Recurrent Tissue-Specific mtDNA Mutations Are Common in Humans

Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively para...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 9; no. 11; p. e1003929
Main Authors Samuels, David C., Li, Chun, Li, Bingshan, Song, Zhuo, Torstenson, Eric, Boyd Clay, Hayley, Rokas, Antonis, Thornton-Wells, Tricia A., Moore, Jason H., Hughes, Tia M., Hoffman, Robert D., Haines, Jonathan L., Murdock, Deborah G., Mortlock, Douglas P., Williams, Scott M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.11.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions. The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific positive selection, probably through replication advantage.
AbstractList Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions. The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific positive selection, probably through replication advantage.Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions. The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific positive selection, probably through replication advantage.
Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions. The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific positive selection, probably through replication advantage.
  Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions. The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific positive selection, probably through replication advantage.
Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions. The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific positive selection, probably through replication advantage. DNA mutations are expected to be formed randomly, thus any reproducible pattern of DNA somatic mutations across multiple individuals or even across organs within each individual is highly unexpected. Using next generation sequencing of multiple tissues from the same individuals we found several somatic mutations in mitochondrial DNA that appear in a heteroplasmic state in all individuals examined, but only in particular tissues. These mutations were only found in known regions of replication control for the mitochondrial DNA. These data imply the presence of tissue-specific positive selection for these variants.
Audience Academic
Author Murdock, Deborah G.
Mortlock, Douglas P.
Torstenson, Eric
Thornton-Wells, Tricia A.
Moore, Jason H.
Hoffman, Robert D.
Hughes, Tia M.
Samuels, David C.
Boyd Clay, Hayley
Li, Chun
Song, Zhuo
Haines, Jonathan L.
Rokas, Antonis
Williams, Scott M.
Li, Bingshan
AuthorAffiliation 1 Center for Human Genetics Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
2 Center for Human Genetics Research, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
3 Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
5 Dartmouth Medical School, Department of Genetics, Computational Genetics Lab, Lebanon, New Hampshire, United States of America
6 Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
4 Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
Stanford University School of Medicine, United States of America
AuthorAffiliation_xml – name: 1 Center for Human Genetics Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
– name: 3 Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
– name: 6 Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
– name: 4 Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
– name: 5 Dartmouth Medical School, Department of Genetics, Computational Genetics Lab, Lebanon, New Hampshire, United States of America
– name: Stanford University School of Medicine, United States of America
– name: 2 Center for Human Genetics Research, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
Author_xml – sequence: 1
  givenname: David C.
  surname: Samuels
  fullname: Samuels, David C.
– sequence: 2
  givenname: Chun
  surname: Li
  fullname: Li, Chun
– sequence: 3
  givenname: Bingshan
  surname: Li
  fullname: Li, Bingshan
– sequence: 4
  givenname: Zhuo
  surname: Song
  fullname: Song, Zhuo
– sequence: 5
  givenname: Eric
  surname: Torstenson
  fullname: Torstenson, Eric
– sequence: 6
  givenname: Hayley
  surname: Boyd Clay
  fullname: Boyd Clay, Hayley
– sequence: 7
  givenname: Antonis
  surname: Rokas
  fullname: Rokas, Antonis
– sequence: 8
  givenname: Tricia A.
  surname: Thornton-Wells
  fullname: Thornton-Wells, Tricia A.
– sequence: 9
  givenname: Jason H.
  surname: Moore
  fullname: Moore, Jason H.
– sequence: 10
  givenname: Tia M.
  surname: Hughes
  fullname: Hughes, Tia M.
– sequence: 11
  givenname: Robert D.
  surname: Hoffman
  fullname: Hoffman, Robert D.
– sequence: 12
  givenname: Jonathan L.
  surname: Haines
  fullname: Haines, Jonathan L.
– sequence: 13
  givenname: Deborah G.
  surname: Murdock
  fullname: Murdock, Deborah G.
– sequence: 14
  givenname: Douglas P.
  surname: Mortlock
  fullname: Mortlock, Douglas P.
– sequence: 15
  givenname: Scott M.
  surname: Williams
  fullname: Williams, Scott M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24244193$$D View this record in MEDLINE/PubMed
BookMark eNqVk12L1DAUhousuB_6D0QLgujFjEmTtIkXC8P4sQPrLuyu3oY0czqToU3GpBX992a2HZmKiNKLluR535ycvuc0ObLOQpI8xWiKSYHfbFznraqn2xXYKUaIiEw8SE4wY2RSUESPDr6Pk9MQNpFhXBSPkuOMZpRiQU6S8xvQnfdg2_TOhNDB5HYL2lRGp0377mqWfupa1RpnQzrzkM5d0zibGptedI2y4XHysFJ1gCfD-yz5_OH93fxicnn9cTGfXU50kdN2woocUVFAiQtMKM00yrVGQpWAtcgw4mVBBFsynqMIKo5BE11RVDKkY9GUnCXPe99t7YIcrh4kpjlnAnOBIrHoiaVTG7n1plH-h3TKyPsF51dS-dboGiQwxkuBMOFM0xJznotKiVifUJQRhaPX-XBaVzaw1LE7XtUj0_GONWu5ct8k4RkqchENXg0G3n3tILSyMUFDXSsLrtvVzQRjserdWS96dKViacZWLjrqHS5nhBGMWPxTkZr-gYrPEhqjYzAqE9dHgtcjQWRa-N6uVBeCXNze_Ad79e_s9Zcx-_KAXYOq23VwdXcfpzH47LDfvxq9j2kE3vaA9i4ED5XUpo9lbIOpJUZyNxP7YMjdTMhhJqKY_ibe-_9V9hObEwuD
CitedBy_id crossref_primary_10_1371_journal_pgen_1005939
crossref_primary_10_1371_journal_pone_0130273
crossref_primary_10_1042_EBC20160090
crossref_primary_10_1038_s41598_018_20623_7
crossref_primary_10_1016_j_mito_2014_12_002
crossref_primary_10_1098_rsob_180267
crossref_primary_10_1186_s13059_016_0996_y
crossref_primary_10_1016_j_fsigen_2019_102142
crossref_primary_10_1073_pnas_2119009119
crossref_primary_10_1038_s41576_020_00284_x
crossref_primary_10_1093_nar_gkab901
crossref_primary_10_1186_s12920_018_0408_0
crossref_primary_10_3390_biom13060944
crossref_primary_10_1016_j_omtn_2022_10_012
crossref_primary_10_1038_s41598_019_47570_1
crossref_primary_10_1111_jeb_12582
crossref_primary_10_1007_s11883_020_00873_5
crossref_primary_10_1371_journal_pgen_1004670
crossref_primary_10_1073_pnas_2014610118
crossref_primary_10_1038_nrg3966
crossref_primary_10_1093_gbe_evab022
crossref_primary_10_1186_s12864_024_09963_z
crossref_primary_10_1073_pnas_1419651112
crossref_primary_10_1093_bib_bbv057
crossref_primary_10_7554_eLife_83395
crossref_primary_10_1016_j_trsl_2018_06_004
crossref_primary_10_1093_gbe_evy060
crossref_primary_10_1371_journal_pntd_0008480
crossref_primary_10_1016_j_bbabio_2015_06_001
crossref_primary_10_1093_hmg_ddx172
crossref_primary_10_1016_j_jgg_2020_04_007
crossref_primary_10_1080_15548627_2016_1226734
crossref_primary_10_1534_genetics_115_181321
crossref_primary_10_3390_nu6125724
crossref_primary_10_1016_j_drudis_2019_03_019
crossref_primary_10_3390_cancers10120500
crossref_primary_10_1093_molehr_gau090
crossref_primary_10_1016_j_fsigen_2015_05_003
crossref_primary_10_1016_j_fsigen_2018_03_013
crossref_primary_10_1007_s00203_019_01631_1
crossref_primary_10_1038_s41559_024_02338_3
crossref_primary_10_1016_j_semcancer_2014_04_002
crossref_primary_10_3389_fphy_2019_00146
crossref_primary_10_3390_biom9090455
crossref_primary_10_1080_10409238_2021_1934812
crossref_primary_10_1002_humu_23003
crossref_primary_10_18632_aging_100661
crossref_primary_10_1016_j_jpsychires_2016_09_027
crossref_primary_10_1016_j_mito_2022_02_006
crossref_primary_10_1186_s12863_021_01005_x
crossref_primary_10_3389_fgene_2018_00718
crossref_primary_10_3390_antiox9020094
crossref_primary_10_1073_pnas_1409328111
crossref_primary_10_1016_j_phrs_2022_106466
crossref_primary_10_1371_journal_pgen_1007805
crossref_primary_10_7554_eLife_10769
crossref_primary_10_1017_S0007485317000025
crossref_primary_10_1371_journal_pone_0135643
crossref_primary_10_1080_15548627_2022_2038501
crossref_primary_10_1016_j_mito_2016_03_001
crossref_primary_10_1016_j_tcb_2018_11_004
crossref_primary_10_1016_j_fsigen_2014_10_021
crossref_primary_10_1186_s12881_020_01045_7
crossref_primary_10_1098_rstb_2013_0451
crossref_primary_10_1186_s12864_017_3695_5
crossref_primary_10_18632_oncotarget_18833
crossref_primary_10_2174_1874609812666190201163421
crossref_primary_10_1073_pnas_2118740119
crossref_primary_10_1038_ng_3587
crossref_primary_10_1016_j_tig_2014_02_003
crossref_primary_10_1038_s41467_017_00377_y
crossref_primary_10_1093_hmg_ddac059
crossref_primary_10_1016_j_semcdb_2019_10_001
crossref_primary_10_1534_genetics_119_302423
crossref_primary_10_1126_science_1251110
crossref_primary_10_1016_j_neo_2018_05_003
crossref_primary_10_3389_fevo_2019_00342
crossref_primary_10_1038_s41598_020_59631_x
crossref_primary_10_3390_ijms232315166
crossref_primary_10_1002_1873_3468_14021
crossref_primary_10_1007_s40142_013_0029_z
crossref_primary_10_1002_bies_202200037
crossref_primary_10_1038_s41437_022_00540_2
crossref_primary_10_1042_BST20190238
crossref_primary_10_3892_br_2016_590
crossref_primary_10_1007_s10522_018_9748_6
crossref_primary_10_1016_j_mito_2016_07_003
crossref_primary_10_1371_journal_pgen_1004620
crossref_primary_10_1038_nrg3640
crossref_primary_10_1016_j_neuint_2019_104495
crossref_primary_10_1016_j_fsigen_2014_07_010
crossref_primary_10_4103_0366_6999_174491
crossref_primary_10_3390_ijms21207580
crossref_primary_10_1016_j_ejpn_2024_10_009
crossref_primary_10_1186_s12864_015_2090_3
crossref_primary_10_1007_s00414_020_02324_x
crossref_primary_10_1016_j_legalmed_2018_02_005
crossref_primary_10_1016_j_fsigen_2020_102399
crossref_primary_10_1111_nep_13957
crossref_primary_10_3390_cells8080852
crossref_primary_10_1002_cnr2_1687
crossref_primary_10_1128_MCB_00337_17
crossref_primary_10_1016_j_arr_2022_101578
crossref_primary_10_1016_j_celrep_2014_05_020
crossref_primary_10_1080_03014460_2022_2144447
crossref_primary_10_1016_j_ygeno_2017_09_013
Cites_doi 10.1055/s-2006-924066
10.1016/j.neurobiolaging.2004.06.014
10.1086/318801
10.1038/nature08802
10.1002/humu.20921
10.1038/88859
10.1146/annurev-biochem-060408-093701
10.1093/nar/gng060
10.1093/hmg/dds245
10.1093/bioinformatics/btp324
10.1073/pnas.061013598
10.1073/pnas.1009687108
10.1007/s00439-002-0708-4
10.1126/science.286.5440.774
10.1023/A:1016707228425
10.1080/07853890510007368
10.1093/hmg/10.22.2469
10.1016/j.cell.2012.09.004
10.1016/j.ajhg.2009.04.013
10.1073/pnas.0403649101
10.1038/ng0597-93
10.1111/j.1556-4029.2006.00136.x
10.1371/journal.pbio.0060010
10.1016/S0022-510X(02)00247-2
10.1016/j.forsciint.2004.06.001
10.1038/ng1073
10.1371/journal.pone.0022332
10.1007/s00414-006-0083-0
10.1016/S0379-0738(03)00181-6
10.1016/j.forsciint.2004.12.021
10.1093/hmg/dds435
10.1126/science.1102077
10.1093/nar/28.21.4350
10.1038/nature09414
10.1073/pnas.0630589100
10.1016/j.molcel.2005.05.002
10.1073/pnas.89.16.7370
10.1016/j.bbadis.2009.03.002
10.1093/molbev/msn225
10.1016/j.jns.2007.07.006
10.1016/S0197-4580(02)00233-6
10.1038/13779
10.1101/gr.107524.110
10.1038/ng.f.94
10.1016/S0960-8966(01)00329-7
10.1038/ng1292-324
ContentType Journal Article
Copyright COPYRIGHT 2013 Public Library of Science
2013 Samuels et al 2013 Samuels et al
2013 Samuels et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Samuels DC, Li C, Li B, Song Z, Torstenson E, et al. (2013) Recurrent Tissue-Specific mtDNA Mutations Are Common in Humans. PLoS Genet 9(11): e1003929. doi:10.1371/journal.pgen.1003929
Copyright_xml – notice: COPYRIGHT 2013 Public Library of Science
– notice: 2013 Samuels et al 2013 Samuels et al
– notice: 2013 Samuels et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Samuels DC, Li C, Li B, Song Z, Torstenson E, et al. (2013) Recurrent Tissue-Specific mtDNA Mutations Are Common in Humans. PLoS Genet 9(11): e1003929. doi:10.1371/journal.pgen.1003929
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1003929
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Recurrent Tissue-Specific mtDNA Mutations
EISSN 1553-7404
ExternalDocumentID 1468591890
oai_doaj_org_article_e558b901385c4b18869fa94979a453a1
PMC3820769
A353105441
24244193
10_1371_journal_pgen_1003929
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: 1P30AG036445
– fundername: NHGRI NIH HHS
  grantid: R01 HG004517
– fundername: NLM NIH HHS
  grantid: R01 LM010098
– fundername: NIA NIH HHS
  grantid: R01 AG027944
– fundername: NLM NIH HHS
  grantid: LM010098
– fundername: NIGMS NIH HHS
  grantid: GM103534
– fundername: NIA NIH HHS
  grantid: AG019085
– fundername: NIGMS NIH HHS
  grantid: R01GM073744
– fundername: NIA NIH HHS
  grantid: P30 AG036445
– fundername: NHGRI NIH HHS
  grantid: R01HG004517
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
WOQ
PMFND
7X8
5PM
PUEGO
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c764t-5760497eb1713442c06cc09abe1c92108b7395d5860604a81ec3cf40b50c03543
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:30 EDT 2023
Wed Aug 27 01:31:55 EDT 2025
Thu Aug 21 14:30:54 EDT 2025
Mon Jul 21 11:26:12 EDT 2025
Tue Jun 17 21:08:02 EDT 2025
Tue Jun 10 20:24:44 EDT 2025
Fri Jun 27 04:55:36 EDT 2025
Fri Jun 27 03:44:39 EDT 2025
Fri Jun 27 04:23:20 EDT 2025
Thu May 22 21:08:51 EDT 2025
Tue Aug 05 11:42:01 EDT 2025
Tue Jul 01 04:23:47 EDT 2025
Thu Apr 24 23:13:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c764t-5760497eb1713442c06cc09abe1c92108b7395d5860604a81ec3cf40b50c03543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: DCS CL BL JLH DGM DPM SMW. Performed the experiments: DCS CL BL ET HBC TMH DGM DPM. Analyzed the data: DCS CL BL ZS ET AR TATW JHM SMW. Contributed reagents/materials/analysis tools: TMH RDH DPM SMW. Wrote the paper: DCS CL BL AR TATW JHM JLH DGM DPM SMW.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1003929
PMID 24244193
PQID 1459559031
PQPubID 23479
ParticipantIDs plos_journals_1468591890
doaj_primary_oai_doaj_org_article_e558b901385c4b18869fa94979a453a1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3820769
proquest_miscellaneous_1459559031
gale_infotracmisc_A353105441
gale_infotracacademiconefile_A353105441
gale_incontextgauss_ISR_A353105441
gale_incontextgauss_ISN_A353105441
gale_incontextgauss_IOV_A353105441
gale_healthsolutions_A353105441
pubmed_primary_24244193
crossref_citationtrail_10_1371_journal_pgen_1003929
crossref_primary_10_1371_journal_pgen_1003929
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2013
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References T Yamasoba (ref38) 2002; 12
JP Jenuth (ref42) 1997; 16
M Corral-Debrinski (ref12) 1992; 2
BAI Payne (ref25) 2013; 22
AW Duncan (ref44) 2010; 467
HA Coller (ref46) 2001; 28
R Del Bo (ref19) 2002; 202
J Fish (ref15) 2004; 306
T Yasukawa (ref16) 2005; 18
CY Pai (ref29) 2006; 156
H Li (ref5) 2009; 25
PE Coskun (ref39) 2003; 100
Y Wang (ref10) 2001; 98
F Pereira (ref17) 2008; 25
DG Murdock (ref34) 2000; 28
C Barthelemy (ref22) 2002; 110
JL Elson (ref2) 2001; 68
BJ Battersby (ref41) 2001; 10
S Dimauro (ref11) 2005; 37
G Avital (ref21) 2012; 21
LM Cree (ref1) 2009; 1792
PE Coskun (ref35) 2004; 101
GA Cortopassi (ref13) 1992; 89
R Del Bo (ref20) 2003; 24
Y Michikawa (ref33) 1999; 286
JB Stewart (ref47) 2008; 6
KC Chandy (ref48) 2007; 10
A McKenna (ref6) 2010; 20
BJ Battersby (ref40) 2003; 33
NG Larsson (ref3) 2010; 79
MW Allard (ref26) 2005; 148
MW Allard (ref27) 2006; 51
BA Malyarchuk (ref28) 2001; 37
FJ Miller (ref7) 2003; 31
R Suspene (ref45) 2011; 108
G Tully (ref31) 2004; 140
MS Sharpley (ref43) 2012; 151
KJ Krishnan (ref14) 2008; 40
M van Oven (ref49) 2009; 30
CK da Costa (ref24) 2007; 263
L Shu (ref36) 2012; 5
LA Tully (ref32) 2000; 67
YP He (ref9) 2010; 464
A Cormio (ref23) 2005; 26
A Picornell (ref30) 2006; 120
GMC Janssen (ref37) 2006; 114
L Pereira (ref8) 2009; 84
RM Andrews (ref4) 1999; 23
T Andrew (ref18) 2011; 6
24281144 - Nat Rev Genet. 2014 Jan;15(1):4
References_xml – volume: 114
  start-page: 168
  year: 2006
  ident: ref37
  article-title: Novel mitochondrial DNA length variants and genetic instability in a family with diabetes and deafness
  publication-title: Experimental and Clinical Endocrinology & Diabetes
  doi: 10.1055/s-2006-924066
– volume: 26
  start-page: 655
  year: 2005
  ident: ref23
  article-title: Mitochondrial DNA mutations in RRF of healthy subjects of different age
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2004.06.014
– volume: 68
  start-page: 802
  year: 2001
  ident: ref2
  article-title: Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age
  publication-title: American Journal of Human Genetics
  doi: 10.1086/318801
– volume: 464
  start-page: 610
  year: 2010
  ident: ref9
  article-title: Heteroplasmic mitochondrial DNA mutations in normal and tumour cells
  publication-title: Nature
  doi: 10.1038/nature08802
– volume: 30
  start-page: E386
  year: 2009
  ident: ref49
  article-title: Updated Comprehensive Phylogenetic Tree of Global Human Mitochondrial DNA Variation
  publication-title: Human Mutation
  doi: 10.1002/humu.20921
– volume: 28
  start-page: 147
  year: 2001
  ident: ref46
  article-title: High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection
  publication-title: Nature Genetics
  doi: 10.1038/88859
– volume: 79
  start-page: 683
  year: 2010
  ident: ref3
  article-title: Somatic Mitochondrial DNA Mutations in Mammalian Aging
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev-biochem-060408-093701
– volume: 31
  start-page: e61
  issue: (11)
  year: 2003
  ident: ref7
  article-title: Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gng060
– volume: 21
  start-page: 4214
  year: 2012
  ident: ref21
  article-title: Mitochondrial DNA heteroplasmy in diabetes and normal adults: role of acquired and inherited mutational patterns in twins
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/dds245
– volume: 67
  start-page: 432
  year: 2000
  ident: ref32
  article-title: A sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region
  publication-title: American Journal of Human Genetics
– volume: 25
  start-page: 1754
  year: 2009
  ident: ref5
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 98
  start-page: 4022
  year: 2001
  ident: ref10
  article-title: Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.061013598
– volume: 5
  start-page: 28
  year: 2012
  ident: ref36
  article-title: Complete mitochondrial DNA sequence analysis in two southern Chinese pedigrees with Leber hereditary optic neuropathy revealed secondary mutations along with the primary mutation
  publication-title: International Journal of Ophthalmology
– volume: 108
  start-page: 4858
  year: 2011
  ident: ref45
  article-title: Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1009687108
– volume: 110
  start-page: 479
  year: 2002
  ident: ref22
  article-title: D-loop mutations in mitochondrial DNA: link with mitochondrial DNA depletion
  publication-title: Human Genetics
  doi: 10.1007/s00439-002-0708-4
– volume: 286
  start-page: 774
  year: 1999
  ident: ref33
  article-title: Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication
  publication-title: Science
  doi: 10.1126/science.286.5440.774
– volume: 37
  start-page: 823
  year: 2001
  ident: ref28
  article-title: Variation of human mitochondrial DNA: Distribution of hot spots in hypervariable segment I of the major noncoding region
  publication-title: Russian Journal of Genetics
  doi: 10.1023/A:1016707228425
– volume: 37
  start-page: 222
  year: 2005
  ident: ref11
  article-title: Mitochondrial DNA and disease
  publication-title: Annals of Medicine
  doi: 10.1080/07853890510007368
– volume: 10
  start-page: 2469
  year: 2001
  ident: ref41
  article-title: Selection of a mtDNA sequence variant in hepatocytes of heteroplasmic mice is not due to differences in respiratory chain function or efficiency of replication
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/10.22.2469
– volume: 151
  start-page: 333
  year: 2012
  ident: ref43
  article-title: Heteroplasmy of Mouse mtDNA Is Genetically Unstable and Results in Altered Behavior and Cognition
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.004
– volume: 84
  start-page: 628
  year: 2009
  ident: ref8
  article-title: The Diversity Present in 5140 Human Mitochondrial Genomes
  publication-title: American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2009.04.013
– volume: 101
  start-page: 10726
  year: 2004
  ident: ref35
  article-title: Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0403649101
– volume: 16
  start-page: 93
  year: 1997
  ident: ref42
  article-title: Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice
  publication-title: Nature Genetics
  doi: 10.1038/ng0597-93
– volume: 51
  start-page: 566
  year: 2006
  ident: ref27
  article-title: Evaluation of variation in control region sequences for Hispanic individuals in the SWGDAM mtDNA data set
  publication-title: Journal of Forensic Sciences
  doi: 10.1111/j.1556-4029.2006.00136.x
– volume: 6
  start-page: 63
  year: 2008
  ident: ref47
  article-title: Strong purifying selection in transmission of mammalian mitochondrial DNA
  publication-title: Plos Biology
  doi: 10.1371/journal.pbio.0060010
– volume: 202
  start-page: 85
  year: 2002
  ident: ref19
  article-title: Evidence and age-related distribution of mtDNA D-loop point mutations in skeletal muscle from healthy subjects and mitochondrial patients
  publication-title: Journal of the Neurological Sciences
  doi: 10.1016/S0022-510X(02)00247-2
– volume: 148
  start-page: 169
  year: 2005
  ident: ref26
  article-title: Characterization of human control region sequences of the African American SWGDAM forensic mtDNA data set
  publication-title: Forensic Science International
  doi: 10.1016/j.forsciint.2004.06.001
– volume: 33
  start-page: 183
  year: 2003
  ident: ref40
  article-title: Nuclear genetic control of mitochondrial DNA segregation
  publication-title: Nature Genetics
  doi: 10.1038/ng1073
– volume: 6
  start-page: e22332
  issue: (8)
  year: 2011
  ident: ref18
  article-title: A Twin Study of Mitochondrial DNA Polymorphisms Shows that Heteroplasmy at Multiple Sites Is Associated with mtDNA Variant 16093 but Not with Zygosity
  publication-title: Plos One
  doi: 10.1371/journal.pone.0022332
– volume: 120
  start-page: 271
  year: 2006
  ident: ref30
  article-title: Mitochondrial DNA sequence variation in Jewish populations
  publication-title: International Journal of Legal Medicine
  doi: 10.1007/s00414-006-0083-0
– volume: 140
  start-page: 1
  year: 2004
  ident: ref31
  article-title: Results of a collaborative study of the EDNAP group regarding mitochondrial DNA heteroplasmy and segregation in hair shafts
  publication-title: Forensic Science International
  doi: 10.1016/S0379-0738(03)00181-6
– volume: 156
  start-page: 124
  year: 2006
  ident: ref29
  article-title: Mitochondrial DNA sequence alterations observed between blood and buccal cells within the same individuals having betel quid (BQ)-chewing habit
  publication-title: Forensic Science International
  doi: 10.1016/j.forsciint.2004.12.021
– volume: 22
  start-page: 384
  year: 2013
  ident: ref25
  article-title: Universal heteroplasmy of human mitochondrial DNA
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/dds435
– volume: 306
  start-page: 2098
  year: 2004
  ident: ref15
  article-title: Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis
  publication-title: Science
  doi: 10.1126/science.1102077
– volume: 28
  start-page: 4350
  year: 2000
  ident: ref34
  article-title: The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/28.21.4350
– volume: 467
  start-page: 707
  year: 2010
  ident: ref44
  article-title: The ploidy conveyor of mature hepatocytes as a source of genetic variation
  publication-title: Nature
  doi: 10.1038/nature09414
– volume: 100
  start-page: 2174
  year: 2003
  ident: ref39
  article-title: Control region mtDNA variants: Longevity, climatic adaptation, and a forensic conundrum
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0630589100
– volume: 10
  start-page: e402
  year: 2007
  ident: ref48
  article-title: Preparing T cell growth factor from rat splenocytes
  publication-title: Journal of Visualized Experiments
– volume: 18
  start-page: 651
  year: 2005
  ident: ref16
  article-title: A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2005.05.002
– volume: 89
  start-page: 7370
  year: 1992
  ident: ref13
  article-title: A Pattern of Accumulation of a Somatic Deletion of Mitochondrial-DNA in Aging Human Tissues
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.89.16.7370
– volume: 1792
  start-page: 1097
  year: 2009
  ident: ref1
  article-title: The inheritance of pathogenic mitochondrial DNA mutations
  publication-title: Biochimica Et Biophysica Acta-Molecular Basis of Disease
  doi: 10.1016/j.bbadis.2009.03.002
– volume: 25
  start-page: 2759
  year: 2008
  ident: ref17
  article-title: Evidence for Variable Selective Pressures at a Large Secondary Structure of the Human Mitochondrial DNA Control Region
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msn225
– volume: 263
  start-page: 139
  year: 2007
  ident: ref24
  article-title: Age-related mitochondrial DNA point mutations in patients with mitochondrial myopathy
  publication-title: Journal of the Neurological Sciences
  doi: 10.1016/j.jns.2007.07.006
– volume: 24
  start-page: 829
  year: 2003
  ident: ref20
  article-title: High mutational burden in the mtDNA control region from aged muscles: a single-fiber study
  publication-title: Neurobiology of Aging
  doi: 10.1016/S0197-4580(02)00233-6
– volume: 23
  start-page: 147
  year: 1999
  ident: ref4
  article-title: Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA
  publication-title: Nature Genetics
  doi: 10.1038/13779
– volume: 20
  start-page: 1297
  year: 2010
  ident: ref6
  article-title: The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Research
  doi: 10.1101/gr.107524.110
– volume: 40
  start-page: 275
  year: 2008
  ident: ref14
  article-title: What causes mitochondrial DNA deletions in human cells
  publication-title: Nature Genetics
  doi: 10.1038/ng.f.94
– volume: 12
  start-page: 506
  year: 2002
  ident: ref38
  article-title: Atypical muscle pathology and a survey of cis-mutations in deaf patients harboring a 1555 A-to-G point mutation in the mitochondrial ribosomal RNA gene
  publication-title: Neuromuscular Disorders
  doi: 10.1016/S0960-8966(01)00329-7
– volume: 2
  start-page: 324
  year: 1992
  ident: ref12
  article-title: Mitochondrial-DNA Deletions in Human Brain - Regional Variability and Increase with Advanced Age
  publication-title: Nature Genetics
  doi: 10.1038/ng1292-324
– reference: 24281144 - Nat Rev Genet. 2014 Jan;15(1):4
SSID ssj0035897
Score 2.45501
Snippet Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to...
  Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1003929
SubjectTerms Aging
Base Sequence
Cell division
Deoxyribonucleic acid
DNA
DNA Replication - genetics
DNA, Mitochondrial - genetics
Gene mutations
Genome, Mitochondrial
Genomes
Humans
Mitochondria - genetics
Mitochondrial DNA
Muscle, Skeletal - metabolism
Musculoskeletal system
Mutation
Mutation - genetics
Organ Specificity
Physiological aspects
Polymorphism, Restriction Fragment Length - genetics
Population genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBL6TvOq24p9KTGtiTLugS2j5AWuoW0KbkJSbbbQOJdYu-h_z4zktbEpZAcel2PD_5mNI_VzDeEvHFMGohzUJ3kuaJQb2TU8obTIrfcmcq1tZ-F-booj0_5lzNxdmPVF_aEBXrgANxBI0RlFd6nCcdtXlWlao3iSirDBTO-8IGYtymmgg9mogprVYRgVEJZH4fmmMwPoo7erUBB2COACcIkKHnu_tFDz1YXy_5f6effXZQ3wtLRI_Iw5pPpPHzHY3Kv6Z6Q-2HD5J-n5PAE_09HBqZ08BBTHK3E9qD0cvi4mKeX63AX36fmqknB_MAs0_Mu9bv7-mfk9OjTjw_HNK5MoE6WfKBQPUDKL8EB44woL1xWOpcpY5vcKajuKosXc7WoSiTNMVXeOOZanlmROUCNs-dk1i27ZouktWmlj99ly7ktmC0K24oiq0HrRV3ahLANZtpFPnFca3Gh_SWZhLoiQKARaR2RTggd31oFPo1b5N-jOkZZZMP2P4CN6Ggj-jYbSchLVKYOo6XjmdZzBh4owy1sCXntJZARo8OWm19m3ff687efdxD6vriL0MlE6G0UapeAmTNxFgKQRzquieTuRBIOv5s83kL73EDXYyWHjISVyhLyamOzGt_CZrquWa5RRiDvILjzhLwINjzii9NCHJL6hMiJdU8UMH3Snf_2tOQMkklZqu3_obEd8qDAvSN-6HOXzIardbMH2d9g9_1BvwbQRlGq
  priority: 102
  providerName: Directory of Open Access Journals
Title Recurrent Tissue-Specific mtDNA Mutations Are Common in Humans
URI https://www.ncbi.nlm.nih.gov/pubmed/24244193
https://www.proquest.com/docview/1459559031
https://pubmed.ncbi.nlm.nih.gov/PMC3820769
https://doaj.org/article/e558b901385c4b18869fa94979a453a1
http://dx.doi.org/10.1371/journal.pgen.1003929
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tnZB4QXwvY5SAkHjKlMR2nDwA6mDTQGpBZUV9i2In2SqVpGtaif333DkfImiI8Zqc_fDznc_n8_0O4LVmMkE_h9GJ50UOxhuuo3jGHd9TXCehzlNTCzOeBGcz_nku5jvQ9mxtAKxuDO2on9RsvTz6eXX9Hg3-renaIL120NEKIaesP7n8XdhD3yTJVMe8yyswEdbtVoRgjuQub4rp_jZLz1kZTv9u5x6slmV107H0z9eVv7mr0_twrzln2qNaMR7ATlY8hDt158nrR_BuSvfsxMxknxvoHdOIPl9o-8fm42Rkj7d1jr7CKTKbykjKwl4Utrn0rx7D7PTk_MOZ07RScLQM-MbBqAJDAYkbM9WOcl-7gdZulKjM0xFGfaGihF0qwoDIdJLQyzTTOXeVcDWixtkTGBRlke2DnSa5NH49yDlXPlO-r3Lhuylqg58GygLWYhbrhmec2l0sY5M8kxhv1BDEhHTcIG2B041a1Twb_5A_puXoZIkl23wo1xdxY3RxJkSoIsrFCs2VF4ZBlCcR4hAlXLDEs-AFLWZcl5x2th6PGO5MLnVns-CVkSCmjIKe4lwk26qKP335fguhb5PbCE17Qm8aobxEzHTS1Egg8kTT1ZM87EnipqB7v_dJP1voKorwiKkwjFwLXrY6G9MoemRXZOWWZATxEeI2b8HTWoc7fKmKiONh3wLZ0-7eAvT_FItLQ1fO8JApg-jgP1f4Gdz1qfWIqfs8hMFmvc2e4wFwo4awK-dyCHvHJ5Ov06G5RhkaO_8FIQJZGQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recurrent+Tissue-Specific+mtDNA+Mutations+Are+Common+in+Humans&rft.jtitle=PLoS+genetics&rft.au=Samuels%2C+David+C.&rft.au=Li%2C+Chun&rft.au=Li%2C+Bingshan&rft.au=Song%2C+Zhuo&rft.date=2013-11-01&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=9&rft.issue=11&rft.spage=e1003929&rft_id=info:doi/10.1371%2Fjournal.pgen.1003929&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1003929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon