HP1 recruitment in the absence of argonaute proteins in Drosophila

Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA-silencing pathways...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 6; no. 3; p. e1000880
Main Authors Moshkovich, Nellie, Lei, Elissa P
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.03.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA-silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes directly to heterochromatin formation is not clear. Previous studies in Drosophila melanogaster have suggested the involvement of both the AGO2-dependent endogenous small interfering RNA (endo-siRNA) as well as Piwi-interacting RNA (piRNA) silencing pathways. In order to determine if these Argonaute genes are required for heterochromatin formation, we utilized transcriptional reporters and chromatin immunoprecipitation of the critical factor Heterochromatin Protein 1 (HP1) to monitor the heterochromatic state of piRNA clusters, which generate both endo-siRNAs and the bulk of piRNAs. Surprisingly, we find that mutation of AGO2 or piwi increases silencing at piRNA clusters corresponding to an increase of HP1 association. Furthermore, loss of piRNA production from a single piRNA cluster results in genome-wide redistribution of HP1 and reduction of silencing at a distant heterochromatic site, suggesting indirect effects on HP1 recruitment. Taken together, these results indicate that heterochromatin forms independently of endo-siRNA and piRNA pathways.
AbstractList Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA-silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes directly to heterochromatin formation is not clear. Previous studies in Drosophila melanogaster have suggested the involvement of both the AGO2-dependent endogenous small interfering RNA (endo-siRNA) as well as Piwi-interacting RNA (piRNA) silencing pathways. In order to determine if these Argonaute genes are required for heterochromatin formation, we utilized transcriptional reporters and chromatin immunoprecipitation of the critical factor Heterochromatin Protein 1 (HP1) to monitor the heterochromatic state of piRNA clusters, which generate both endo-siRNAs and the bulk of piRNAs. Surprisingly, we find that mutation of AGO2 or piwi increases silencing at piRNA clusters corresponding to an increase of HP1 association. Furthermore, loss of piRNA production from a single piRNA cluster results in genome-wide redistribution of HP1 and reduction of silencing at a distant heterochromatic site, suggesting indirect effects on HP1 recruitment. Taken together, these results indicate that heterochromatin forms independently of endo-siRNA and piRNA pathways.
  Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA-silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes directly to heterochromatin formation is not clear. Previous studies in Drosophila melanogaster have suggested the involvement of both the AGO2-dependent endogenous small interfering RNA (endo-siRNA) as well as Piwi-interacting RNA (piRNA) silencing pathways. In order to determine if these Argonaute genes are required for heterochromatin formation, we utilized transcriptional reporters and chromatin immunoprecipitation of the critical factor Heterochromatin Protein 1 (HP1) to monitor the heterochromatic state of piRNA clusters, which generate both endo-siRNAs and the bulk of piRNAs. Surprisingly, we find that mutation of AGO2 or piwi increases silencing at piRNA clusters corresponding to an increase of HP1 association. Furthermore, loss of piRNA production from a single piRNA cluster results in genome-wide redistribution of HP1 and reduction of silencing at a distant heterochromatic site, suggesting indirect effects on HP1 recruitment. Taken together, these results indicate that heterochromatin forms independently of endo-siRNA and piRNA pathways.
Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA–silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes directly to heterochromatin formation is not clear. Previous studies in Drosophila melanogaster have suggested the involvement of both the AGO2 -dependent endogenous small interfering RNA (endo-siRNA) as well as Piwi-interacting RNA (piRNA) silencing pathways. In order to determine if these Argonaute genes are required for heterochromatin formation, we utilized transcriptional reporters and chromatin immunoprecipitation of the critical factor Heterochromatin Protein 1 (HP1) to monitor the heterochromatic state of piRNA clusters, which generate both endo-siRNAs and the bulk of piRNAs. Surprisingly, we find that mutation of AGO2 or piwi increases silencing at piRNA clusters corresponding to an increase of HP1 association. Furthermore, loss of piRNA production from a single piRNA cluster results in genome-wide redistribution of HP1 and reduction of silencing at a distant heterochromatic site, suggesting indirect effects on HP1 recruitment. Taken together, these results indicate that heterochromatin forms independently of endo-siRNA and piRNA pathways. One role for silent heterochromatin is to preserve the integrity of the genome by stabilizing regions rich in repetitive sequence and mobile elements. Compaction of repetitive sequences by heterochromatin is needed to prevent genome rearrangement and loss of genetic material. Furthermore, uncontrolled movement of mobile elements throughout the genome can result in deleterious mutations. In fission yeast, one important mechanism of heterochromatin establishment occurs through RNA interference, an RNA–dependent gene silencing process. However, it is unclear whether a direct role for RNA silencing in heterochromatin formation is conserved throughout evolution. In the fruit fly, Drosophila melanogaster, which harbors multiple RNA–silencing pathways that are both functionally distinct and spatially restricted, previous studies have suggested the involvement of the endogenous small interfering RNA (endo-siRNA) and Piwi-interacting RNA (piRNA) pathways in heterochromatin formation. These small RNA silencing pathways suppress the expression of mobile elements in the soma or in both somatic and germline tissues, respectively. Utilizing complementary genetic and biochemical approaches, we monitored the heterochromatin state at discrete genomic locations from which both types of these small RNAs originate in endo-siRNA or piRNA pathway mutants. Our results indicate that heterochromatin can form independently of these two small RNA silencing pathways.
Audience Academic
Author Moshkovich, Nellie
Lei, Elissa P
AuthorAffiliation 2 The Graduate Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland, United States of America
Massachusetts General Hospital, Howard Hughes Medical Institute, United States of America
1 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
AuthorAffiliation_xml – name: Massachusetts General Hospital, Howard Hughes Medical Institute, United States of America
– name: 2 The Graduate Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland, United States of America
– name: 1 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
Author_xml – sequence: 1
  givenname: Nellie
  surname: Moshkovich
  fullname: Moshkovich, Nellie
  organization: Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
– sequence: 2
  givenname: Elissa P
  surname: Lei
  fullname: Lei, Elissa P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20300658$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1vFCEUhompse3qPzA6iYmJF7vCADPDTZNaP7pJY41ft-QMA7NsZmEDjNF_L-tum53ECw0XEHjOe-DlPUcnzjuN0FOCF4TW5PXaj8HBsNj22i0Ixrhp8AN0Rjin85phdnK0PkXnMa4xprwR9SN0WmKKccWbM_Tm-hMpglZhtGmjXSqsK9JKF9BG7ZQuvCkg9N7BmHSxDT5p6-IOeht89NuVHeAxemhgiPrJYZ6hb-_ffb26nt_cflheXd7MVV3RNIcSc6VITQVwURsGBgBUxQB3dVs1VSVAC1PxqgEjRJmPOtJyynXLykoIRWfo-V53O_goD8-PklBCOa1E2WRiuSc6D2u5DXYD4Zf0YOWfDR96CSFZNWjZGkYZF6KrVcuYUG2LTdk1hmnWlJ3CWevi0G1sN7pT2ZsAw0R0euLsSvb-h8z3yJbTLPBiL9BD7med8RlTGxuVvCxLSpgQ2YwZWvyFyqPTG6vyjxub9ycFryYFmUn6Z-phjFEuv3z-D_bjv7O336fsyyN2pWFIq-iHMVnv4hRke1DltMSgzb1_BMtdiu--Ue5SLA8pzmXPjr2_L7qLLf0NEcTuDg
CitedBy_id crossref_primary_10_1016_j_celrep_2014_08_013
crossref_primary_10_7124_bc_000111
crossref_primary_10_1038_emboj_2011_449
crossref_primary_10_1038_embor_2013_38
crossref_primary_10_1038_nrm3089
crossref_primary_10_1016_j_devcel_2010_10_011
crossref_primary_10_1016_j_molcel_2018_10_038
crossref_primary_10_1093_nar_gkt037
crossref_primary_10_1093_nar_gkx355
crossref_primary_10_1038_nsmb_2122
crossref_primary_10_1007_s10577_012_9279_y
crossref_primary_10_3390_cells10123574
crossref_primary_10_1073_pnas_1106676108
crossref_primary_10_1016_j_cois_2014_05_001
crossref_primary_10_1016_j_bbagrm_2014_06_006
crossref_primary_10_1534_genetics_112_140236
crossref_primary_10_1534_genetics_116_187922
crossref_primary_10_1016_j_cell_2012_10_040
crossref_primary_10_1016_j_gde_2012_01_002
crossref_primary_10_1101_gad_245514_114
crossref_primary_10_1016_j_cub_2013_03_033
crossref_primary_10_1371_journal_pgen_1003069
crossref_primary_10_1111_j_1440_169X_2011_01316_x
crossref_primary_10_1093_nar_gks711
crossref_primary_10_1038_emboj_2011_334
crossref_primary_10_1371_journal_pgen_1003780
crossref_primary_10_1016_j_gpb_2017_01_006
crossref_primary_10_1146_annurev_genet_110410_132541
crossref_primary_10_1093_nar_gkac600
crossref_primary_10_1371_journal_pgen_1002249
crossref_primary_10_1186_s13072_015_0041_5
crossref_primary_10_1093_nar_gkr552
crossref_primary_10_1242_jcs_151126
crossref_primary_10_1242_jcs_226092
crossref_primary_10_1002_mrd_22195
crossref_primary_10_1016_j_bbagrm_2013_11_009
crossref_primary_10_1093_nar_gkq1353
crossref_primary_10_1101_gad_209767_112
crossref_primary_10_1111_febs_15104
crossref_primary_10_1371_journal_pone_0096802
crossref_primary_10_1073_pnas_1207036109
crossref_primary_10_1038_s41598_017_17518_4
crossref_primary_10_1134_S0006297914110157
crossref_primary_10_1186_gb4154
crossref_primary_10_1534_genetics_115_183228
crossref_primary_10_1534_genetics_115_184119
crossref_primary_10_1101_gad_16651211
crossref_primary_10_1101_gad_209841_112
crossref_primary_10_1016_j_devcel_2013_01_023
crossref_primary_10_1134_S0006297913060035
crossref_primary_10_1371_journal_pone_0065740
crossref_primary_10_1093_nar_gks1275
crossref_primary_10_1111_evo_12011
Cites_doi 10.1016/j.tig.2008.08.002
10.1101/gad.1316805
10.1038/ng1850
10.1186/gb-2009-10-3-r25
10.1126/science.1129333
10.1126/science.1157396
10.1101/gr.094896.109
10.1101/gad.1454806
10.1016/j.cell.2009.03.040
10.1101/gad.1564307
10.1128/MCB.26.8.2965-2975.2006
10.1016/j.molcel.2006.05.010
10.1126/science.1140494
10.1007/s004120050310
10.1038/nature08501
10.1242/dev.128.14.2823
10.1002/j.1460-2075.1994.tb06693.x
10.1093/genetics/164.2.501
10.1101/gad.1370605
10.1038/ng1452
10.1038/nrm2321
10.1073/pnas.072190799
10.1016/j.cell.2009.07.014
10.1016/j.cell.2009.04.027
10.1002/bies.20688
10.1126/science.1074973
10.1016/S1097-2765(00)00101-5
10.1016/0092-8674(94)90439-1
10.1038/nature06561
10.1038/nature05914
10.1016/j.cub.2006.09.035
10.1242/dev.127.3.503
10.1002/j.1460-2075.1993.tb05675.x
10.1126/science.1064023
10.1128/MCB.24.18.8210-8220.2004
10.1038/ng843
10.1073/pnas.2333111100
10.1016/j.cub.2005.09.041
10.1126/science.1092653
10.1016/j.cell.2007.01.043
10.1016/S1097-2765(02)00440-9
10.1038/ncb1514
10.1016/j.cell.2006.01.036
10.1038/ncb2010
10.1016/j.imbio.2006.01.001
10.1093/genetics/158.2.701
10.1073/pnas.87.24.9923
10.1016/j.cub.2008.05.006
10.1073/pnas.0809208105
10.1038/nature06938
10.1093/nar/gkm576
10.1093/genetics/160.4.1481
10.1038/nature07007
10.1038/nature06263
10.1093/genetics/139.2.697
10.1126/science.1093686
10.1126/science.1099035
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010
2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Moshkovich N, Lei EP (2010) HP1 Recruitment in the Absence of Argonaute Proteins in Drosophila. PLoS Genet 6(3): e1000880. doi:10.1371/journal.pgen.1000880
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010
– notice: 2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Moshkovich N, Lei EP (2010) HP1 Recruitment in the Absence of Argonaute Proteins in Drosophila. PLoS Genet 6(3): e1000880. doi:10.1371/journal.pgen.1000880
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
IOV
ISN
ISR
5PM
DOA
DOI 10.1371/journal.pgen.1000880
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Opposing Viewpoints (Gale)
Gale In Context: Canada
Gale In Context: Science
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList MEDLINE





Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Argonaute Independent Recruitment of HP1
EISSN 1553-7404
Editor Lee, Jeannie T.
Editor_xml – sequence: 1
  givenname: Jeannie T.
  surname: Lee
  fullname: Lee, Jeannie T.
ExternalDocumentID 1313536928
oai_doaj_org_article_bf434599d7cb449cbb0f2d8f4e482dc0
A223149917
10_1371_journal_pgen_1000880
20300658
Genre Journal Article
Research Support, N.I.H., Intramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
ECM
EIF
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
AAYXX
CITATION
5PM
AAPBV
ABPTK
ID FETCH-LOGICAL-c763t-a205cc1739a597f4afaaac64a0d7b68669ae9f6568af992ac6d1b535eb42699c3
IEDL.DBID RPM
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:34 EDT 2023
Thu Jul 04 20:58:49 EDT 2024
Tue Sep 17 21:15:17 EDT 2024
Wed Jul 24 18:23:39 EDT 2024
Tue Jul 23 04:34:19 EDT 2024
Sat Sep 28 21:31:43 EDT 2024
Thu Aug 01 19:42:39 EDT 2024
Sat Sep 28 21:38:50 EDT 2024
Tue Aug 20 22:15:32 EDT 2024
Fri Aug 23 03:51:49 EDT 2024
Sat Sep 28 08:01:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c763t-a205cc1739a597f4afaaac64a0d7b68669ae9f6568af992ac6d1b535eb42699c3
Notes Conceived and designed the experiments: NM EPL. Performed the experiments: NM. Analyzed the data: NM EPL. Wrote the paper: NM EPL.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837403/
PMID 20300658
ParticipantIDs plos_journals_1313536928
doaj_primary_oai_doaj_org_article_bf434599d7cb449cbb0f2d8f4e482dc0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2837403
gale_infotracmisc_A223149917
gale_infotracacademiconefile_A223149917
gale_incontextgauss_ISR_A223149917
gale_incontextgauss_ISN_A223149917
gale_incontextgauss_IOV_A223149917
gale_healthsolutions_A223149917
crossref_primary_10_1371_journal_pgen_1000880
pubmed_primary_20300658
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References 16243027 - Curr Biol. 2005 Oct 25;15(20):1808-19
14597701 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13436-41
17346786 - Cell. 2007 Mar 23;128(6):1089-103
19395010 - Cell. 2009 May 1;137(3):522-35
19948966 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21258-63
20010811 - Nat Cell Biol. 2010 Jan;12(1):94-9; sup pp 1-6
16530043 - Cell. 2006 Mar 10;124(5):957-71
18073770 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):22-32
9880761 - Chromosoma. 1998 Nov;107(5):286-92
16287716 - Genes Dev. 2005 Dec 1;19(23):2837-48
12193640 - Science. 2002 Sep 13;297(5588):1833-7
8382607 - EMBO J. 1993 Feb;12(2):435-42
16581772 - Mol Cell Biol. 2006 Apr;26(8):2965-75
17113386 - Curr Biol. 2006 Nov 21;16(22):2222-7
14704433 - Science. 2004 Jan 30;303(5658):672-6
11106742 - Mol Cell. 2000 Nov;6(5):1025-35
14752161 - Science. 2004 Jan 30;303(5658):669-72
17952056 - Nature. 2007 Nov 8;450(7167):304-8
17159999 - Nat Cell Biol. 2007 Jan;9(1):25-35
11526087 - Development. 2001 Jul;128(14):2823-32
16862159 - Nat Genet. 2006 Aug;38(8):936-41
19732946 - Cell. 2009 Sep 18;138(6):1137-49
18463636 - Nature. 2008 Jun 5;453(7196):793-7
19812547 - Nature. 2009 Oct 29;461(7268):1296-9
18501606 - Curr Biol. 2008 Jun 3;18(11):795-802
8020105 - Cell. 1994 Jul 1;77(7):993-1002
18081009 - Bioessays. 2008 Jan;30(1):25-37
16697918 - Immunobiology. 2006;211(4):251-61
17875665 - Genes Dev. 2007 Sep 15;21(18):2300-11
2124708 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9923-7
18778867 - Trends Genet. 2008 Oct;24(10):511-7
19541914 - Genome Res. 2009 Oct;19(10):1776-85
11404334 - Genetics. 2001 Jun;158(2):701-13
12807771 - Genetics. 2003 Jun;164(2):501-9
16024657 - Genes Dev. 2005 Jul 15;19(14):1680-5
18216783 - Nature. 2008 Feb 7;451(7179):734-7
18403677 - Science. 2008 May 23;320(5879):1077-81
15475954 - Nat Genet. 2004 Nov;36(11):1174-80
7713426 - Genetics. 1995 Feb;139(2):697-711
18463631 - Nature. 2008 Jun 5;453(7196):798-802
11864605 - Mol Cell. 2002 Feb;9(2):315-27
15218150 - Science. 2004 Jun 25;304(5679):1971-6
16762840 - Mol Cell. 2006 Jun 9;22(5):681-92
17322028 - Science. 2007 Mar 16;315(5818):1587-90
12011447 - Proc Natl Acad Sci U S A. 2002 May 14;99(10):6889-94
17702759 - Nucleic Acids Res. 2007;35(16):5430-8
15340080 - Mol Cell Biol. 2004 Sep;24(18):8210-20
11498593 - Science. 2001 Aug 10;293(5532):1146-50
19395009 - Cell. 2009 May 1;137(3):509-21
19261174 - Genome Biol. 2009;10(3):R25
11850619 - Nat Genet. 2002 Mar;30(3):329-34
17522672 - Nature. 2007 May 24;447(7143):399-406
16882972 - Genes Dev. 2006 Aug 15;20(16):2214-22
11973303 - Genetics. 2002 Apr;160(4):1481-7
7915232 - EMBO J. 1994 Aug 15;13(16):3822-31
16809489 - Science. 2006 Jul 21;313(5785):320-4
10631171 - Development. 2000 Feb;127(3):503-14
F Mongelard (ref56) 2002; 160
K Noma (ref7) 2004; 36
C Klattenhoff (ref29) 2009; 138
NC Lau (ref33) 2009; 19
Y Kawamura (ref17) 2008; 453
K Miyoshi (ref42) 2005; 19
RR Roseman (ref38) 1993; 12
AN Harris (ref27) 2001; 128
A Verdel (ref6) 2004; 303
LS Gunawardane (ref23) 2007; 315
B Czech (ref16) 2008; 453
(ref37); 12
TJ Parnell (ref41) 2003; 100
WJ Chung (ref18) 2008; 18
J Brennecke (ref20) 2007; 128
D Fagegaltier (ref35) 2009; 106
C Li (ref25) 2009; 137
K Saito (ref30) 2009; 461
TA Volpe (ref5) 2002; 297
V Robert (ref44) 2001; 158
J Rehwinkel (ref12) 2006; 26
RW Williams (ref13) 2002; 99
A Kloc (ref53) 2008; 24
FL Sun (ref40) 2004; 24
B Langmead (ref57) 2009; 10
K Saito (ref22) 2006; 20
ES Chen (ref52) 2008; 451
H Yin (ref21) 2007; 450
KA Haynes (ref45) 2006; 16
JC Peng (ref47) 2007; 9
JC Eissenberg (ref4) 1990; 87
VV Vagin (ref24) 2006; 313
L Fanti (ref39) 1998; 107
G Deshpande (ref34) 2005; 19
TI Gerasimova (ref55) 2000; 6
B Tschiersch (ref3) 1994; 13
MS Klenov (ref46) 2007; 35
B Brower-Toland (ref11) 2007; 21
EP Lei (ref48) 2006; 38
M Ghildiyal (ref19) 2008; 320
M Zofall (ref51) 2006; 22
S Jia (ref8) 2004; 304
DR Dorer (ref43) 1994; 77
G Hutvagner (ref10) 2008; 9
C Grimaud (ref50) 2006; 124
JM Mason (ref2) 2008; 30
SI Grewal (ref1) 2007; 447
CD Malone (ref26) 2009; 137
J Kanoh (ref9) 2005; 15
SM Hammond (ref15) 2001; 293
M Pal-Bhadra (ref36) 2004; 303
DN Cox (ref28) 2000; 127
M Pal-Bhadra (ref49) 2002; 9
L Wang (ref14) 2006; 211
S Desset (ref31) 2003; 164
N Prud'homme (ref32) 1995; 139
C Maison (ref54) 2002; 30
References_xml – volume: 24
  start-page: 511
  year: 2008
  ident: ref53
  article-title: RNAi, heterochromatin and the cell cycle.
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2008.08.002
  contributor:
    fullname: A Kloc
– volume: 19
  start-page: 1680
  year: 2005
  ident: ref34
  article-title: Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation.
  publication-title: Genes Dev
  doi: 10.1101/gad.1316805
  contributor:
    fullname: G Deshpande
– volume: 38
  start-page: 936
  year: 2006
  ident: ref48
  article-title: RNA interference machinery influences the nuclear organization of a chromatin insulator.
  publication-title: Nat Genet
  doi: 10.1038/ng1850
  contributor:
    fullname: EP Lei
– volume: 10
  start-page: R25
  year: 2009
  ident: ref57
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
  contributor:
    fullname: B Langmead
– volume: 313
  start-page: 320
  year: 2006
  ident: ref24
  article-title: A distinct small RNA pathway silences selfish genetic elements in the germline.
  publication-title: Science
  doi: 10.1126/science.1129333
  contributor:
    fullname: VV Vagin
– volume: 320
  start-page: 1077
  year: 2008
  ident: ref19
  article-title: Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells.
  publication-title: Science
  doi: 10.1126/science.1157396
  contributor:
    fullname: M Ghildiyal
– volume: 19
  start-page: 1776
  year: 2009
  ident: ref33
  article-title: Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line.
  publication-title: Genome Res
  doi: 10.1101/gr.094896.109
  contributor:
    fullname: NC Lau
– volume: 20
  start-page: 2214
  year: 2006
  ident: ref22
  article-title: Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome.
  publication-title: Genes Dev
  doi: 10.1101/gad.1454806
  contributor:
    fullname: K Saito
– volume: 137
  start-page: 522
  year: 2009
  ident: ref26
  article-title: Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.040
  contributor:
    fullname: CD Malone
– volume: 21
  start-page: 2300
  year: 2007
  ident: ref11
  article-title: Drosophila PIWI associates with chromatin and interacts directly with HP1a.
  publication-title: Genes Dev
  doi: 10.1101/gad.1564307
  contributor:
    fullname: B Brower-Toland
– volume: 26
  start-page: 2965
  year: 2006
  ident: ref12
  article-title: Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.26.8.2965-2975.2006
  contributor:
    fullname: J Rehwinkel
– volume: 22
  start-page: 681
  year: 2006
  ident: ref51
  article-title: Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.05.010
  contributor:
    fullname: M Zofall
– volume: 315
  start-page: 1587
  year: 2007
  ident: ref23
  article-title: A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila.
  publication-title: Science
  doi: 10.1126/science.1140494
  contributor:
    fullname: LS Gunawardane
– volume: 107
  start-page: 286
  year: 1998
  ident: ref39
  article-title: Heterochromatin protein 1 binds transgene arrays.
  publication-title: Chromosoma
  doi: 10.1007/s004120050310
  contributor:
    fullname: L Fanti
– volume: 461
  start-page: 1296
  year: 2009
  ident: ref30
  article-title: A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila.
  publication-title: Nature
  doi: 10.1038/nature08501
  contributor:
    fullname: K Saito
– volume: 128
  start-page: 2823
  year: 2001
  ident: ref27
  article-title: Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C.
  publication-title: Development
  doi: 10.1242/dev.128.14.2823
  contributor:
    fullname: AN Harris
– volume: 13
  start-page: 3822
  year: 1994
  ident: ref3
  article-title: The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes.
  publication-title: EMBOJ
  doi: 10.1002/j.1460-2075.1994.tb06693.x
  contributor:
    fullname: B Tschiersch
– volume: 164
  start-page: 501
  year: 2003
  ident: ref31
  article-title: COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster.
  publication-title: Genetics
  doi: 10.1093/genetics/164.2.501
  contributor:
    fullname: S Desset
– volume: 19
  start-page: 2837
  year: 2005
  ident: ref42
  article-title: Slicer function of Drosophila Argonautes and its involvement in RISC formation.
  publication-title: Genes Dev
  doi: 10.1101/gad.1370605
  contributor:
    fullname: K Miyoshi
– volume: 36
  start-page: 1174
  year: 2004
  ident: ref7
  article-title: RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing.
  publication-title: Nat Genet
  doi: 10.1038/ng1452
  contributor:
    fullname: K Noma
– volume: 9
  start-page: 22
  year: 2008
  ident: ref10
  article-title: Argonaute proteins: key players in RNA silencing.
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2321
  contributor:
    fullname: G Hutvagner
– volume: 99
  start-page: 6889
  year: 2002
  ident: ref13
  article-title: ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos.
  publication-title: Proc Natl Acad SciUSA
  doi: 10.1073/pnas.072190799
  contributor:
    fullname: RW Williams
– volume: 138
  start-page: 1137
  year: 2009
  ident: ref29
  article-title: The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.014
  contributor:
    fullname: C Klattenhoff
– volume: 137
  start-page: 509
  year: 2009
  ident: ref25
  article-title: Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.027
  contributor:
    fullname: C Li
– volume: 30
  start-page: 25
  year: 2008
  ident: ref2
  article-title: Drosophila telomeres: an exception providing new insights.
  publication-title: Bioessays
  doi: 10.1002/bies.20688
  contributor:
    fullname: JM Mason
– volume: 297
  start-page: 1833
  year: 2002
  ident: ref5
  article-title: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi.
  publication-title: Science
  doi: 10.1126/science.1074973
  contributor:
    fullname: TA Volpe
– volume: 6
  start-page: 1025
  year: 2000
  ident: ref55
  article-title: A chromatin insulator determines the nuclear localization of DNA.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)00101-5
  contributor:
    fullname: TI Gerasimova
– volume: 77
  start-page: 993
  year: 1994
  ident: ref43
  article-title: Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila.
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90439-1
  contributor:
    fullname: DR Dorer
– volume: 451
  start-page: 734
  year: 2008
  ident: ref52
  article-title: Cell cycle control of centromeric repeat transcription and heterochromatin assembly.
  publication-title: Nature
  doi: 10.1038/nature06561
  contributor:
    fullname: ES Chen
– volume: 447
  start-page: 399
  year: 2007
  ident: ref1
  article-title: Transcription and RNA interference in the formation of heterochromatin.
  publication-title: Nature
  doi: 10.1038/nature05914
  contributor:
    fullname: SI Grewal
– volume: 16
  start-page: 2222
  year: 2006
  ident: ref45
  article-title: Element 1360 and RNAi components contribute to HP1-dependent silencing of a pericentric reporter.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2006.09.035
  contributor:
    fullname: KA Haynes
– volume: 127
  start-page: 503
  year: 2000
  ident: ref28
  article-title: piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells.
  publication-title: Development
  doi: 10.1242/dev.127.3.503
  contributor:
    fullname: DN Cox
– volume: 12
  start-page: 435
  year: 1993
  ident: ref38
  article-title: The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects.
  publication-title: EMBOJ
  doi: 10.1002/j.1460-2075.1993.tb05675.x
  contributor:
    fullname: RR Roseman
– volume: 293
  start-page: 1146
  year: 2001
  ident: ref15
  article-title: Argonaute2, a link between genetic and biochemical analyses of RNAi.
  publication-title: Science
  doi: 10.1126/science.1064023
  contributor:
    fullname: SM Hammond
– volume: 24
  start-page: 8210
  year: 2004
  ident: ref40
  article-title: cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.18.8210-8220.2004
  contributor:
    fullname: FL Sun
– volume: 30
  start-page: 329
  year: 2002
  ident: ref54
  article-title: Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component.
  publication-title: Nat Genet
  doi: 10.1038/ng843
  contributor:
    fullname: C Maison
– volume: 100
  start-page: 13436
  year: 2003
  ident: ref41
  article-title: An endogenous suppressor of hairy-wing insulator separates regulatory domains in Drosophila.
  publication-title: Proc Natl Acad SciUSA
  doi: 10.1073/pnas.2333111100
  contributor:
    fullname: TJ Parnell
– volume: 15
  start-page: 1808
  year: 2005
  ident: ref9
  article-title: Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.09.041
  contributor:
    fullname: J Kanoh
– volume: 303
  start-page: 669
  year: 2004
  ident: ref36
  article-title: Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery.
  publication-title: Science
  doi: 10.1126/science.1092653
  contributor:
    fullname: M Pal-Bhadra
– volume: 128
  start-page: 1089
  year: 2007
  ident: ref20
  article-title: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.043
  contributor:
    fullname: J Brennecke
– volume: 9
  start-page: 315
  year: 2002
  ident: ref49
  article-title: RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(02)00440-9
  contributor:
    fullname: M Pal-Bhadra
– volume: 9
  start-page: 25
  year: 2007
  ident: ref47
  article-title: H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability.
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1514
  contributor:
    fullname: JC Peng
– volume: 124
  start-page: 957
  year: 2006
  ident: ref50
  article-title: RNAi components are required for nuclear clustering of Polycomb group response elements.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.01.036
  contributor:
    fullname: C Grimaud
– volume: 12
  start-page: 94
  ident: ref37
  article-title: Giles KE, Ghirlando R, Felsenfeld G Maintenance of a constitutive heterochromatin domain in vertebrates by a Dicer-dependent mechanism.
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2010
– volume: 211
  start-page: 251
  year: 2006
  ident: ref14
  article-title: Pathogen recognition and signalling in the Drosophila innate immune response.
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2006.01.001
  contributor:
    fullname: L Wang
– volume: 158
  start-page: 701
  year: 2001
  ident: ref44
  article-title: Characterization of the flamenco region of the Drosophila melanogaster genome.
  publication-title: Genetics
  doi: 10.1093/genetics/158.2.701
  contributor:
    fullname: V Robert
– volume: 87
  start-page: 9923
  year: 1990
  ident: ref4
  article-title: Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster.
  publication-title: Proc Natl Acad SciUSA
  doi: 10.1073/pnas.87.24.9923
  contributor:
    fullname: JC Eissenberg
– volume: 18
  start-page: 795
  year: 2008
  ident: ref18
  article-title: Endogenous RNA interference provides a somatic defense against Drosophila transposons.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2008.05.006
  contributor:
    fullname: WJ Chung
– volume: 106
  start-page: 21258
  year: 2009
  ident: ref35
  article-title: The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila.
  publication-title: Proc Natl Acad SciUSA
  doi: 10.1073/pnas.0809208105
  contributor:
    fullname: D Fagegaltier
– volume: 453
  start-page: 793
  year: 2008
  ident: ref17
  article-title: Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells.
  publication-title: Nature
  doi: 10.1038/nature06938
  contributor:
    fullname: Y Kawamura
– volume: 35
  start-page: 5430
  year: 2007
  ident: ref46
  article-title: Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm576
  contributor:
    fullname: MS Klenov
– volume: 160
  start-page: 1481
  year: 2002
  ident: ref56
  article-title: Trans-splicing as a novel mechanism to explain interallelic complementation in Drosophila.
  publication-title: Genetics
  doi: 10.1093/genetics/160.4.1481
  contributor:
    fullname: F Mongelard
– volume: 453
  start-page: 798
  year: 2008
  ident: ref16
  article-title: An endogenous small interfering RNA pathway in Drosophila.
  publication-title: Nature
  doi: 10.1038/nature07007
  contributor:
    fullname: B Czech
– volume: 450
  start-page: 304
  year: 2007
  ident: ref21
  article-title: An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster.
  publication-title: Nature
  doi: 10.1038/nature06263
  contributor:
    fullname: H Yin
– volume: 139
  start-page: 697
  year: 1995
  ident: ref32
  article-title: Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster.
  publication-title: Genetics
  doi: 10.1093/genetics/139.2.697
  contributor:
    fullname: N Prud'homme
– volume: 303
  start-page: 672
  year: 2004
  ident: ref6
  article-title: RNAi-mediated targeting of heterochromatin by the RITS complex.
  publication-title: Science
  doi: 10.1126/science.1093686
  contributor:
    fullname: A Verdel
– volume: 304
  start-page: 1971
  year: 2004
  ident: ref8
  article-title: RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins.
  publication-title: Science
  doi: 10.1126/science.1099035
  contributor:
    fullname: S Jia
SSID ssj0035897
Score 2.26589
Snippet Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference...
  Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA...
SourceID plos
doaj
pubmedcentral
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1000880
SubjectTerms Animals
Argonaute Proteins
Binding sites
Biochemistry/Transcription and Translation
Cell Biology/Gene Expression
Chromatin
Chromatin - metabolism
Chromosomal Proteins, Non-Histone - metabolism
Computational Biology/Transcriptional Regulation
Deoxyribonucleic acid
Developmental Biology/Developmental Molecular Mechanisms
DNA
DNA methylation
DNA Transposable Elements - genetics
Drosophila
Drosophila melanogaster - cytology
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - metabolism
Eukaryotic Initiation Factors - metabolism
Female
Gene Expression Regulation
Gene Silencing
Genes
Genetic aspects
Genetic engineering
Genetic transcription
Genetics and Genomics/Epigenetics
Genetics and Genomics/Gene Expression
Genomes
Molecular Biology/Chromatin Structure
Molecular Biology/RNA-Protein Interactions
Mutagenesis, Insertional - genetics
Mutation
Mutation - genetics
Ovarian Follicle - cytology
Ovarian Follicle - metabolism
Physiological aspects
Properties
Protein Transport
Proteins
Recruitment
RNA, Small Interfering - metabolism
RNA-Induced Silencing Complex - metabolism
Standard deviation
Telomerase
Transcription, Genetic
Transposons
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwELZQJSReEDBggcGiCYmnQBLbcfy4AVPZw0DA0N6isxNvkaa0atoH_j13dlrVT-yBx9ZfpfQ73_lOOX_H2Dsso2Uu2ipD27tM1LbMAITDjwogr4CSBuq2uKzmV-LiWl7vjfqinrAgDxyIo0YyLqTWrbJGCG2NyV3Z1k50oi5bG6r1Qm6LqRCDuazDWBUpeabweaZLc1wVHycbfViigahHAN0sjw4lr92_i9Cz5d1i3Due4tbJvbPo_Al7PCWR6Wl4-KfsQTc8Yw_DWMk_B-xs_r1IMZKtNr3vIU_7IcU8LwUzkh-nC5fC6gZT8M26S71QQz-MBPq88lMN-jt4zq7Ov_z6NM-mWQmZxQixzqDMpbUF_lfAEsEJcABgKwF5q0xVVxWJcDtM3mpwWpe41BZGctkZusuqLX_BZsNi6A5Z2nKujOYdOKcF_gqg1q7tLOUeXAmdsGxLVrMMkhiNfy-msJQIBDREbjORm7AzYnSHJUFr_wWauZnM3PzLzAk7Jns04Xbozi2bU0xvsMjDojNhJx5BohYDdc3cwGYcm6_fft8D9PPyPqAfEej9BHIL3AkWpusMyCEpakXIowiJ_muj5UPaYlvqRiSSZpFUuqwT9jLsth13JcZkShoTpqJ9GJEbrwz9rVcNJ5kjkfNX_8Mar9mj0EVBvXhHbLZebbo3mJytzVvvh38BiOY1nA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEF7KieCL1J-NVg0i-JSSy26y2QeRVltOwSrqSd_C7CZ7Bo7kmtyB_e-d2fyggRb6eLff5uHbmd0ZdvYbxt5hGh2HIk8CXHsbiNREAYCw-FMChAlQ0EDVFufJYim-XsQXe2zo2doT2N6Y2lE_qWWzPvp3efURHf6D69og58Okow1STrf-6DiYxN-LBBdk89_EeK_A41TJ_gHdbTNJHhgtn47myVnlJP3HjXu2WdfttVNrWlF57Yg622cP-9jSP-6M4RHbK6rH7H7XbfLqCTtZ_Jj7uME1u9KVlvtl5WP454Nuyb392vrQrDAy320L3-k3lFVLoM-Na3ZQruEpW56d_v60CPoWCoHBjWMbQBTGxswlV4CZgxVgAcAkAsJc6iRNEtLmthjTpWCVinAon-uYx4WmJ67K8GdsVtVVccD8nHOpFS_AWiVwFkCqbF4YCkm4FMpjwUBWtumUMjJ3XSYxw-gIyIjnrOfZYyfE6IglnWv3R92sst5tMm1xEWOlcmm0EMpoHdooT60oRBrlBj_yhtYj6x6Njt6aHWPUg7kf5qIee-sQpHVRUTHNCnZtm335_ucOoF_ndwH9nIDe9yBboyUY6F85IIcktDVBHk6Q6NZmMnxAJjZQ1yKR1KIkUVHqseedtY3cDQbrMTmxwwm505Gq_OvExEn9SIT8xa3ffMkedBUTVHd3yGbbZle8wkBsq1873_oPxLAv5A
  priority: 102
  providerName: Scholars Portal
Title HP1 recruitment in the absence of argonaute proteins in Drosophila
URI https://www.ncbi.nlm.nih.gov/pubmed/20300658
https://pubmed.ncbi.nlm.nih.gov/PMC2837403
https://doaj.org/article/bf434599d7cb449cbb0f2d8f4e482dc0
http://dx.doi.org/10.1371/journal.pgen.1000880
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa2IiReEL8XGCVCSDylTWM7iR_bjaogbVTA0N6isxOXSF1aNe0D_z13TlItbxMvlVKfo_TznX2XfnfH2CcMo2Uo8jjAtbeBSE0UAAiLlwlAGAM5DcS2uI4XN-Lbrbw9YbLLhXGkfaPLUbW-G1XlH8et3N6ZcccTGy-vLqhiiwj5-JSdJpx3IXqz_XKZNh1VpORBgo_S5svxZDJul2e0xbUhegBaGHWCi1DR6STuHU2ugv9xnx5s15v63iHVJ1DeO5Hmz9jT1pX0p80jP2cnRfWCPW6aS_59yWaL5cQnr_BQOia5X1Y-env-VNdkzf7G4tQVOuKHfeEvqVxDWdUkdLlzvQ3KNbxiN_Mvvy4WQdsxITC4T-wDiEJpzAR_NmCgYAVYADCxgDBPdJzGMZXitujCpWCVinAon2jJZaEpo1UZ_poNqk1VnDE_5zzRihdgrRI4CyBVNi8MeSCIvvJY0IGVbZvCGJn7dyzBgKIBICOcsxZnj80I0aMslbV2X2x2q6xd3ExbwYVUKk-MFkIZrUMb5akVhUij3OBNPtB6ZE2O6NE4syk6ORjqYejpsY9OgkpbVMSdWcGhrrOv338_QOjn9UOEfvSEPrdCdoOaYKBNakAMqa5WT_K8J4lWbHrDZ6RiHXQ1AkkdSWIVpR5702jbEbtOYT2W9PSwB25_BE3J1Q5vTeftf898x540BAqi4Z2zwX53KN6jX7bXQ_ZoOruczYfuvQZ-Xol06GzzH7ChN9o
link.rule.ids 230,315,733,786,790,870,891,2115,2236,24346,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGEYKX8c0Cg0UIiaekaWwn8WM3mDrYSgXbtLfIduISrUuqJnmAv567fFQLT4PHxueovi_fKb-7I-QDpNHcY0nggOyNwyLtO1IyAz9DKb1AYtCAaIt5MLtgX6741Q7hfS1MA9rXKnPz1Y2bZz8bbOX6Ro97nNh4cXaEHVuYR8f3yH2wVz_sk_TWAVMetTNVOKdOCH-mq5ij4WTcCchdg3QQIAA2hrPgfFB1vIsHl1PTw3_rqUfrVVHeuqaGEMpbd9LxY3LZn6aFoly7daVc_fuvRo__fNwnZLeLUu1pu_yU7KT5M_KgnVv56zk5nC0mNgacddaA1O0styGQtKeqREdhFwa2LiHGr6vUXmAniCwvkejTphmbkK3kC3Jx_Pn8aOZ0wxgcDS6ocqTvca0nwE8JOYhh0kgpdcCkl4QqiIIAu3wbiA4jaYTwYSmZKE55qrBYVmj6kozyIk_3iJ1QGipBU2mMYLBLykiYJNUY3MBJhUWcXgrxuu25ETcf3kLIVVoGxCjAuBOgRQ5RVFta7JjdPCg2y7hjZKwMo4wLkYRaMSa0Up7xk8iwlEV-ouElByjouC0_3dp9PIX4CbJIyGot8r6hwK4ZOcJylrIuy_jk2-UdiH7M70L0fUD0sSMyBaiYll29BPAQW3YNKPcHlOAg9GB5D3W3Z10JjMRhJ4HwI4u8atV4y7veEiwSDhR8wNzhCqht05a8U9PX_73zgDycnZ-dxqcn869vyKMWp4Fov30yqjZ1-hbCv0q9a4z9D-MfVow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagCMSFN2xgYSOExCmPJs7Dx-4uVZdHqYBFq71EthOXiG4SNckBfj0zcVI1nFZ7bDyO6nnYM8rnbwh5B2V04NI0tMD2yqKx9CzOqYKfEeduyDFpQLTFMlyc048XwcVeq68OtC9FbhebK7vIf3XYyupKOgNOzFl9OUHGFur6TpUq5za5AzHrsaFQ15uwH8S6r0oQ-FYEf6i_NedHU6c3kl2BhRAkAHGG_eA8cHc8j0cHVMfjv9utJ9WmrPeOqjGMcu9cmj8kl8OKNBzlt902wpZ__yN7vNGSH5EHfbZqzrTIY3IrK56Qu7p_5Z-n5HixmpqYeLZ5B1Y388KEhNKciRo3DLNUMHUNuX7bZOYKGSHyokah023XPiHf8GfkfP7hx8nC6psyWBK2osbinhtIOQWdcqhFFOWKcy5Dyt00EmEchsj2rSBLjLlizIOhdCoCP8gEXppl0n9OJkVZZAfETH0_EszPuFKMwizOY6bSTGKSA6tlBrEGSySV5t5Iug9wEdQsWgEJGjHpjWiQYzTXThaZs7sH5Xad9MpMhKI-DRhLIykoZVIIV3lprGhGYy-V8JIjNHair6Hu4j-ZQR4F1SRUtwZ520kge0aB8Jw1b-s6Ofv68xpC35fXEfo2EnrfC6kS3Ezy_t4E6BCpu0aShyNJ2CjkaPgA_XdQXQ2KxKYnIfNig7zQrrzT3RANBolGTj5S7ngEXLejJ-9d9eWNZx6Re6vTefL5bPnpFbmv4RoI-jskk2bbZq8hC2zEmy7e_wGUf1kM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HP1+recruitment+in+the+absence+of+argonaute+proteins+in+Drosophila&rft.jtitle=PLoS+genetics&rft.au=Moshkovich%2C+Nellie&rft.au=Lei%2C+Elissa+P&rft.date=2010-03-01&rft.eissn=1553-7404&rft.volume=6&rft.issue=3&rft.spage=e1000880&rft_id=info:doi/10.1371%2Fjournal.pgen.1000880&rft_id=info%3Apmid%2F20300658&rft.externalDocID=20300658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon