ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation
The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasin...
Saved in:
Published in | PLoS genetics Vol. 9; no. 10; p. e1003895 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.10.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration. |
---|---|
AbstractList | The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, t was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration. The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration. FUS/TLS is a frequently mutated gene in amyotrophic lateral sclerosis (ALS). ALS, also known as Lou Gehrig's disease, is characterized by a progressive degeneration of motor neurons. The abnormal cytoplasmic accumulation of mutant FUS protein is a characteristic pathology of ALS; however, recent evidence increasingly suggests deficiencies in FUS nuclear function may also contribute to neurodegeneration in ALS. Here we report a novel autoregulatory mechanism of FUS by alternative splicing and nonsense mediated decay (NMD). We show FUS binds to exon 7 and flanking introns of its own pre-mRNAs. This results in exon skipping, inducing a reading frame shift and subsequent degradation of the splice variants. As such, this mechanism provides a feedback loop that controls the homeostasis of FUS protein levels. This balance is disrupted in ALS-associated FUS mutants, which are deficient in nuclear localization and FUS-dependent alternative splicing. As a result, the abnormal accumulation of mutant FUS protein in ALS neurons goes unchecked and uncontrolled. Our study provides novel insight into the molecular mechanism by which FUS regulates gene expression and new understanding of the role of FUS in disease at the molecular level. This may lead to new potential therapeutic targets for the treatment of ALS. The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration. The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration.The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration. The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or δExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration. |
Audience | Academic |
Author | Liu, Guodong Zhou, Yueqin Liu, Songyan Hicks, Geoffrey G. Öztürk, Arzu |
AuthorAffiliation | 4 Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada Centre for Cancer Biology, SA Pathology, Australia 2 Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada 3 Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada 1 Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada |
AuthorAffiliation_xml | – name: 1 Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada – name: 3 Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada – name: 2 Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada – name: Centre for Cancer Biology, SA Pathology, Australia – name: 4 Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada |
Author_xml | – sequence: 1 givenname: Yueqin surname: Zhou fullname: Zhou, Yueqin – sequence: 2 givenname: Songyan surname: Liu fullname: Liu, Songyan – sequence: 3 givenname: Guodong surname: Liu fullname: Liu, Guodong – sequence: 4 givenname: Arzu surname: Öztürk fullname: Öztürk, Arzu – sequence: 5 givenname: Geoffrey G. surname: Hicks fullname: Hicks, Geoffrey G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24204307$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk1-L1DAUxYusuLuj30C0IIg-zJg0adPug1AGVwdGF3ZcHw1petvJkEnGJl3025v5J1MRUQptSH_n5OZy7mV0ZqyBKHqK0QQTht-sbN8ZoSebFswEI0TyIn0QXeA0JWNGET07WZ9Hl86tApPmBXsUnSc0QZQgdhF9LeeLcemclUp4qOPru0X8sffCK2tcfAuu1z5WJp7a9aaza-UOTKk9hOO9uod4sdFKKtPGwtRx2XvbQdvrncXj6GEjtIMnh-8ourt-93n6YTy_eT-blvOxZBn1YwxNIrKmCi-BJRFZVTdVWhWSoqQGRkkBRVY3LEnzukZACMaZFCgHlFOJJCaj6Pned6Ot44fWOI5puHCgCxSI2Z6orVjxTafWovvBrVB8t2G7lovOK6mBZ0ygSjQMsaKhFOcVgbTCoSSUsQwlVfB6ezitr9ZQSzC-E3pgOvxj1JK39p6THFOSpMHg1cGgs996cJ6HzkrQWhiw_bZuWrCsQKH2UfRij7YilKZMY4Oj3OK8JCnOcMLQ9v6TP1DhqWGtZAhOo8L-QPB6IAiMh---Fb1zfLa4_Q_207-zN1-G7MsTdglC-6Wzut9lbwg-O-33r0YfYxyAqz0gO-tcBw2Xap_h0AalOUZ8OzPHYPDtzPDDzAQx_U189P-r7Ce5Ahn0 |
CitedBy_id | crossref_primary_10_1002_1873_3468_13924 crossref_primary_10_1016_j_neuron_2019_03_014 crossref_primary_10_1007_s40265_020_01363_3 crossref_primary_10_1093_hmg_ddz217 crossref_primary_10_1073_pnas_1810413115 crossref_primary_10_1074_jbc_M114_573246 crossref_primary_10_1007_s00401_023_02666_x crossref_primary_10_1134_S0006297924140037 crossref_primary_10_1242_jcs_236836 crossref_primary_10_1038_s42003_021_02538_8 crossref_primary_10_7554_eLife_40811 crossref_primary_10_1080_15476286_2016_1211225 crossref_primary_10_1101_gad_335836_119 crossref_primary_10_3390_cells12202461 crossref_primary_10_15252_embj_201592559 crossref_primary_10_3389_fncel_2020_581907 crossref_primary_10_1016_j_nbd_2020_104935 crossref_primary_10_1186_s40478_020_01111_4 crossref_primary_10_1016_j_celrep_2023_112025 crossref_primary_10_1038_ncomms7171 crossref_primary_10_1042_BST20140102 crossref_primary_10_1093_nar_gkaa410 crossref_primary_10_1002_glia_23825 crossref_primary_10_1016_S1474_4422_24_00517_9 crossref_primary_10_1002_wrna_1338 crossref_primary_10_1093_hmg_ddz048 crossref_primary_10_1080_21678421_2023_2272170 crossref_primary_10_1007_s11064_015_1758_z crossref_primary_10_1007_s10571_019_00717_0 crossref_primary_10_1093_nar_gkae184 crossref_primary_10_3389_fnins_2020_00684 crossref_primary_10_1016_j_neuroscience_2014_12_007 crossref_primary_10_1093_nar_gkad774 crossref_primary_10_2139_ssrn_3351828 crossref_primary_10_1096_fj_202301979R crossref_primary_10_1007_s10522_014_9531_2 crossref_primary_10_32607_actanaturae_27337 crossref_primary_10_3390_ijms24043181 crossref_primary_10_1186_s13024_016_0075_6 crossref_primary_10_3390_ijms22083977 crossref_primary_10_1016_j_virusres_2014_12_032 crossref_primary_10_3390_ijms21249424 crossref_primary_10_1111_jnc_15281 crossref_primary_10_1111_jnc_15280 crossref_primary_10_1109_TCBB_2015_2480068 crossref_primary_10_1007_s11692_024_09644_5 crossref_primary_10_1016_j_neuron_2020_08_022 crossref_primary_10_1186_s40478_022_01314_x crossref_primary_10_1016_j_brainres_2018_03_037 crossref_primary_10_1111_cpr_13047 crossref_primary_10_3389_fnins_2018_00473 crossref_primary_10_1007_s00418_015_1393_4 crossref_primary_10_20538_1682_0363_2021_3_193_202 crossref_primary_10_1016_j_mcn_2020_103524 crossref_primary_10_1186_s13059_024_03271_1 crossref_primary_10_1038_s41598_017_00091_1 crossref_primary_10_1038_s41598_018_33964_0 crossref_primary_10_1186_s13578_020_00394_3 crossref_primary_10_1038_s41598_019_42091_3 crossref_primary_10_1016_j_celrep_2019_05_085 crossref_primary_10_1093_brain_awx082 crossref_primary_10_1007_s00439_017_1830_7 crossref_primary_10_1186_s12920_017_0274_1 crossref_primary_10_3109_21678421_2015_1040994 crossref_primary_10_3389_fgene_2018_00712 crossref_primary_10_1111_jnc_13668 crossref_primary_10_7554_eLife_37754 crossref_primary_10_1039_D0CP01635G crossref_primary_10_1016_j_neuron_2023_02_028 crossref_primary_10_1017_cjn_2022_336 crossref_primary_10_1093_nar_gkad319 crossref_primary_10_1073_pnas_2413721122 crossref_primary_10_1016_j_tig_2018_10_002 crossref_primary_10_1038_s41598_017_15944_y crossref_primary_10_1093_hmg_ddy046 crossref_primary_10_15252_embr_201541726 crossref_primary_10_3389_fnins_2019_01310 crossref_primary_10_1038_s41419_022_05470_9 crossref_primary_10_3389_fmolb_2018_00044 crossref_primary_10_1093_nar_gkad161 crossref_primary_10_3390_cells12151948 crossref_primary_10_1038_s41467_024_52151_6 crossref_primary_10_1038_s41598_018_29716_9 crossref_primary_10_3390_cells14010047 crossref_primary_10_1016_j_molcel_2019_09_022 crossref_primary_10_4161_rdis_29515 crossref_primary_10_1002_1873_3468_12646 crossref_primary_10_1007_s10238_024_01525_7 crossref_primary_10_15252_embj_201593791 crossref_primary_10_1186_s13024_021_00477_w crossref_primary_10_1073_pnas_1509744112 crossref_primary_10_1016_j_molcel_2018_05_019 crossref_primary_10_1080_15384101_2021_1886661 crossref_primary_10_3390_jcm12041428 crossref_primary_10_1016_j_brainres_2016_05_022 crossref_primary_10_1038_s41598_019_45530_3 crossref_primary_10_1093_hmg_ddaa159 crossref_primary_10_1016_j_stemcr_2016_02_011 crossref_primary_10_1016_j_nbd_2014_11_003 crossref_primary_10_1016_j_celrep_2019_11_094 crossref_primary_10_1007_s11010_016_2904_x crossref_primary_10_1016_j_tins_2015_02_003 crossref_primary_10_3390_ijms22147566 crossref_primary_10_1111_jnc_13601 crossref_primary_10_3390_biology13040215 crossref_primary_10_1038_s41598_022_12098_4 crossref_primary_10_1016_j_isci_2023_108152 crossref_primary_10_1038_nrneurol_2014_78 crossref_primary_10_1002_jps_24322 crossref_primary_10_1007_s13311_015_0340_3 crossref_primary_10_1093_genetics_iyab145 crossref_primary_10_1007_s10571_020_00899_y crossref_primary_10_1126_sciadv_abf8660 crossref_primary_10_1016_j_stemcr_2022_01_004 crossref_primary_10_1080_19491034_2024_2314297 crossref_primary_10_1093_nar_gkv157 crossref_primary_10_1186_s40035_023_00377_7 crossref_primary_10_3389_fcell_2021_623394 crossref_primary_10_1016_j_molcel_2018_11_012 crossref_primary_10_1111_febs_13685 crossref_primary_10_1007_s00401_016_1586_5 crossref_primary_10_3390_ijms21103464 crossref_primary_10_1080_10985549_2024_2383296 crossref_primary_10_1016_j_biocel_2017_07_013 crossref_primary_10_1093_nar_gkz193 crossref_primary_10_1093_brain_awaa076 crossref_primary_10_1038_ncomms14741 crossref_primary_10_1134_S0026893317020091 crossref_primary_10_1016_j_biocel_2019_03_009 crossref_primary_10_1038_srep25159 crossref_primary_10_1016_j_molcel_2018_02_001 crossref_primary_10_1093_nar_gkx508 crossref_primary_10_3389_fncel_2017_00243 crossref_primary_10_3389_fnmol_2021_686995 crossref_primary_10_1093_hmg_ddv104 crossref_primary_10_1016_j_gene_2017_04_008 crossref_primary_10_1093_hmg_ddu094 crossref_primary_10_1177_1759091414544472 crossref_primary_10_3390_ijms22020904 crossref_primary_10_1016_j_freeradbiomed_2025_01_012 crossref_primary_10_1038_ncomms5335 crossref_primary_10_1093_hmg_ddu494 crossref_primary_10_1242_dmm_020099 crossref_primary_10_1016_j_pneurobio_2016_09_004 crossref_primary_10_3389_fnins_2018_00028 crossref_primary_10_1016_j_brainres_2018_01_015 crossref_primary_10_1002_wrna_1397 crossref_primary_10_3389_fmolb_2017_00067 crossref_primary_10_1007_s00401_017_1687_9 crossref_primary_10_1111_jnc_13625 crossref_primary_10_1016_j_brainres_2018_04_043 crossref_primary_10_1007_s00401_020_02203_0 crossref_primary_10_3390_cancers17010081 crossref_primary_10_1002_med_21937 crossref_primary_10_1002_wrna_1394 |
Cites_doi | 10.1371/journal.pgen.1002011 10.1016/S1097-2765(03)00502-1 10.1038/msb.2011.81 10.1038/emboj.2010.143 10.1101/gad.187278.112 10.1126/science.1165942 10.1038/nsmb.2163 10.1097/NEN.0b013e318264f164 10.1093/brain/awp214 10.1002/gcc.20858 10.1016/j.cell.2009.03.006 10.1016/j.ymeth.2005.07.018 10.1016/S0022-2836(05)80360-2 10.1093/database/bar011 10.1261/rna.037804.112 10.1093/jmcb/mjp025 10.1016/j.brainres.2010.03.008 10.1038/nprot.2008.211 10.1038/72842 10.1016/j.molcel.2009.12.003 10.1093/hmg/ddp498 10.1038/nrneurol.2011.150 10.1093/hmg/ddt117 10.1371/journal.pbio.0030158 10.1371/journal.pbio.1000614 10.1007/s13238-011-1014-5 10.1038/nbt.1505 10.1038/srep00529 10.1038/nn.3230 10.1007/s00401-011-0838-7 10.1038/srep00603 10.1093/nar/gkp441 10.1186/1471-2121-9-37 10.1371/journal.pgen.1002214 10.1074/jbc.M111.333450 10.1016/j.molcel.2010.05.004 10.1007/s00401-012-1043-z 10.1128/MCB.01689-08 10.1016/j.bbapap.2011.09.008 10.1046/j.1365-2141.2000.01883.x 10.1101/gad.1941310 10.1038/nrn3430 10.1038/nature07488 10.1371/journal.pone.0039483 10.1038/nn.2779 10.1093/hmg/ddq335 10.1016/j.cell.2012.02.014 10.1016/j.conb.2011.05.029 10.1038/sj.emboj.7600630 10.1126/science.1166066 10.1074/jbc.274.48.34337 10.1093/nar/gkq1162 10.1093/hmg/ddr417 10.1038/35073593 10.1074/jbc.M008304200 10.1101/gad.1558107 10.1242/jcs.110.15.1741 10.1111/ene.12031 10.1093/nar/gkq963 10.1016/j.neuron.2013.07.033 10.1186/1471-2105-14-128 10.1038/emboj.2010.310 10.1038/sj.mt.6300095 10.1007/s13238-011-1065-7 10.1101/gr.082503.108 10.1007/s12031-011-9634-z 10.1186/gb-2009-10-3-r25 10.1093/bfgp/ell015 10.1038/nsmb.1545 10.1093/hmg/7.5.919 10.1038/sj.emboj.7600187 10.1093/hmg/ddq137 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Public Library of Science 2013 Zhou et al 2013 Zhou et al 2013 Zhou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Zhou Y, Liu S, Liu G, Öztürk A, Hicks GG (2013) ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation. PLoS Genet 9(10): e1003895. doi:10.1371/journal.pgen.1003895 |
Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Zhou et al 2013 Zhou et al – notice: 2013 Zhou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Zhou Y, Liu S, Liu G, Öztürk A, Hicks GG (2013) ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation. PLoS Genet 9(10): e1003895. doi:10.1371/journal.pgen.1003895 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1003895 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | FUS Autoregulation and ALS |
EISSN | 1553-7404 |
ExternalDocumentID | 1458933190 oai_doaj_org_article_67a0baf7079f4418b3e5b1bdf067602b PMC3814325 A351612701 24204307 10_1371_journal_pgen_1003895 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB PV9 RIG RZL WOQ PMFND 7X8 5PM PUEGO 3V. AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c764t-1ef2a6fb2a6a1c3a6bdfb5b9c402de7439e96df7258dd0e33116ca08e084c0c13 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun Oct 01 00:20:33 EDT 2023 Wed Aug 27 01:30:43 EDT 2025 Thu Aug 21 14:05:32 EDT 2025 Fri Jul 11 10:10:15 EDT 2025 Tue Jun 17 21:08:25 EDT 2025 Tue Jun 10 20:34:36 EDT 2025 Fri Jun 27 03:56:44 EDT 2025 Fri Jun 27 04:57:47 EDT 2025 Fri Jun 27 04:17:04 EDT 2025 Thu May 22 21:20:50 EDT 2025 Mon Jul 21 06:06:47 EDT 2025 Thu Apr 24 22:59:41 EDT 2025 Tue Jul 01 04:23:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c764t-1ef2a6fb2a6a1c3a6bdfb5b9c402de7439e96df7258dd0e33116ca08e084c0c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: YZ AO GGH. Performed the experiments: YZ GL. Analyzed the data: YZ SL GGH. Wrote the paper: YZ GGH. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1003895 |
PMID | 24204307 |
PQID | 1449769093 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1458933190 doaj_primary_oai_doaj_org_article_67a0baf7079f4418b3e5b1bdf067602b pubmedcentral_primary_oai_pubmedcentral_nih_gov_3814325 proquest_miscellaneous_1449769093 gale_infotracmisc_A351612701 gale_infotracacademiconefile_A351612701 gale_incontextgauss_ISR_A351612701 gale_incontextgauss_ISN_A351612701 gale_incontextgauss_IOV_A351612701 gale_healthsolutions_A351612701 pubmed_primary_24204307 crossref_citationtrail_10_1371_journal_pgen_1003895 crossref_primary_10_1371_journal_pgen_1003895 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2013 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | AY Tan (ref24) 2009; 1 C Colombrita (ref34) 2012; 287 M Neumann (ref10) 2009; 132 Z Sun (ref45) 2011; 9 Y Chen (ref15) 2011; 2 WJ Law (ref23) 2006; 5 C Lagier-Tourenne (ref4) 2009; 136 GW Yeo (ref61) 2009; 16 PM Andersen (ref1) 2011; 7 S Kameoka (ref59) 2004; 23 M Leichter (ref60) 2011; 1814 T Murakami (ref17) 2011; 21 H Zinszner (ref21) 1997; 110 J Ule (ref65) 2005; 37 T Nakaya (ref32) 2013; 19 Y Hua (ref49) 2010; 24 S Heinz (ref37) 2010; 38 PL Boutz (ref41) 2007; 21 MC Wollerton (ref50) 2004; 13 D Dormann (ref25) 2013 IRA Mackenzie (ref12) 2011; 122 K Han (ref63) 2005; 3 TJ Kwiatkowski (ref8) 2009; 323 MQ Zhang (ref38) 1998; 7 SF Altschul (ref66) 1990; 215 SD Wilton (ref48) 2007; 15 S Waibel (ref13) 2013; 20 YM Ayala (ref52) 2010; 30 KM Iijima (ref19) 2012; 7 A Lerga (ref40) 2001; 276 S Da Cruz (ref2) 2011; 21 S-C Ling (ref57) 2013; 79 PA Fujita (ref69) 2011; 39 JR Sanford (ref70) 2008; 19 J Xie (ref42) 2001; 410 C Vance (ref9) 2009; 323 DS Dichmann (ref64) 2012; 26 K Anthony (ref26) 2010; 1338 Y Kino (ref6) 2010; 39 JC Mitchell (ref44) 2013; 125 N Suzuki (ref58) 2012; 71 D Dormann (ref7) 2010; 29 M Polymenidou (ref56) 2011; 14 Y Xue (ref35) 2009; 36 S Ishigaki (ref28) 2012; 2 O Rossbach (ref43) 2009; 29 D Blankenberg (ref67) 2011; 2011 JI Spitzer (ref54) 2011; 50 BK Dredge (ref51) 2005; 24 MK Andersson (ref20) 2008; 9 KI Mills (ref55) 2000; 108 C Cooper (ref73) 2009; 37 B Rogelj (ref29) 2012; 2 H Baechtold (ref22) 1999; 274 P Spitali (ref47) 2012; 148 C Lagier-Tourenne (ref30) 2012; 15 DA Bosco (ref11) 2010; 19 JI Hoell (ref31) 2011; 18 GG Hicks (ref53) 2000; 24 K Fushimi (ref14) 2011; 2 E Kabashi (ref18) 2011; 7 H Ji (ref33) 2008; 26 P Ray (ref62) 2011; 45 C Huang (ref16) 2011; 7 DD Licatalosi (ref36) 2008; 456 C Lagier-Tourenne (ref5) 2010; 19 N Nagaraj (ref71) 2011; 7 W Huang da (ref39) 2009; 4 B Langmead (ref68) 2009; 10 C Vance (ref46) 2013; 22 SJ Rabin (ref27) 2010; 19 W Robberecht (ref3) 2013; 14 EY Chen (ref72) 2013; 14 15933722 - EMBO J. 2005 Apr 20;24(8):1608-20 22427648 - J Biol Chem. 2012 May 4;287(19):15635-47 22934129 - Sci Rep. 2012;2:603 19124611 - Mol Cell Biol. 2009 Mar;29(6):1442-51 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 23557964 - Mol Cell Neurosci. 2013 Sep;56:475-86 21131904 - EMBO J. 2011 Jan 19;30(2):277-88 21327870 - Protein Cell. 2011 Feb;2(2):141-9 19864493 - Hum Mol Genet. 2010 Jan 15;19(2):313-28 21829392 - PLoS Genet. 2011 Aug;7(8):e1002214 22068331 - Mol Syst Biol. 2011;7:548 17606642 - Genes Dev. 2007 Jul 1;21(13):1636-52 20226177 - Brain Res. 2010 Jun 18;1338:67-77 10691862 - Br J Haematol. 2000 Feb;108(2):316-21 21748598 - Protein Cell. 2011 Jun;2(6):477-86 21408206 - PLoS Genet. 2011 Mar;7(3):e1002011 23474818 - Hum Mol Genet. 2013 Jul 1;22(13):2676-88 10655065 - Nat Genet. 2000 Feb;24(2):175-9 21344536 - Genes Chromosomes Cancer. 2011 May;50(5):338-47 16769671 - Brief Funct Genomic Proteomic. 2006 Mar;5(1):8-14 20699327 - Hum Mol Genet. 2010 Nov 1;19(21):4160-75 11098054 - J Biol Chem. 2001 Mar 2;276(9):6807-16 22081015 - Nat Struct Mol Biol. 2011 Dec;18(12):1428-31 14731397 - Mol Cell. 2004 Jan 16;13(1):91-100 22019700 - Biochim Biophys Acta. 2011 Dec;1814(12):1812-24 21989245 - Nat Rev Neurol. 2011 Nov;7(11):603-15 19251628 - Science. 2009 Feb 27;323(5918):1208-11 21949354 - Hum Mol Genet. 2012 Jan 1;21(1):1-9 23217123 - Eur J Neurol. 2013 Mar;20(3):540-6 15828859 - PLoS Biol. 2005 May;3(5):e158 21109527 - Nucleic Acids Res. 2011 Apr;39(7):2781-98 22878663 - J Neuropathol Exp Neurol. 2012 Sep;71(9):779-88 23463272 - Nat Rev Neurosci. 2013 Apr;14(4):248-64 15057275 - EMBO J. 2004 Apr 21;23(8):1782-91 20400460 - Hum Mol Genet. 2010 Apr 15;19(R1):R46-64 22961620 - Acta Neuropathol. 2013 Feb;125(2):273-88 23389473 - RNA. 2013 Apr;19(4):498-509 20624852 - Genes Dev. 2010 Aug 1;24(15):1634-44 11309619 - Nature. 2001 Apr 19;410(6831):936-9 20064465 - Mol Cell. 2009 Dec 25;36(6):996-1006 22829983 - Sci Rep. 2012;2:529 21813273 - Curr Opin Neurobiol. 2011 Dec;21(6):904-19 23023293 - Nat Neurosci. 2012 Nov;15(11):1488-97 20606625 - EMBO J. 2010 Aug 18;29(16):2841-57 18978773 - Nature. 2008 Nov 27;456(7221):464-9 16314267 - Methods. 2005 Dec;37(4):376-86 22713872 - Genes Dev. 2012 Jun 15;26(12):1351-63 19251627 - Science. 2009 Feb 27;323(5918):1205-8 19674978 - Brain. 2009 Nov;132(Pt 11):2922-31 17285139 - Mol Ther. 2007 Jul;15(7):1288-96 18620564 - BMC Cell Biol. 2008;9:37 19783543 - J Mol Cell Biol. 2009 Dec;1(2):82-92 10567410 - J Biol Chem. 1999 Nov 26;274(48):34337-42 9536098 - Hum Mol Genet. 1998 May;7(5):919-32 19116412 - Genome Res. 2009 Mar;19(3):381-94 23586463 - BMC Bioinformatics. 2013;14:128 22424220 - Cell. 2012 Mar 16;148(6):1085-8 21531983 - Database (Oxford). 2011;2011:bar011 19303844 - Cell. 2009 Mar 20;136(6):1001-4 9264461 - J Cell Sci. 1997 Aug;110 ( Pt 15):1741-50 20513432 - Mol Cell. 2010 May 28;38(4):576-89 21604077 - Acta Neuropathol. 2011 Jul;122(1):87-98 19483093 - Nucleic Acids Res. 2009 Jul;37(13):4518-31 19261174 - Genome Biol. 2009;10(3):R25 18978777 - Nat Biotechnol. 2008 Nov;26(11):1293-300 23931993 - Neuron. 2013 Aug 7;79(3):416-38 21541367 - PLoS Biol. 2011 Apr;9(4):e1000614 21881826 - J Mol Neurosci. 2011 Nov;45(3):453-66 22724023 - PLoS One. 2012;7(6):e39483 19136955 - Nat Struct Mol Biol. 2009 Feb;16(2):130-7 21358643 - Nat Neurosci. 2011 Apr;14(4):459-68 20959295 - Nucleic Acids Res. 2011 Jan;39(Database issue):D876-82 19131956 - Nat Protoc. 2009;4(1):44-57 |
References_xml | – volume: 7 start-page: e1002011 year: 2011 ident: ref16 article-title: FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002011 – volume: 13 start-page: 91 year: 2004 ident: ref50 article-title: Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay publication-title: Mol Cell doi: 10.1016/S1097-2765(03)00502-1 – volume: 7 start-page: 548 year: 2011 ident: ref71 article-title: Deep proteome and transcriptome mapping of a human cancer cell line publication-title: Mol Syst Biol doi: 10.1038/msb.2011.81 – volume: 29 start-page: 2841 year: 2010 ident: ref7 article-title: ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import publication-title: The EMBO Journal doi: 10.1038/emboj.2010.143 – volume: 26 start-page: 1351 year: 2012 ident: ref64 article-title: fus/TLS orchestrates splicing of developmental regulators during gastrulation publication-title: Genes & Development doi: 10.1101/gad.187278.112 – volume: 323 start-page: 1208 year: 2009 ident: ref9 article-title: Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 publication-title: Science doi: 10.1126/science.1165942 – volume: 18 start-page: 1428 year: 2011 ident: ref31 article-title: RNA targets of wild-type and mutant FET family proteins publication-title: Nature Structural & Molecular Biology doi: 10.1038/nsmb.2163 – year: 2013 ident: ref25 article-title: Fused in sarcoma (FUS): An oncogene goes awry in neurodegeneration publication-title: Mol Cell Neurosci – volume: 71 start-page: 779 year: 2012 ident: ref58 article-title: FUS/TLS-immunoreactive neuronal and glial cell inclusions increase with disease duration in familial amyotrophic lateral sclerosis with an R521C FUS/TLS mutation publication-title: J Neuropathol Exp Neurol doi: 10.1097/NEN.0b013e318264f164 – volume: 132 start-page: 2922 year: 2009 ident: ref10 article-title: A new subtype of frontotemporal lobar degeneration with FUS pathology publication-title: Brain doi: 10.1093/brain/awp214 – volume: 50 start-page: 338 year: 2011 ident: ref54 article-title: mRNA and protein levels of FUS, EWSR1, and TAF15 are upregulated in liposarcoma publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.20858 – volume: 136 start-page: 1001 year: 2009 ident: ref4 article-title: Rethinking ALS: The FUS about TDP-43 publication-title: Cell doi: 10.1016/j.cell.2009.03.006 – volume: 37 start-page: 376 year: 2005 ident: ref65 article-title: CLIP: A method for identifying protein–RNA interaction sites in living cells publication-title: Methods doi: 10.1016/j.ymeth.2005.07.018 – volume: 215 start-page: 403 year: 1990 ident: ref66 article-title: Basic local alignment search tool publication-title: J Mol Biol doi: 10.1016/S0022-2836(05)80360-2 – volume: 2011 start-page: bar011 year: 2011 ident: ref67 article-title: Integrating diverse databases into an unified analysis framework: a Galaxy approach publication-title: Database (Oxford) doi: 10.1093/database/bar011 – volume: 19 start-page: 498 year: 2013 ident: ref32 article-title: FUS regulates genes coding for RNA-binding proteins in neurons by binding to their highly conserved introns publication-title: Rna doi: 10.1261/rna.037804.112 – volume: 1 start-page: 82 year: 2009 ident: ref24 article-title: The TET Family of Proteins: Functions and Roles in Disease publication-title: Journal of Molecular Cell Biology doi: 10.1093/jmcb/mjp025 – volume: 1338 start-page: 67 year: 2010 ident: ref26 article-title: Aberrant RNA processing events in neurological disorders publication-title: Brain Res doi: 10.1016/j.brainres.2010.03.008 – volume: 4 start-page: 44 year: 2009 ident: ref39 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat Protoc doi: 10.1038/nprot.2008.211 – volume: 24 start-page: 175 year: 2000 ident: ref53 article-title: Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death publication-title: Nat Genet doi: 10.1038/72842 – volume: 36 start-page: 996 year: 2009 ident: ref35 article-title: Genome-wide Analysis of PTB-RNA Interactions Reveals a Strategy Used by the General Splicing Repressor to Modulate Exon Inclusion or Skipping publication-title: Molecular Cell doi: 10.1016/j.molcel.2009.12.003 – volume: 19 start-page: 313 year: 2010 ident: ref27 article-title: Sporadic ALS has compartment-specific aberrant exon splicing and altered cell-matrix adhesion biology publication-title: Hum Mol Genet doi: 10.1093/hmg/ddp498 – volume: 7 start-page: 603 year: 2011 ident: ref1 article-title: Clinical genetics of amyotrophic lateral sclerosis: what do we really know? publication-title: Nature Reviews Neurology doi: 10.1038/nrneurol.2011.150 – volume: 22 start-page: 2676 year: 2013 ident: ref46 article-title: ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddt117 – volume: 3 start-page: e158 year: 2005 ident: ref63 article-title: A combinatorial code for splicing silencing: UAGG and GGGG motifs publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030158 – volume: 9 start-page: e1000614 year: 2011 ident: ref45 article-title: Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000614 – volume: 2 start-page: 141 year: 2011 ident: ref14 article-title: Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy publication-title: Protein & Cell doi: 10.1007/s13238-011-1014-5 – volume: 26 start-page: 1293 year: 2008 ident: ref33 article-title: An integrated software system for analyzing ChIP-chip and ChIP-seq data publication-title: Nature Biotechnology doi: 10.1038/nbt.1505 – volume: 2 start-page: 529 year: 2012 ident: ref28 article-title: Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions publication-title: Sci Rep doi: 10.1038/srep00529 – volume: 15 start-page: 1488 year: 2012 ident: ref30 article-title: Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs publication-title: Nat Neurosci doi: 10.1038/nn.3230 – volume: 122 start-page: 87 year: 2011 ident: ref12 article-title: Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation publication-title: Acta Neuropathologica doi: 10.1007/s00401-011-0838-7 – volume: 2 start-page: 603 year: 2012 ident: ref29 article-title: Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain publication-title: Sci Rep doi: 10.1038/srep00603 – volume: 37 start-page: 4518 year: 2009 ident: ref73 article-title: Increasing the relative expression of endogenous non-coding Steroid Receptor RNA Activator (SRA) in human breast cancer cells using modified oligonucleotides publication-title: Nucleic Acids Research doi: 10.1093/nar/gkp441 – volume: 9 start-page: 37 year: 2008 ident: ref20 article-title: The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response publication-title: BMC Cell Biology doi: 10.1186/1471-2121-9-37 – volume: 7 start-page: e1002214 year: 2011 ident: ref18 article-title: FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002214 – volume: 287 start-page: 15635 year: 2012 ident: ref34 article-title: TDP-43 and FUS RNA-binding Proteins Bind Distinct Sets of Cytoplasmic Messenger RNAs and Differently Regulate Their Post-transcriptional Fate in Motoneuron-like Cells publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M111.333450 – volume: 38 start-page: 576 year: 2010 ident: ref37 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 125 start-page: 273 year: 2013 ident: ref44 article-title: Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion publication-title: Acta Neuropathol doi: 10.1007/s00401-012-1043-z – volume: 29 start-page: 1442 year: 2009 ident: ref43 article-title: Auto- and Cross-Regulation of the hnRNP L Proteins by Alternative Splicing publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.01689-08 – volume: 1814 start-page: 1812 year: 2011 ident: ref60 article-title: A fraction of the transcription factor TAF15 participates in interactions with a subset of the spliceosomal U1 snRNP complex publication-title: Biochim Biophys Acta doi: 10.1016/j.bbapap.2011.09.008 – volume: 108 start-page: 316 year: 2000 ident: ref55 article-title: High FUS/TLS expression in acute myeloid leukaemia samples publication-title: Br J Haematol doi: 10.1046/j.1365-2141.2000.01883.x – volume: 24 start-page: 1634 year: 2010 ident: ref49 article-title: Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model publication-title: Genes & Development doi: 10.1101/gad.1941310 – volume: 14 start-page: 248 year: 2013 ident: ref3 article-title: The changing scene of amyotrophic lateral sclerosis publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn3430 – volume: 456 start-page: 464 year: 2008 ident: ref36 article-title: HITS-CLIP yields genome-wide insights into brain alternative RNA processing publication-title: Nature doi: 10.1038/nature07488 – volume: 7 start-page: e39483 year: 2012 ident: ref19 article-title: Knockdown of the Drosophila Fused in Sarcoma (FUS) Homologue Causes Deficient Locomotive Behavior and Shortening of Motoneuron Terminal Branches publication-title: PLoS One doi: 10.1371/journal.pone.0039483 – volume: 14 start-page: 459 year: 2011 ident: ref56 article-title: Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 publication-title: Nature Neuroscience doi: 10.1038/nn.2779 – volume: 19 start-page: 4160 year: 2010 ident: ref11 article-title: Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddq335 – volume: 148 start-page: 1085 year: 2012 ident: ref47 article-title: Splice Modulating Therapies for Human Disease publication-title: Cell doi: 10.1016/j.cell.2012.02.014 – volume: 21 start-page: 904 year: 2011 ident: ref2 article-title: Understanding the role of TDP-43 and FUS/TLS in ALS and beyond publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2011.05.029 – volume: 24 start-page: 1608 year: 2005 ident: ref51 article-title: Nova autoregulation reveals dual functions in neuronal splicing publication-title: Embo J doi: 10.1038/sj.emboj.7600630 – volume: 323 start-page: 1205 year: 2009 ident: ref8 article-title: Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis publication-title: Science doi: 10.1126/science.1166066 – volume: 274 start-page: 34337 year: 1999 ident: ref22 article-title: Human 75-kDa DNA-pairing protein is identical to the pro-oncoprotein TLS/FUS and is able to promote D-loop formation publication-title: J Biol Chem doi: 10.1074/jbc.274.48.34337 – volume: 39 start-page: 2781 year: 2010 ident: ref6 article-title: Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations publication-title: Nucleic Acids Research doi: 10.1093/nar/gkq1162 – volume: 21 start-page: 1 year: 2011 ident: ref17 article-title: ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddr417 – volume: 410 start-page: 936 year: 2001 ident: ref42 article-title: A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels publication-title: Nature doi: 10.1038/35073593 – volume: 276 start-page: 6807 year: 2001 ident: ref40 article-title: Identification of an RNA binding specificity for the potential splicing factor TLS publication-title: J Biol Chem doi: 10.1074/jbc.M008304200 – volume: 21 start-page: 1636 year: 2007 ident: ref41 article-title: A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons publication-title: Genes & Development doi: 10.1101/gad.1558107 – volume: 110 start-page: 1741 issue: Pt 15 year: 1997 ident: ref21 article-title: TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling publication-title: J Cell Sci doi: 10.1242/jcs.110.15.1741 – volume: 20 start-page: 540 year: 2013 ident: ref13 article-title: Truncating mutations in FUS/TLS give rise to a more aggressive ALS-phenotype than missense mutations: a clinico-genetic study in Germany publication-title: Eur J Neurol doi: 10.1111/ene.12031 – volume: 39 start-page: D876 year: 2011 ident: ref69 article-title: The UCSC Genome Browser database: update 2011 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq963 – volume: 79 start-page: 416 year: 2013 ident: ref57 article-title: Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis publication-title: Neuron doi: 10.1016/j.neuron.2013.07.033 – volume: 14 start-page: 128 year: 2013 ident: ref72 article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-128 – volume: 30 start-page: 277 year: 2010 ident: ref52 article-title: TDP-43 regulates its mRNA levels through a negative feedback loop publication-title: The EMBO Journal doi: 10.1038/emboj.2010.310 – volume: 15 start-page: 1288 year: 2007 ident: ref48 article-title: Antisense Oligonucleotide-induced Exon Skipping Across the Human Dystrophin Gene Transcript publication-title: Molecular Therapy doi: 10.1038/sj.mt.6300095 – volume: 2 start-page: 477 year: 2011 ident: ref15 article-title: Expression of human FUS protein in Drosophila leads to progressive neurodegeneration publication-title: Protein Cell doi: 10.1007/s13238-011-1065-7 – volume: 19 start-page: 381 year: 2008 ident: ref70 article-title: Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts publication-title: Genome Research doi: 10.1101/gr.082503.108 – volume: 45 start-page: 453 year: 2011 ident: ref62 article-title: PSF suppresses tau exon 10 inclusion by interacting with a stem-loop structure downstream of exon 10 publication-title: J Mol Neurosci doi: 10.1007/s12031-011-9634-z – volume: 10 start-page: R25 year: 2009 ident: ref68 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 5 start-page: 8 year: 2006 ident: ref23 article-title: TLS, EWS and TAF15: a model for transcriptional integration of gene expression publication-title: Brief Funct Genomic Proteomic doi: 10.1093/bfgp/ell015 – volume: 16 start-page: 130 year: 2009 ident: ref61 article-title: An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1545 – volume: 7 start-page: 919 year: 1998 ident: ref38 article-title: Statistical features of human exons and their flanking regions publication-title: Hum Mol Genet doi: 10.1093/hmg/7.5.919 – volume: 23 start-page: 1782 year: 2004 ident: ref59 article-title: p54(nrb) associates with the 5′ splice site within large transcription/splicing complexes publication-title: Embo J doi: 10.1038/sj.emboj.7600187 – volume: 19 start-page: R46 year: 2010 ident: ref5 article-title: TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddq137 – reference: 20064465 - Mol Cell. 2009 Dec 25;36(6):996-1006 – reference: 20226177 - Brain Res. 2010 Jun 18;1338:67-77 – reference: 19483093 - Nucleic Acids Res. 2009 Jul;37(13):4518-31 – reference: 20959295 - Nucleic Acids Res. 2011 Jan;39(Database issue):D876-82 – reference: 23586463 - BMC Bioinformatics. 2013;14:128 – reference: 17285139 - Mol Ther. 2007 Jul;15(7):1288-96 – reference: 23474818 - Hum Mol Genet. 2013 Jul 1;22(13):2676-88 – reference: 9264461 - J Cell Sci. 1997 Aug;110 ( Pt 15):1741-50 – reference: 21829392 - PLoS Genet. 2011 Aug;7(8):e1002214 – reference: 19251627 - Science. 2009 Feb 27;323(5918):1205-8 – reference: 19251628 - Science. 2009 Feb 27;323(5918):1208-11 – reference: 15057275 - EMBO J. 2004 Apr 21;23(8):1782-91 – reference: 20606625 - EMBO J. 2010 Aug 18;29(16):2841-57 – reference: 21813273 - Curr Opin Neurobiol. 2011 Dec;21(6):904-19 – reference: 20400460 - Hum Mol Genet. 2010 Apr 15;19(R1):R46-64 – reference: 20624852 - Genes Dev. 2010 Aug 1;24(15):1634-44 – reference: 15828859 - PLoS Biol. 2005 May;3(5):e158 – reference: 22878663 - J Neuropathol Exp Neurol. 2012 Sep;71(9):779-88 – reference: 18978773 - Nature. 2008 Nov 27;456(7221):464-9 – reference: 22019700 - Biochim Biophys Acta. 2011 Dec;1814(12):1812-24 – reference: 22934129 - Sci Rep. 2012;2:603 – reference: 23023293 - Nat Neurosci. 2012 Nov;15(11):1488-97 – reference: 21541367 - PLoS Biol. 2011 Apr;9(4):e1000614 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 21344536 - Genes Chromosomes Cancer. 2011 May;50(5):338-47 – reference: 21531983 - Database (Oxford). 2011;2011:bar011 – reference: 22427648 - J Biol Chem. 2012 May 4;287(19):15635-47 – reference: 19674978 - Brain. 2009 Nov;132(Pt 11):2922-31 – reference: 21949354 - Hum Mol Genet. 2012 Jan 1;21(1):1-9 – reference: 16769671 - Brief Funct Genomic Proteomic. 2006 Mar;5(1):8-14 – reference: 23463272 - Nat Rev Neurosci. 2013 Apr;14(4):248-64 – reference: 10567410 - J Biol Chem. 1999 Nov 26;274(48):34337-42 – reference: 23389473 - RNA. 2013 Apr;19(4):498-509 – reference: 23931993 - Neuron. 2013 Aug 7;79(3):416-38 – reference: 18978777 - Nat Biotechnol. 2008 Nov;26(11):1293-300 – reference: 21989245 - Nat Rev Neurol. 2011 Nov;7(11):603-15 – reference: 14731397 - Mol Cell. 2004 Jan 16;13(1):91-100 – reference: 19136955 - Nat Struct Mol Biol. 2009 Feb;16(2):130-7 – reference: 21748598 - Protein Cell. 2011 Jun;2(6):477-86 – reference: 11309619 - Nature. 2001 Apr 19;410(6831):936-9 – reference: 21604077 - Acta Neuropathol. 2011 Jul;122(1):87-98 – reference: 10655065 - Nat Genet. 2000 Feb;24(2):175-9 – reference: 15933722 - EMBO J. 2005 Apr 20;24(8):1608-20 – reference: 19131956 - Nat Protoc. 2009;4(1):44-57 – reference: 17606642 - Genes Dev. 2007 Jul 1;21(13):1636-52 – reference: 22829983 - Sci Rep. 2012;2:529 – reference: 22068331 - Mol Syst Biol. 2011;7:548 – reference: 21881826 - J Mol Neurosci. 2011 Nov;45(3):453-66 – reference: 19864493 - Hum Mol Genet. 2010 Jan 15;19(2):313-28 – reference: 20513432 - Mol Cell. 2010 May 28;38(4):576-89 – reference: 10691862 - Br J Haematol. 2000 Feb;108(2):316-21 – reference: 23557964 - Mol Cell Neurosci. 2013 Sep;56:475-86 – reference: 22424220 - Cell. 2012 Mar 16;148(6):1085-8 – reference: 21358643 - Nat Neurosci. 2011 Apr;14(4):459-68 – reference: 11098054 - J Biol Chem. 2001 Mar 2;276(9):6807-16 – reference: 22724023 - PLoS One. 2012;7(6):e39483 – reference: 23217123 - Eur J Neurol. 2013 Mar;20(3):540-6 – reference: 22081015 - Nat Struct Mol Biol. 2011 Dec;18(12):1428-31 – reference: 18620564 - BMC Cell Biol. 2008;9:37 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 22961620 - Acta Neuropathol. 2013 Feb;125(2):273-88 – reference: 21131904 - EMBO J. 2011 Jan 19;30(2):277-88 – reference: 21408206 - PLoS Genet. 2011 Mar;7(3):e1002011 – reference: 16314267 - Methods. 2005 Dec;37(4):376-86 – reference: 9536098 - Hum Mol Genet. 1998 May;7(5):919-32 – reference: 21109527 - Nucleic Acids Res. 2011 Apr;39(7):2781-98 – reference: 19303844 - Cell. 2009 Mar 20;136(6):1001-4 – reference: 19783543 - J Mol Cell Biol. 2009 Dec;1(2):82-92 – reference: 19124611 - Mol Cell Biol. 2009 Mar;29(6):1442-51 – reference: 20699327 - Hum Mol Genet. 2010 Nov 1;19(21):4160-75 – reference: 22713872 - Genes Dev. 2012 Jun 15;26(12):1351-63 – reference: 19116412 - Genome Res. 2009 Mar;19(3):381-94 – reference: 21327870 - Protein Cell. 2011 Feb;2(2):141-9 |
SSID | ssj0035897 |
Score | 2.4956105 |
Snippet | The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its... The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its... The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1003895 |
SubjectTerms | Alternative Splicing - genetics Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - etiology Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - pathology Binding proteins Cytoplasm - genetics Exons - genetics Gene Expression Regulation - genetics Gene mutations Genetic regulation Green Fluorescent Proteins - genetics HEK293 Cells HeLa Cells Humans Introns - genetics Medical research Mutation Physiological aspects RNA Precursors - biosynthesis RNA Precursors - genetics RNA-Binding Protein FUS - biosynthesis RNA-Binding Protein FUS - genetics Rodents |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQJSQuiO8NLGAQEqewThzHybEgqgWhRaIU7QnLdhxYqSTVpjnsv98Z2602CGn3wKWH5qVq5k08M_L4DSFvtLWyyaRJJec2LVyZp6ZmQEheQLqsWyGM77Y4KY9XxedTcXpl1Bf2hAV54GC4o1JqZnSLQm4thO7KcCdMZpoWltmS5QZXX4h5u2IqrMFcVGGsihAc_kXN4qE5LrOjyNG7DRCEPQIQscUkKHnt_v0KPdus--Ff6effXZRXwtLiHrkb80k6D89xn9xy3QNyO0yYvHhIfs6_LFMdKXANXayW9M8Ytt8HCqX2uN7Ss45iZ_l5D5xHjN9E77woOB1wixsiHNVdQzVqHoT59fATj8hq8fH7h-M0jlRIrSyLbZq5Ntdla-BDZ5brEgxphKktlJGNw-LE1WXTylxUTcMc51lWWs0qx6rCMpvxx2TW9Z07INQY2VQGyw3MyXILziDaghuoV0TtCpcQvrOpslFvHMderJXfRJNQdwQTKWRCRSYSku7v2gS9jWvw75GuPRbVsv0X4EMq-pC6zocS8hLJVuHo6f6dV3MuICHOJcsS8tojUDGjw5acX3ocBvXp648bgJYnNwF9m4DeRlDbg82sjmclwPIo1zVBHk6Q4Ch2cvkA_XdnugEqPXg1gNaaJeTVzqcV3oXNdp3rR8QUkKTWrOYJeRJ8fG9foBpV4mRC5MT7JwRMr3Rnv71sOeSGBc_F0__B2DNyJ8e5JL6r8pDMtuejew7Z4da88AvBJYY1YWs priority: 102 providerName: Directory of Open Access Journals |
Title | ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24204307 https://www.proquest.com/docview/1449769093 https://pubmed.ncbi.nlm.nih.gov/PMC3814325 https://doaj.org/article/67a0baf7079f4418b3e5b1bdf067602b http://dx.doi.org/10.1371/journal.pgen.1003895 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa2Tki8IH4vMEpASDxlcuI4Th4Q6tCqgaCglaI-EdmOs00qSWlaif333DluRNAQfelD8zlq7s65u975O0JeSa1FEQoVCMZ0EJskClRGQSFRDOGyLDlXtttikpzN4g9zPt8j25mtToDNjakdzpOarRbHv35ev4UN_8ZObRDhdtHxEkSOVX_wwXyfHIBvErhVP8VdXYHxtB23wjmDX5dRd5juX3fpOSvL6d-9uQfLRd3cFJb-3V35h7sa3yV3XJzpj1rDuEf2THWf3GonT14_IN9HH6eBdKoxhT-eTf0fm7Ys3_iQgm8Wa_-q8rHjfFWDLTiMLa5Xlizcb7D0DZ7Pl1XhS-RCaOfawy0ektn49Ou7s8CNWgi0SOJ1EJoykkmp4EOGmslEFaXiKtOQXhYGkxaTJUUpIp4WBTWMhWGiJU0NTWNNdcgekUFVV-aQ-EqJIlWYhmCsFmkwEl7GTEEewzMTG4-wrUxz7XjIcRzGIrfFNQH5SCuiHDWRO014JOhWLVsejv_gT1BdHRZZtO0X9eoid5syT4SkSpZIElhCWJgqZrgK4dHBhSc0Uh55jsrO2yOp3bsgHzEOgXIkaOiRlxaBTBoVtupcyE3T5O8_f9sBNJ3sAjrvgV47UFmDzLR0ZyhA8kjj1UMe9ZBgKLp3-RDtdyu6BjJA2Bqg1ox65MXWpnNchU14lak3iIkheM1oxjzyuLXxTr6gamSPEx4RPevvKaB_pbq6tHTmEDPGLOJPdn62p-R2hENJbEvlERmsVxvzDELDtRqSfTEXQ3Jwcjr5cj60f7AM7RvgNzVpZjg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALS-associated+FUS+mutations+result+in+compromised+FUS+alternative+splicing+and+autoregulation&rft.jtitle=PLoS+genetics&rft.au=Zhou%2C+Yueqin&rft.au=Liu%2C+Songyan&rft.au=Liu%2C+Guodong&rft.au=Ozturk%2C+Arzu&rft.date=2013-10-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=9&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pgen.1003895&rft.externalDocID=A351612701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |