Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition
Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond th...
Saved in:
Published in | PLoS genetics Vol. 7; no. 3; p. e1002014 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.03.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. |
---|---|
AbstractList | Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage.Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. Epigenetic regulation of gene expression through modifications of histone tails is fundamental for growth and development of multicellular organisms. The trimethylation of lysine 27 of histone 3 (H3K27me3) is the landmark of Polycomb Repressive Complex2 (PRC2) function and is associated with gene repression. Here we present the development of a genetic system to generate homozygous null mutants of Arabidopsis PRC2. A first major finding is that H3K27me3 is globally lost in these mutants. Surprisingly, we found that initial body plant organization and embryo development is largely independent of PRC2 action, which is in sharp contrast to embryonic lethality of PRC2 mutants in animals. However, we show here that PRC2 is required to switch from embryonic to seedling phase, and mutant seeds showed enhanced dormancy and germination defects. Indeed, many genes controlling seed maturation and dormancy are marked by H3K27me3 and are upregulated upon loss of PRC2. The invention of seed dormancy of land plants is regarded as one of the major reasons for the evolutionary success of flowering plants, and the here-discovered key role of PRC2 during the developmental phase transition from embryo to seedling growth reveals the adaptation of conserved molecular mechanisms to carry out new functions. Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM ( FIE ), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis . Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. Epigenetic regulation of gene expression through modifications of histone tails is fundamental for growth and development of multicellular organisms. The trimethylation of lysine 27 of histone 3 (H3K27me3) is the landmark of Polycomb Repressive Complex2 (PRC2) function and is associated with gene repression. Here we present the development of a genetic system to generate homozygous null mutants of Arabidopsis PRC2. A first major finding is that H3K27me3 is globally lost in these mutants. Surprisingly, we found that initial body plant organization and embryo development is largely independent of PRC2 action, which is in sharp contrast to embryonic lethality of PRC2 mutants in animals. However, we show here that PRC2 is required to switch from embryonic to seedling phase, and mutant seeds showed enhanced dormancy and germination defects. Indeed, many genes controlling seed maturation and dormancy are marked by H3K27me3 and are upregulated upon loss of PRC2. The invention of seed dormancy of land plants is regarded as one of the major reasons for the evolutionary success of flowering plants, and the here-discovered key role of PRC2 during the developmental phase transition from embryo to seedling growth reveals the adaptation of conserved molecular mechanisms to carry out new functions. |
Audience | Academic |
Author | Andersen, Ellen D. Gey, Delphine Colot, Vincent Grini, Paul E. Renou, Jean-Pierre Bouyer, Daniel Roudier, Francois Nowack, Moritz K. Goodrich, Justin Schnittger, Arp Heese, Maren |
AuthorAffiliation | 2 Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197–INSERM U 1024, Paris, France 5 Department of Plant Systems Biology, VIB, Gent, Belgium The University of North Carolina at Chapel Hill, United States of America 7 Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom 1 Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France 3 Department of Molecular Biosciences, University of Oslo, Oslo, Norway 4 Department of Plant Genomics Research, CNRS/INRA, Evry, France 6 Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium |
AuthorAffiliation_xml | – name: 1 Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France – name: 4 Department of Plant Genomics Research, CNRS/INRA, Evry, France – name: 6 Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium – name: 7 Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom – name: 2 Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197–INSERM U 1024, Paris, France – name: The University of North Carolina at Chapel Hill, United States of America – name: 3 Department of Molecular Biosciences, University of Oslo, Oslo, Norway – name: 5 Department of Plant Systems Biology, VIB, Gent, Belgium |
Author_xml | – sequence: 1 givenname: Daniel surname: Bouyer fullname: Bouyer, Daniel – sequence: 2 givenname: Francois surname: Roudier fullname: Roudier, Francois – sequence: 3 givenname: Maren surname: Heese fullname: Heese, Maren – sequence: 4 givenname: Ellen D. surname: Andersen fullname: Andersen, Ellen D. – sequence: 5 givenname: Delphine surname: Gey fullname: Gey, Delphine – sequence: 6 givenname: Moritz K. surname: Nowack fullname: Nowack, Moritz K. – sequence: 7 givenname: Justin surname: Goodrich fullname: Goodrich, Justin – sequence: 8 givenname: Jean-Pierre surname: Renou fullname: Renou, Jean-Pierre – sequence: 9 givenname: Paul E. surname: Grini fullname: Grini, Paul E. – sequence: 10 givenname: Vincent surname: Colot fullname: Colot, Vincent – sequence: 11 givenname: Arp surname: Schnittger fullname: Schnittger, Arp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21423668$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02647278$$DView record in HAL |
BookMark | eNqVk11r2zAUhs3oWD-2fzA2w2CjF8n0adm7GITQrYHQlrbbrZDtI0dFtjLLDs2_n7ykJSljH-hC4vh532MdnXMcHTSugSh6jdEYU4E_3rm-bZQdLytoxhghgjB7Fh1hzulIMMQOds6H0bH3dwhRnmbiRXRIMCM0SdKj6OLK2XXh6jy-hmUL3psVxFNXLy3cxyScmq511sfdAuKzOm_XbtS50Q1AaU1TxVcL5SG-bVXjTWdc8zJ6rpX18Gq7n0TfvpzdTs9H88uvs-lkPipEQrsRx0mGVAqMoTQRIhdI5wpyhnPKqQYmIBVlQgkNd9KEZlkuCsQUyRmkWumMnkRvN75L67zclsJLTDHlSUIID8RsQ5RO3clla2rVrqVTRv4KuLaSqu1MYUEmuKBcA88FJAx0lqWhmrTQhJeEII2C1-dttj6voSwgFEXZPdP9L41ZyMqtJEWcUiaCwenGYPFEdj6ZyyGGSMIEEekKB_bDNlnrfvTgO1kbX4C1qgHXe5lxlnCKEPormfKUpCw0RiDfbchKhfuaRrvwm8VAy0moVco44kPm8W-osEqoTRG6T5sQ3xOc7gkC08F9V6neezm7uf4P9uLf2cvv--z7HXYBynYL72w_dKPfB9_sPuLjMzzMQgDYBiha530L-hHBSA4j99Bnchg5uR25IPv0RFaYTg3pQ_WM_bP4J3u5LhI |
CitedBy_id | crossref_primary_10_1016_j_molp_2018_01_010 crossref_primary_10_3389_fpls_2014_00247 crossref_primary_10_3390_plants11131686 crossref_primary_10_1002_ece3_5965 crossref_primary_10_1016_j_bbagrm_2014_07_005 crossref_primary_10_1016_j_plantsci_2021_111035 crossref_primary_10_1371_journal_pgen_1005771 crossref_primary_10_1016_j_devcel_2012_02_015 crossref_primary_10_1111_plb_12268 crossref_primary_10_1111_j_1365_3040_2012_02542_x crossref_primary_10_1038_s41467_019_10773_1 crossref_primary_10_3390_genes6030520 crossref_primary_10_1242_dev_111229 crossref_primary_10_1371_journal_pone_0101717 crossref_primary_10_1017_S0960258517000216 crossref_primary_10_1038_ng_3937 crossref_primary_10_1111_tpj_12735 crossref_primary_10_1111_tpj_14911 crossref_primary_10_3390_f13121971 crossref_primary_10_1080_21553769_2013_844734 crossref_primary_10_1038_s41598_020_59697_7 crossref_primary_10_1111_tpj_14596 crossref_primary_10_1017_S0960258522000265 crossref_primary_10_3389_fpls_2014_00142 crossref_primary_10_3389_fpls_2024_1416216 crossref_primary_10_3390_plants12081729 crossref_primary_10_1073_pnas_1303750110 crossref_primary_10_1016_j_pbi_2012_09_006 crossref_primary_10_3390_plants9060703 crossref_primary_10_1016_j_pbi_2016_09_002 crossref_primary_10_1038_s41467_023_36788_3 crossref_primary_10_3390_plants9020218 crossref_primary_10_1038_emboj_2011_103 crossref_primary_10_3390_plants8120564 crossref_primary_10_1093_gbe_evx258 crossref_primary_10_1016_j_plantsci_2015_02_003 crossref_primary_10_3389_fgene_2020_00766 crossref_primary_10_1016_j_xplc_2024_100890 crossref_primary_10_3390_plants11151988 crossref_primary_10_1186_s13059_019_1767_3 crossref_primary_10_1016_j_tplants_2017_11_009 crossref_primary_10_1016_j_plaphy_2025_109826 crossref_primary_10_1371_journal_pone_0158936 crossref_primary_10_1093_g3journal_jkae301 crossref_primary_10_1016_j_tplants_2014_06_009 crossref_primary_10_1007_s10265_015_0771_2 crossref_primary_10_1016_j_devcel_2013_03_013 crossref_primary_10_1016_j_pbi_2014_10_003 crossref_primary_10_1146_annurev_arplant_070623_111458 crossref_primary_10_1080_07352689_2016_1245055 crossref_primary_10_1038_s41438_021_00575_2 crossref_primary_10_1186_s13059_017_1333_9 crossref_primary_10_1371_journal_pgen_1003322 crossref_primary_10_1007_s00299_011_1202_z crossref_primary_10_1093_plcell_koab070 crossref_primary_10_1111_tpj_12828 crossref_primary_10_1016_j_tig_2015_03_004 crossref_primary_10_1016_j_devcel_2020_07_003 crossref_primary_10_1002_pld3_345 crossref_primary_10_1016_j_cub_2013_05_050 crossref_primary_10_1002_pld3_100 crossref_primary_10_1007_s00299_024_03159_1 crossref_primary_10_1007_s00425_020_03520_0 crossref_primary_10_1111_nph_16902 crossref_primary_10_15252_embj_201593534 crossref_primary_10_1093_pcp_pcr153 crossref_primary_10_3389_fpls_2019_01031 crossref_primary_10_1093_jxb_eru005 crossref_primary_10_1186_s12870_023_04359_9 crossref_primary_10_1073_pnas_1911400116 crossref_primary_10_3390_ijms241914625 crossref_primary_10_1007_s42994_020_00029_8 crossref_primary_10_3389_fpls_2017_01530 crossref_primary_10_14348_molcells_2014_0249 crossref_primary_10_1105_tpc_114_126011 crossref_primary_10_1007_s00497_021_00436_x crossref_primary_10_1007_s00299_016_2082_z crossref_primary_10_1016_j_scienta_2022_111685 crossref_primary_10_1111_nph_15197 crossref_primary_10_1186_s13059_017_1313_0 crossref_primary_10_1007_s00425_012_1630_1 crossref_primary_10_1186_s12864_021_08063_6 crossref_primary_10_3390_genes12010052 crossref_primary_10_3389_fpls_2019_00627 crossref_primary_10_1371_journal_pone_0084781 crossref_primary_10_1126_science_aan8576 crossref_primary_10_1104_pp_112_194878 crossref_primary_10_1111_tpj_14673 crossref_primary_10_1093_pcp_pcac017 crossref_primary_10_1016_j_molcel_2024_08_018 crossref_primary_10_1093_pcp_pcy224 crossref_primary_10_1007_s00438_016_1224_x crossref_primary_10_1016_j_devcel_2021_06_004 crossref_primary_10_1007_s11816_013_0288_x crossref_primary_10_1016_j_bone_2023_116866 crossref_primary_10_1105_tpc_111_087866 crossref_primary_10_1111_pbi_12315 crossref_primary_10_1093_pcp_pcac021 crossref_primary_10_1146_annurev_arplant_050718_100434 crossref_primary_10_1007_s00425_013_1892_2 crossref_primary_10_1016_j_pbi_2015_09_004 crossref_primary_10_1126_science_aaf6532 crossref_primary_10_1111_nph_12472 crossref_primary_10_1016_j_tplants_2016_02_001 crossref_primary_10_1093_nar_gku220 crossref_primary_10_3390_plants10020236 crossref_primary_10_1007_s00425_014_2155_6 crossref_primary_10_1093_mp_sst100 crossref_primary_10_1111_j_1467_7652_2012_00682_x crossref_primary_10_3389_fpls_2014_00219 crossref_primary_10_3389_fpls_2014_00458 crossref_primary_10_3389_fpls_2025_1553953 crossref_primary_10_1007_s13258_023_01366_w crossref_primary_10_1016_j_bbagrm_2011_05_008 crossref_primary_10_1093_pcp_pcr163 crossref_primary_10_3389_fpls_2014_00233 crossref_primary_10_1093_jxb_eraa365 crossref_primary_10_1038_nplants_2015_89 crossref_primary_10_1093_plcell_koae260 crossref_primary_10_1007_s10265_015_0706_y crossref_primary_10_1016_j_pbi_2015_11_010 crossref_primary_10_1016_j_ydbio_2018_04_023 crossref_primary_10_3389_fcell_2023_1097780 crossref_primary_10_1111_tpj_13202 crossref_primary_10_3389_fpls_2018_01509 crossref_primary_10_1007_s00425_023_04188_y crossref_primary_10_1146_annurev_arplant_043014_115627 crossref_primary_10_3389_fpls_2022_865361 crossref_primary_10_1105_tpc_113_116491 crossref_primary_10_1093_jxb_eraa154 crossref_primary_10_1105_tpc_112_108191 crossref_primary_10_1111_nph_18156 crossref_primary_10_1186_s12864_017_3542_8 crossref_primary_10_1093_jhered_esae009 crossref_primary_10_1111_nph_13386 crossref_primary_10_1007_s11240_014_0482_8 crossref_primary_10_3390_plants10091884 crossref_primary_10_1007_s12229_013_9119_6 crossref_primary_10_1093_gbe_evu040 crossref_primary_10_1371_journal_pone_0127938 crossref_primary_10_3389_fpls_2021_656825 crossref_primary_10_1101_gad_211425_112 crossref_primary_10_1016_j_bbagrm_2016_05_004 crossref_primary_10_1105_tpc_112_105114 crossref_primary_10_1038_nplants_2015_100 crossref_primary_10_1111_tpj_12688 crossref_primary_10_1105_tpc_15_00854 crossref_primary_10_1002_reg2_91 crossref_primary_10_1371_journal_pgen_1007797 crossref_primary_10_1111_jipb_12841 crossref_primary_10_1111_evo_14367 crossref_primary_10_1016_j_jgg_2012_12_005 crossref_primary_10_1007_s00497_018_0337_2 crossref_primary_10_1111_ppl_12462 crossref_primary_10_1016_j_bbagrm_2012_02_022 crossref_primary_10_1073_pnas_1203148109 crossref_primary_10_1016_j_jgg_2019_09_005 crossref_primary_10_1016_j_jgg_2022_09_001 crossref_primary_10_1007_s00294_021_01177_0 crossref_primary_10_1371_journal_pgen_1003862 crossref_primary_10_3389_fpls_2022_916831 crossref_primary_10_1093_jxb_ert403 crossref_primary_10_3389_fpls_2023_1079218 crossref_primary_10_1371_journal_pone_0030715 crossref_primary_10_3389_fpls_2016_00938 crossref_primary_10_3390_ijms21165871 crossref_primary_10_1105_tpc_112_096313 crossref_primary_10_1186_gb_2012_13_12_r117 crossref_primary_10_1016_j_pbi_2016_07_010 crossref_primary_10_1111_tpj_12455 crossref_primary_10_1038_s41598_019_48958_9 crossref_primary_10_1093_plphys_kiab243 crossref_primary_10_1016_j_plantsci_2017_04_005 crossref_primary_10_1007_s11240_016_1161_8 crossref_primary_10_3390_plants11131708 crossref_primary_10_1016_j_pbi_2021_102002 crossref_primary_10_5010_JPB_2019_46_4_255 crossref_primary_10_1016_j_plantsci_2016_06_013 crossref_primary_10_1080_15592324_2020_1784549 crossref_primary_10_1371_journal_pgen_1005806 crossref_primary_10_1371_journal_pgen_1004944 crossref_primary_10_1111_nph_13486 crossref_primary_10_1007_s11738_017_2487_5 crossref_primary_10_1186_s12870_016_0890_5 crossref_primary_10_1007_s11103_016_0569_1 crossref_primary_10_1534_g3_117_300550 crossref_primary_10_1186_s12870_019_2057_7 crossref_primary_10_3390_ijms232415950 crossref_primary_10_1016_j_cub_2023_07_033 crossref_primary_10_1002_reg2_73 crossref_primary_10_1371_journal_pgen_1006562 crossref_primary_10_1016_j_bbagrm_2014_05_011 crossref_primary_10_1146_annurev_arplant_070122_025047 crossref_primary_10_3390_ijms24033025 crossref_primary_10_3390_plants11040490 crossref_primary_10_1016_j_jplph_2015_12_006 crossref_primary_10_1093_hr_uhac132 crossref_primary_10_1111_tpj_12542 crossref_primary_10_3390_ijms22147533 crossref_primary_10_1093_dnares_dsz021 crossref_primary_10_1007_s00425_014_2059_5 crossref_primary_10_1371_journal_pone_0051532 crossref_primary_10_1186_s13059_017_1228_9 crossref_primary_10_1371_journal_pgen_1002512 crossref_primary_10_1038_ncomms15120 crossref_primary_10_1038_ncomms8243 crossref_primary_10_3389_fcell_2021_774719 crossref_primary_10_1038_s41467_020_20614_1 crossref_primary_10_1093_jxb_eraf051 crossref_primary_10_1016_j_envexpbot_2015_05_004 crossref_primary_10_1080_15592324_2015_1027851 crossref_primary_10_3390_cells10051136 crossref_primary_10_1111_jipb_12972 crossref_primary_10_1080_15592324_2015_1105418 crossref_primary_10_1186_s12864_024_10623_5 crossref_primary_10_1038_s42003_019_0646_5 crossref_primary_10_1093_plcell_koac133 crossref_primary_10_1093_plcell_koac134 crossref_primary_10_1093_jxb_erw024 crossref_primary_10_1042_EBC20220048 crossref_primary_10_1111_tpj_16446 crossref_primary_10_1105_tpc_111_087809 crossref_primary_10_1093_pcp_pcw209 crossref_primary_10_1111_nph_19165 crossref_primary_10_1007_s00299_023_03071_0 crossref_primary_10_1016_j_ydbio_2018_06_021 crossref_primary_10_1038_s41586_022_05171_5 crossref_primary_10_1371_journal_pgen_1004091 crossref_primary_10_1111_jipb_12485 crossref_primary_10_1093_plcell_koad112 crossref_primary_10_1007_s11103_016_0436_0 crossref_primary_10_1093_bib_bbr054 crossref_primary_10_1093_pcp_pcu139 crossref_primary_10_1007_s11033_025_10285_w crossref_primary_10_1186_s12870_021_03153_9 crossref_primary_10_1534_genetics_115_180141 crossref_primary_10_4161_psb_18893 crossref_primary_10_1007_s11816_012_0229_0 crossref_primary_10_1093_mp_sst150 crossref_primary_10_1104_pp_111_186445 crossref_primary_10_1016_j_pbi_2011_10_001 crossref_primary_10_1038_s41598_018_26349_w crossref_primary_10_3389_fpls_2015_00159 crossref_primary_10_1093_jxb_ert410 crossref_primary_10_1186_s12870_021_02922_w crossref_primary_10_3389_fpls_2019_00240 crossref_primary_10_1093_jxb_eru069 crossref_primary_10_1371_journal_pone_0072160 crossref_primary_10_3390_ijms21072307 crossref_primary_10_1093_mp_ssu001 crossref_primary_10_1038_s41598_017_03665_1 crossref_primary_10_1111_tpj_16548 crossref_primary_10_1093_jxb_erad120 crossref_primary_10_14348_molcells_2016_0049 crossref_primary_10_1007_s10725_023_00983_5 crossref_primary_10_1111_tpj_14125 crossref_primary_10_1016_j_semcdb_2022_04_006 crossref_primary_10_1111_tpj_14002 crossref_primary_10_1111_jipb_12025 crossref_primary_10_1093_jxb_erw373 crossref_primary_10_1038_ncomms13412 crossref_primary_10_1186_s12870_014_0293_4 crossref_primary_10_1111_nph_20125 crossref_primary_10_1111_tpj_12070 crossref_primary_10_1093_plcell_koae304 crossref_primary_10_1007_s42977_022_00126_3 crossref_primary_10_1111_tpj_12629 crossref_primary_10_1007_s12374_023_09397_2 crossref_primary_10_1038_s41598_017_01159_8 crossref_primary_10_1042_BST20200192 crossref_primary_10_1186_s12870_018_1589_6 crossref_primary_10_1093_plcell_koad328 crossref_primary_10_1101_gr_131342_111 |
Cites_doi | 10.1186/gb-2010-11-4-r42 10.1093/mp/ssp027 10.1073/pnas.93.11.5319 10.1104/pp.109.145581 10.1371/journal.pgen.1000242 10.1371/journal.pbio.0050129 10.1111/j.1365-313X.2005.02404.x 10.1105/tpc.109.070060 10.1016/j.devcel.2009.08.005 10.1111/j.1469-8137.2006.01787.x 10.1038/ng1694 10.1007/s11103-008-9304-x 10.1111/j.1365-313X.2003.01996.x 10.1105/tpc.104.022236 10.1093/bioinformatics/bti551 10.1038/nature06008 10.1186/1471-2164-9-488 10.1104/pp.109.143941 10.1074/jbc.M109298200 10.1105/tpc.105.031831 10.1073/pnas.0906997106 10.1073/pnas.0901367106 10.1242/dev.01294 10.1016/j.tcb.2008.02.005 10.1111/j.1469-8137.2008.02437.x 10.1093/genetics/164.2.711 10.1038/sj.emboj.7600430 10.1105/tpc.13.11.2471 10.1111/j.1365-313X.2005.02643.x 10.1242/dev.035048 10.1002/j.1460-2075.1985.tb04075.x 10.1016/j.pbi.2007.06.009 10.1371/journal.pgen.0030086 10.1016/j.semcdb.2008.07.018 10.1146/annurev.arplant.59.032607.092740 10.1016/j.ceb.2008.03.002 10.1016/j.bbaexp.2007.01.010 10.1371/journal.pone.0008033 10.1016/j.ydbio.2007.10.025 10.1105/tpc.106.049221 10.1186/1471-2105-9-465 10.1016/j.cell.2007.02.009 10.1016/j.ceb.2006.04.003 10.1371/journal.pgen.1000605 10.1093/bioinformatics/btn280 10.1101/gad.1812609 10.1186/gb-2009-10-6-r62 10.1093/nar/gkm464 10.1038/sj.emboj.7600604 10.1111/j.1365-313X.2009.04065.x 10.1105/tpc.11.3.407 10.1186/1471-2164-9-118 10.1038/nature05770 10.1093/mp/ssp005 10.1016/j.stem.2007.08.004 10.1073/pnas.0605551103 10.1146/annurev.cellbio.042308.113411 10.1016/S0960-9822(03)00243-4 10.1016/j.tplants.2009.08.003 10.1093/nar/gkg071 10.1101/gr.2544504 10.1242/dev.01400 10.1016/j.stem.2007.08.003 10.1016/j.semcdb.2008.07.015 10.1242/dev.114.2.493 10.1186/gb-2009-10-12-248 10.1101/gad.388706 10.1111/j.1365-313X.2010.04148.x 10.1093/nar/gkm757 10.1016/j.ejcb.2009.11.010 10.1016/j.gde.2007.09.004 10.1038/nature08836 10.1111/j.1365-313X.2009.04095.x 10.1073/pnas.170292997 10.1016/j.gde.2007.08.011 10.1242/dev.121.2.273 10.1242/dev.033076 10.1105/tpc.108.058172 10.1073/pnas.0607877103 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 Public Library of Science Distributed under a Creative Commons Attribution 4.0 International License Bouyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2011 2011 Bouyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, et al. (2011) Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition. PLoS Genet 7(3): e1002014. doi:10.1371/journal.pgen.1002014 |
Copyright_xml | – notice: COPYRIGHT 2011 Public Library of Science – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Bouyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2011 – notice: 2011 Bouyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, et al. (2011) Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition. PLoS Genet 7(3): e1002014. doi:10.1371/journal.pgen.1002014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 7TM 8FD FR3 P64 RC3 1XC VOOES 5PM DOA |
DOI | 10.1371/journal.pgen.1002014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context Opposing Viewpoints Gale In Context: Canada Gale In Context: Science MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Environmental Sciences |
DocumentTitleAlternate | PRC2 Controls the Embryo-to-Seedling Transition |
EISSN | 1553-7404 |
ExternalDocumentID | 1313566225 oai_doaj_org_article_61c35fe5b7e64ef9980023cf25d220f0 PMC3053347 oai_HAL_hal_02647278v1 A253845051 21423668 10_1371_journal_pgen_1002014 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Belgium France United Kingdom |
GeographicLocations_xml | – name: United Kingdom – name: France – name: Belgium |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H004319/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/F007442/1 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB PV9 QF4 RIG RZL WOQ PMFND 7X8 7TM 8FD FR3 P64 RC3 1XC VOOES 5PM PUEGO 3V. AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c763t-51690a8e4408677b70fbaeb41b353fe47e87d6323014f2399b7c04a2b4e8faf93 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun Oct 01 00:20:30 EDT 2023 Wed Aug 27 01:32:57 EDT 2025 Thu Aug 21 18:04:50 EDT 2025 Wed Aug 13 07:44:39 EDT 2025 Tue Aug 05 10:53:54 EDT 2025 Thu Jul 10 20:26:50 EDT 2025 Tue Jun 17 21:18:40 EDT 2025 Tue Jun 10 20:28:59 EDT 2025 Fri Jun 27 04:37:36 EDT 2025 Fri Jun 27 04:21:13 EDT 2025 Fri Jun 27 04:15:29 EDT 2025 Thu May 22 21:18:01 EDT 2025 Mon Jul 21 06:04:01 EDT 2025 Tue Jul 01 02:38:31 EDT 2025 Thu Apr 24 23:09:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | STEM-CELLS ARABIDOPSIS-THALIANA FIE TRITHORAX GENE-EXPRESSION GROUP PROTEINS LAND PLANT EVOLUTION ENDOSPERM DEVELOPMENT FLOWERING-LOCUS-C DORMANCY |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c763t-51690a8e4408677b70fbaeb41b353fe47e87d6323014f2399b7c04a2b4e8faf93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC3053347 Conceived and designed the experiments: DB FR MH MKN JG JPR PEG VC AS. Performed the experiments: DB FR EDA DG MKN. Analyzed the data: DB FR MH EDA DG MKN JG JPR PEG VC AS. Wrote the paper: DB FR MH PEG VC AS. |
ORCID | 0000-0001-7067-0091 0000-0002-5656-1793 0000-0002-6382-1610 0000-0002-7438-5551 0000-0002-1757-6386 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1002014 |
PMID | 21423668 |
PQID | 858284020 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1313566225 doaj_primary_oai_doaj_org_article_61c35fe5b7e64ef9980023cf25d220f0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3053347 hal_primary_oai_HAL_hal_02647278v1 proquest_miscellaneous_954653000 proquest_miscellaneous_858284020 gale_infotracmisc_A253845051 gale_infotracacademiconefile_A253845051 gale_incontextgauss_ISR_A253845051 gale_incontextgauss_ISN_A253845051 gale_incontextgauss_IOV_A253845051 gale_healthsolutions_A253845051 pubmed_primary_21423668 crossref_primary_10_1371_journal_pgen_1002014 crossref_citationtrail_10_1371_journal_pgen_1002014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2011 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | MK Nowack (ref22) 2006; 38 H Iwakawa (ref23) 2006; 45 Y He (ref2) 2009; 2 X Zhang (ref29) 2007; 5 X Ge (ref79) 2003; 14 R Amasino (ref55) 2010; 61 C Baroux (ref19) 2007; 17 TS Mikkelsen (ref48) 2007; 448 M Hundertmark (ref36) 2008; 9 A Mosquna (ref67) 2009; 136 ML Crowe (ref75) 2003; 31 C Alonso-Blanco (ref64) 2003; 164 T Hulsen (ref81) 2008; 9 CC Carles (ref42) 2009; 23 JH Jeong (ref52) 2009; 4 SJ Aw (ref21) 2010 X Zhang (ref43) 2009; 10 H Zhang (ref58) 2009; 2 D Wang (ref73) 2006; 103 G Struhl (ref14) 1985; 4 Q Gan (ref51) 2010; 11 B Papp (ref9) 2006; 20 HU Kim (ref35) 2002; 277 IR Henderson (ref57) 2004; 131 A Junker (ref60) 2010 S Pien (ref12) 2007; 1769 S Arvidsson (ref74) 2008; 9 MJ Holdsworth (ref61) 2008; 179 M Ingouff (ref70) 2005; 42 M Luo (ref71) 2000; 97 DH Kim (ref4) 2009; 25 R Alvarez-Venegas (ref38) 2003; 13 Y Liu (ref63) 2007; 19 AM Lindroth (ref27) 2004; 23 MR Doyle (ref72) 2009; 151 C Lurin (ref77) 2004; 16 E van der Graaff (ref82) 2009; 10 B Schuettengruber (ref7) 2007; 128 RL Kurzhals (ref25) 2008; 313 N Yoshida (ref32) 2001; 13 N Bies-Ethève (ref37) 2008; 67 Y Okano (ref68) 2009; 106 T Kinoshita (ref18) 2008; 19 H North (ref59) 2010; 61 F Turck (ref33) 2007; 3 N Ohad (ref83) 1999; 11 J Bramsiepe (ref26) C Faust (ref15) 1995; 121 ES Dennis (ref56) 2007; 10 S Pien (ref45) 2008; 20 MK Nowack (ref24) 2007; 447 S Lau (ref54) 2010; 89 M Ku (ref47) 2008; 4 A Berr (ref40) 2009; 151 S Gagnot (ref78) 2008; 36 F Bantignies (ref10) 2006; 18 RC Akkers (ref46) 2009; 17 J Simon (ref13) 1992; 114 E Aichinger (ref41) 2009; 5 A Saleh (ref44) 2007; 35 P Hilson (ref76) 2004; 14 T Kinoshita (ref5) 2001 GC Chiang (ref66) 2009; 106 WE Finch-Savage (ref65) 2006; 171 ML Martin-Magniette (ref80) 2008; 24 VF Irish (ref84) 2010; 61 YB Schwartz (ref8) 2008; 20 Y Chanvivattana (ref6) 2004; 131 K Naumann (ref28) 2005; 24 XD Zhao (ref50) 2007; 1 A Schlereth (ref53) 2010; 464 S de Folter (ref34) 2005; 17 N Ohad (ref69) 1996; 93 F Berger (ref17) 2009; 14 JH Huh (ref16) 2007; 17 A Katz (ref20) 2004; 37 G Pan (ref49) 2007; 1 R Finkelstein (ref1) 2008; 59 C Kohler (ref11) 2008; 18 S Maere (ref31) 2005; 21 Y Tamada (ref39) 2009; 21 L Bentsink (ref62) 2006; 103 C Liu (ref85) 2009; 136 S Farrona (ref3) 2008; 19 Y Jacob (ref30) 2010 |
References_xml | – volume: 11 start-page: R42 year: 2010 ident: ref51 article-title: Monovalent and unpoised status of most genes in undifferentiated cell-enriched Drosophila testis. publication-title: Genome Biol doi: 10.1186/gb-2010-11-4-r42 – volume: 2 start-page: 610 year: 2009 ident: ref58 article-title: An Epigenetic Perspective on Developmental Regulation of Seed Genes. publication-title: Molecular Plant doi: 10.1093/mp/ssp027 – volume: 93 start-page: 5319 year: 1996 ident: ref69 article-title: A mutation that allows endosperm development without fertilization. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.11.5319 – volume: 151 start-page: 1688 year: 2009 ident: ref72 article-title: A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent, rapid flowering in Arabidopsis. publication-title: PLANT PHYSIOLOGY doi: 10.1104/pp.109.145581 – volume: 4 start-page: e1000242 year: 2008 ident: ref47 article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000242 – volume: 5 start-page: e129 year: 2007 ident: ref29 article-title: Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050129 – year: 2010 ident: ref21 article-title: Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis. publication-title: Development – volume: 42 start-page: 663 year: 2005 ident: ref70 article-title: Polycomb group genes control developmental timing of endosperm. publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02404.x – volume: 21 start-page: 3257 year: 2009 ident: ref39 article-title: ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. publication-title: The Plant Cell doi: 10.1105/tpc.109.070060 – volume: 17 start-page: 425 year: 2009 ident: ref46 article-title: A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. publication-title: Developmental Cell doi: 10.1016/j.devcel.2009.08.005 – volume: 171 start-page: 501 year: 2006 ident: ref65 article-title: Seed dormancy and the control of germination. publication-title: New Phytol doi: 10.1111/j.1469-8137.2006.01787.x – volume: 38 start-page: 63 year: 2006 ident: ref22 article-title: A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. publication-title: Nat Genet doi: 10.1038/ng1694 – volume: 67 start-page: 107 year: 2008 ident: ref37 article-title: Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. publication-title: Plant Mol Biol doi: 10.1007/s11103-008-9304-x – volume: 37 start-page: 707 year: 2004 ident: ref20 article-title: FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. publication-title: Plant J doi: 10.1111/j.1365-313X.2003.01996.x – volume: 16 start-page: 2089 year: 2004 ident: ref77 article-title: Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. publication-title: The Plant Cell doi: 10.1105/tpc.104.022236 – volume: 21 start-page: 3448 year: 2005 ident: ref31 article-title: BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti551 – volume: 448 start-page: 553 year: 2007 ident: ref48 article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. publication-title: Nature doi: 10.1038/nature06008 – volume: 9 start-page: 488 year: 2008 ident: ref81 article-title: BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. publication-title: BMC Genomics doi: 10.1186/1471-2164-9-488 – volume: 151 start-page: 1476 year: 2009 ident: ref40 article-title: SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. publication-title: PLANT PHYSIOLOGY doi: 10.1104/pp.109.143941 – volume: 277 start-page: 22677 year: 2002 ident: ref35 article-title: A novel group of oleosins is present inside the pollen of Arabidopsis. publication-title: J Biol Chem doi: 10.1074/jbc.M109298200 – volume: 17 start-page: 1424 year: 2005 ident: ref34 article-title: Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. publication-title: The Plant Cell doi: 10.1105/tpc.105.031831 – volume: 106 start-page: 16321 year: 2009 ident: ref68 article-title: A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0906997106 – volume: 106 start-page: 11661 year: 2009 ident: ref66 article-title: Major flowering time gene, flowering locus C, regulates seed germination in Arabidopsis thaliana. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0901367106 – volume: 131 start-page: 3829 year: 2004 ident: ref57 article-title: Control of Arabidopsis flowering: the chill before the bloom. publication-title: Development doi: 10.1242/dev.01294 – volume: 18 start-page: 236 year: 2008 ident: ref11 article-title: Programming of gene expression by Polycomb group proteins. publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2008.02.005 – volume: 179 start-page: 33 year: 2008 ident: ref61 article-title: Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. publication-title: New Phytol doi: 10.1111/j.1469-8137.2008.02437.x – volume: 164 start-page: 711 year: 2003 ident: ref64 article-title: Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. publication-title: Genetics doi: 10.1093/genetics/164.2.711 – volume: 23 start-page: 4286 year: 2004 ident: ref27 article-title: Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. publication-title: EMBO J doi: 10.1038/sj.emboj.7600430 – volume: 13 start-page: 2471 year: 2001 ident: ref32 article-title: EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. publication-title: The Plant Cell doi: 10.1105/tpc.13.11.2471 – volume: 45 start-page: 819 year: 2006 ident: ref23 article-title: Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02643.x – volume: 136 start-page: 2433 year: 2009 ident: ref67 article-title: Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. publication-title: Development doi: 10.1242/dev.035048 – year: 2001 ident: ref5 article-title: Polycomb repression of flowering during early plant development. publication-title: Proceedings of the National Academy of Sciences – volume: 4 start-page: 3259 year: 1985 ident: ref14 article-title: Altered distributions of Ultrabithorax transcripts in extra sex combs mutant embryos of Drosophila. publication-title: EMBO J doi: 10.1002/j.1460-2075.1985.tb04075.x – volume: 10 start-page: 520 year: 2007 ident: ref56 article-title: Epigenetic regulation of flowering. publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2007.06.009 – volume: 3 start-page: e86 year: 2007 ident: ref33 article-title: Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030086 – volume: 19 start-page: 574 year: 2008 ident: ref18 article-title: Genomic imprinting: A balance between antagonistic roles of parental chromosomes. publication-title: Seminars in Cell and Developmental Biology doi: 10.1016/j.semcdb.2008.07.018 – year: 2010 ident: ref30 article-title: Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. publication-title: Nature – volume: 59 start-page: 387 year: 2008 ident: ref1 article-title: Molecular aspects of seed dormancy. publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092740 – volume: 20 start-page: 266 year: 2008 ident: ref8 article-title: Polycomb complexes and epigenetic states. publication-title: Current Opinion in Cell Biology doi: 10.1016/j.ceb.2008.03.002 – volume: 1769 start-page: 375 year: 2007 ident: ref12 article-title: Polycomb group and trithorax group proteins in Arabidopsis. publication-title: BBA-Gene Structure and Expression doi: 10.1016/j.bbaexp.2007.01.010 – volume: 4 start-page: e8033 year: 2009 ident: ref52 article-title: Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. publication-title: PLoS ONE doi: 10.1371/journal.pone.0008033 – volume: 313 start-page: 293 year: 2008 ident: ref25 article-title: Drosophila ESC-like can substitute for ESC and becomes required for Polycomb silencing if ESC is absent. publication-title: Developmental Biology doi: 10.1016/j.ydbio.2007.10.025 – volume: 19 start-page: 433 year: 2007 ident: ref63 article-title: The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. publication-title: The Plant Cell doi: 10.1105/tpc.106.049221 – volume: 9 start-page: 465 year: 2008 ident: ref74 article-title: QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-465 – volume: 128 start-page: 735 year: 2007 ident: ref7 article-title: Genome regulation by polycomb and trithorax proteins. publication-title: Cell doi: 10.1016/j.cell.2007.02.009 – volume: 18 start-page: 275 year: 2006 ident: ref10 article-title: Cellular memory and dynamic regulation of polycomb group proteins. publication-title: Current Opinion in Cell Biology doi: 10.1016/j.ceb.2006.04.003 – volume: 5 start-page: e1000605 year: 2009 ident: ref41 article-title: CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000605 – volume: 24 start-page: i181 year: 2008 ident: ref80 article-title: ChIPmix: mixture model of regressions for two-color ChIP-chip analysis. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn280 – ident: ref26 article-title: Endoreplication and development. publication-title: Plant Signaling & Behavior – volume: 23 start-page: 2723 year: 2009 ident: ref42 article-title: The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants. publication-title: Genes & Development doi: 10.1101/gad.1812609 – volume: 10 start-page: R62 year: 2009 ident: ref43 article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. publication-title: Genome Biol doi: 10.1186/gb-2009-10-6-r62 – volume: 35 start-page: 6290 year: 2007 ident: ref44 article-title: The Arabidopsis homologs of trithorax (ATX1) and enhancer of zeste (CLF) establish 'bivalent chromatin marks' at the silent AGAMOUS locus. publication-title: Nucleic Acids Research doi: 10.1093/nar/gkm464 – volume: 24 start-page: 1418 year: 2005 ident: ref28 article-title: Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. publication-title: EMBO J doi: 10.1038/sj.emboj.7600604 – volume: 61 start-page: 1014 year: 2010 ident: ref84 article-title: The flowering of Arabidopsis flower development. publication-title: Plant J doi: 10.1111/j.1365-313X.2009.04065.x – volume: 11 start-page: 407 year: 1999 ident: ref83 article-title: Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. publication-title: The Plant Cell doi: 10.1105/tpc.11.3.407 – volume: 9 start-page: 118 year: 2008 ident: ref36 article-title: LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. publication-title: BMC Genomics doi: 10.1186/1471-2164-9-118 – volume: 447 start-page: 312 year: 2007 ident: ref24 article-title: Bypassing genomic imprinting allows seed development. publication-title: Nature doi: 10.1038/nature05770 – volume: 2 start-page: 554 year: 2009 ident: ref2 article-title: Control of the transition to flowering by chromatin modifications. publication-title: Molecular Plant doi: 10.1093/mp/ssp005 – volume: 1 start-page: 286 year: 2007 ident: ref50 article-title: Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.08.004 – volume: 103 start-page: 13244 year: 2006 ident: ref73 article-title: Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605551103 – volume: 25 start-page: 277 year: 2009 ident: ref4 article-title: Vernalization: winter and the timing of flowering in plants. publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.042308.113411 – volume: 13 start-page: 627 year: 2003 ident: ref38 article-title: ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. publication-title: Curr Biol doi: 10.1016/S0960-9822(03)00243-4 – volume: 14 start-page: 550 year: 2009 ident: ref17 article-title: Parental memories shape seeds. publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2009.08.003 – volume: 31 start-page: 156 year: 2003 ident: ref75 article-title: CATMA: a complete Arabidopsis GST database. publication-title: Nucleic Acids Research doi: 10.1093/nar/gkg071 – volume: 14 start-page: 2176 year: 2004 ident: ref76 article-title: Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. publication-title: Genome Research doi: 10.1101/gr.2544504 – volume: 131 start-page: 5263 year: 2004 ident: ref6 article-title: Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. publication-title: Development doi: 10.1242/dev.01400 – volume: 1 start-page: 299 year: 2007 ident: ref49 article-title: Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.08.003 – volume: 19 start-page: 560 year: 2008 ident: ref3 article-title: The impact of chromatin regulation on the floral transition. publication-title: Seminars in Cell & Developmental Biology doi: 10.1016/j.semcdb.2008.07.015 – volume: 114 start-page: 493 year: 1992 ident: ref13 article-title: Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products. publication-title: Development doi: 10.1242/dev.114.2.493 – volume: 10 start-page: 248 year: 2009 ident: ref82 article-title: The WUS homeobox-containing (WOX) protein family. publication-title: Genome Biol doi: 10.1186/gb-2009-10-12-248 – volume: 20 start-page: 2041 year: 2006 ident: ref9 article-title: Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. publication-title: Genes & Development doi: 10.1101/gad.388706 – volume: 61 start-page: 1001 year: 2010 ident: ref55 article-title: Seasonal and developmental timing of flowering. publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04148.x – volume: 36 start-page: D986 year: 2008 ident: ref78 article-title: CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform. publication-title: Nucleic Acids Research doi: 10.1093/nar/gkm757 – volume: 14 start-page: 34 year: 2003 ident: ref79 article-title: Reducing false positives in molecular pattern recognition. publication-title: Genome informatics International Conference on Genome Informatics – volume: 89 start-page: 225 year: 2010 ident: ref54 article-title: Cell-cell communication in Arabidopsis early embryogenesis. publication-title: Eur J Cell Biol doi: 10.1016/j.ejcb.2009.11.010 – volume: 17 start-page: 473 year: 2007 ident: ref19 article-title: Chromatin modification and remodeling during early seed development. publication-title: Current opinion in genetics & development doi: 10.1016/j.gde.2007.09.004 – volume: 464 start-page: 913 year: 2010 ident: ref53 article-title: MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. publication-title: Nature doi: 10.1038/nature08836 – volume: 61 start-page: 971 year: 2010 ident: ref59 article-title: Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research. publication-title: Plant J doi: 10.1111/j.1365-313X.2009.04095.x – volume: 97 start-page: 10637 year: 2000 ident: ref71 article-title: Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.170292997 – volume: 17 start-page: 480 year: 2007 ident: ref16 article-title: Endosperm gene imprinting and seed development. publication-title: Current opinion in genetics & development doi: 10.1016/j.gde.2007.08.011 – volume: 121 start-page: 273 year: 1995 ident: ref15 article-title: The eed mutation disrupts anterior mesoderm production in mice. publication-title: Development doi: 10.1242/dev.121.2.273 – volume: 136 start-page: 3379 year: 2009 ident: ref85 article-title: Coming into bloom: the specification of floral meristems. publication-title: Development doi: 10.1242/dev.033076 – volume: 20 start-page: 580 year: 2008 ident: ref45 article-title: ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. publication-title: The Plant Cell doi: 10.1105/tpc.108.058172 – volume: 103 start-page: 17042 year: 2006 ident: ref62 article-title: Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0607877103 – year: 2010 ident: ref60 article-title: An engineer's view on regulation of seed development. |
SSID | ssj0035897 |
Score | 2.4958992 |
Snippet | Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin... Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive... |
SourceID | plos doaj pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1002014 |
SubjectTerms | Arabidopsis Arabidopsis - genetics Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biochemistry, Molecular Biology Biology Cellular Biology Chromatin - metabolism Chromatin Immunoprecipitation Chromosome Segregation Chromosomes, Plant - physiology Cyclin-Dependent Kinases - genetics DNA binding proteins Drosophila Environmental Sciences Epigenetics Experiments Flowers - genetics Flowers - physiology Gene Expression Profiling Genes Genetic aspects Genomes Grants Histones - metabolism Homozygote Life Sciences Molecular biology Phenotype Physiological aspects Polycomb-Group Proteins Protein Binding Repressor Proteins - genetics Repressor Proteins - metabolism Seedlings - genetics Seedlings - physiology Seeds Seeds - genetics Seeds - physiology Vegetal Biology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagEhIXxHsDC1gIiVPYJHbi9FgQqwVBQcCivVm2Y2-RSlI17Yr-e2Zst2oQaPfANZ22yefxPOKZbwh5YXWdl6bhqTVVk3IrbKoKplKuITp3TIGbwObkj9Pq5JS_PyvP9kZ9YU1YoAcOwB1VuWGls6UWtuLWQXaAbsa4omyKInM-Wweft02mgg1mZR3GqpQlSwWk9bFpjon8KK7RqwUskCcgzXI-cEqeu39noa_PsEBytJh3_d-C0D9rKfec0_FtcitGlXQSnuYOuWbbu-RGmDO5uUemn7v5BlRL02UsfL2w1BeT21-0oLFcvacQDFL7Uy83Xbrq0h4cGzar08UMXB1doVfzBV73yenx229vTtI4SCE1YD5WqT8LU7XF6dKVEFpkTiurea5ZyZzlwtaiqViB6ZXDZlctTMZVobmtnXJj9oCM2q61B4Ta2mbaNWM1bjKuXa4YN43BFydNk42tSwjbIilNZBnHYRdz6Y_OBGQbARKJ-MuIf0LS3bcWgWXjEvnXuEg7WeTI9hdAc2TUHHmZ5iTkGS6xDA2nu50uJwU4AQ6RYZ6Q514CeTJaLMQ5V-u-l-8-fb-C0NfpVYS-DIReRiHXAWZGxQ4JQB5JugaShwNJMAlm-G8zRGwPnZPJB4nXIOXmELLWFyB0gEq9xbcHtHMGwT0Y-ITQraJL_Gmsw2ttt-5ljaes-Mrh3yLjEin7wNMm5GHYGrsbQXo_VlV1QsRg0wzudPhJ-2PmOc-Z7xkXj_7Hwj8mN8PJAFYSHpLRarm2TyC0XOmn3or8BhNPdIw priority: 102 providerName: Directory of Open Access Journals |
Title | Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21423668 https://www.proquest.com/docview/858284020 https://www.proquest.com/docview/954653000 https://hal.inrae.fr/hal-02647278 https://pubmed.ncbi.nlm.nih.gov/PMC3053347 https://doaj.org/article/61c35fe5b7e64ef9980023cf25d220f0 http://dx.doi.org/10.1371/journal.pgen.1002014 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2Tki8IL4XGCVCSDxlSmInTh8Q6qZOBbFSdRT1zbITe0UqSWnaaf3vuXPSaEGbGK_pL2n0y_nu7Psi5L1WSRClGfN0Gmce01x7MqTSYwq8c0MlmAksTj4fxcMp-zKLZntkN7O1JrC8dWuH86Smq8Xx9e_tJ1jwH-3UBh7sbjpeAuW2paiPk60PwDZxnGlwzpq4Ao2SatxKFFGPM5_VxXR3PaVlrGxP_0Zz788xcbKzXBTlbc7p3zmWN4zW2WPyqPY23X4lHk_Ins6fkgfV_MntMzIaF4stiJxyJ3VC7JV2UUMs9LUbuqdVGnvpgpPoDn6p1bbw1oV3AQYPi9jd8RxMoGutnU38ek6mZ4Pvp0OvHrDgpaBW1p6NkclE49TpmHPFfaOkVixQNKJGM64TnsU0xG2XwSJYxVOfyVAxnRhpevQF6eRFrg-JqxPtK5P1ZC_zmTKBpCzNUjxQyTK_p41D6I5Jkdbdx3EIxkLYkBqHXUhFiUD-Rc2_Q7zmrmXVfeMf-BP8SA0We2fbC8XqUtRLUcRBSiOjI8V1zLSB_SY6LqkJoywMfeM75C1-YlEVojYaQPRDMA4MPMbAIe8sAvtn5Jigcyk3ZSk-f_txD9DF6D6gSQv0oQaZAjhLZV05Acxj864W8qiFBFWRtv9tjozdYGfY_yrwGmzFGbiyyRWADlGod_yWwHZAwekHxe8QdyfoAh-N-Xm5LjalSDD6ikcRd0N6EbbyAwvskJfV0mheBNv-0ThOHMJbi6b1pu1f8p9z2wud2lpy_uo_BeU1eVgFBzCZ8Ih01quNfgPe5Vp1yT6f8S45OBmMxpOuPaPpWiXyBzXpesg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polycomb+Repressive+Complex+2+Controls+the+Embryo-to-Seedling+Phase+Transition&rft.jtitle=PLoS+genetics&rft.au=Bouyer%2C+Daniel&rft.au=Roudier%2C+Francois&rft.au=Heese%2C+Maren&rft.au=Andersen%2C+Ellen+D.&rft.date=2011-03-01&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=7&rft.issue=3&rft.spage=e1002014&rft_id=info:doi/10.1371%2Fjournal.pgen.1002014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1002014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |