The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription

The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochro...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 10; no. 6; p. e1004416
Main Authors Toledo-Ortiz, Gabriela, Johansson, Henrik, Lee, Keun Pyo, Bou-Torrent, Jordi, Stewart, Kelly, Steel, Gavin, Rodríguez-Concepción, Manuel, Halliday, Karen J.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth.
AbstractList The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of PHYTOCHROME INTERACTING FACTORS (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor LONG HYPOCOTYL 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G- box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth.
  The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of PHYTOCHROME INTERACTING FACTORS (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor LONG HYPOCOTYL 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth.
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of PHYTOCHROME INTERACTING FACTORS (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor LONG HYPOCOTYL 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis -element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth. Plants, as sessile and photosynthetic organisms, have to constantly adjust their growth and development in response to the environment. While light and temperature are recognized as the most prominent environmental factors modulating plant photosynthetic metabolism, how the seasonal and daily adjustments are achieved is not understood. Global climate alterations will bring together the combination of light and temperature changes and will require an understanding of signal convergence. If we are to mitigate the impact of variable weather patterns on agriculture, it is critical to advance our understanding of the basis of plant responses to environmental variations. In our study we show that the antagonistic activity of key plant transcription factors involved in phytochrome red light photoreceptors signaling (PIFs and HY5) optimize photosynthetic pigment production in response to environmental cues. These light and temperature responsive transcription factors operate in cooperation with the circadian clock to regulate photosynthetic pigment production through a common gene promoter element.
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth.The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth.
Audience Academic
Author Rodríguez-Concepción, Manuel
Johansson, Henrik
Stewart, Kelly
Bou-Torrent, Jordi
Halliday, Karen J.
Steel, Gavin
Toledo-Ortiz, Gabriela
Lee, Keun Pyo
AuthorAffiliation 1 Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
3 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
Peking University, China
2 Plant Physiology, Justus Liebig University, Senckernbergstr, Giessen, Germany
AuthorAffiliation_xml – name: 1 Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
– name: 2 Plant Physiology, Justus Liebig University, Senckernbergstr, Giessen, Germany
– name: 3 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
– name: Peking University, China
Author_xml – sequence: 1
  givenname: Gabriela
  surname: Toledo-Ortiz
  fullname: Toledo-Ortiz, Gabriela
– sequence: 2
  givenname: Henrik
  surname: Johansson
  fullname: Johansson, Henrik
– sequence: 3
  givenname: Keun Pyo
  surname: Lee
  fullname: Lee, Keun Pyo
– sequence: 4
  givenname: Jordi
  surname: Bou-Torrent
  fullname: Bou-Torrent, Jordi
– sequence: 5
  givenname: Kelly
  surname: Stewart
  fullname: Stewart, Kelly
– sequence: 6
  givenname: Gavin
  surname: Steel
  fullname: Steel, Gavin
– sequence: 7
  givenname: Manuel
  surname: Rodríguez-Concepción
  fullname: Rodríguez-Concepción, Manuel
– sequence: 8
  givenname: Karen J.
  surname: Halliday
  fullname: Halliday, Karen J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24922306$$D View this record in MEDLINE/PubMed
BookMark eNqVk12L1DAUhousuB_6D0QLgujFjGnz1e6FsAzu7sDoLusoeBXS9rTNkknGJBX335s6szIjIkouEpLnfZO8nHOcHBhrIEmeZmiaYZ69ubWDM1JP1x2YaYYQIRl7kBxllOIJJ4gc7KwPk2PvbxHCtCj5o-QwJ2WeY8SOEr3sIb38QifX8_P0BrpBy2DdXfreNoOGdGata5SRAXy6UF0fUmmadAmrNTgZBjcSJjirU9um170N1t-Z0ENQdXoBBtKlk8bXTq2DsuZx8rCV2sOT7XySfDp_t5xdThZXF_PZ2WJSc0bChGGMGiA8azhnDeVl1RAKUPIGFXWbM9JKzHFeEIzKoq2rCmEsJVQsJlCVOMcnyfON71pbL7ZBeZFRwmmJcUYjMd8QjZW3Yu3USro7YaUSPzes64R08RMaBGO8QDkgkAUlFRQF5rIpoWorJDmjJHq93d42VCtoaoiBSL1nun9iVC86-00QRCmhLBq82ho4-3UAH8RK-Rq0lgbsML4bU5ZjRnhEX2zQTsanKdPa6FiPuDjDRV5SxDIUqekfqDgaWKk6llGr4v6e4PWeIDIBvodODt6L-ceb_2A__Dt79XmffbnD9iB16L3Vw1g4fh98tpv3r6DvizoCpxugdtZ7B62oVZCjT4xBaZEhMXbQfWGIsYPEtoOimPwmvvf_q-wHnhwefw
CitedBy_id crossref_primary_10_1016_j_devcel_2019_04_030
crossref_primary_10_2174_0113892037261763230925034348
crossref_primary_10_1016_j_scienta_2024_113414
crossref_primary_10_1038_s42003_021_02283_y
crossref_primary_10_1093_jxb_erae356
crossref_primary_10_48130_tia_0024_0019
crossref_primary_10_1093_plphys_kiae002
crossref_primary_10_1093_jxb_erae119
crossref_primary_10_1134_S1021443720060102
crossref_primary_10_1016_j_fochms_2022_100128
crossref_primary_10_1016_j_cub_2017_12_021
crossref_primary_10_1038_nplants_2015_190
crossref_primary_10_1093_jxb_erad265
crossref_primary_10_1093_plcell_koae111
crossref_primary_10_1111_pce_13467
crossref_primary_10_3389_fpls_2018_00720
crossref_primary_10_1093_mp_ssu109
crossref_primary_10_1111_ppl_12865
crossref_primary_10_1371_journal_pgen_1007157
crossref_primary_10_1016_j_molp_2016_08_007
crossref_primary_10_1016_j_ymben_2021_12_014
crossref_primary_10_1146_annurev_arplant_043014_115619
crossref_primary_10_1007_s11676_017_0414_7
crossref_primary_10_1186_s43897_022_00023_2
crossref_primary_10_1016_j_indcrop_2024_119795
crossref_primary_10_1073_pnas_1418483111
crossref_primary_10_1111_php_12535
crossref_primary_10_1007_s13562_020_00623_3
crossref_primary_10_3390_ijms160819055
crossref_primary_10_1016_j_jphotobiol_2023_112673
crossref_primary_10_1016_j_pbi_2017_03_011
crossref_primary_10_1111_pbi_14522
crossref_primary_10_1111_tpj_16653
crossref_primary_10_1016_j_molp_2020_02_004
crossref_primary_10_1080_07352689_2017_1355661
crossref_primary_10_1016_j_hpj_2022_05_003
crossref_primary_10_1016_j_plantsci_2022_111569
crossref_primary_10_1126_scisignal_adf7318
crossref_primary_10_1016_j_postharvbio_2023_112568
crossref_primary_10_1080_15592324_2016_1184808
crossref_primary_10_1007_s12298_022_01142_2
crossref_primary_10_1093_hr_uhad199
crossref_primary_10_1111_tpj_14476
crossref_primary_10_1093_pcp_pcae119
crossref_primary_10_1111_php_12663
crossref_primary_10_1111_nph_16800
crossref_primary_10_1111_nph_19516
crossref_primary_10_1111_pbi_13568
crossref_primary_10_1016_j_biortech_2021_125150
crossref_primary_10_1016_j_molp_2020_11_019
crossref_primary_10_1016_j_molp_2021_05_023
crossref_primary_10_1146_annurev_arplant_050718_095919
crossref_primary_10_1016_j_molp_2018_04_005
crossref_primary_10_1080_09553002_2022_2087927
crossref_primary_10_3389_fpls_2024_1430639
crossref_primary_10_1093_plcell_koab060
crossref_primary_10_1038_hortres_2017_23
crossref_primary_10_1016_j_jia_2023_04_002
crossref_primary_10_1016_j_xplc_2025_101264
crossref_primary_10_3389_fpls_2017_01394
crossref_primary_10_1038_s41598_023_31466_2
crossref_primary_10_1111_nph_17327
crossref_primary_10_1016_j_jia_2023_09_029
crossref_primary_10_1093_jxb_erx020
crossref_primary_10_1016_j_plaphy_2024_108813
crossref_primary_10_1038_s42003_020_01474_3
crossref_primary_10_1007_s00344_021_10374_7
crossref_primary_10_1186_s12870_023_04326_4
crossref_primary_10_1016_j_isci_2019_04_002
crossref_primary_10_1016_j_isci_2019_04_005
crossref_primary_10_3390_ijms23116027
crossref_primary_10_1186_s12870_020_02808_3
crossref_primary_10_1038_s41477_023_01377_1
crossref_primary_10_1093_jxb_eraa566
crossref_primary_10_1111_pce_12914
crossref_primary_10_3390_plants14010046
crossref_primary_10_3389_fpls_2021_631810
crossref_primary_10_3390_plants7040102
crossref_primary_10_1016_j_hpj_2022_01_007
crossref_primary_10_1016_j_molp_2017_11_003
crossref_primary_10_3389_fpls_2019_01017
crossref_primary_10_1093_jxb_ery242
crossref_primary_10_1007_s12298_024_01427_8
crossref_primary_10_1270_jsbbs_20102
crossref_primary_10_1016_j_plantsci_2019_110331
crossref_primary_10_1016_j_jplph_2017_09_001
crossref_primary_10_1038_s42003_023_05435_4
crossref_primary_10_1016_j_foodchem_2021_129550
crossref_primary_10_1111_nph_17149
crossref_primary_10_3389_fpls_2017_01527
crossref_primary_10_3390_genes14112098
crossref_primary_10_1007_s43630_022_00270_8
crossref_primary_10_1016_j_cub_2015_12_066
crossref_primary_10_1007_s00344_023_11207_5
crossref_primary_10_1093_jxb_erae276
crossref_primary_10_1186_s12870_021_02965_z
crossref_primary_10_1080_07388551_2020_1869686
crossref_primary_10_1073_pnas_2304513120
crossref_primary_10_1016_j_plantsci_2020_110541
crossref_primary_10_5194_acp_17_15045_2017
crossref_primary_10_3390_ijms23084145
crossref_primary_10_1016_j_scienta_2021_109995
crossref_primary_10_1111_pce_12690
crossref_primary_10_1016_j_plaphy_2023_107746
crossref_primary_10_1016_j_molp_2021_03_009
crossref_primary_10_1016_j_plantsci_2021_111073
crossref_primary_10_1016_j_scienta_2022_111201
crossref_primary_10_1016_j_bbrep_2024_101815
crossref_primary_10_1016_j_plaphy_2024_109096
crossref_primary_10_3389_fpls_2019_01288
crossref_primary_10_1016_j_ecoenv_2024_116329
crossref_primary_10_1021_acs_jafc_3c05662
crossref_primary_10_3390_ijms22031184
crossref_primary_10_1093_plcell_koaf010
crossref_primary_10_17660_ActaHortic_2024_1411_24
crossref_primary_10_2139_ssrn_4058205
crossref_primary_10_1016_j_envexpbot_2022_105190
crossref_primary_10_1111_tpj_13467
crossref_primary_10_3390_molecules27196171
crossref_primary_10_1016_j_foodchem_2023_135690
crossref_primary_10_1016_j_cub_2016_11_004
crossref_primary_10_1038_s41467_021_24018_7
crossref_primary_10_1111_nph_15754
crossref_primary_10_3390_plants13040498
crossref_primary_10_1016_j_pbi_2018_09_006
crossref_primary_10_1111_nph_16963
crossref_primary_10_1016_j_nexus_2023_100241
crossref_primary_10_1111_jipb_13169
crossref_primary_10_3390_horticulturae11020152
crossref_primary_10_9787_KJBS_2020_52_4_281
crossref_primary_10_1016_j_synbio_2022_01_002
crossref_primary_10_1093_plphys_kiab206
crossref_primary_10_1007_s12038_020_00070_1
crossref_primary_10_1038_s41477_020_0725_0
crossref_primary_10_1093_pcp_pcac022
crossref_primary_10_1093_plcell_koac078
crossref_primary_10_3390_plants11243410
crossref_primary_10_1007_s11557_024_01973_1
crossref_primary_10_3389_fpls_2023_1124750
crossref_primary_10_1016_j_bbalip_2020_158664
crossref_primary_10_1007_s00438_020_01707_4
crossref_primary_10_1038_s41598_023_41987_5
crossref_primary_10_3390_ijms26010361
crossref_primary_10_1111_jipb_13076
crossref_primary_10_1111_pce_14299
crossref_primary_10_1038_s41598_017_18073_8
crossref_primary_10_3389_fpls_2017_00780
crossref_primary_10_1093_pcp_pcy132
crossref_primary_10_3390_agronomy7010025
crossref_primary_10_1111_jipb_13630
crossref_primary_10_1111_nph_15989
crossref_primary_10_3389_fpls_2021_772727
crossref_primary_10_3390_plants11030395
crossref_primary_10_1007_s00425_016_2478_6
crossref_primary_10_1016_j_hpj_2023_02_016
crossref_primary_10_1038_s41477_018_0294_7
crossref_primary_10_1038_s41467_019_12369_1
crossref_primary_10_1105_tpc_19_00480
crossref_primary_10_1093_hr_uhad098
crossref_primary_10_1016_j_plantsci_2022_111583
crossref_primary_10_1021_acs_jafc_8b01613
crossref_primary_10_1016_j_pbi_2015_05_022
crossref_primary_10_1146_annurev_arplant_062923_023852
crossref_primary_10_1016_j_pbi_2018_05_001
crossref_primary_10_1111_php_13574
crossref_primary_10_3109_07388551_2016_1141391
crossref_primary_10_1093_plphys_kiac511
crossref_primary_10_1016_j_redox_2015_01_010
crossref_primary_10_1186_s12870_017_1068_5
crossref_primary_10_3390_ijms241713201
crossref_primary_10_1111_aab_12659
crossref_primary_10_1186_s12870_020_02816_3
crossref_primary_10_3390_ijms19092506
crossref_primary_10_1016_j_sajb_2024_02_005
crossref_primary_10_1073_pnas_2115682119
crossref_primary_10_1111_pce_14947
crossref_primary_10_3389_fpls_2025_1542830
crossref_primary_10_1016_j_scienta_2022_111076
crossref_primary_10_1111_pce_14944
crossref_primary_10_1038_s41467_019_13045_0
crossref_primary_10_1016_j_tplants_2021_07_020
crossref_primary_10_1038_s41467_021_23728_2
crossref_primary_10_1080_28347056_2024_2330972
crossref_primary_10_1016_j_celrep_2014_11_043
crossref_primary_10_3390_molecules27248852
crossref_primary_10_1038_nplants_2016_161
crossref_primary_10_1016_j_xplc_2024_100833
crossref_primary_10_1111_pbi_13272
crossref_primary_10_1016_j_pbi_2016_03_008
crossref_primary_10_1111_tpj_13094
crossref_primary_10_1080_11263504_2024_2375333
crossref_primary_10_1093_jxb_erab475
crossref_primary_10_3390_ijms24098323
crossref_primary_10_1111_tpj_14071
crossref_primary_10_1186_s12284_024_00687_y
crossref_primary_10_3389_fpls_2021_720800
crossref_primary_10_1016_j_plantsci_2018_11_013
crossref_primary_10_1242_dev_192625
crossref_primary_10_1016_j_molp_2016_11_007
crossref_primary_10_1371_journal_pgen_1006333
crossref_primary_10_1016_j_ijbiomac_2020_01_013
crossref_primary_10_1111_tpj_14996
crossref_primary_10_1093_hr_uhac022
crossref_primary_10_3390_ijms21197350
crossref_primary_10_1093_pcp_pcab007
crossref_primary_10_1016_j_celrep_2024_114696
crossref_primary_10_1186_s43897_023_00070_3
crossref_primary_10_3390_ijms232012650
crossref_primary_10_1016_j_cub_2020_02_017
crossref_primary_10_1093_jxb_erad443
crossref_primary_10_1093_plphys_kiae184
crossref_primary_10_1111_jipb_13837
crossref_primary_10_1111_nph_20457
crossref_primary_10_3389_fpls_2022_803441
crossref_primary_10_1016_j_tplants_2015_06_010
crossref_primary_10_1111_nph_17280
crossref_primary_10_1038_s41598_020_63952_2
crossref_primary_10_1186_s12870_015_0566_6
crossref_primary_10_1038_s41467_019_11990_4
crossref_primary_10_3389_fpls_2021_724133
crossref_primary_10_3390_ijms23063215
crossref_primary_10_1016_j_jplph_2021_153613
crossref_primary_10_1007_s42994_022_00088_z
crossref_primary_10_3389_fpls_2017_02087
crossref_primary_10_1016_j_fochms_2021_100021
crossref_primary_10_1016_j_plantsci_2020_110760
crossref_primary_10_1093_hr_uhac013
crossref_primary_10_3389_fpls_2021_692024
crossref_primary_10_1016_j_plantsci_2023_111693
crossref_primary_10_1093_jxb_ery074
crossref_primary_10_1093_jxb_erae402
crossref_primary_10_3389_fpls_2020_581666
crossref_primary_10_1111_tpj_15384
crossref_primary_10_3389_fpls_2022_1035233
crossref_primary_10_1111_nph_14682
crossref_primary_10_3390_ijms25137308
crossref_primary_10_1111_tpj_16598
crossref_primary_10_1093_bfgp_elaa007
crossref_primary_10_1016_j_ijbiomac_2024_137195
crossref_primary_10_1080_21541264_2020_1820299
crossref_primary_10_1186_s12870_025_06067_y
crossref_primary_10_1093_jxb_erac220
crossref_primary_10_3390_plants13050700
crossref_primary_10_1007_s13580_020_00298_8
crossref_primary_10_1016_j_bbrc_2020_04_011
crossref_primary_10_1111_php_12729
crossref_primary_10_1111_tpj_13882
crossref_primary_10_3389_fpls_2021_808960
crossref_primary_10_1093_jxb_erae409
crossref_primary_10_1002_ppp3_10218
crossref_primary_10_1093_hr_uhad219
crossref_primary_10_1016_j_plantsci_2021_111086
crossref_primary_10_1111_nph_17839
crossref_primary_10_1111_ppl_13100
crossref_primary_10_1111_nph_18198
crossref_primary_10_1093_jxb_erab045
crossref_primary_10_3389_fpls_2022_980237
crossref_primary_10_1093_jxb_erz533
crossref_primary_10_1039_c8pp00136g
crossref_primary_10_1093_hr_uhad160
crossref_primary_10_1146_annurev_arplant_080720_093057
crossref_primary_10_1016_j_celrep_2016_12_046
crossref_primary_10_1093_jxb_erab283
crossref_primary_10_1016_j_postharvbio_2024_113229
crossref_primary_10_1371_journal_pone_0252031
crossref_primary_10_1016_j_cub_2021_03_046
crossref_primary_10_1146_annurev_genet_111523_102327
crossref_primary_10_1016_j_plantsci_2024_112168
crossref_primary_10_1016_j_fochms_2023_100161
crossref_primary_10_1111_jipb_13216
crossref_primary_10_1111_ppl_13075
crossref_primary_10_2174_1574893614666190226160742
crossref_primary_10_1016_j_xplc_2023_100631
crossref_primary_10_1111_tpj_14381
crossref_primary_10_1016_j_tplants_2017_06_009
crossref_primary_10_1186_s12864_024_11007_5
crossref_primary_10_1146_annurev_arplant_042817_040226
crossref_primary_10_1038_s41477_022_01289_6
crossref_primary_10_1186_s12864_019_6261_5
crossref_primary_10_1007_s00299_024_03420_7
crossref_primary_10_1016_j_molp_2017_09_010
crossref_primary_10_1016_j_molp_2016_07_002
crossref_primary_10_3390_genes9090451
crossref_primary_10_1016_j_foodres_2019_108842
crossref_primary_10_1126_sciadv_abp8412
crossref_primary_10_1016_j_tplants_2019_04_002
crossref_primary_10_1371_journal_pgen_1008797
crossref_primary_10_1111_1541_4337_12564
crossref_primary_10_1016_j_ygeno_2022_110363
crossref_primary_10_1016_j_plantsci_2024_112298
crossref_primary_10_3390_antiox11071311
crossref_primary_10_3389_fpls_2022_884720
crossref_primary_10_3389_fpls_2022_944716
crossref_primary_10_3389_fphys_2017_00382
crossref_primary_10_1016_j_xplc_2022_100416
crossref_primary_10_1093_jxb_erae334
crossref_primary_10_1016_j_molp_2015_05_005
crossref_primary_10_1111_ppl_13092
crossref_primary_10_3389_fpls_2016_01811
crossref_primary_10_1016_j_jplph_2023_154140
crossref_primary_10_3389_fpls_2022_1088278
crossref_primary_10_1016_j_semcdb_2017_12_014
crossref_primary_10_1021_acs_jafc_2c07137
crossref_primary_10_3389_fpls_2020_572517
crossref_primary_10_17660_ActaHortic_2024_1414_2
crossref_primary_10_1186_s12870_024_05660_x
crossref_primary_10_3389_fpls_2016_01266
crossref_primary_10_1111_nph_13965
crossref_primary_10_1016_j_jprot_2021_104245
crossref_primary_10_3389_fpls_2019_01584
crossref_primary_10_1016_j_plaphy_2020_06_025
crossref_primary_10_3390_antiox13010099
crossref_primary_10_1016_j_pld_2024_03_008
crossref_primary_10_3390_metabo12090871
crossref_primary_10_1016_j_jphotobiol_2020_111950
crossref_primary_10_1038_ncomms5848
crossref_primary_10_48130_frures_0024_0036
crossref_primary_10_3389_fgene_2018_00478
crossref_primary_10_1021_acs_biochem_5b00704
crossref_primary_10_1093_jxb_erw261
crossref_primary_10_3389_fpls_2023_1272822
crossref_primary_10_3390_cells12212569
crossref_primary_10_1093_plphys_kiae417
Cites_doi 10.1038/nature05946
10.1105/tpc.106.047688
10.1016/j.cub.2008.10.058
10.1093/aob/mci165
10.1093/mp/ssm005
10.1146/annurev.arplant.50.1.333
10.1186/1471-2229-9-71
10.1111/j.1365-313X.2012.05033.x
10.1016/S0070-2153(10)91002-8
10.1111/j.1365-313X.2009.03983.x
10.1105/tpc.112.104869
10.1073/pnas.0803611105
10.1093/mp/sss031
10.1016/j.tplants.2010.08.003
10.1016/j.cub.2009.01.046
10.1105/tpc.108.060020
10.1093/pcp/pcs137
10.1039/c0np00036a
10.1371/journal.pgen.1002594
10.1073/pnas.1107161108
10.1186/gb-2008-9-8-r130
10.1038/nrm728
10.1111/j.1365-313X.2005.02606.x
10.1111/j.1365-313X.2010.04426.x
10.1038/35013076
10.1016/j.jtbi.2010.11.021
10.1105/tpc.107.057075
10.1038/nature10928
10.1016/j.jplph.2010.07.025
10.1016/j.pbi.2008.10.009
10.1073/pnas.96.15.8762
10.4161/psb.3.7.5558
10.1073/pnas.0811684106
10.1126/science.1099728
10.1007/s13238-012-2016-7
10.1093/pcp/pcg136
10.1111/j.1365-313X.2004.02084.x
10.1073/pnas.0900952106
10.1105/tpc.109.070672
10.1371/journal.pgen.1003244
10.1111/j.1365-313X.2012.04992.x
10.1111/j.1365-313X.2010.04434.x
10.4161/psb.20760
10.1101/gad.11.22.2983
10.1038/emboj.2009.306
10.1093/pcp/pcf005
10.1016/j.molcel.2006.06.011
10.4161/psb.6.5.14343
10.1073/pnas.1110682108
10.1093/mp/sst060
10.1073/pnas.98.4.2053
10.1038/nature06520
10.4161/psb.19839
10.1038/emboj.2009.297
10.1093/emboj/19.18.4997
10.1105/tpc.006791
10.4161/psb.23390
10.1126/science.288.5467.859
10.1093/pcp/pcp028
10.1016/j.tplants.2012.09.002
10.1104/pp.111.183384
10.1093/jxb/erp304
10.1111/j.1365-313X.2006.03021.x
10.1016/j.pbi.2010.07.001
10.1016/j.tplants.2010.05.012
10.1126/science.1219075
10.1016/j.cub.2010.04.014
10.1093/pcp/pcr076
10.1105/tpc.10.5.673
10.1093/pcp/pcs141
10.1007/s004250000352
10.1111/j.1365-313X.2007.03341.x
10.1073/pnas.0812219106
10.1111/j.1365-313X.2012.05114.x
10.1038/msb.2012.6
10.1093/pcp/pcg078
10.1073/pnas.0914428107
10.1016/S0092-8674(00)80144-0
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Toledo-Ortiz et al 2014 Toledo-Ortiz et al
2014 Toledo-Ortiz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, et al. (2014) The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription. PLoS Genet 10(6): e1004416. doi:10.1371/journal.pgen.1004416
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Toledo-Ortiz et al 2014 Toledo-Ortiz et al
– notice: 2014 Toledo-Ortiz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, et al. (2014) The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription. PLoS Genet 10(6): e1004416. doi:10.1371/journal.pgen.1004416
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1004416
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Light and Temperature Photosynthetic Gene Transcription Regulation
EISSN 1553-7404
ExternalDocumentID 1547593315
oai_doaj_org_article_667802e0ea854be8837ad9ebfb0a7654
PMC4055456
A382950610
24922306
10_1371_journal_pgen_1004416
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/F005237/1
– fundername: Medical Research Council
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
WOQ
PMFND
7X8
5PM
PUEGO
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c764t-6330de471d776d579bd45ee97d08cf264fa3732843098fcbb033aaeb6416b9323
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:13:34 EST 2021
Wed Aug 27 01:07:43 EDT 2025
Thu Aug 21 14:18:30 EDT 2025
Thu Jul 10 21:53:44 EDT 2025
Tue Jun 17 21:30:34 EDT 2025
Tue Jun 10 20:43:58 EDT 2025
Fri Jun 27 03:57:18 EDT 2025
Fri Jun 27 04:16:08 EDT 2025
Fri Jun 27 04:04:23 EDT 2025
Thu May 22 20:53:21 EDT 2025
Mon Jul 21 05:56:57 EDT 2025
Tue Jul 01 01:02:25 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c764t-6330de471d776d579bd45ee97d08cf264fa3732843098fcbb033aaeb6416b9323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: GTO HJ MRC KJH. Performed the experiments: GTO HJ KPL JBT KS GS. Analyzed the data: GTO HJ MRC KJH. Contributed reagents/materials/analysis tools: GTO HJ KPL JBT KS GS. Wrote the paper: GTO HJ MRC KJH.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1004416
PMID 24922306
PQID 1535623647
PQPubID 23479
ParticipantIDs plos_journals_1547593315
doaj_primary_oai_doaj_org_article_667802e0ea854be8837ad9ebfb0a7654
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4055456
proquest_miscellaneous_1535623647
gale_infotracmisc_A382950610
gale_infotracacademiconefile_A382950610
gale_incontextgauss_ISR_A382950610
gale_incontextgauss_ISN_A382950610
gale_incontextgauss_IOV_A382950610
gale_healthsolutions_A382950610
pubmed_primary_24922306
crossref_citationtrail_10_1371_journal_pgen_1004416
crossref_primary_10_1371_journal_pgen_1004416
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References KA Franklin (ref5) 2010; 61
MC Proveniers (ref74) 2013; 18
KA Franklin (ref31) 2011; 108
N Mochizuki (ref53) 2001; 98
PH Quail (ref13) 2010; 20
C Andronis (ref65) 2008; 1
S Lorrain (ref80) 2008; 53
Y Nomoto (ref47) 2012; 53
JF Martinez-Garcia (ref18) 2000; 288
D Alabadi (ref46) 2008; 3
ref50
E Huq (ref8) 2004; 305
DC Rockholm (ref52) 1996; 110
J Shin (ref42) 2013; 6
JM Tepperman (ref4) 2004; 38
P Hornitschek (ref79) 2009; 28
PH Quail (ref2) 2002; 3
H Shen (ref22) 2005; 44
Y Nomoto (ref27) 2012; 53
R Catala (ref43) 2011; 108
T Yamashino (ref69) 2003; 44
E Lopez-Juez (ref75) 2008; 20
OS Lau (ref34) 2010; 13
D Chen (ref7) 2013; 25
Y Zhang (ref45) 2011; 6
J Moon (ref58) 2008; 105
G Toledo-Ortiz (ref17) 2010; 107
B Al-Sady (ref62) 2006; 23
K Kobayashi (ref59) 2012; 7
K Nozue (ref23) 2007; 448
M Havaux (ref10) 1999; 96
J Soy (ref24) 2012; 71
J Li (ref16) 2012; 3
KK Niyogi (ref9) 1999; 50
Y Niwa (ref25) 2009; 50
S Toh (ref48) 2012; 7
A Kunihiro (ref26) 2011; 52
KA Franklin (ref57) 2005; 96
P Leivar (ref14) 2009; 21
J Sun (ref49) 2012; 8
A Fukushima (ref71) 2009; 106
R Welsch (ref3) 2000; 211
J Foreman (ref30) 2011; 65
CS Hardtke (ref40) 2000; 19
P Leivar (ref1) 2011; 16
S Ito (ref66) 2003; 44
S Makino (ref67) 2002; 43
P Hornitschek (ref20) 2012; 71
N Mochizuki (ref54) 2010; 15
MA Koini (ref28) 2009; 19
P Leivar (ref78) 2008; 18
Y Zhang (ref44) 2011; 168
T Yamashino (ref81) 2013; 8
MF Covington (ref12) 2008; 9
JA Stavang (ref29) 2009; 60
S Chattopadhyay (ref38) 1998; 10
C Kami (ref33) 2010; 91
T Oyama (ref36) 1997; 11
A Pokhilko (ref41) 2011; 270
A Ben-Shem (ref55) 2003; 426
M de Lucas (ref63) 2008; 451
J Lee (ref35) 2007; 19
T Legnaioli (ref68) 2009; 28
Y Zhang (ref21) 2013; 9
H Zhang (ref37) 2011; 65
W Huang (ref70) 2012; 336
SV Kumar (ref32) 2012; 484
B Berckmans (ref77) 2011; 157
H Shen (ref72) 2008; 20
J Shin (ref15) 2009; 106
PG Stephenson (ref51) 2009; 106
A Pokhilko (ref73) 2012; 8
MH Walter (ref11) 2011; 28
A Alboresi (ref56) 2009; 9
R Henriques (ref64) 2009; 12
JC del Pozo (ref76) 2002; 14
MT Osterlund (ref39) 2000; 405
S Reinbothe (ref6) 1996; 86
J Shin (ref19) 2007; 49
P Leivar (ref61) 2012; 5
E Park (ref60) 2012; 72
19816401 - EMBO J. 2009 Dec 2;28(23):3745-57
17589502 - Nature. 2007 Jul 19;448(7151):358-61
18216857 - Nature. 2008 Jan 24;451(7177):480-4
22403178 - Science. 2012 Apr 6;336(6077):75-9
10411949 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8762-7
23040086 - Trends Plant Sci. 2013 Feb;18(2):59-64
10990463 - EMBO J. 2000 Sep 15;19(18):4997-5006
21636970 - Plant Signal Behav. 2011 May;6(5):632-4
18047474 - Plant J. 2008 Jan;53(2):312-23
15448264 - Science. 2004 Sep 24;305(5692):1937-41
10839542 - Nature. 2000 May 25;405(6785):462-6
10797009 - Science. 2000 May 5;288(5467):859-63
19704480 - Plant Signal Behav. 2008 Jul;3(7):448-9
17319847 - Plant J. 2007 Mar;49(6):981-94
18539749 - Plant Cell. 2008 Jun;20(6):1586-602
22409654 - Plant J. 2012 Aug;71(3):390-401
21265889 - Plant J. 2011 Feb;65(3):346-58
20932601 - J Plant Physiol. 2011 Mar 1;168(4):367-74
19815685 - J Exp Bot. 2010;61(1):11-24
20534526 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11626-31
21321752 - Nat Prod Rep. 2011 Apr;28(4):663-92
19920208 - Plant Cell. 2009 Nov;21(11):3535-53
12826627 - Plant Cell Physiol. 2003 Jun;44(6):619-29
22479194 - PLoS Genet. 2012;8(3):e1002594
19233867 - Plant Cell Physiol. 2009 Apr;50(4):838-54
23589607 - Mol Plant. 2013 May;6(3):592-5
16885032 - Mol Cell. 2006 Aug 4;23(3):439-46
9367981 - Genes Dev. 1997 Nov 15;11(22):2983-95
8797817 - Cell. 1996 Sep 6;86(5):703-5
19380736 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7654-9
11144270 - Planta. 2000 Nov;211(6):846-54
22395476 - Mol Syst Biol. 2012;8:574
11836510 - Nat Rev Mol Cell Biol. 2002 Feb;3(2):85-93
22827944 - Plant Signal Behav. 2012 Aug;7(8):922-6
19249207 - Curr Biol. 2009 Mar 10;19(5):408-13
17337630 - Plant Cell. 2007 Mar;19(3):731-49
19686536 - Plant J. 2009 Nov;60(4):589-601
19851283 - EMBO J. 2009 Dec 16;28(24):3893-902
14634162 - Plant Cell Physiol. 2003 Nov;44(11):1237-45
21930922 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16475-80
22123947 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20231-5
19359492 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7251-6
8742341 - Plant Physiol. 1996 Feb;110(2):697-703
23382695 - PLoS Genet. 2013;9(1):e1003244
21093457 - J Theor Biol. 2011 Feb 7;270(1):31-41
9596629 - Plant Cell. 1998 May;10(5):673-83
22516816 - Plant Signal Behav. 2012 May;7(5):556-8
20833098 - Trends Plant Sci. 2011 Jan;16(1):19-28
21666227 - Plant Cell Physiol. 2011 Aug;52(8):1315-29
22426979 - Protein Cell. 2012 Feb;3(2):106-16
15012213 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359
19508723 - BMC Plant Biol. 2009;9:71
15894550 - Ann Bot. 2005 Aug;96(2):169-75
19062289 - Curr Biol. 2008 Dec 9;18(23):1815-23
20739215 - Curr Opin Plant Biol. 2010 Oct;13(5):571-7
21265897 - Plant J. 2011 Feb;65(3):441-52
12468727 - Plant Cell. 2002 Dec;14(12):3057-71
22849408 - Plant J. 2012 Nov;72(4):537-46
23037004 - Plant Cell Physiol. 2012 Nov;53(11):1965-73
18591656 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9433-8
23037003 - Plant Cell Physiol. 2012 Nov;53(11):1950-64
22536829 - Plant J. 2012 Sep;71(5):699-711
20620899 - Curr Biol. 2010 Jun 22;20(12):R504-7
19084466 - Curr Opin Plant Biol. 2009 Feb;12(1):49-56
11172074 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2053-8
23645630 - Plant Cell. 2013 May;25(5):1657-73
11828023 - Plant Cell Physiol. 2002 Jan;43(1):58-69
15144375 - Plant J. 2004 Jun;38(5):725-39
22437497 - Nature. 2012 Apr 12;484(7393):242-5
20031914 - Mol Plant. 2008 Jan;1(1):58-67
20598625 - Trends Plant Sci. 2010 Sep;15(9):488-98
18710561 - Genome Biol. 2008;9(8):R130
18424613 - Plant Cell. 2008 Apr;20(4):947-68
23154509 - Plant Signal Behav. 2013 Feb;8(2):e22863
19380720 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7660-5
21908689 - Plant Physiol. 2011 Nov;157(3):1440-51
14668855 - Nature. 2003 Dec 11;426(6967):630-5
22492120 - Mol Plant. 2012 May;5(3):734-49
20705178 - Curr Top Dev Biol. 2010;91:29-66
23299336 - Plant Signal Behav. 2013 Mar;8(3):e23390
16359394 - Plant J. 2005 Dec;44(6):1023-35
References_xml – volume: 448
  start-page: 358
  year: 2007
  ident: ref23
  article-title: Rhythmic growth explained by coincidence between internal and external cues
  publication-title: Nature
  doi: 10.1038/nature05946
– volume: 19
  start-page: 731
  year: 2007
  ident: ref35
  article-title: Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.047688
– volume: 18
  start-page: 1815
  year: 2008
  ident: ref78
  article-title: Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2008.10.058
– volume: 96
  start-page: 169
  year: 2005
  ident: ref57
  article-title: Phytochromes and shade-avoidance responses in plants
  publication-title: Ann Bot
  doi: 10.1093/aob/mci165
– volume: 1
  start-page: 58
  year: 2008
  ident: ref65
  article-title: The clock protein CCA1 and the bZIP transcription factor HY5 physically interact to regulate gene expression in Arabidopsis
  publication-title: Mol Plant
  doi: 10.1093/mp/ssm005
– volume: 50
  start-page: 333
  year: 1999
  ident: ref9
  article-title: PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.arplant.50.1.333
– volume: 9
  start-page: 71
  year: 2009
  ident: ref56
  article-title: Antenna complexes protect Photosystem I from photoinhibition
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-9-71
– volume: 71
  start-page: 699
  year: 2012
  ident: ref20
  article-title: Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2012.05033.x
– volume: 91
  start-page: 29
  year: 2010
  ident: ref33
  article-title: Light-regulated plant growth and development
  publication-title: Curr Top Dev Biol
  doi: 10.1016/S0070-2153(10)91002-8
– volume: 60
  start-page: 589
  year: 2009
  ident: ref29
  article-title: Hormonal regulation of temperature-induced growth in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.03983.x
– volume: 25
  start-page: 1657
  year: 2013
  ident: ref7
  article-title: Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.104869
– volume: 105
  start-page: 9433
  year: 2008
  ident: ref58
  article-title: PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0803611105
– volume: 5
  start-page: 734
  year: 2012
  ident: ref61
  article-title: Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop
  publication-title: Mol Plant
  doi: 10.1093/mp/sss031
– volume: 16
  start-page: 19
  year: 2011
  ident: ref1
  article-title: PIFs: pivotal components in a cellular signaling hub
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2010.08.003
– volume: 19
  start-page: 408
  year: 2009
  ident: ref28
  article-title: High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2009.01.046
– volume: 20
  start-page: 1586
  year: 2008
  ident: ref72
  article-title: Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.060020
– volume: 53
  start-page: 1950
  year: 2012
  ident: ref27
  article-title: Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcs137
– volume: 28
  start-page: 663
  year: 2011
  ident: ref11
  article-title: Carotenoids and their cleavage products: biosynthesis and functions
  publication-title: Nat Prod Rep
  doi: 10.1039/c0np00036a
– volume: 8
  start-page: e1002594
  year: 2012
  ident: ref49
  article-title: PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002594
– volume: 108
  start-page: 16475
  year: 2011
  ident: ref43
  article-title: Integration of low temperature and light signaling during cold acclimation response in Arabidopsis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1107161108
– volume: 9
  start-page: R130
  year: 2008
  ident: ref12
  article-title: Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-8-r130
– volume: 3
  start-page: 85
  year: 2002
  ident: ref2
  article-title: Phytochrome photosensory signalling networks
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm728
– volume: 44
  start-page: 1023
  year: 2005
  ident: ref22
  article-title: PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02606.x
– ident: ref50
– volume: 65
  start-page: 346
  year: 2011
  ident: ref37
  article-title: Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04426.x
– volume: 405
  start-page: 462
  year: 2000
  ident: ref39
  article-title: Targeted destabilization of HY5 during light-regulated development of Arabidopsis
  publication-title: Nature
  doi: 10.1038/35013076
– volume: 270
  start-page: 31
  year: 2011
  ident: ref41
  article-title: Ubiquitin ligase switch in plant photomorphogenesis: A hypothesis
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2010.11.021
– volume: 20
  start-page: 947
  year: 2008
  ident: ref75
  article-title: Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.057075
– volume: 484
  start-page: 242
  year: 2012
  ident: ref32
  article-title: Transcription factor PIF4 controls the thermosensory activation of flowering
  publication-title: Nature
  doi: 10.1038/nature10928
– volume: 168
  start-page: 367
  year: 2011
  ident: ref44
  article-title: Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2010.07.025
– volume: 12
  start-page: 49
  year: 2009
  ident: ref64
  article-title: Regulated proteolysis in light-related signaling pathways
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2008.10.009
– volume: 96
  start-page: 8762
  year: 1999
  ident: ref10
  article-title: The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.15.8762
– volume: 3
  start-page: 448
  year: 2008
  ident: ref46
  article-title: Integration of light and hormone signals
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.3.7.5558
– volume: 106
  start-page: 7654
  year: 2009
  ident: ref51
  article-title: PIF3 is a repressor of chloroplast development
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0811684106
– volume: 305
  start-page: 1937
  year: 2004
  ident: ref8
  article-title: Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis
  publication-title: Science
  doi: 10.1126/science.1099728
– volume: 3
  start-page: 106
  year: 2012
  ident: ref16
  article-title: Genomic basis for light control of plant development
  publication-title: Protein Cell
  doi: 10.1007/s13238-012-2016-7
– volume: 44
  start-page: 1237
  year: 2003
  ident: ref66
  article-title: Characterization of the APRR9 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcg136
– volume: 38
  start-page: 725
  year: 2004
  ident: ref4
  article-title: Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02084.x
– volume: 106
  start-page: 7251
  year: 2009
  ident: ref71
  article-title: Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0900952106
– volume: 21
  start-page: 3535
  year: 2009
  ident: ref14
  article-title: Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.070672
– volume: 9
  start-page: e1003244
  year: 2013
  ident: ref21
  article-title: A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003244
– volume: 71
  start-page: 390
  year: 2012
  ident: ref24
  article-title: Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2012.04992.x
– volume: 65
  start-page: 441
  year: 2011
  ident: ref30
  article-title: Light receptor action is critical for maintaining plant biomass at warm ambient temperatures
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04434.x
– volume: 7
  start-page: 922
  year: 2012
  ident: ref59
  article-title: Role of the G-box element in regulation of chlorophyll biosynthesis in Arabidopsis roots
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.20760
– volume: 11
  start-page: 2983
  year: 1997
  ident: ref36
  article-title: The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl
  publication-title: Genes Dev
  doi: 10.1101/gad.11.22.2983
– volume: 28
  start-page: 3893
  year: 2009
  ident: ref79
  article-title: Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.306
– volume: 43
  start-page: 58
  year: 2002
  ident: ref67
  article-title: The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcf005
– volume: 23
  start-page: 439
  year: 2006
  ident: ref62
  article-title: Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.06.011
– volume: 6
  start-page: 632
  year: 2011
  ident: ref45
  article-title: Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.6.5.14343
– volume: 108
  start-page: 20231
  year: 2011
  ident: ref31
  article-title: Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1110682108
– volume: 6
  start-page: 592
  year: 2013
  ident: ref42
  article-title: Phytochrome-interacting factors (PIFs) as bridges between environmental signals and the circadian clock: diurnal regulation of growth and development
  publication-title: Mol Plant
  doi: 10.1093/mp/sst060
– volume: 98
  start-page: 2053
  year: 2001
  ident: ref53
  article-title: Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.98.4.2053
– volume: 451
  start-page: 480
  year: 2008
  ident: ref63
  article-title: A molecular framework for light and gibberellin control of cell elongation
  publication-title: Nature
  doi: 10.1038/nature06520
– volume: 7
  start-page: 556
  year: 2012
  ident: ref48
  article-title: HY5 is involved in strigolactone-dependent seed germination in Arabidopsis
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.19839
– volume: 28
  start-page: 3745
  year: 2009
  ident: ref68
  article-title: TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.297
– volume: 19
  start-page: 4997
  year: 2000
  ident: ref40
  article-title: HY5 stability and activity in arabidopsis is regulated by phosphorylation in its COP1 binding domain
  publication-title: EMBO J
  doi: 10.1093/emboj/19.18.4997
– volume: 14
  start-page: 3057
  year: 2002
  ident: ref76
  article-title: Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCF(AtSKP2) pathway in response to light
  publication-title: Plant Cell
  doi: 10.1105/tpc.006791
– volume: 8
  start-page: e23390
  year: 2013
  ident: ref81
  article-title: Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.23390
– volume: 288
  start-page: 859
  year: 2000
  ident: ref18
  article-title: Direct targeting of light signals to a promoter element-bound transcription factor
  publication-title: Science
  doi: 10.1126/science.288.5467.859
– volume: 50
  start-page: 838
  year: 2009
  ident: ref25
  article-title: The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcp028
– volume: 18
  start-page: 59
  year: 2013
  ident: ref74
  article-title: High temperature acclimation through PIF4 signaling
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2012.09.002
– volume: 157
  start-page: 1440
  year: 2011
  ident: ref77
  article-title: Light-dependent regulation of DEL1 is determined by the antagonistic action of E2Fb and E2Fc
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.183384
– volume: 61
  start-page: 11
  year: 2010
  ident: ref5
  article-title: Phytochrome functions in Arabidopsis development
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erp304
– volume: 49
  start-page: 981
  year: 2007
  ident: ref19
  article-title: PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.03021.x
– volume: 13
  start-page: 571
  year: 2010
  ident: ref34
  article-title: Plant hormone signaling lightens up: integrators of light and hormones
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2010.07.001
– volume: 15
  start-page: 488
  year: 2010
  ident: ref54
  article-title: The cell biology of tetrapyrroles: a life and death struggle
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2010.05.012
– volume: 336
  start-page: 75
  year: 2012
  ident: ref70
  article-title: Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator
  publication-title: Science
  doi: 10.1126/science.1219075
– volume: 110
  start-page: 697
  year: 1996
  ident: ref52
  article-title: Violaxanthin de-epoxidase
  publication-title: Plant Physiol
– volume: 426
  start-page: 630
  year: 2003
  ident: ref55
  article-title: Crystal structure of plant photosystem I. Nature
– volume: 20
  start-page: R504
  year: 2010
  ident: ref13
  article-title: Phytochromes
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2010.04.014
– volume: 52
  start-page: 1315
  year: 2011
  ident: ref26
  article-title: Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcr076
– volume: 10
  start-page: 673
  year: 1998
  ident: ref38
  article-title: Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.5.673
– volume: 53
  start-page: 1965
  year: 2012
  ident: ref47
  article-title: A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcs141
– volume: 211
  start-page: 846
  year: 2000
  ident: ref3
  article-title: Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis
  publication-title: Planta
  doi: 10.1007/s004250000352
– volume: 53
  start-page: 312
  year: 2008
  ident: ref80
  article-title: Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03341.x
– volume: 106
  start-page: 7660
  year: 2009
  ident: ref15
  article-title: Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0812219106
– volume: 72
  start-page: 537
  year: 2012
  ident: ref60
  article-title: Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2012.05114.x
– volume: 8
  start-page: 574
  year: 2012
  ident: ref73
  article-title: The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2012.6
– volume: 44
  start-page: 619
  year: 2003
  ident: ref69
  article-title: A Link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcg078
– volume: 107
  start-page: 11626
  year: 2010
  ident: ref17
  article-title: Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0914428107
– volume: 86
  start-page: 703
  year: 1996
  ident: ref6
  article-title: Evolution of chlorophyll biosynthesis–the challenge to survive photooxidation
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80144-0
– reference: 18424613 - Plant Cell. 2008 Apr;20(4):947-68
– reference: 19851283 - EMBO J. 2009 Dec 16;28(24):3893-902
– reference: 20705178 - Curr Top Dev Biol. 2010;91:29-66
– reference: 20739215 - Curr Opin Plant Biol. 2010 Oct;13(5):571-7
– reference: 22827944 - Plant Signal Behav. 2012 Aug;7(8):922-6
– reference: 11828023 - Plant Cell Physiol. 2002 Jan;43(1):58-69
– reference: 20833098 - Trends Plant Sci. 2011 Jan;16(1):19-28
– reference: 20598625 - Trends Plant Sci. 2010 Sep;15(9):488-98
– reference: 19062289 - Curr Biol. 2008 Dec 9;18(23):1815-23
– reference: 15894550 - Ann Bot. 2005 Aug;96(2):169-75
– reference: 17337630 - Plant Cell. 2007 Mar;19(3):731-49
– reference: 11172074 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2053-8
– reference: 19920208 - Plant Cell. 2009 Nov;21(11):3535-53
– reference: 11144270 - Planta. 2000 Nov;211(6):846-54
– reference: 15144375 - Plant J. 2004 Jun;38(5):725-39
– reference: 19380736 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7654-9
– reference: 21666227 - Plant Cell Physiol. 2011 Aug;52(8):1315-29
– reference: 17319847 - Plant J. 2007 Mar;49(6):981-94
– reference: 22479194 - PLoS Genet. 2012;8(3):e1002594
– reference: 21265889 - Plant J. 2011 Feb;65(3):346-58
– reference: 8742341 - Plant Physiol. 1996 Feb;110(2):697-703
– reference: 22437497 - Nature. 2012 Apr 12;484(7393):242-5
– reference: 9367981 - Genes Dev. 1997 Nov 15;11(22):2983-95
– reference: 19686536 - Plant J. 2009 Nov;60(4):589-601
– reference: 18539749 - Plant Cell. 2008 Jun;20(6):1586-602
– reference: 20620899 - Curr Biol. 2010 Jun 22;20(12):R504-7
– reference: 14634162 - Plant Cell Physiol. 2003 Nov;44(11):1237-45
– reference: 23382695 - PLoS Genet. 2013;9(1):e1003244
– reference: 21636970 - Plant Signal Behav. 2011 May;6(5):632-4
– reference: 19233867 - Plant Cell Physiol. 2009 Apr;50(4):838-54
– reference: 19084466 - Curr Opin Plant Biol. 2009 Feb;12(1):49-56
– reference: 12826627 - Plant Cell Physiol. 2003 Jun;44(6):619-29
– reference: 15448264 - Science. 2004 Sep 24;305(5692):1937-41
– reference: 23040086 - Trends Plant Sci. 2013 Feb;18(2):59-64
– reference: 22123947 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20231-5
– reference: 15012213 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359
– reference: 21930922 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16475-80
– reference: 16885032 - Mol Cell. 2006 Aug 4;23(3):439-46
– reference: 20932601 - J Plant Physiol. 2011 Mar 1;168(4):367-74
– reference: 11836510 - Nat Rev Mol Cell Biol. 2002 Feb;3(2):85-93
– reference: 22536829 - Plant J. 2012 Sep;71(5):699-711
– reference: 10797009 - Science. 2000 May 5;288(5467):859-63
– reference: 18591656 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9433-8
– reference: 19704480 - Plant Signal Behav. 2008 Jul;3(7):448-9
– reference: 10990463 - EMBO J. 2000 Sep 15;19(18):4997-5006
– reference: 23037004 - Plant Cell Physiol. 2012 Nov;53(11):1965-73
– reference: 20534526 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11626-31
– reference: 23299336 - Plant Signal Behav. 2013 Mar;8(3):e23390
– reference: 12468727 - Plant Cell. 2002 Dec;14(12):3057-71
– reference: 9596629 - Plant Cell. 1998 May;10(5):673-83
– reference: 17589502 - Nature. 2007 Jul 19;448(7151):358-61
– reference: 22426979 - Protein Cell. 2012 Feb;3(2):106-16
– reference: 18710561 - Genome Biol. 2008;9(8):R130
– reference: 18216857 - Nature. 2008 Jan 24;451(7177):480-4
– reference: 19815685 - J Exp Bot. 2010;61(1):11-24
– reference: 8797817 - Cell. 1996 Sep 6;86(5):703-5
– reference: 22403178 - Science. 2012 Apr 6;336(6077):75-9
– reference: 23589607 - Mol Plant. 2013 May;6(3):592-5
– reference: 21265897 - Plant J. 2011 Feb;65(3):441-52
– reference: 19816401 - EMBO J. 2009 Dec 2;28(23):3745-57
– reference: 23154509 - Plant Signal Behav. 2013 Feb;8(2):e22863
– reference: 18047474 - Plant J. 2008 Jan;53(2):312-23
– reference: 19249207 - Curr Biol. 2009 Mar 10;19(5):408-13
– reference: 21093457 - J Theor Biol. 2011 Feb 7;270(1):31-41
– reference: 19359492 - Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7251-6
– reference: 14668855 - Nature. 2003 Dec 11;426(6967):630-5
– reference: 19380720 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7660-5
– reference: 23645630 - Plant Cell. 2013 May;25(5):1657-73
– reference: 22395476 - Mol Syst Biol. 2012;8:574
– reference: 22409654 - Plant J. 2012 Aug;71(3):390-401
– reference: 21908689 - Plant Physiol. 2011 Nov;157(3):1440-51
– reference: 19508723 - BMC Plant Biol. 2009;9:71
– reference: 10411949 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8762-7
– reference: 20031914 - Mol Plant. 2008 Jan;1(1):58-67
– reference: 21321752 - Nat Prod Rep. 2011 Apr;28(4):663-92
– reference: 22849408 - Plant J. 2012 Nov;72(4):537-46
– reference: 22492120 - Mol Plant. 2012 May;5(3):734-49
– reference: 16359394 - Plant J. 2005 Dec;44(6):1023-35
– reference: 22516816 - Plant Signal Behav. 2012 May;7(5):556-8
– reference: 10839542 - Nature. 2000 May 25;405(6785):462-6
– reference: 23037003 - Plant Cell Physiol. 2012 Nov;53(11):1950-64
SSID ssj0035897
Score 2.5938804
Snippet The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during...
  The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1004416
SubjectTerms Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - biosynthesis
Arabidopsis Proteins - genetics
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic-Leucine Zipper Transcription Factors - genetics
Biology and Life Sciences
Biosynthesis
Carotenoids - biosynthesis
Chlorophyll
Chlorophyll - biosynthesis
Chromophores
Circadian rhythm
G-Box Binding Factors - genetics
Gene expression
Gene Expression Regulation, Plant
Genetic aspects
Genetic transcription
Nuclear Proteins - genetics
Photoperiod
Photoreceptors
Photosynthesis
Photosynthesis - genetics
Physiological aspects
Phytochrome
Promoter Regions, Genetic
Proteins
Receptors, Peptide - biosynthesis
Seasons
Temperature
Transcription factors
Transcription, Genetic
Transcriptional Activation - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQJSReEL8XGGAQEk8ZaW3HzuNAVB0SAwFD48myE3ubVJKqTR_633MXO1GDkLYHXpsvqnx3vftOPX9HyBtbslJ4VaRQjH3KWZalyhqRCu_ywnNoObptDZ9P88UZ_3QuzvdWfeFMWJAHDobDbX0qm7nMGSW4dQoaKlMVznqbGZmLTgkUal7fTIUczIQKa1WEYKmEtj5emmNy-i766GgFDjrq9NJw1_leUeq0-4cMPVktm82_6OffU5R7ZWl-j9yNfJIeh3PcJ7dc_YDcDhsmdw_JEsKALn6J9OvJnK7D3vlmvaO_m2q7dLRsoPe8qpFv0iW26dTUFUW5qqi1TOMoO208XV02bbPZ1UAZ4csoHMzRFktdn3gekbP5xx8fFmlcsJCWMudtmjOWVQ7KUyVlXglZ2IoL5wpZZar0QJW8YSjmAy4slC-tzRgzxtkcTGaB-LHHZFI3tTsgdGqg8ivlHEdNwTwznAPRsTPrPPjJZwlhvYV1GdXHcQnGUnd_qUnoQoLBNPpFR78kJB3eWgX1jWvw79F5Axa1s7sPIKJ0jCh9XUQl5CW6XoeLqEMG0MdMzQoB_AcO87pDoH5GjQM6F2a72eiTLz9vAPp-ehPQtxHobQT5BmxWmnhzAiyP4l0j5OEICamiHD0-wGjuTbfRwJ-lKBibioS86iNc41s4ele7ZosYhhw55zIhT0LED_ZFuUnsYRMiR7-FkQPGT-qry07EHBoFJO9P_4fHnpE7wGN5mOA7JJN2vXXPgSu29kWXFv4AVw1lzw
  priority: 102
  providerName: Directory of Open Access Journals
Title The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription
URI https://www.ncbi.nlm.nih.gov/pubmed/24922306
https://www.proquest.com/docview/1535623647
https://pubmed.ncbi.nlm.nih.gov/PMC4055456
https://doaj.org/article/667802e0ea854be8837ad9ebfb0a7654
http://dx.doi.org/10.1371/journal.pgen.1004416
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8THwvMIpBSDylSms7Th4Q2tCqDmllGhSVp8hO7G1SSErSSvS_5y5fImiIvjbntrk73_0uOf-OkLc6ZrGwQehCMrYuZ57nBloJV1jjh5ZDyVFNa7iY-7MF_7QUyz3SzmxtFFjeWdrhPKlFkY5-_dx-gA3_vpraIMftotEKVD6qGNDG_j45gNwkcate8O69AhNBPW5FCOZKKPebw3T_-pZesqo4_bvIPVileXkXLP27u_KPdDV9QA4bnElPasd4SPZM9ojcqydPbh-TFNyDzr4L9_J8Sot6Hn1ebOmPPNmkhsY51KS3GeJQmmL5TlWWUKSxajiYadPiTnNLVzf5Oi-3GUBJ-DEKN2boGlNgG5CekMX07OvHmdsMXnBj6fO16zPmJQbSViKlnwgZ6oQLY0KZeEFsAUJZxZDkB0wbBjbW2mNMKaN9UJkGQMiekkGWZ-aI0LECRBAExnDkGvQ9xTkAID3RxnpKWs8hrNVwFDes5DgcI42qV20SqpNaYRHaJWrs4hC3W7WqWTn-I3-KxutkkVO7-iAvrqNmi0Y-5G1vYjyjAsG1CaB0V0lotNXwT33BHfIKTR_VB1S7yBCdsGASCsBFcDNvKgnk1ciwcedabcoyOv_8bQehL_NdhK56Qu8aIZuDzmLVnKgAzSOpV0_yuCcJISTuXT5Cb25VV0aAq6UIGRsLh7xuPTzCVdiSl5l8gzIMsbPPpUOe1R7f6RdpKLG2dYjs7YWeAfpXstubitwcCggE9c93UeULch_wK687947JYF1szEvAiGs9JPtyKYfk4PRsfnk1rJ60DKtQ8Buslmha
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+HY5-PIF+regulatory+module+coordinates+light+and+temperature+control+of+photosynthetic+gene+transcription&rft.jtitle=PLoS+genetics&rft.au=Toledo-Ortiz%2C+Gabriela&rft.au=Johansson%2C+Henrik&rft.au=Lee%2C+Keun+Pyo&rft.au=Bou-Torrent%2C+Jordi&rft.date=2014-06-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=10&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pgen.1004416&rft.externalDBID=IOV&rft.externalDocID=A382950610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon