ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation

The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasin...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 9; no. 10; p. e1003895
Main Authors Zhou, Yueqin, Liu, Songyan, Liu, Guodong, Öztürk, Arzu, Hicks, Geoffrey G.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration.
AbstractList The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, t was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration.
The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration. FUS/TLS is a frequently mutated gene in amyotrophic lateral sclerosis (ALS). ALS, also known as Lou Gehrig's disease, is characterized by a progressive degeneration of motor neurons. The abnormal cytoplasmic accumulation of mutant FUS protein is a characteristic pathology of ALS; however, recent evidence increasingly suggests deficiencies in FUS nuclear function may also contribute to neurodegeneration in ALS. Here we report a novel autoregulatory mechanism of FUS by alternative splicing and nonsense mediated decay (NMD). We show FUS binds to exon 7 and flanking introns of its own pre-mRNAs. This results in exon skipping, inducing a reading frame shift and subsequent degradation of the splice variants. As such, this mechanism provides a feedback loop that controls the homeostasis of FUS protein levels. This balance is disrupted in ALS-associated FUS mutants, which are deficient in nuclear localization and FUS-dependent alternative splicing. As a result, the abnormal accumulation of mutant FUS protein in ALS neurons goes unchecked and uncontrolled. Our study provides novel insight into the molecular mechanism by which FUS regulates gene expression and new understanding of the role of FUS in disease at the molecular level. This may lead to new potential therapeutic targets for the treatment of ALS.
The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration.
The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration.The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration.
  The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or δExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration.
Audience Academic
Author Liu, Guodong
Zhou, Yueqin
Liu, Songyan
Hicks, Geoffrey G.
Öztürk, Arzu
AuthorAffiliation 4 Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
Centre for Cancer Biology, SA Pathology, Australia
2 Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
3 Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
1 Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
AuthorAffiliation_xml – name: 1 Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
– name: 3 Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
– name: 2 Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
– name: Centre for Cancer Biology, SA Pathology, Australia
– name: 4 Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
Author_xml – sequence: 1
  givenname: Yueqin
  surname: Zhou
  fullname: Zhou, Yueqin
– sequence: 2
  givenname: Songyan
  surname: Liu
  fullname: Liu, Songyan
– sequence: 3
  givenname: Guodong
  surname: Liu
  fullname: Liu, Guodong
– sequence: 4
  givenname: Arzu
  surname: Öztürk
  fullname: Öztürk, Arzu
– sequence: 5
  givenname: Geoffrey G.
  surname: Hicks
  fullname: Hicks, Geoffrey G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24204307$$D View this record in MEDLINE/PubMed
BookMark eNqVk1-L1DAUxYusuLuj30C0IIg-zJg0adPug1AGVwdGF3ZcHw1petvJkEnGJl3025v5J1MRUQptSH_n5OZy7mV0ZqyBKHqK0QQTht-sbN8ZoSebFswEI0TyIn0QXeA0JWNGET07WZ9Hl86tApPmBXsUnSc0QZQgdhF9LeeLcemclUp4qOPru0X8sffCK2tcfAuu1z5WJp7a9aaza-UOTKk9hOO9uod4sdFKKtPGwtRx2XvbQdvrncXj6GEjtIMnh-8ourt-93n6YTy_eT-blvOxZBn1YwxNIrKmCi-BJRFZVTdVWhWSoqQGRkkBRVY3LEnzukZACMaZFCgHlFOJJCaj6Pned6Ot44fWOI5puHCgCxSI2Z6orVjxTafWovvBrVB8t2G7lovOK6mBZ0ygSjQMsaKhFOcVgbTCoSSUsQwlVfB6ezitr9ZQSzC-E3pgOvxj1JK39p6THFOSpMHg1cGgs996cJ6HzkrQWhiw_bZuWrCsQKH2UfRij7YilKZMY4Oj3OK8JCnOcMLQ9v6TP1DhqWGtZAhOo8L-QPB6IAiMh---Fb1zfLa4_Q_207-zN1-G7MsTdglC-6Wzut9lbwg-O-33r0YfYxyAqz0gO-tcBw2Xap_h0AalOUZ8OzPHYPDtzPDDzAQx_U189P-r7Ce5Ahn0
CitedBy_id crossref_primary_10_1002_1873_3468_13924
crossref_primary_10_1016_j_neuron_2019_03_014
crossref_primary_10_1007_s40265_020_01363_3
crossref_primary_10_1093_hmg_ddz217
crossref_primary_10_1073_pnas_1810413115
crossref_primary_10_1074_jbc_M114_573246
crossref_primary_10_1007_s00401_023_02666_x
crossref_primary_10_1134_S0006297924140037
crossref_primary_10_1242_jcs_236836
crossref_primary_10_1038_s42003_021_02538_8
crossref_primary_10_7554_eLife_40811
crossref_primary_10_1080_15476286_2016_1211225
crossref_primary_10_1101_gad_335836_119
crossref_primary_10_3390_cells12202461
crossref_primary_10_15252_embj_201592559
crossref_primary_10_3389_fncel_2020_581907
crossref_primary_10_1016_j_nbd_2020_104935
crossref_primary_10_1186_s40478_020_01111_4
crossref_primary_10_1016_j_celrep_2023_112025
crossref_primary_10_1038_ncomms7171
crossref_primary_10_1042_BST20140102
crossref_primary_10_1093_nar_gkaa410
crossref_primary_10_1002_glia_23825
crossref_primary_10_1016_S1474_4422_24_00517_9
crossref_primary_10_1002_wrna_1338
crossref_primary_10_1093_hmg_ddz048
crossref_primary_10_1080_21678421_2023_2272170
crossref_primary_10_1007_s11064_015_1758_z
crossref_primary_10_1007_s10571_019_00717_0
crossref_primary_10_1093_nar_gkae184
crossref_primary_10_3389_fnins_2020_00684
crossref_primary_10_1016_j_neuroscience_2014_12_007
crossref_primary_10_1093_nar_gkad774
crossref_primary_10_2139_ssrn_3351828
crossref_primary_10_1096_fj_202301979R
crossref_primary_10_1007_s10522_014_9531_2
crossref_primary_10_32607_actanaturae_27337
crossref_primary_10_3390_ijms24043181
crossref_primary_10_1186_s13024_016_0075_6
crossref_primary_10_3390_ijms22083977
crossref_primary_10_1016_j_virusres_2014_12_032
crossref_primary_10_3390_ijms21249424
crossref_primary_10_1111_jnc_15281
crossref_primary_10_1111_jnc_15280
crossref_primary_10_1109_TCBB_2015_2480068
crossref_primary_10_1007_s11692_024_09644_5
crossref_primary_10_1016_j_neuron_2020_08_022
crossref_primary_10_1186_s40478_022_01314_x
crossref_primary_10_1016_j_brainres_2018_03_037
crossref_primary_10_1111_cpr_13047
crossref_primary_10_3389_fnins_2018_00473
crossref_primary_10_1007_s00418_015_1393_4
crossref_primary_10_20538_1682_0363_2021_3_193_202
crossref_primary_10_1016_j_mcn_2020_103524
crossref_primary_10_1186_s13059_024_03271_1
crossref_primary_10_1038_s41598_017_00091_1
crossref_primary_10_1038_s41598_018_33964_0
crossref_primary_10_1186_s13578_020_00394_3
crossref_primary_10_1038_s41598_019_42091_3
crossref_primary_10_1016_j_celrep_2019_05_085
crossref_primary_10_1093_brain_awx082
crossref_primary_10_1007_s00439_017_1830_7
crossref_primary_10_1186_s12920_017_0274_1
crossref_primary_10_3109_21678421_2015_1040994
crossref_primary_10_3389_fgene_2018_00712
crossref_primary_10_1111_jnc_13668
crossref_primary_10_7554_eLife_37754
crossref_primary_10_1039_D0CP01635G
crossref_primary_10_1016_j_neuron_2023_02_028
crossref_primary_10_1017_cjn_2022_336
crossref_primary_10_1093_nar_gkad319
crossref_primary_10_1073_pnas_2413721122
crossref_primary_10_1016_j_tig_2018_10_002
crossref_primary_10_1038_s41598_017_15944_y
crossref_primary_10_1093_hmg_ddy046
crossref_primary_10_15252_embr_201541726
crossref_primary_10_3389_fnins_2019_01310
crossref_primary_10_1038_s41419_022_05470_9
crossref_primary_10_3389_fmolb_2018_00044
crossref_primary_10_1093_nar_gkad161
crossref_primary_10_3390_cells12151948
crossref_primary_10_1038_s41467_024_52151_6
crossref_primary_10_1038_s41598_018_29716_9
crossref_primary_10_3390_cells14010047
crossref_primary_10_1016_j_molcel_2019_09_022
crossref_primary_10_4161_rdis_29515
crossref_primary_10_1002_1873_3468_12646
crossref_primary_10_1007_s10238_024_01525_7
crossref_primary_10_15252_embj_201593791
crossref_primary_10_1186_s13024_021_00477_w
crossref_primary_10_1073_pnas_1509744112
crossref_primary_10_1016_j_molcel_2018_05_019
crossref_primary_10_1080_15384101_2021_1886661
crossref_primary_10_3390_jcm12041428
crossref_primary_10_1016_j_brainres_2016_05_022
crossref_primary_10_1038_s41598_019_45530_3
crossref_primary_10_1093_hmg_ddaa159
crossref_primary_10_1016_j_stemcr_2016_02_011
crossref_primary_10_1016_j_nbd_2014_11_003
crossref_primary_10_1016_j_celrep_2019_11_094
crossref_primary_10_1007_s11010_016_2904_x
crossref_primary_10_1016_j_tins_2015_02_003
crossref_primary_10_3390_ijms22147566
crossref_primary_10_1111_jnc_13601
crossref_primary_10_3390_biology13040215
crossref_primary_10_1038_s41598_022_12098_4
crossref_primary_10_1016_j_isci_2023_108152
crossref_primary_10_1038_nrneurol_2014_78
crossref_primary_10_1002_jps_24322
crossref_primary_10_1007_s13311_015_0340_3
crossref_primary_10_1093_genetics_iyab145
crossref_primary_10_1007_s10571_020_00899_y
crossref_primary_10_1126_sciadv_abf8660
crossref_primary_10_1016_j_stemcr_2022_01_004
crossref_primary_10_1080_19491034_2024_2314297
crossref_primary_10_1093_nar_gkv157
crossref_primary_10_1186_s40035_023_00377_7
crossref_primary_10_3389_fcell_2021_623394
crossref_primary_10_1016_j_molcel_2018_11_012
crossref_primary_10_1111_febs_13685
crossref_primary_10_1007_s00401_016_1586_5
crossref_primary_10_3390_ijms21103464
crossref_primary_10_1080_10985549_2024_2383296
crossref_primary_10_1016_j_biocel_2017_07_013
crossref_primary_10_1093_nar_gkz193
crossref_primary_10_1093_brain_awaa076
crossref_primary_10_1038_ncomms14741
crossref_primary_10_1134_S0026893317020091
crossref_primary_10_1016_j_biocel_2019_03_009
crossref_primary_10_1038_srep25159
crossref_primary_10_1016_j_molcel_2018_02_001
crossref_primary_10_1093_nar_gkx508
crossref_primary_10_3389_fncel_2017_00243
crossref_primary_10_3389_fnmol_2021_686995
crossref_primary_10_1093_hmg_ddv104
crossref_primary_10_1016_j_gene_2017_04_008
crossref_primary_10_1093_hmg_ddu094
crossref_primary_10_1177_1759091414544472
crossref_primary_10_3390_ijms22020904
crossref_primary_10_1016_j_freeradbiomed_2025_01_012
crossref_primary_10_1038_ncomms5335
crossref_primary_10_1093_hmg_ddu494
crossref_primary_10_1242_dmm_020099
crossref_primary_10_1016_j_pneurobio_2016_09_004
crossref_primary_10_3389_fnins_2018_00028
crossref_primary_10_1016_j_brainres_2018_01_015
crossref_primary_10_1002_wrna_1397
crossref_primary_10_3389_fmolb_2017_00067
crossref_primary_10_1007_s00401_017_1687_9
crossref_primary_10_1111_jnc_13625
crossref_primary_10_1016_j_brainres_2018_04_043
crossref_primary_10_1007_s00401_020_02203_0
crossref_primary_10_3390_cancers17010081
crossref_primary_10_1002_med_21937
crossref_primary_10_1002_wrna_1394
Cites_doi 10.1371/journal.pgen.1002011
10.1016/S1097-2765(03)00502-1
10.1038/msb.2011.81
10.1038/emboj.2010.143
10.1101/gad.187278.112
10.1126/science.1165942
10.1038/nsmb.2163
10.1097/NEN.0b013e318264f164
10.1093/brain/awp214
10.1002/gcc.20858
10.1016/j.cell.2009.03.006
10.1016/j.ymeth.2005.07.018
10.1016/S0022-2836(05)80360-2
10.1093/database/bar011
10.1261/rna.037804.112
10.1093/jmcb/mjp025
10.1016/j.brainres.2010.03.008
10.1038/nprot.2008.211
10.1038/72842
10.1016/j.molcel.2009.12.003
10.1093/hmg/ddp498
10.1038/nrneurol.2011.150
10.1093/hmg/ddt117
10.1371/journal.pbio.0030158
10.1371/journal.pbio.1000614
10.1007/s13238-011-1014-5
10.1038/nbt.1505
10.1038/srep00529
10.1038/nn.3230
10.1007/s00401-011-0838-7
10.1038/srep00603
10.1093/nar/gkp441
10.1186/1471-2121-9-37
10.1371/journal.pgen.1002214
10.1074/jbc.M111.333450
10.1016/j.molcel.2010.05.004
10.1007/s00401-012-1043-z
10.1128/MCB.01689-08
10.1016/j.bbapap.2011.09.008
10.1046/j.1365-2141.2000.01883.x
10.1101/gad.1941310
10.1038/nrn3430
10.1038/nature07488
10.1371/journal.pone.0039483
10.1038/nn.2779
10.1093/hmg/ddq335
10.1016/j.cell.2012.02.014
10.1016/j.conb.2011.05.029
10.1038/sj.emboj.7600630
10.1126/science.1166066
10.1074/jbc.274.48.34337
10.1093/nar/gkq1162
10.1093/hmg/ddr417
10.1038/35073593
10.1074/jbc.M008304200
10.1101/gad.1558107
10.1242/jcs.110.15.1741
10.1111/ene.12031
10.1093/nar/gkq963
10.1016/j.neuron.2013.07.033
10.1186/1471-2105-14-128
10.1038/emboj.2010.310
10.1038/sj.mt.6300095
10.1007/s13238-011-1065-7
10.1101/gr.082503.108
10.1007/s12031-011-9634-z
10.1186/gb-2009-10-3-r25
10.1093/bfgp/ell015
10.1038/nsmb.1545
10.1093/hmg/7.5.919
10.1038/sj.emboj.7600187
10.1093/hmg/ddq137
ContentType Journal Article
Copyright COPYRIGHT 2013 Public Library of Science
2013 Zhou et al 2013 Zhou et al
2013 Zhou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Zhou Y, Liu S, Liu G, Öztürk A, Hicks GG (2013) ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation. PLoS Genet 9(10): e1003895. doi:10.1371/journal.pgen.1003895
Copyright_xml – notice: COPYRIGHT 2013 Public Library of Science
– notice: 2013 Zhou et al 2013 Zhou et al
– notice: 2013 Zhou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Zhou Y, Liu S, Liu G, Öztürk A, Hicks GG (2013) ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation. PLoS Genet 9(10): e1003895. doi:10.1371/journal.pgen.1003895
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1003895
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate FUS Autoregulation and ALS
EISSN 1553-7404
ExternalDocumentID 1458933190
oai_doaj_org_article_67a0baf7079f4418b3e5b1bdf067602b
PMC3814325
A351612701
24204307
10_1371_journal_pgen_1003895
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: Canadian Institutes of Health Research
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
WOQ
PMFND
7X8
5PM
PUEGO
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c764t-1ef2a6fb2a6a1c3a6bdfb5b9c402de7439e96df7258dd0e33116ca08e084c0c13
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:33 EDT 2023
Wed Aug 27 01:30:43 EDT 2025
Thu Aug 21 14:05:32 EDT 2025
Fri Jul 11 10:10:15 EDT 2025
Tue Jun 17 21:08:25 EDT 2025
Tue Jun 10 20:34:36 EDT 2025
Fri Jun 27 03:56:44 EDT 2025
Fri Jun 27 04:57:47 EDT 2025
Fri Jun 27 04:17:04 EDT 2025
Thu May 22 21:20:50 EDT 2025
Mon Jul 21 06:06:47 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Tue Jul 01 04:23:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c764t-1ef2a6fb2a6a1c3a6bdfb5b9c402de7439e96df7258dd0e33116ca08e084c0c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: YZ AO GGH. Performed the experiments: YZ GL. Analyzed the data: YZ SL GGH. Wrote the paper: YZ GGH.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1003895
PMID 24204307
PQID 1449769093
PQPubID 23479
ParticipantIDs plos_journals_1458933190
doaj_primary_oai_doaj_org_article_67a0baf7079f4418b3e5b1bdf067602b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3814325
proquest_miscellaneous_1449769093
gale_infotracmisc_A351612701
gale_infotracacademiconefile_A351612701
gale_incontextgauss_ISR_A351612701
gale_incontextgauss_ISN_A351612701
gale_incontextgauss_IOV_A351612701
gale_healthsolutions_A351612701
pubmed_primary_24204307
crossref_citationtrail_10_1371_journal_pgen_1003895
crossref_primary_10_1371_journal_pgen_1003895
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2013
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References AY Tan (ref24) 2009; 1
C Colombrita (ref34) 2012; 287
M Neumann (ref10) 2009; 132
Z Sun (ref45) 2011; 9
Y Chen (ref15) 2011; 2
WJ Law (ref23) 2006; 5
C Lagier-Tourenne (ref4) 2009; 136
GW Yeo (ref61) 2009; 16
PM Andersen (ref1) 2011; 7
S Kameoka (ref59) 2004; 23
M Leichter (ref60) 2011; 1814
T Murakami (ref17) 2011; 21
H Zinszner (ref21) 1997; 110
J Ule (ref65) 2005; 37
T Nakaya (ref32) 2013; 19
Y Hua (ref49) 2010; 24
S Heinz (ref37) 2010; 38
PL Boutz (ref41) 2007; 21
MC Wollerton (ref50) 2004; 13
D Dormann (ref25) 2013
IRA Mackenzie (ref12) 2011; 122
K Han (ref63) 2005; 3
TJ Kwiatkowski (ref8) 2009; 323
MQ Zhang (ref38) 1998; 7
SF Altschul (ref66) 1990; 215
SD Wilton (ref48) 2007; 15
S Waibel (ref13) 2013; 20
YM Ayala (ref52) 2010; 30
KM Iijima (ref19) 2012; 7
A Lerga (ref40) 2001; 276
S Da Cruz (ref2) 2011; 21
S-C Ling (ref57) 2013; 79
PA Fujita (ref69) 2011; 39
JR Sanford (ref70) 2008; 19
J Xie (ref42) 2001; 410
C Vance (ref9) 2009; 323
DS Dichmann (ref64) 2012; 26
K Anthony (ref26) 2010; 1338
Y Kino (ref6) 2010; 39
JC Mitchell (ref44) 2013; 125
N Suzuki (ref58) 2012; 71
D Dormann (ref7) 2010; 29
M Polymenidou (ref56) 2011; 14
Y Xue (ref35) 2009; 36
S Ishigaki (ref28) 2012; 2
O Rossbach (ref43) 2009; 29
D Blankenberg (ref67) 2011; 2011
JI Spitzer (ref54) 2011; 50
BK Dredge (ref51) 2005; 24
MK Andersson (ref20) 2008; 9
KI Mills (ref55) 2000; 108
C Cooper (ref73) 2009; 37
B Rogelj (ref29) 2012; 2
H Baechtold (ref22) 1999; 274
P Spitali (ref47) 2012; 148
C Lagier-Tourenne (ref30) 2012; 15
DA Bosco (ref11) 2010; 19
JI Hoell (ref31) 2011; 18
GG Hicks (ref53) 2000; 24
K Fushimi (ref14) 2011; 2
E Kabashi (ref18) 2011; 7
H Ji (ref33) 2008; 26
P Ray (ref62) 2011; 45
C Huang (ref16) 2011; 7
DD Licatalosi (ref36) 2008; 456
C Lagier-Tourenne (ref5) 2010; 19
N Nagaraj (ref71) 2011; 7
W Huang da (ref39) 2009; 4
B Langmead (ref68) 2009; 10
C Vance (ref46) 2013; 22
SJ Rabin (ref27) 2010; 19
W Robberecht (ref3) 2013; 14
EY Chen (ref72) 2013; 14
15933722 - EMBO J. 2005 Apr 20;24(8):1608-20
22427648 - J Biol Chem. 2012 May 4;287(19):15635-47
22934129 - Sci Rep. 2012;2:603
19124611 - Mol Cell Biol. 2009 Mar;29(6):1442-51
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
23557964 - Mol Cell Neurosci. 2013 Sep;56:475-86
21131904 - EMBO J. 2011 Jan 19;30(2):277-88
21327870 - Protein Cell. 2011 Feb;2(2):141-9
19864493 - Hum Mol Genet. 2010 Jan 15;19(2):313-28
21829392 - PLoS Genet. 2011 Aug;7(8):e1002214
22068331 - Mol Syst Biol. 2011;7:548
17606642 - Genes Dev. 2007 Jul 1;21(13):1636-52
20226177 - Brain Res. 2010 Jun 18;1338:67-77
10691862 - Br J Haematol. 2000 Feb;108(2):316-21
21748598 - Protein Cell. 2011 Jun;2(6):477-86
21408206 - PLoS Genet. 2011 Mar;7(3):e1002011
23474818 - Hum Mol Genet. 2013 Jul 1;22(13):2676-88
10655065 - Nat Genet. 2000 Feb;24(2):175-9
21344536 - Genes Chromosomes Cancer. 2011 May;50(5):338-47
16769671 - Brief Funct Genomic Proteomic. 2006 Mar;5(1):8-14
20699327 - Hum Mol Genet. 2010 Nov 1;19(21):4160-75
11098054 - J Biol Chem. 2001 Mar 2;276(9):6807-16
22081015 - Nat Struct Mol Biol. 2011 Dec;18(12):1428-31
14731397 - Mol Cell. 2004 Jan 16;13(1):91-100
22019700 - Biochim Biophys Acta. 2011 Dec;1814(12):1812-24
21989245 - Nat Rev Neurol. 2011 Nov;7(11):603-15
19251628 - Science. 2009 Feb 27;323(5918):1208-11
21949354 - Hum Mol Genet. 2012 Jan 1;21(1):1-9
23217123 - Eur J Neurol. 2013 Mar;20(3):540-6
15828859 - PLoS Biol. 2005 May;3(5):e158
21109527 - Nucleic Acids Res. 2011 Apr;39(7):2781-98
22878663 - J Neuropathol Exp Neurol. 2012 Sep;71(9):779-88
23463272 - Nat Rev Neurosci. 2013 Apr;14(4):248-64
15057275 - EMBO J. 2004 Apr 21;23(8):1782-91
20400460 - Hum Mol Genet. 2010 Apr 15;19(R1):R46-64
22961620 - Acta Neuropathol. 2013 Feb;125(2):273-88
23389473 - RNA. 2013 Apr;19(4):498-509
20624852 - Genes Dev. 2010 Aug 1;24(15):1634-44
11309619 - Nature. 2001 Apr 19;410(6831):936-9
20064465 - Mol Cell. 2009 Dec 25;36(6):996-1006
22829983 - Sci Rep. 2012;2:529
21813273 - Curr Opin Neurobiol. 2011 Dec;21(6):904-19
23023293 - Nat Neurosci. 2012 Nov;15(11):1488-97
20606625 - EMBO J. 2010 Aug 18;29(16):2841-57
18978773 - Nature. 2008 Nov 27;456(7221):464-9
16314267 - Methods. 2005 Dec;37(4):376-86
22713872 - Genes Dev. 2012 Jun 15;26(12):1351-63
19251627 - Science. 2009 Feb 27;323(5918):1205-8
19674978 - Brain. 2009 Nov;132(Pt 11):2922-31
17285139 - Mol Ther. 2007 Jul;15(7):1288-96
18620564 - BMC Cell Biol. 2008;9:37
19783543 - J Mol Cell Biol. 2009 Dec;1(2):82-92
10567410 - J Biol Chem. 1999 Nov 26;274(48):34337-42
9536098 - Hum Mol Genet. 1998 May;7(5):919-32
19116412 - Genome Res. 2009 Mar;19(3):381-94
23586463 - BMC Bioinformatics. 2013;14:128
22424220 - Cell. 2012 Mar 16;148(6):1085-8
21531983 - Database (Oxford). 2011;2011:bar011
19303844 - Cell. 2009 Mar 20;136(6):1001-4
9264461 - J Cell Sci. 1997 Aug;110 ( Pt 15):1741-50
20513432 - Mol Cell. 2010 May 28;38(4):576-89
21604077 - Acta Neuropathol. 2011 Jul;122(1):87-98
19483093 - Nucleic Acids Res. 2009 Jul;37(13):4518-31
19261174 - Genome Biol. 2009;10(3):R25
18978777 - Nat Biotechnol. 2008 Nov;26(11):1293-300
23931993 - Neuron. 2013 Aug 7;79(3):416-38
21541367 - PLoS Biol. 2011 Apr;9(4):e1000614
21881826 - J Mol Neurosci. 2011 Nov;45(3):453-66
22724023 - PLoS One. 2012;7(6):e39483
19136955 - Nat Struct Mol Biol. 2009 Feb;16(2):130-7
21358643 - Nat Neurosci. 2011 Apr;14(4):459-68
20959295 - Nucleic Acids Res. 2011 Jan;39(Database issue):D876-82
19131956 - Nat Protoc. 2009;4(1):44-57
References_xml – volume: 7
  start-page: e1002011
  year: 2011
  ident: ref16
  article-title: FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002011
– volume: 13
  start-page: 91
  year: 2004
  ident: ref50
  article-title: Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00502-1
– volume: 7
  start-page: 548
  year: 2011
  ident: ref71
  article-title: Deep proteome and transcriptome mapping of a human cancer cell line
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.81
– volume: 29
  start-page: 2841
  year: 2010
  ident: ref7
  article-title: ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import
  publication-title: The EMBO Journal
  doi: 10.1038/emboj.2010.143
– volume: 26
  start-page: 1351
  year: 2012
  ident: ref64
  article-title: fus/TLS orchestrates splicing of developmental regulators during gastrulation
  publication-title: Genes & Development
  doi: 10.1101/gad.187278.112
– volume: 323
  start-page: 1208
  year: 2009
  ident: ref9
  article-title: Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6
  publication-title: Science
  doi: 10.1126/science.1165942
– volume: 18
  start-page: 1428
  year: 2011
  ident: ref31
  article-title: RNA targets of wild-type and mutant FET family proteins
  publication-title: Nature Structural & Molecular Biology
  doi: 10.1038/nsmb.2163
– year: 2013
  ident: ref25
  article-title: Fused in sarcoma (FUS): An oncogene goes awry in neurodegeneration
  publication-title: Mol Cell Neurosci
– volume: 71
  start-page: 779
  year: 2012
  ident: ref58
  article-title: FUS/TLS-immunoreactive neuronal and glial cell inclusions increase with disease duration in familial amyotrophic lateral sclerosis with an R521C FUS/TLS mutation
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/NEN.0b013e318264f164
– volume: 132
  start-page: 2922
  year: 2009
  ident: ref10
  article-title: A new subtype of frontotemporal lobar degeneration with FUS pathology
  publication-title: Brain
  doi: 10.1093/brain/awp214
– volume: 50
  start-page: 338
  year: 2011
  ident: ref54
  article-title: mRNA and protein levels of FUS, EWSR1, and TAF15 are upregulated in liposarcoma
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.20858
– volume: 136
  start-page: 1001
  year: 2009
  ident: ref4
  article-title: Rethinking ALS: The FUS about TDP-43
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.006
– volume: 37
  start-page: 376
  year: 2005
  ident: ref65
  article-title: CLIP: A method for identifying protein–RNA interaction sites in living cells
  publication-title: Methods
  doi: 10.1016/j.ymeth.2005.07.018
– volume: 215
  start-page: 403
  year: 1990
  ident: ref66
  article-title: Basic local alignment search tool
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 2011
  start-page: bar011
  year: 2011
  ident: ref67
  article-title: Integrating diverse databases into an unified analysis framework: a Galaxy approach
  publication-title: Database (Oxford)
  doi: 10.1093/database/bar011
– volume: 19
  start-page: 498
  year: 2013
  ident: ref32
  article-title: FUS regulates genes coding for RNA-binding proteins in neurons by binding to their highly conserved introns
  publication-title: Rna
  doi: 10.1261/rna.037804.112
– volume: 1
  start-page: 82
  year: 2009
  ident: ref24
  article-title: The TET Family of Proteins: Functions and Roles in Disease
  publication-title: Journal of Molecular Cell Biology
  doi: 10.1093/jmcb/mjp025
– volume: 1338
  start-page: 67
  year: 2010
  ident: ref26
  article-title: Aberrant RNA processing events in neurological disorders
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2010.03.008
– volume: 4
  start-page: 44
  year: 2009
  ident: ref39
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.211
– volume: 24
  start-page: 175
  year: 2000
  ident: ref53
  article-title: Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death
  publication-title: Nat Genet
  doi: 10.1038/72842
– volume: 36
  start-page: 996
  year: 2009
  ident: ref35
  article-title: Genome-wide Analysis of PTB-RNA Interactions Reveals a Strategy Used by the General Splicing Repressor to Modulate Exon Inclusion or Skipping
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2009.12.003
– volume: 19
  start-page: 313
  year: 2010
  ident: ref27
  article-title: Sporadic ALS has compartment-specific aberrant exon splicing and altered cell-matrix adhesion biology
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddp498
– volume: 7
  start-page: 603
  year: 2011
  ident: ref1
  article-title: Clinical genetics of amyotrophic lateral sclerosis: what do we really know?
  publication-title: Nature Reviews Neurology
  doi: 10.1038/nrneurol.2011.150
– volume: 22
  start-page: 2676
  year: 2013
  ident: ref46
  article-title: ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddt117
– volume: 3
  start-page: e158
  year: 2005
  ident: ref63
  article-title: A combinatorial code for splicing silencing: UAGG and GGGG motifs
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030158
– volume: 9
  start-page: e1000614
  year: 2011
  ident: ref45
  article-title: Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000614
– volume: 2
  start-page: 141
  year: 2011
  ident: ref14
  article-title: Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy
  publication-title: Protein & Cell
  doi: 10.1007/s13238-011-1014-5
– volume: 26
  start-page: 1293
  year: 2008
  ident: ref33
  article-title: An integrated software system for analyzing ChIP-chip and ChIP-seq data
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.1505
– volume: 2
  start-page: 529
  year: 2012
  ident: ref28
  article-title: Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions
  publication-title: Sci Rep
  doi: 10.1038/srep00529
– volume: 15
  start-page: 1488
  year: 2012
  ident: ref30
  article-title: Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3230
– volume: 122
  start-page: 87
  year: 2011
  ident: ref12
  article-title: Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation
  publication-title: Acta Neuropathologica
  doi: 10.1007/s00401-011-0838-7
– volume: 2
  start-page: 603
  year: 2012
  ident: ref29
  article-title: Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain
  publication-title: Sci Rep
  doi: 10.1038/srep00603
– volume: 37
  start-page: 4518
  year: 2009
  ident: ref73
  article-title: Increasing the relative expression of endogenous non-coding Steroid Receptor RNA Activator (SRA) in human breast cancer cells using modified oligonucleotides
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkp441
– volume: 9
  start-page: 37
  year: 2008
  ident: ref20
  article-title: The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response
  publication-title: BMC Cell Biology
  doi: 10.1186/1471-2121-9-37
– volume: 7
  start-page: e1002214
  year: 2011
  ident: ref18
  article-title: FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002214
– volume: 287
  start-page: 15635
  year: 2012
  ident: ref34
  article-title: TDP-43 and FUS RNA-binding Proteins Bind Distinct Sets of Cytoplasmic Messenger RNAs and Differently Regulate Their Post-transcriptional Fate in Motoneuron-like Cells
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M111.333450
– volume: 38
  start-page: 576
  year: 2010
  ident: ref37
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 125
  start-page: 273
  year: 2013
  ident: ref44
  article-title: Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-012-1043-z
– volume: 29
  start-page: 1442
  year: 2009
  ident: ref43
  article-title: Auto- and Cross-Regulation of the hnRNP L Proteins by Alternative Splicing
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.01689-08
– volume: 1814
  start-page: 1812
  year: 2011
  ident: ref60
  article-title: A fraction of the transcription factor TAF15 participates in interactions with a subset of the spliceosomal U1 snRNP complex
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbapap.2011.09.008
– volume: 108
  start-page: 316
  year: 2000
  ident: ref55
  article-title: High FUS/TLS expression in acute myeloid leukaemia samples
  publication-title: Br J Haematol
  doi: 10.1046/j.1365-2141.2000.01883.x
– volume: 24
  start-page: 1634
  year: 2010
  ident: ref49
  article-title: Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model
  publication-title: Genes & Development
  doi: 10.1101/gad.1941310
– volume: 14
  start-page: 248
  year: 2013
  ident: ref3
  article-title: The changing scene of amyotrophic lateral sclerosis
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn3430
– volume: 456
  start-page: 464
  year: 2008
  ident: ref36
  article-title: HITS-CLIP yields genome-wide insights into brain alternative RNA processing
  publication-title: Nature
  doi: 10.1038/nature07488
– volume: 7
  start-page: e39483
  year: 2012
  ident: ref19
  article-title: Knockdown of the Drosophila Fused in Sarcoma (FUS) Homologue Causes Deficient Locomotive Behavior and Shortening of Motoneuron Terminal Branches
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039483
– volume: 14
  start-page: 459
  year: 2011
  ident: ref56
  article-title: Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2779
– volume: 19
  start-page: 4160
  year: 2010
  ident: ref11
  article-title: Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddq335
– volume: 148
  start-page: 1085
  year: 2012
  ident: ref47
  article-title: Splice Modulating Therapies for Human Disease
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.014
– volume: 21
  start-page: 904
  year: 2011
  ident: ref2
  article-title: Understanding the role of TDP-43 and FUS/TLS in ALS and beyond
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2011.05.029
– volume: 24
  start-page: 1608
  year: 2005
  ident: ref51
  article-title: Nova autoregulation reveals dual functions in neuronal splicing
  publication-title: Embo J
  doi: 10.1038/sj.emboj.7600630
– volume: 323
  start-page: 1205
  year: 2009
  ident: ref8
  article-title: Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis
  publication-title: Science
  doi: 10.1126/science.1166066
– volume: 274
  start-page: 34337
  year: 1999
  ident: ref22
  article-title: Human 75-kDa DNA-pairing protein is identical to the pro-oncoprotein TLS/FUS and is able to promote D-loop formation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.48.34337
– volume: 39
  start-page: 2781
  year: 2010
  ident: ref6
  article-title: Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkq1162
– volume: 21
  start-page: 1
  year: 2011
  ident: ref17
  article-title: ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddr417
– volume: 410
  start-page: 936
  year: 2001
  ident: ref42
  article-title: A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels
  publication-title: Nature
  doi: 10.1038/35073593
– volume: 276
  start-page: 6807
  year: 2001
  ident: ref40
  article-title: Identification of an RNA binding specificity for the potential splicing factor TLS
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M008304200
– volume: 21
  start-page: 1636
  year: 2007
  ident: ref41
  article-title: A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons
  publication-title: Genes & Development
  doi: 10.1101/gad.1558107
– volume: 110
  start-page: 1741
  issue: Pt 15
  year: 1997
  ident: ref21
  article-title: TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling
  publication-title: J Cell Sci
  doi: 10.1242/jcs.110.15.1741
– volume: 20
  start-page: 540
  year: 2013
  ident: ref13
  article-title: Truncating mutations in FUS/TLS give rise to a more aggressive ALS-phenotype than missense mutations: a clinico-genetic study in Germany
  publication-title: Eur J Neurol
  doi: 10.1111/ene.12031
– volume: 39
  start-page: D876
  year: 2011
  ident: ref69
  article-title: The UCSC Genome Browser database: update 2011
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq963
– volume: 79
  start-page: 416
  year: 2013
  ident: ref57
  article-title: Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.033
– volume: 14
  start-page: 128
  year: 2013
  ident: ref72
  article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-128
– volume: 30
  start-page: 277
  year: 2010
  ident: ref52
  article-title: TDP-43 regulates its mRNA levels through a negative feedback loop
  publication-title: The EMBO Journal
  doi: 10.1038/emboj.2010.310
– volume: 15
  start-page: 1288
  year: 2007
  ident: ref48
  article-title: Antisense Oligonucleotide-induced Exon Skipping Across the Human Dystrophin Gene Transcript
  publication-title: Molecular Therapy
  doi: 10.1038/sj.mt.6300095
– volume: 2
  start-page: 477
  year: 2011
  ident: ref15
  article-title: Expression of human FUS protein in Drosophila leads to progressive neurodegeneration
  publication-title: Protein Cell
  doi: 10.1007/s13238-011-1065-7
– volume: 19
  start-page: 381
  year: 2008
  ident: ref70
  article-title: Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts
  publication-title: Genome Research
  doi: 10.1101/gr.082503.108
– volume: 45
  start-page: 453
  year: 2011
  ident: ref62
  article-title: PSF suppresses tau exon 10 inclusion by interacting with a stem-loop structure downstream of exon 10
  publication-title: J Mol Neurosci
  doi: 10.1007/s12031-011-9634-z
– volume: 10
  start-page: R25
  year: 2009
  ident: ref68
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 5
  start-page: 8
  year: 2006
  ident: ref23
  article-title: TLS, EWS and TAF15: a model for transcriptional integration of gene expression
  publication-title: Brief Funct Genomic Proteomic
  doi: 10.1093/bfgp/ell015
– volume: 16
  start-page: 130
  year: 2009
  ident: ref61
  article-title: An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1545
– volume: 7
  start-page: 919
  year: 1998
  ident: ref38
  article-title: Statistical features of human exons and their flanking regions
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/7.5.919
– volume: 23
  start-page: 1782
  year: 2004
  ident: ref59
  article-title: p54(nrb) associates with the 5′ splice site within large transcription/splicing complexes
  publication-title: Embo J
  doi: 10.1038/sj.emboj.7600187
– volume: 19
  start-page: R46
  year: 2010
  ident: ref5
  article-title: TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddq137
– reference: 20064465 - Mol Cell. 2009 Dec 25;36(6):996-1006
– reference: 20226177 - Brain Res. 2010 Jun 18;1338:67-77
– reference: 19483093 - Nucleic Acids Res. 2009 Jul;37(13):4518-31
– reference: 20959295 - Nucleic Acids Res. 2011 Jan;39(Database issue):D876-82
– reference: 23586463 - BMC Bioinformatics. 2013;14:128
– reference: 17285139 - Mol Ther. 2007 Jul;15(7):1288-96
– reference: 23474818 - Hum Mol Genet. 2013 Jul 1;22(13):2676-88
– reference: 9264461 - J Cell Sci. 1997 Aug;110 ( Pt 15):1741-50
– reference: 21829392 - PLoS Genet. 2011 Aug;7(8):e1002214
– reference: 19251627 - Science. 2009 Feb 27;323(5918):1205-8
– reference: 19251628 - Science. 2009 Feb 27;323(5918):1208-11
– reference: 15057275 - EMBO J. 2004 Apr 21;23(8):1782-91
– reference: 20606625 - EMBO J. 2010 Aug 18;29(16):2841-57
– reference: 21813273 - Curr Opin Neurobiol. 2011 Dec;21(6):904-19
– reference: 20400460 - Hum Mol Genet. 2010 Apr 15;19(R1):R46-64
– reference: 20624852 - Genes Dev. 2010 Aug 1;24(15):1634-44
– reference: 15828859 - PLoS Biol. 2005 May;3(5):e158
– reference: 22878663 - J Neuropathol Exp Neurol. 2012 Sep;71(9):779-88
– reference: 18978773 - Nature. 2008 Nov 27;456(7221):464-9
– reference: 22019700 - Biochim Biophys Acta. 2011 Dec;1814(12):1812-24
– reference: 22934129 - Sci Rep. 2012;2:603
– reference: 23023293 - Nat Neurosci. 2012 Nov;15(11):1488-97
– reference: 21541367 - PLoS Biol. 2011 Apr;9(4):e1000614
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 21344536 - Genes Chromosomes Cancer. 2011 May;50(5):338-47
– reference: 21531983 - Database (Oxford). 2011;2011:bar011
– reference: 22427648 - J Biol Chem. 2012 May 4;287(19):15635-47
– reference: 19674978 - Brain. 2009 Nov;132(Pt 11):2922-31
– reference: 21949354 - Hum Mol Genet. 2012 Jan 1;21(1):1-9
– reference: 16769671 - Brief Funct Genomic Proteomic. 2006 Mar;5(1):8-14
– reference: 23463272 - Nat Rev Neurosci. 2013 Apr;14(4):248-64
– reference: 10567410 - J Biol Chem. 1999 Nov 26;274(48):34337-42
– reference: 23389473 - RNA. 2013 Apr;19(4):498-509
– reference: 23931993 - Neuron. 2013 Aug 7;79(3):416-38
– reference: 18978777 - Nat Biotechnol. 2008 Nov;26(11):1293-300
– reference: 21989245 - Nat Rev Neurol. 2011 Nov;7(11):603-15
– reference: 14731397 - Mol Cell. 2004 Jan 16;13(1):91-100
– reference: 19136955 - Nat Struct Mol Biol. 2009 Feb;16(2):130-7
– reference: 21748598 - Protein Cell. 2011 Jun;2(6):477-86
– reference: 11309619 - Nature. 2001 Apr 19;410(6831):936-9
– reference: 21604077 - Acta Neuropathol. 2011 Jul;122(1):87-98
– reference: 10655065 - Nat Genet. 2000 Feb;24(2):175-9
– reference: 15933722 - EMBO J. 2005 Apr 20;24(8):1608-20
– reference: 19131956 - Nat Protoc. 2009;4(1):44-57
– reference: 17606642 - Genes Dev. 2007 Jul 1;21(13):1636-52
– reference: 22829983 - Sci Rep. 2012;2:529
– reference: 22068331 - Mol Syst Biol. 2011;7:548
– reference: 21881826 - J Mol Neurosci. 2011 Nov;45(3):453-66
– reference: 19864493 - Hum Mol Genet. 2010 Jan 15;19(2):313-28
– reference: 20513432 - Mol Cell. 2010 May 28;38(4):576-89
– reference: 10691862 - Br J Haematol. 2000 Feb;108(2):316-21
– reference: 23557964 - Mol Cell Neurosci. 2013 Sep;56:475-86
– reference: 22424220 - Cell. 2012 Mar 16;148(6):1085-8
– reference: 21358643 - Nat Neurosci. 2011 Apr;14(4):459-68
– reference: 11098054 - J Biol Chem. 2001 Mar 2;276(9):6807-16
– reference: 22724023 - PLoS One. 2012;7(6):e39483
– reference: 23217123 - Eur J Neurol. 2013 Mar;20(3):540-6
– reference: 22081015 - Nat Struct Mol Biol. 2011 Dec;18(12):1428-31
– reference: 18620564 - BMC Cell Biol. 2008;9:37
– reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
– reference: 22961620 - Acta Neuropathol. 2013 Feb;125(2):273-88
– reference: 21131904 - EMBO J. 2011 Jan 19;30(2):277-88
– reference: 21408206 - PLoS Genet. 2011 Mar;7(3):e1002011
– reference: 16314267 - Methods. 2005 Dec;37(4):376-86
– reference: 9536098 - Hum Mol Genet. 1998 May;7(5):919-32
– reference: 21109527 - Nucleic Acids Res. 2011 Apr;39(7):2781-98
– reference: 19303844 - Cell. 2009 Mar 20;136(6):1001-4
– reference: 19783543 - J Mol Cell Biol. 2009 Dec;1(2):82-92
– reference: 19124611 - Mol Cell Biol. 2009 Mar;29(6):1442-51
– reference: 20699327 - Hum Mol Genet. 2010 Nov 1;19(21):4160-75
– reference: 22713872 - Genes Dev. 2012 Jun 15;26(12):1351-63
– reference: 19116412 - Genome Res. 2009 Mar;19(3):381-94
– reference: 21327870 - Protein Cell. 2011 Feb;2(2):141-9
SSID ssj0035897
Score 2.4956105
Snippet The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its...
The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its...
  The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1003895
SubjectTerms Alternative Splicing - genetics
Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - etiology
Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - pathology
Binding proteins
Cytoplasm - genetics
Exons - genetics
Gene Expression Regulation - genetics
Gene mutations
Genetic regulation
Green Fluorescent Proteins - genetics
HEK293 Cells
HeLa Cells
Humans
Introns - genetics
Medical research
Mutation
Physiological aspects
RNA Precursors - biosynthesis
RNA Precursors - genetics
RNA-Binding Protein FUS - biosynthesis
RNA-Binding Protein FUS - genetics
Rodents
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQJSQuiO8NLGAQEqewThzHybEgqgWhRaIU7QnLdhxYqSTVpjnsv98Z2602CGn3wKWH5qVq5k08M_L4DSFvtLWyyaRJJec2LVyZp6ZmQEheQLqsWyGM77Y4KY9XxedTcXpl1Bf2hAV54GC4o1JqZnSLQm4thO7KcCdMZpoWltmS5QZXX4h5u2IqrMFcVGGsihAc_kXN4qE5LrOjyNG7DRCEPQIQscUkKHnt_v0KPdus--Ff6effXZRXwtLiHrkb80k6D89xn9xy3QNyO0yYvHhIfs6_LFMdKXANXayW9M8Ytt8HCqX2uN7Ss45iZ_l5D5xHjN9E77woOB1wixsiHNVdQzVqHoT59fATj8hq8fH7h-M0jlRIrSyLbZq5Ntdla-BDZ5brEgxphKktlJGNw-LE1WXTylxUTcMc51lWWs0qx6rCMpvxx2TW9Z07INQY2VQGyw3MyXILziDaghuoV0TtCpcQvrOpslFvHMderJXfRJNQdwQTKWRCRSYSku7v2gS9jWvw75GuPRbVsv0X4EMq-pC6zocS8hLJVuHo6f6dV3MuICHOJcsS8tojUDGjw5acX3ocBvXp648bgJYnNwF9m4DeRlDbg82sjmclwPIo1zVBHk6Q4Ch2cvkA_XdnugEqPXg1gNaaJeTVzqcV3oXNdp3rR8QUkKTWrOYJeRJ8fG9foBpV4mRC5MT7JwRMr3Rnv71sOeSGBc_F0__B2DNyJ8e5JL6r8pDMtuejew7Z4da88AvBJYY1YWs
  priority: 102
  providerName: Directory of Open Access Journals
Title ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation
URI https://www.ncbi.nlm.nih.gov/pubmed/24204307
https://www.proquest.com/docview/1449769093
https://pubmed.ncbi.nlm.nih.gov/PMC3814325
https://doaj.org/article/67a0baf7079f4418b3e5b1bdf067602b
http://dx.doi.org/10.1371/journal.pgen.1003895
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa2Tki8IH4vMEpASDxlcuI4Th4Q6tCqgaCglaI-EdmOs00qSWlaif333DluRNAQfelD8zlq7s65u975O0JeSa1FEQoVCMZ0EJskClRGQSFRDOGyLDlXtttikpzN4g9zPt8j25mtToDNjakdzpOarRbHv35ev4UN_8ZObRDhdtHxEkSOVX_wwXyfHIBvErhVP8VdXYHxtB23wjmDX5dRd5juX3fpOSvL6d-9uQfLRd3cFJb-3V35h7sa3yV3XJzpj1rDuEf2THWf3GonT14_IN9HH6eBdKoxhT-eTf0fm7Ys3_iQgm8Wa_-q8rHjfFWDLTiMLa5Xlizcb7D0DZ7Pl1XhS-RCaOfawy0ektn49Ou7s8CNWgi0SOJ1EJoykkmp4EOGmslEFaXiKtOQXhYGkxaTJUUpIp4WBTWMhWGiJU0NTWNNdcgekUFVV-aQ-EqJIlWYhmCsFmkwEl7GTEEewzMTG4-wrUxz7XjIcRzGIrfFNQH5SCuiHDWRO014JOhWLVsejv_gT1BdHRZZtO0X9eoid5syT4SkSpZIElhCWJgqZrgK4dHBhSc0Uh55jsrO2yOp3bsgHzEOgXIkaOiRlxaBTBoVtupcyE3T5O8_f9sBNJ3sAjrvgV47UFmDzLR0ZyhA8kjj1UMe9ZBgKLp3-RDtdyu6BjJA2Bqg1ox65MXWpnNchU14lak3iIkheM1oxjzyuLXxTr6gamSPEx4RPevvKaB_pbq6tHTmEDPGLOJPdn62p-R2hENJbEvlERmsVxvzDELDtRqSfTEXQ3Jwcjr5cj60f7AM7RvgNzVpZjg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALS-associated+FUS+mutations+result+in+compromised+FUS+alternative+splicing+and+autoregulation&rft.jtitle=PLoS+genetics&rft.au=Zhou%2C+Yueqin&rft.au=Liu%2C+Songyan&rft.au=Liu%2C+Guodong&rft.au=Ozturk%2C+Arzu&rft.date=2013-10-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=9&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pgen.1003895&rft.externalDocID=A351612701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon