio_2024_113229 crossref_primary_10_1371_journal_pone_0252031 crossref_primary_10_1016_j_cub_2021_03_046 crossref_primary_10_1146_annurev_genet_111523_102327 crossref_primary_10_1016_j_plantsci_2024_112168 crossref_primary_10_1016_j_fochms_2023_100161 crossref_primary_10_1111_jipb_13216 crossref_primary_10_1111_ppl_13075 crossref_primary_10_2174_1574893614666190226160742 crossref_primary_10_1016_j_xplc_2023_100631 crossref_primary_10_1111_tpj_14381 crossref_primary_10_1016_j_tplants_2017_06_009 crossref_primary_10_1186_s12864_024_11007_5 crossref_primary_10_1146_annurev_arplant_042817_040226 crossref_primary_10_1038_s41477_022_01289_6 crossref_primary_10_1186_s12864_019_6261_5 crossref_primary_10_1007_s00299_024_03420_7 crossref_primary_10_1016_j_molp_2017_09_010 crossref_primary_10_1016_j_molp_2016_07_002 crossref_primary_10_3390_genes9090451 crossref_primary_10_1016_j_foodres_2019_108842 crossref_primary_10_1126_sciadv_abp8412 crossref_primary_10_1016_j_tplants_2019_04_002 crossref_primary_10_1371_journal_pgen_1008797 crossref_primary_10_1111_1541_4337_12564 crossref_primary_10_1016_j_ygeno_2022_110363 crossref_primary_10_1016_j_plantsci_2024_112298 crossref_primary_10_3390_antiox11071311 crossref_primary_10_3389_fpls_2022_884720 crossref_primary_10_3389_fpls_2022_944716 crossref_primary_10_3389_fphys_2017_00382 crossref_primary_10_1016_j_xplc_2022_100416 crossref_primary_10_1093_jxb_erae334 crossref_primary_10_1016_j_molp_2015_05_005 crossref_primary_10_1111_ppl_13092 crossref_primary_10_3389_fpls_2016_01811 crossref_primary_10_1016_j_jplph_2023_154140 crossref_primary_10_3389_fpls_2022_1088278 crossref_primary_10_1016_j_semcdb_2017_12_014 crossref_primary_10_1021_acs_jafc_2c07137 crossref_primary_10_3389_fpls_2020_572517 crossref_primary_10_17660_ActaHortic_2024_1414_2 crossref_primary_10_1186_s12870_024_05660_x crossref_primary_10_3389_fpls_2016_01266 crossref_primary_10_1111_nph_13965 crossref_primary_10_1016_j_jprot_2021_104245 crossref_primary_10_3389_fpls_2019_01584 crossref_primary_10_1016_j_plaphy_2020_06_025 crossref_primary_10_3390_antiox13010099 crossref_primary_10_1016_j_pld_2024_03_008 crossref_primary_10_3390_metabo12090871 crossref_primary_10_1016_j_jphotobiol_2020_111950 crossref_primary_10_1038_ncomms5848 crossref_primary_10_48130_frures_0024_0036 crossref_primary_10_3389_fgene_2018_00478 crossref_primary_10_1021_acs_biochem_5b00704 crossref_primary_10_1093_jxb_erw261 crossref_primary_10_3389_fpls_2023_1272822 crossref_primary_10_3390_cells12212569 crossref_primary_10_1093_plphys_kiae417 |
Cites_doi | 10.1038/nature05946 10.1105/tpc.106.047688 10.1016/j.cub.2008.10.058 10.1093/aob/mci165 10.1093/mp/ssm005 10.1146/annurev.arplant.50.1.333 10.1186/1471-2229-9-71 10.1111/j.1365-313X.2012.05033.x 10.1016/S0070-2153(10)91002-8 10.1111/j.1365-313X.2009.03983.x 10.1105/tpc.112.104869 10.1073/pnas.0803611105 10.1093/mp/sss031 10.1016/j.tplants.2010.08.003 10.1016/j.cub.2009.01.046 10.1105/tpc.108.060020 10.1093/pcp/pcs137 10.1039/c0np00036a 10.1371/journal.pgen.1002594 10.1073/pnas.1107161108 10.1186/gb-2008-9-8-r130 10.1038/nrm728 10.1111/j.1365-313X.2005.02606.x 10.1111/j.1365-313X.2010.04426.x 10.1038/35013076 10.1016/j.jtbi.2010.11.021 10.1105/tpc.107.057075 10.1038/nature10928 10.1016/j.jplph.2010.07.025 10.1016/j.pbi.2008.10.009 10.1073/pnas.96.15.8762 10.4161/psb.3.7.5558 10.1073/pnas.0811684106 10.1126/science.1099728 10.1007/s13238-012-2016-7 10.1093/pcp/pcg136 10.1111/j.1365-313X.2004.02084.x 10.1073/pnas.0900952106 10.1105/tpc.109.070672 10.1371/journal.pgen.1003244 10.1111/j.1365-313X.2012.04992.x 10.1111/j.1365-313X.2010.04434.x 10.4161/psb.20760 10.1101/gad.11.22.2983 10.1038/emboj.2009.306 10.1093/pcp/pcf005 10.1016/j.molcel.2006.06.011 10.4161/psb.6.5.14343 10.1073/pnas.1110682108 10.1093/mp/sst060 10.1073/pnas.98.4.2053 10.1038/nature06520 10.4161/psb.19839 10.1038/emboj.2009.297 10.1093/emboj/19.18.4997 10.1105/tpc.006791 10.4161/psb.23390 10.1126/science.288.5467.859 10.1093/pcp/pcp028 10.1016/j.tplants.2012.09.002 10.1104/pp.111.183384 10.1093/jxb/erp304 10.1111/j.1365-313X.2006.03021.x 10.1016/j.pbi.2010.07.001 10.1016/j.tplants.2010.05.012 10.1126/science.1219075 10.1016/j.cub.2010.04.014 10.1093/pcp/pcr076 10.1105/tpc.10.5.673 10.1093/pcp/pcs141 10.1007/s004250000352 10.1111/j.1365-313X.2007.03341.x 10.1073/pnas.0812219106 10.1111/j.1365-313X.2012.05114.x 10.1038/msb.2012.6 10.1093/pcp/pcg078 10.1073/pnas.0914428107 10.1016/S0092-8674(00)80144-0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Toledo-Ortiz et al 2014 Toledo-Ortiz et al 2014 Toledo-Ortiz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, et al. (2014) The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription. PLoS Genet 10(6): e1004416. doi:10.1371/journal.pgen.1004416 |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Toledo-Ortiz et al 2014 Toledo-Ortiz et al – notice: 2014 Toledo-Ortiz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, et al. (2014) The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription. PLoS Genet 10(6): e1004416. doi:10.1371/journal.pgen.1004416 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1004416 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Light and Temperature Photosynthetic Gene Transcription Regulation |
EISSN | 1553-7404 |
ExternalDocumentID | 1547593315 oai_doaj_org_article_667802e0ea854be8837ad9ebfb0a7654 PMC4055456 A382950610 24922306 10_1371_journal_pgen_1004416 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/F005237/1 – fundername: Medical Research Council |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB PV9 RIG RZL WOQ PMFND 7X8 5PM PUEGO - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c764t-6330de471d776d579bd45ee97d08cf264fa3732843098fcbb033aaeb6416b9323 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Fri Nov 26 17:13:34 EST 2021 Wed Aug 27 01:07:43 EDT 2025 Thu Aug 21 14:18:30 EDT 2025 Thu Jul 10 21:53:44 EDT 2025 Tue Jun 17 21:30:34 EDT 2025 Tue Jun 10 20:43:58 EDT 2025 Fri Jun 27 03:57:18 EDT 2025 Fri Jun 27 04:16:08 EDT 2025 Fri Jun 27 04:04:23 EDT 2025 Thu May 22 20:53:21 EDT 2025 Mon Jul 21 05:56:57 EDT 2025 Tue Jul 01 01:02:25 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c764t-6330de471d776d579bd45ee97d08cf264fa3732843098fcbb033aaeb6416b9323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: GTO HJ MRC KJH. Performed the experiments: GTO HJ KPL JBT KS GS. Analyzed the data: GTO HJ MRC KJH. Contributed reagents/materials/analysis tools: GTO HJ KPL JBT KS GS. Wrote the paper: GTO HJ MRC KJH. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1004416 |
PMID | 24922306 |
PQID | 1535623647 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1547593315 doaj_primary_oai_doaj_org_article_667802e0ea854be8837ad9ebfb0a7654 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4055456 proquest_miscellaneous_1535623647 gale_infotracmisc_A382950610 gale_infotracacademiconefile_A382950610 gale_incontextgauss_ISR_A382950610 gale_incontextgauss_ISN_A382950610 gale_incontextgauss_IOV_A382950610 gale_healthsolutions_A382950610 pubmed_primary_24922306 crossref_citationtrail_10_1371_journal_pgen_1004416 crossref_primary_10_1371_journal_pgen_1004416 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2014 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | KA Franklin (ref5) 2010; 61 MC Proveniers (ref74) 2013; 18 KA Franklin (ref31) 2011; 108 N Mochizuki (ref53) 2001; 98 PH Quail (ref13) 2010; 20 C Andronis (ref65) 2008; 1 S Lorrain (ref80) 2008; 53 Y Nomoto (ref47) 2012; 53 JF Martinez-Garcia (ref18) 2000; 288 D Alabadi (ref46) 2008; 3 ref50 E Huq (ref8) 2004; 305 DC Rockholm (ref52) 1996; 110 J Shin (ref42) 2013; 6 JM Tepperman (ref4) 2004; 38 P Hornitschek (ref79) 2009; 28 PH Quail (ref2) 2002; 3 H Shen (ref22) 2005; 44 Y Nomoto (ref27) 2012; 53 R Catala (ref43) 2011; 108 T Yamashino (ref69) 2003; 44 E Lopez-Juez (ref75) 2008; 20 OS Lau (ref34) 2010; 13 D Chen (ref7) 2013; 25 Y Zhang (ref45) 2011; 6 J Moon (ref58) 2008; 105 G Toledo-Ortiz (ref17) 2010; 107 B Al-Sady (ref62) 2006; 23 K Kobayashi (ref59) 2012; 7 K Nozue (ref23) 2007; 448 M Havaux (ref10) 1999; 96 J Soy (ref24) 2012; 71 J Li (ref16) 2012; 3 KK Niyogi (ref9) 1999; 50 Y Niwa (ref25) 2009; 50 S Toh (ref48) 2012; 7 A Kunihiro (ref26) 2011; 52 KA Franklin (ref57) 2005; 96 P Leivar (ref14) 2009; 21 J Sun (ref49) 2012; 8 A Fukushima (ref71) 2009; 106 R Welsch (ref3) 2000; 211 J Foreman (ref30) 2011; 65 CS Hardtke (ref40) 2000; 19 P Leivar (ref1) 2011; 16 S Ito (ref66) 2003; 44 S Makino (ref67) 2002; 43 P Hornitschek (ref20) 2012; 71 N Mochizuki (ref54) 2010; 15 MA Koini (ref28) 2009; 19 P Leivar (ref78) 2008; 18 Y Zhang (ref44) 2011; 168 T Yamashino (ref81) 2013; 8 MF Covington (ref12) 2008; 9 JA Stavang (ref29) 2009; 60 S Chattopadhyay (ref38) 1998; 10 C Kami (ref33) 2010; 91 T Oyama (ref36) 1997; 11 A Pokhilko (ref41) 2011; 270 A Ben-Shem (ref55) 2003; 426 M de Lucas (ref63) 2008; 451 J Lee (ref35) 2007; 19 T Legnaioli (ref68) 2009; 28 Y Zhang (ref21) 2013; 9 H Zhang (ref37) 2011; 65 W Huang (ref70) 2012; 336 SV Kumar (ref32) 2012; 484 B Berckmans (ref77) 2011; 157 H Shen (ref72) 2008; 20 J Shin (ref15) 2009; 106 PG Stephenson (ref51) 2009; 106 A Pokhilko (ref73) 2012; 8 MH Walter (ref11) 2011; 28 A Alboresi (ref56) 2009; 9 R Henriques (ref64) 2009; 12 JC del Pozo (ref76) 2002; 14 MT Osterlund (ref39) 2000; 405 S Reinbothe (ref6) 1996; 86 J Shin (ref19) 2007; 49 P Leivar (ref61) 2012; 5 E Park (ref60) 2012; 72 19816401 - EMBO J. 2009 Dec 2;28(23):3745-57 17589502 - Nature. 2007 Jul 19;448(7151):358-61 18216857 - Nature. 2008 Jan 24;451(7177):480-4 22403178 - Science. 2012 Apr 6;336(6077):75-9 10411949 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8762-7 23040086 - Trends Plant Sci. 2013 Feb;18(2):59-64 10990463 - EMBO J. 2000 Sep 15;19(18):4997-5006 21636970 - Plant Signal Behav. 2011 May;6(5):632-4 18047474 - Plant J. 2008 Jan;53(2):312-23 15448264 - Science. 2004 Sep 24;305(5692):1937-41 10839542 - Nature. 2000 May 25;405(6785):462-6 10797009 - Science. 2000 May 5;288(5467):859-63 19704480 - Plant Signal Behav. 2008 Jul;3(7):448-9 17319847 - Plant J. 2007 Mar;49(6):981-94 18539749 - Plant Cell. 2008 Jun;20(6):1586-602 22409654 - Plant J. 2012 Aug;71(3):390-401 21265889 - Plant J. 2011 Feb;65(3):346-58 20932601 - J Plant Physiol. 2011 Mar 1;168(4):367-74 19815685 - J Exp Bot. 2010;61(1):11-24 20534526 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11626-31 21321752 - Nat Prod Rep. 2011 Apr;28(4):663-92 19920208 - Plant Cell. 2009 Nov;21(11):3535-53 12826627 - Plant Cell Physiol. 2003 Jun;44(6):619-29 22479194 - PLoS Genet. 2012;8(3):e1002594 19233867 - Plant Cell Physiol. 2009 Apr;50(4):838-54 23589607 - Mol Plant. 2013 May;6(3):592-5 16885032 - Mol Cell. 2006 Aug 4;23(3):439-46 9367981 - Genes Dev. 1997 Nov 15;11(22):2983-95 8797817 - Cell. 1996 Sep 6;86(5):703-5 19380736 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7654-9 11144270 - Planta. 2000 Nov;211(6):846-54 22395476 - Mol Syst Biol. 2012;8:574 11836510 - Nat Rev Mol Cell Biol. 2002 Feb;3(2):85-93 22827944 - Plant Signal Behav. 2012 Aug;7(8):922-6 19249207 - Curr Biol. 2009 Mar 10;19(5):408-13 17337630 - Plant Cell. 2007 Mar;19(3):731-49 19686536 - Plant J. 2009 Nov;60(4):589-601 19851283 - EMBO J. 2009 Dec 16;28(24):3893-902 14634162 - Plant Cell Physiol. 2003 Nov;44(11):1237-45 21930922 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16475-80 22123947 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20231-5 19359492 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7251-6 8742341 - Plant Physiol. 1996 Feb;110(2):697-703 23382695 - PLoS Genet. 2013;9(1):e1003244 21093457 - J Theor Biol. 2011 Feb 7;270(1):31-41 9596629 - Plant Cell. 1998 May;10(5):673-83 22516816 - Plant Signal Behav. 2012 May;7(5):556-8 20833098 - Trends Plant Sci. 2011 Jan;16(1):19-28 21666227 - Plant Cell Physiol. 2011 Aug;52(8):1315-29 22426979 - Protein Cell. 2012 Feb;3(2):106-16 15012213 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359 19508723 - BMC Plant Biol. 2009;9:71 15894550 - Ann Bot. 2005 Aug;96(2):169-75 19062289 - Curr Biol. 2008 Dec 9;18(23):1815-23 20739215 - Curr Opin Plant Biol. 2010 Oct;13(5):571-7 21265897 - Plant J. 2011 Feb;65(3):441-52 12468727 - Plant Cell. 2002 Dec;14(12):3057-71 22849408 - Plant J. 2012 Nov;72(4):537-46 23037004 - Plant Cell Physiol. 2012 Nov;53(11):1965-73 18591656 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9433-8 23037003 - Plant Cell Physiol. 2012 Nov;53(11):1950-64 22536829 - Plant J. 2012 Sep;71(5):699-711 20620899 - Curr Biol. 2010 Jun 22;20(12):R504-7 19084466 - Curr Opin Plant Biol. 2009 Feb;12(1):49-56 11172074 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2053-8 23645630 - Plant Cell. 2013 May;25(5):1657-73 11828023 - Plant Cell Physiol. 2002 Jan;43(1):58-69 15144375 - Plant J. 2004 Jun;38(5):725-39 22437497 - Nature. 2012 Apr 12;484(7393):242-5 20031914 - Mol Plant. 2008 Jan;1(1):58-67 20598625 - Trends Plant Sci. 2010 Sep;15(9):488-98 18710561 - Genome Biol. 2008;9(8):R130 18424613 - Plant Cell. 2008 Apr;20(4):947-68 23154509 - Plant Signal Behav. 2013 Feb;8(2):e22863 19380720 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7660-5 21908689 - Plant Physiol. 2011 Nov;157(3):1440-51 14668855 - Nature. 2003 Dec 11;426(6967):630-5 22492120 - Mol Plant. 2012 May;5(3):734-49 20705178 - Curr Top Dev Biol. 2010;91:29-66 23299336 - Plant Signal Behav. 2013 Mar;8(3):e23390 16359394 - Plant J. 2005 Dec;44(6):1023-35 |
References_xml | – volume: 448 start-page: 358 year: 2007 ident: ref23 article-title: Rhythmic growth explained by coincidence between internal and external cues publication-title: Nature doi: 10.1038/nature05946 – volume: 19 start-page: 731 year: 2007 ident: ref35 article-title: Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development publication-title: Plant Cell doi: 10.1105/tpc.106.047688 – volume: 18 start-page: 1815 year: 2008 ident: ref78 article-title: Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness publication-title: Curr Biol doi: 10.1016/j.cub.2008.10.058 – volume: 96 start-page: 169 year: 2005 ident: ref57 article-title: Phytochromes and shade-avoidance responses in plants publication-title: Ann Bot doi: 10.1093/aob/mci165 – volume: 1 start-page: 58 year: 2008 ident: ref65 article-title: The clock protein CCA1 and the bZIP transcription factor HY5 physically interact to regulate gene expression in Arabidopsis publication-title: Mol Plant doi: 10.1093/mp/ssm005 – volume: 50 start-page: 333 year: 1999 ident: ref9 article-title: PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.50.1.333 – volume: 9 start-page: 71 year: 2009 ident: ref56 article-title: Antenna complexes protect Photosystem I from photoinhibition publication-title: BMC Plant Biol doi: 10.1186/1471-2229-9-71 – volume: 71 start-page: 699 year: 2012 ident: ref20 article-title: Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling publication-title: Plant J doi: 10.1111/j.1365-313X.2012.05033.x – volume: 91 start-page: 29 year: 2010 ident: ref33 article-title: Light-regulated plant growth and development publication-title: Curr Top Dev Biol doi: 10.1016/S0070-2153(10)91002-8 – volume: 60 start-page: 589 year: 2009 ident: ref29 article-title: Hormonal regulation of temperature-induced growth in Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2009.03983.x – volume: 25 start-page: 1657 year: 2013 ident: ref7 article-title: Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.104869 – volume: 105 start-page: 9433 year: 2008 ident: ref58 article-title: PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0803611105 – volume: 5 start-page: 734 year: 2012 ident: ref61 article-title: Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop publication-title: Mol Plant doi: 10.1093/mp/sss031 – volume: 16 start-page: 19 year: 2011 ident: ref1 article-title: PIFs: pivotal components in a cellular signaling hub publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2010.08.003 – volume: 19 start-page: 408 year: 2009 ident: ref28 article-title: High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4 publication-title: Curr Biol doi: 10.1016/j.cub.2009.01.046 – volume: 20 start-page: 1586 year: 2008 ident: ref72 article-title: Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes publication-title: Plant Cell doi: 10.1105/tpc.108.060020 – volume: 53 start-page: 1950 year: 2012 ident: ref27 article-title: Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcs137 – volume: 28 start-page: 663 year: 2011 ident: ref11 article-title: Carotenoids and their cleavage products: biosynthesis and functions publication-title: Nat Prod Rep doi: 10.1039/c0np00036a – volume: 8 start-page: e1002594 year: 2012 ident: ref49 article-title: PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002594 – volume: 108 start-page: 16475 year: 2011 ident: ref43 article-title: Integration of low temperature and light signaling during cold acclimation response in Arabidopsis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1107161108 – volume: 9 start-page: R130 year: 2008 ident: ref12 article-title: Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development publication-title: Genome Biol doi: 10.1186/gb-2008-9-8-r130 – volume: 3 start-page: 85 year: 2002 ident: ref2 article-title: Phytochrome photosensory signalling networks publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm728 – volume: 44 start-page: 1023 year: 2005 ident: ref22 article-title: PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02606.x – ident: ref50 – volume: 65 start-page: 346 year: 2011 ident: ref37 article-title: Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04426.x – volume: 405 start-page: 462 year: 2000 ident: ref39 article-title: Targeted destabilization of HY5 during light-regulated development of Arabidopsis publication-title: Nature doi: 10.1038/35013076 – volume: 270 start-page: 31 year: 2011 ident: ref41 article-title: Ubiquitin ligase switch in plant photomorphogenesis: A hypothesis publication-title: J Theor Biol doi: 10.1016/j.jtbi.2010.11.021 – volume: 20 start-page: 947 year: 2008 ident: ref75 article-title: Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.107.057075 – volume: 484 start-page: 242 year: 2012 ident: ref32 article-title: Transcription factor PIF4 controls the thermosensory activation of flowering publication-title: Nature doi: 10.1038/nature10928 – volume: 168 start-page: 367 year: 2011 ident: ref44 article-title: Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings publication-title: J Plant Physiol doi: 10.1016/j.jplph.2010.07.025 – volume: 12 start-page: 49 year: 2009 ident: ref64 article-title: Regulated proteolysis in light-related signaling pathways publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2008.10.009 – volume: 96 start-page: 8762 year: 1999 ident: ref10 article-title: The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.15.8762 – volume: 3 start-page: 448 year: 2008 ident: ref46 article-title: Integration of light and hormone signals publication-title: Plant Signal Behav doi: 10.4161/psb.3.7.5558 – volume: 106 start-page: 7654 year: 2009 ident: ref51 article-title: PIF3 is a repressor of chloroplast development publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0811684106 – volume: 305 start-page: 1937 year: 2004 ident: ref8 article-title: Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis publication-title: Science doi: 10.1126/science.1099728 – volume: 3 start-page: 106 year: 2012 ident: ref16 article-title: Genomic basis for light control of plant development publication-title: Protein Cell doi: 10.1007/s13238-012-2016-7 – volume: 44 start-page: 1237 year: 2003 ident: ref66 article-title: Characterization of the APRR9 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcg136 – volume: 38 start-page: 725 year: 2004 ident: ref4 article-title: Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02084.x – volume: 106 start-page: 7251 year: 2009 ident: ref71 article-title: Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0900952106 – volume: 21 start-page: 3535 year: 2009 ident: ref14 article-title: Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings publication-title: Plant Cell doi: 10.1105/tpc.109.070672 – volume: 9 start-page: e1003244 year: 2013 ident: ref21 article-title: A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003244 – volume: 71 start-page: 390 year: 2012 ident: ref24 article-title: Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2012.04992.x – volume: 65 start-page: 441 year: 2011 ident: ref30 article-title: Light receptor action is critical for maintaining plant biomass at warm ambient temperatures publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04434.x – volume: 7 start-page: 922 year: 2012 ident: ref59 article-title: Role of the G-box element in regulation of chlorophyll biosynthesis in Arabidopsis roots publication-title: Plant Signal Behav doi: 10.4161/psb.20760 – volume: 11 start-page: 2983 year: 1997 ident: ref36 article-title: The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl publication-title: Genes Dev doi: 10.1101/gad.11.22.2983 – volume: 28 start-page: 3893 year: 2009 ident: ref79 article-title: Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers publication-title: EMBO J doi: 10.1038/emboj.2009.306 – volume: 43 start-page: 58 year: 2002 ident: ref67 article-title: The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcf005 – volume: 23 start-page: 439 year: 2006 ident: ref62 article-title: Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation publication-title: Mol Cell doi: 10.1016/j.molcel.2006.06.011 – volume: 6 start-page: 632 year: 2011 ident: ref45 article-title: Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner publication-title: Plant Signal Behav doi: 10.4161/psb.6.5.14343 – volume: 108 start-page: 20231 year: 2011 ident: ref31 article-title: Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1110682108 – volume: 6 start-page: 592 year: 2013 ident: ref42 article-title: Phytochrome-interacting factors (PIFs) as bridges between environmental signals and the circadian clock: diurnal regulation of growth and development publication-title: Mol Plant doi: 10.1093/mp/sst060 – volume: 98 start-page: 2053 year: 2001 ident: ref53 article-title: Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.98.4.2053 – volume: 451 start-page: 480 year: 2008 ident: ref63 article-title: A molecular framework for light and gibberellin control of cell elongation publication-title: Nature doi: 10.1038/nature06520 – volume: 7 start-page: 556 year: 2012 ident: ref48 article-title: HY5 is involved in strigolactone-dependent seed germination in Arabidopsis publication-title: Plant Signal Behav doi: 10.4161/psb.19839 – volume: 28 start-page: 3745 year: 2009 ident: ref68 article-title: TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought publication-title: EMBO J doi: 10.1038/emboj.2009.297 – volume: 19 start-page: 4997 year: 2000 ident: ref40 article-title: HY5 stability and activity in arabidopsis is regulated by phosphorylation in its COP1 binding domain publication-title: EMBO J doi: 10.1093/emboj/19.18.4997 – volume: 14 start-page: 3057 year: 2002 ident: ref76 article-title: Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCF(AtSKP2) pathway in response to light publication-title: Plant Cell doi: 10.1105/tpc.006791 – volume: 8 start-page: e23390 year: 2013 ident: ref81 article-title: Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana publication-title: Plant Signal Behav doi: 10.4161/psb.23390 – volume: 288 start-page: 859 year: 2000 ident: ref18 article-title: Direct targeting of light signals to a promoter element-bound transcription factor publication-title: Science doi: 10.1126/science.288.5467.859 – volume: 50 start-page: 838 year: 2009 ident: ref25 article-title: The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcp028 – volume: 18 start-page: 59 year: 2013 ident: ref74 article-title: High temperature acclimation through PIF4 signaling publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2012.09.002 – volume: 157 start-page: 1440 year: 2011 ident: ref77 article-title: Light-dependent regulation of DEL1 is determined by the antagonistic action of E2Fb and E2Fc publication-title: Plant Physiol doi: 10.1104/pp.111.183384 – volume: 61 start-page: 11 year: 2010 ident: ref5 article-title: Phytochrome functions in Arabidopsis development publication-title: J Exp Bot doi: 10.1093/jxb/erp304 – volume: 49 start-page: 981 year: 2007 ident: ref19 article-title: PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2006.03021.x – volume: 13 start-page: 571 year: 2010 ident: ref34 article-title: Plant hormone signaling lightens up: integrators of light and hormones publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2010.07.001 – volume: 15 start-page: 488 year: 2010 ident: ref54 article-title: The cell biology of tetrapyrroles: a life and death struggle publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2010.05.012 – volume: 336 start-page: 75 year: 2012 ident: ref70 article-title: Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator publication-title: Science doi: 10.1126/science.1219075 – volume: 110 start-page: 697 year: 1996 ident: ref52 article-title: Violaxanthin de-epoxidase publication-title: Plant Physiol – volume: 426 start-page: 630 year: 2003 ident: ref55 article-title: Crystal structure of plant photosystem I. Nature – volume: 20 start-page: R504 year: 2010 ident: ref13 article-title: Phytochromes publication-title: Curr Biol doi: 10.1016/j.cub.2010.04.014 – volume: 52 start-page: 1315 year: 2011 ident: ref26 article-title: Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcr076 – volume: 10 start-page: 673 year: 1998 ident: ref38 article-title: Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression publication-title: Plant Cell doi: 10.1105/tpc.10.5.673 – volume: 53 start-page: 1965 year: 2012 ident: ref47 article-title: A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcs141 – volume: 211 start-page: 846 year: 2000 ident: ref3 article-title: Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis publication-title: Planta doi: 10.1007/s004250000352 – volume: 53 start-page: 312 year: 2008 ident: ref80 article-title: Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03341.x – volume: 106 start-page: 7660 year: 2009 ident: ref15 article-title: Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0812219106 – volume: 72 start-page: 537 year: 2012 ident: ref60 article-title: Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters publication-title: Plant J doi: 10.1111/j.1365-313X.2012.05114.x – volume: 8 start-page: 574 year: 2012 ident: ref73 article-title: The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops publication-title: Mol Syst Biol doi: 10.1038/msb.2012.6 – volume: 44 start-page: 619 year: 2003 ident: ref69 article-title: A Link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcg078 – volume: 107 start-page: 11626 year: 2010 ident: ref17 article-title: Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0914428107 – volume: 86 start-page: 703 year: 1996 ident: ref6 article-title: Evolution of chlorophyll biosynthesis–the challenge to survive photooxidation publication-title: Cell doi: 10.1016/S0092-8674(00)80144-0 – reference: 18424613 - Plant Cell. 2008 Apr;20(4):947-68 – reference: 19851283 - EMBO J. 2009 Dec 16;28(24):3893-902 – reference: 20705178 - Curr Top Dev Biol. 2010;91:29-66 – reference: 20739215 - Curr Opin Plant Biol. 2010 Oct;13(5):571-7 – reference: 22827944 - Plant Signal Behav. 2012 Aug;7(8):922-6 – reference: 11828023 - Plant Cell Physiol. 2002 Jan;43(1):58-69 – reference: 20833098 - Trends Plant Sci. 2011 Jan;16(1):19-28 – reference: 20598625 - Trends Plant Sci. 2010 Sep;15(9):488-98 – reference: 19062289 - Curr Biol. 2008 Dec 9;18(23):1815-23 – reference: 15894550 - Ann Bot. 2005 Aug;96(2):169-75 – reference: 17337630 - Plant Cell. 2007 Mar;19(3):731-49 – reference: 11172074 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2053-8 – reference: 19920208 - Plant Cell. 2009 Nov;21(11):3535-53 – reference: 11144270 - Planta. 2000 Nov;211(6):846-54 – reference: 15144375 - Plant J. 2004 Jun;38(5):725-39 – reference: 19380736 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7654-9 – reference: 21666227 - Plant Cell Physiol. 2011 Aug;52(8):1315-29 – reference: 17319847 - Plant J. 2007 Mar;49(6):981-94 – reference: 22479194 - PLoS Genet. 2012;8(3):e1002594 – reference: 21265889 - Plant J. 2011 Feb;65(3):346-58 – reference: 8742341 - Plant Physiol. 1996 Feb;110(2):697-703 – reference: 22437497 - Nature. 2012 Apr 12;484(7393):242-5 – reference: 9367981 - Genes Dev. 1997 Nov 15;11(22):2983-95 – reference: 19686536 - Plant J. 2009 Nov;60(4):589-601 – reference: 18539749 - Plant Cell. 2008 Jun;20(6):1586-602 – reference: 20620899 - Curr Biol. 2010 Jun 22;20(12):R504-7 – reference: 14634162 - Plant Cell Physiol. 2003 Nov;44(11):1237-45 – reference: 23382695 - PLoS Genet. 2013;9(1):e1003244 – reference: 21636970 - Plant Signal Behav. 2011 May;6(5):632-4 – reference: 19233867 - Plant Cell Physiol. 2009 Apr;50(4):838-54 – reference: 19084466 - Curr Opin Plant Biol. 2009 Feb;12(1):49-56 – reference: 12826627 - Plant Cell Physiol. 2003 Jun;44(6):619-29 – reference: 15448264 - Science. 2004 Sep 24;305(5692):1937-41 – reference: 23040086 - Trends Plant Sci. 2013 Feb;18(2):59-64 – reference: 22123947 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20231-5 – reference: 15012213 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359 – reference: 21930922 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16475-80 – reference: 16885032 - Mol Cell. 2006 Aug 4;23(3):439-46 – reference: 20932601 - J Plant Physiol. 2011 Mar 1;168(4):367-74 – reference: 11836510 - Nat Rev Mol Cell Biol. 2002 Feb;3(2):85-93 – reference: 22536829 - Plant J. 2012 Sep;71(5):699-711 – reference: 10797009 - Science. 2000 May 5;288(5467):859-63 – reference: 18591656 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9433-8 – reference: 19704480 - Plant Signal Behav. 2008 Jul;3(7):448-9 – reference: 10990463 - EMBO J. 2000 Sep 15;19(18):4997-5006 – reference: 23037004 - Plant Cell Physiol. 2012 Nov;53(11):1965-73 – reference: 20534526 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11626-31 – reference: 23299336 - Plant Signal Behav. 2013 Mar;8(3):e23390 – reference: 12468727 - Plant Cell. 2002 Dec;14(12):3057-71 – reference: 9596629 - Plant Cell. 1998 May;10(5):673-83 – reference: 17589502 - Nature. 2007 Jul 19;448(7151):358-61 – reference: 22426979 - Protein Cell. 2012 Feb;3(2):106-16 – reference: 18710561 - Genome Biol. 2008;9(8):R130 – reference: 18216857 - Nature. 2008 Jan 24;451(7177):480-4 – reference: 19815685 - J Exp Bot. 2010;61(1):11-24 – reference: 8797817 - Cell. 1996 Sep 6;86(5):703-5 – reference: 22403178 - Science. 2012 Apr 6;336(6077):75-9 – reference: 23589607 - Mol Plant. 2013 May;6(3):592-5 – reference: 21265897 - Plant J. 2011 Feb;65(3):441-52 – reference: 19816401 - EMBO J. 2009 Dec 2;28(23):3745-57 – reference: 23154509 - Plant Signal Behav. 2013 Feb;8(2):e22863 – reference: 18047474 - Plant J. 2008 Jan;53(2):312-23 – reference: 19249207 - Curr Biol. 2009 Mar 10;19(5):408-13 – reference: 21093457 - J Theor Biol. 2011 Feb 7;270(1):31-41 – reference: 19359492 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7251-6 – reference: 14668855 - Nature. 2003 Dec 11;426(6967):630-5 – reference: 19380720 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7660-5 – reference: 23645630 - Plant Cell. 2013 May;25(5):1657-73 – reference: 22395476 - Mol Syst Biol. 2012;8:574 – reference: 22409654 - Plant J. 2012 Aug;71(3):390-401 – reference: 21908689 - Plant Physiol. 2011 Nov;157(3):1440-51 – reference: 19508723 - BMC Plant Biol. 2009;9:71 – reference: 10411949 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8762-7 – reference: 20031914 - Mol Plant. 2008 Jan;1(1):58-67 – reference: 21321752 - Nat Prod Rep. 2011 Apr;28(4):663-92 – reference: 22849408 - Plant J. 2012 Nov;72(4):537-46 – reference: 22492120 - Mol Plant. 2012 May;5(3):734-49 – reference: 16359394 - Plant J. 2005 Dec;44(6):1023-35 – reference: 22516816 - Plant Signal Behav. 2012 May;7(5):556-8 – reference: 10839542 - Nature. 2000 May 25;405(6785):462-6 – reference: 23037003 - Plant Cell Physiol. 2012 Nov;53(11):1950-64 |
SSID | ssj0035897 |
Score | 2.5938804 |
Snippet | The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during... The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1004416 |
SubjectTerms | Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins - biosynthesis Arabidopsis Proteins - genetics Basic Helix-Loop-Helix Transcription Factors - genetics Basic-Leucine Zipper Transcription Factors - genetics Biology and Life Sciences Biosynthesis Carotenoids - biosynthesis Chlorophyll Chlorophyll - biosynthesis Chromophores Circadian rhythm G-Box Binding Factors - genetics Gene expression Gene Expression Regulation, Plant Genetic aspects Genetic transcription Nuclear Proteins - genetics Photoperiod Photoreceptors Photosynthesis Photosynthesis - genetics Physiological aspects Phytochrome Promoter Regions, Genetic Proteins Receptors, Peptide - biosynthesis Seasons Temperature Transcription factors Transcription, Genetic Transcriptional Activation - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQJSReEL8XGGAQEk8ZaW3HzuNAVB0SAwFD48myE3ubVJKqTR_633MXO1GDkLYHXpsvqnx3vftOPX9HyBtbslJ4VaRQjH3KWZalyhqRCu_ywnNoObptDZ9P88UZ_3QuzvdWfeFMWJAHDobDbX0qm7nMGSW4dQoaKlMVznqbGZmLTgkUal7fTIUczIQKa1WEYKmEtj5emmNy-i766GgFDjrq9NJw1_leUeq0-4cMPVktm82_6OffU5R7ZWl-j9yNfJIeh3PcJ7dc_YDcDhsmdw_JEsKALn6J9OvJnK7D3vlmvaO_m2q7dLRsoPe8qpFv0iW26dTUFUW5qqi1TOMoO208XV02bbPZ1UAZ4csoHMzRFktdn3gekbP5xx8fFmlcsJCWMudtmjOWVQ7KUyVlXglZ2IoL5wpZZar0QJW8YSjmAy4slC-tzRgzxtkcTGaB-LHHZFI3tTsgdGqg8ivlHEdNwTwznAPRsTPrPPjJZwlhvYV1GdXHcQnGUnd_qUnoQoLBNPpFR78kJB3eWgX1jWvw79F5Axa1s7sPIKJ0jCh9XUQl5CW6XoeLqEMG0MdMzQoB_AcO87pDoH5GjQM6F2a72eiTLz9vAPp-ehPQtxHobQT5BmxWmnhzAiyP4l0j5OEICamiHD0-wGjuTbfRwJ-lKBibioS86iNc41s4ele7ZosYhhw55zIhT0LED_ZFuUnsYRMiR7-FkQPGT-qry07EHBoFJO9P_4fHnpE7wGN5mOA7JJN2vXXPgSu29kWXFv4AVw1lzw priority: 102 providerName: Directory of Open Access Journals |
Title | The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24922306 https://www.proquest.com/docview/1535623647 https://pubmed.ncbi.nlm.nih.gov/PMC4055456 https://doaj.org/article/667802e0ea854be8837ad9ebfb0a7654 http://dx.doi.org/10.1371/journal.pgen.1004416 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8THwvMIpBSDylSms7Th4Q2tCqDmllGhSVp8hO7G1SSErSSvS_5y5fImiIvjbntrk73_0uOf-OkLc6ZrGwQehCMrYuZ57nBloJV1jjh5ZDyVFNa7iY-7MF_7QUyz3SzmxtFFjeWdrhPKlFkY5-_dx-gA3_vpraIMftotEKVD6qGNDG_j45gNwkcate8O69AhNBPW5FCOZKKPebw3T_-pZesqo4_bvIPVileXkXLP27u_KPdDV9QA4bnElPasd4SPZM9ojcqydPbh-TFNyDzr4L9_J8Sot6Hn1ebOmPPNmkhsY51KS3GeJQmmL5TlWWUKSxajiYadPiTnNLVzf5Oi-3GUBJ-DEKN2boGlNgG5CekMX07OvHmdsMXnBj6fO16zPmJQbSViKlnwgZ6oQLY0KZeEFsAUJZxZDkB0wbBjbW2mNMKaN9UJkGQMiekkGWZ-aI0LECRBAExnDkGvQ9xTkAID3RxnpKWs8hrNVwFDes5DgcI42qV20SqpNaYRHaJWrs4hC3W7WqWTn-I3-KxutkkVO7-iAvrqNmi0Y-5G1vYjyjAsG1CaB0V0lotNXwT33BHfIKTR_VB1S7yBCdsGASCsBFcDNvKgnk1ciwcedabcoyOv_8bQehL_NdhK56Qu8aIZuDzmLVnKgAzSOpV0_yuCcJISTuXT5Cb25VV0aAq6UIGRsLh7xuPTzCVdiSl5l8gzIMsbPPpUOe1R7f6RdpKLG2dYjs7YWeAfpXstubitwcCggE9c93UeULch_wK687947JYF1szEvAiGs9JPtyKYfk4PRsfnk1rJ60DKtQ8Buslmha |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+HY5-PIF+regulatory+module+coordinates+light+and+temperature+control+of+photosynthetic+gene+transcription&rft.jtitle=PLoS+genetics&rft.au=Toledo-Ortiz%2C+Gabriela&rft.au=Johansson%2C+Henrik&rft.au=Lee%2C+Keun+Pyo&rft.au=Bou-Torrent%2C+Jordi&rft.date=2014-06-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=10&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pgen.1004416&rft.externalDBID=IOV&rft.externalDocID=A382950610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |