Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond th...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 7; no. 3; p. e1002014
Main Authors Bouyer, Daniel, Roudier, Francois, Heese, Maren, Andersen, Ellen D., Gey, Delphine, Nowack, Moritz K., Goodrich, Justin, Renou, Jean-Pierre, Grini, Paul E., Colot, Vincent, Schnittger, Arp
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.03.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage.
AbstractList Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage.Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage.
Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. Epigenetic regulation of gene expression through modifications of histone tails is fundamental for growth and development of multicellular organisms. The trimethylation of lysine 27 of histone 3 (H3K27me3) is the landmark of Polycomb Repressive Complex2 (PRC2) function and is associated with gene repression. Here we present the development of a genetic system to generate homozygous null mutants of Arabidopsis PRC2. A first major finding is that H3K27me3 is globally lost in these mutants. Surprisingly, we found that initial body plant organization and embryo development is largely independent of PRC2 action, which is in sharp contrast to embryonic lethality of PRC2 mutants in animals. However, we show here that PRC2 is required to switch from embryonic to seedling phase, and mutant seeds showed enhanced dormancy and germination defects. Indeed, many genes controlling seed maturation and dormancy are marked by H3K27me3 and are upregulated upon loss of PRC2. The invention of seed dormancy of land plants is regarded as one of the major reasons for the evolutionary success of flowering plants, and the here-discovered key role of PRC2 during the developmental phase transition from embryo to seedling growth reveals the adaptation of conserved molecular mechanisms to carry out new functions.
Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage.
  Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage.
Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM ( FIE ), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis . Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. Epigenetic regulation of gene expression through modifications of histone tails is fundamental for growth and development of multicellular organisms. The trimethylation of lysine 27 of histone 3 (H3K27me3) is the landmark of Polycomb Repressive Complex2 (PRC2) function and is associated with gene repression. Here we present the development of a genetic system to generate homozygous null mutants of Arabidopsis PRC2. A first major finding is that H3K27me3 is globally lost in these mutants. Surprisingly, we found that initial body plant organization and embryo development is largely independent of PRC2 action, which is in sharp contrast to embryonic lethality of PRC2 mutants in animals. However, we show here that PRC2 is required to switch from embryonic to seedling phase, and mutant seeds showed enhanced dormancy and germination defects. Indeed, many genes controlling seed maturation and dormancy are marked by H3K27me3 and are upregulated upon loss of PRC2. The invention of seed dormancy of land plants is regarded as one of the major reasons for the evolutionary success of flowering plants, and the here-discovered key role of PRC2 during the developmental phase transition from embryo to seedling growth reveals the adaptation of conserved molecular mechanisms to carry out new functions.
Audience Academic
Author Andersen, Ellen D.
Gey, Delphine
Colot, Vincent
Grini, Paul E.
Renou, Jean-Pierre
Bouyer, Daniel
Roudier, Francois
Nowack, Moritz K.
Goodrich, Justin
Schnittger, Arp
Heese, Maren
AuthorAffiliation 2 Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197–INSERM U 1024, Paris, France
5 Department of Plant Systems Biology, VIB, Gent, Belgium
The University of North Carolina at Chapel Hill, United States of America
7 Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
1 Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
3 Department of Molecular Biosciences, University of Oslo, Oslo, Norway
4 Department of Plant Genomics Research, CNRS/INRA, Evry, France
6 Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium
AuthorAffiliation_xml – name: 1 Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
– name: 4 Department of Plant Genomics Research, CNRS/INRA, Evry, France
– name: 6 Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium
– name: 7 Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
– name: 2 Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197–INSERM U 1024, Paris, France
– name: The University of North Carolina at Chapel Hill, United States of America
– name: 3 Department of Molecular Biosciences, University of Oslo, Oslo, Norway
– name: 5 Department of Plant Systems Biology, VIB, Gent, Belgium
Author_xml – sequence: 1
  givenname: Daniel
  surname: Bouyer
  fullname: Bouyer, Daniel
– sequence: 2
  givenname: Francois
  surname: Roudier
  fullname: Roudier, Francois
– sequence: 3
  givenname: Maren
  surname: Heese
  fullname: Heese, Maren
– sequence: 4
  givenname: Ellen D.
  surname: Andersen
  fullname: Andersen, Ellen D.
– sequence: 5
  givenname: Delphine
  surname: Gey
  fullname: Gey, Delphine
– sequence: 6
  givenname: Moritz K.
  surname: Nowack
  fullname: Nowack, Moritz K.
– sequence: 7
  givenname: Justin
  surname: Goodrich
  fullname: Goodrich, Justin
– sequence: 8
  givenname: Jean-Pierre
  surname: Renou
  fullname: Renou, Jean-Pierre
– sequence: 9
  givenname: Paul E.
  surname: Grini
  fullname: Grini, Paul E.
– sequence: 10
  givenname: Vincent
  surname: Colot
  fullname: Colot, Vincent
– sequence: 11
  givenname: Arp
  surname: Schnittger
  fullname: Schnittger, Arp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21423668$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02647278$$DView record in HAL
BookMark eNqVk11r2zAUhs3oWD-2fzA2w2CjF8n0adm7GITQrYHQlrbbrZDtI0dFtjLLDs2_n7ykJSljH-hC4vh532MdnXMcHTSugSh6jdEYU4E_3rm-bZQdLytoxhghgjB7Fh1hzulIMMQOds6H0bH3dwhRnmbiRXRIMCM0SdKj6OLK2XXh6jy-hmUL3psVxFNXLy3cxyScmq511sfdAuKzOm_XbtS50Q1AaU1TxVcL5SG-bVXjTWdc8zJ6rpX18Gq7n0TfvpzdTs9H88uvs-lkPipEQrsRx0mGVAqMoTQRIhdI5wpyhnPKqQYmIBVlQgkNd9KEZlkuCsQUyRmkWumMnkRvN75L67zclsJLTDHlSUIID8RsQ5RO3clla2rVrqVTRv4KuLaSqu1MYUEmuKBcA88FJAx0lqWhmrTQhJeEII2C1-dttj6voSwgFEXZPdP9L41ZyMqtJEWcUiaCwenGYPFEdj6ZyyGGSMIEEekKB_bDNlnrfvTgO1kbX4C1qgHXe5lxlnCKEPormfKUpCw0RiDfbchKhfuaRrvwm8VAy0moVco44kPm8W-osEqoTRG6T5sQ3xOc7gkC08F9V6neezm7uf4P9uLf2cvv--z7HXYBynYL72w_dKPfB9_sPuLjMzzMQgDYBiha530L-hHBSA4j99Bnchg5uR25IPv0RFaYTg3pQ_WM_bP4J3u5LhI
CitedBy_id crossref_primary_10_1016_j_molp_2018_01_010
crossref_primary_10_3389_fpls_2014_00247
crossref_primary_10_3390_plants11131686
crossref_primary_10_1002_ece3_5965
crossref_primary_10_1016_j_bbagrm_2014_07_005
crossref_primary_10_1016_j_plantsci_2021_111035
crossref_primary_10_1371_journal_pgen_1005771
crossref_primary_10_1016_j_devcel_2012_02_015
crossref_primary_10_1111_plb_12268
crossref_primary_10_1111_j_1365_3040_2012_02542_x
crossref_primary_10_1038_s41467_019_10773_1
crossref_primary_10_3390_genes6030520
crossref_primary_10_1242_dev_111229
crossref_primary_10_1371_journal_pone_0101717
crossref_primary_10_1017_S0960258517000216
crossref_primary_10_1038_ng_3937
crossref_primary_10_1111_tpj_12735
crossref_primary_10_1111_tpj_14911
crossref_primary_10_3390_f13121971
crossref_primary_10_1080_21553769_2013_844734
crossref_primary_10_1038_s41598_020_59697_7
crossref_primary_10_1111_tpj_14596
crossref_primary_10_1017_S0960258522000265
crossref_primary_10_3389_fpls_2014_00142
crossref_primary_10_3389_fpls_2024_1416216
crossref_primary_10_3390_plants12081729
crossref_primary_10_1073_pnas_1303750110
crossref_primary_10_1016_j_pbi_2012_09_006
crossref_primary_10_3390_plants9060703
crossref_primary_10_1016_j_pbi_2016_09_002
crossref_primary_10_1038_s41467_023_36788_3
crossref_primary_10_3390_plants9020218
crossref_primary_10_1038_emboj_2011_103
crossref_primary_10_3390_plants8120564
crossref_primary_10_1093_gbe_evx258
crossref_primary_10_1016_j_plantsci_2015_02_003
crossref_primary_10_3389_fgene_2020_00766
crossref_primary_10_1016_j_xplc_2024_100890
crossref_primary_10_3390_plants11151988
crossref_primary_10_1186_s13059_019_1767_3
crossref_primary_10_1016_j_tplants_2017_11_009
crossref_primary_10_1016_j_plaphy_2025_109826
crossref_primary_10_1371_journal_pone_0158936
crossref_primary_10_1093_g3journal_jkae301
crossref_primary_10_1016_j_tplants_2014_06_009
crossref_primary_10_1007_s10265_015_0771_2
crossref_primary_10_1016_j_devcel_2013_03_013
crossref_primary_10_1016_j_pbi_2014_10_003
crossref_primary_10_1146_annurev_arplant_070623_111458
crossref_primary_10_1080_07352689_2016_1245055
crossref_primary_10_1038_s41438_021_00575_2
crossref_primary_10_1186_s13059_017_1333_9
crossref_primary_10_1371_journal_pgen_1003322
crossref_primary_10_1007_s00299_011_1202_z
crossref_primary_10_1093_plcell_koab070
crossref_primary_10_1111_tpj_12828
crossref_primary_10_1016_j_tig_2015_03_004
crossref_primary_10_1016_j_devcel_2020_07_003
crossref_primary_10_1002_pld3_345
crossref_primary_10_1016_j_cub_2013_05_050
crossref_primary_10_1002_pld3_100
crossref_primary_10_1007_s00299_024_03159_1
crossref_primary_10_1007_s00425_020_03520_0
crossref_primary_10_1111_nph_16902
crossref_primary_10_15252_embj_201593534
crossref_primary_10_1093_pcp_pcr153
crossref_primary_10_3389_fpls_2019_01031
crossref_primary_10_1093_jxb_eru005
crossref_primary_10_1186_s12870_023_04359_9
crossref_primary_10_1073_pnas_1911400116
crossref_primary_10_3390_ijms241914625
crossref_primary_10_1007_s42994_020_00029_8
crossref_primary_10_3389_fpls_2017_01530
crossref_primary_10_14348_molcells_2014_0249
crossref_primary_10_1105_tpc_114_126011
crossref_primary_10_1007_s00497_021_00436_x
crossref_primary_10_1007_s00299_016_2082_z
crossref_primary_10_1016_j_scienta_2022_111685
crossref_primary_10_1111_nph_15197
crossref_primary_10_1186_s13059_017_1313_0
crossref_primary_10_1007_s00425_012_1630_1
crossref_primary_10_1186_s12864_021_08063_6
crossref_primary_10_3390_genes12010052
crossref_primary_10_3389_fpls_2019_00627
crossref_primary_10_1371_journal_pone_0084781
crossref_primary_10_1126_science_aan8576
crossref_primary_10_1104_pp_112_194878
crossref_primary_10_1111_tpj_14673
crossref_primary_10_1093_pcp_pcac017
crossref_primary_10_1016_j_molcel_2024_08_018
crossref_primary_10_1093_pcp_pcy224
crossref_primary_10_1007_s00438_016_1224_x
crossref_primary_10_1016_j_devcel_2021_06_004
crossref_primary_10_1007_s11816_013_0288_x
crossref_primary_10_1016_j_bone_2023_116866
crossref_primary_10_1105_tpc_111_087866
crossref_primary_10_1111_pbi_12315
crossref_primary_10_1093_pcp_pcac021
crossref_primary_10_1146_annurev_arplant_050718_100434
crossref_primary_10_1007_s00425_013_1892_2
crossref_primary_10_1016_j_pbi_2015_09_004
crossref_primary_10_1126_science_aaf6532
crossref_primary_10_1111_nph_12472
crossref_primary_10_1016_j_tplants_2016_02_001
crossref_primary_10_1093_nar_gku220
crossref_primary_10_3390_plants10020236
crossref_primary_10_1007_s00425_014_2155_6
crossref_primary_10_1093_mp_sst100
crossref_primary_10_1111_j_1467_7652_2012_00682_x
crossref_primary_10_3389_fpls_2014_00219
crossref_primary_10_3389_fpls_2014_00458
crossref_primary_10_3389_fpls_2025_1553953
crossref_primary_10_1007_s13258_023_01366_w
crossref_primary_10_1016_j_bbagrm_2011_05_008
crossref_primary_10_1093_pcp_pcr163
crossref_primary_10_3389_fpls_2014_00233
crossref_primary_10_1093_jxb_eraa365
crossref_primary_10_1038_nplants_2015_89
crossref_primary_10_1093_plcell_koae260
crossref_primary_10_1007_s10265_015_0706_y
crossref_primary_10_1016_j_pbi_2015_11_010
crossref_primary_10_1016_j_ydbio_2018_04_023
crossref_primary_10_3389_fcell_2023_1097780
crossref_primary_10_1111_tpj_13202
crossref_primary_10_3389_fpls_2018_01509
crossref_primary_10_1007_s00425_023_04188_y
crossref_primary_10_1146_annurev_arplant_043014_115627
crossref_primary_10_3389_fpls_2022_865361
crossref_primary_10_1105_tpc_113_116491
crossref_primary_10_1093_jxb_eraa154
crossref_primary_10_1105_tpc_112_108191
crossref_primary_10_1111_nph_18156
crossref_primary_10_1186_s12864_017_3542_8
crossref_primary_10_1093_jhered_esae009
crossref_primary_10_1111_nph_13386
crossref_primary_10_1007_s11240_014_0482_8
crossref_primary_10_3390_plants10091884
crossref_primary_10_1007_s12229_013_9119_6
crossref_primary_10_1093_gbe_evu040
crossref_primary_10_1371_journal_pone_0127938
crossref_primary_10_3389_fpls_2021_656825
crossref_primary_10_1101_gad_211425_112
crossref_primary_10_1016_j_bbagrm_2016_05_004
crossref_primary_10_1105_tpc_112_105114
crossref_primary_10_1038_nplants_2015_100
crossref_primary_10_1111_tpj_12688
crossref_primary_10_1105_tpc_15_00854
crossref_primary_10_1002_reg2_91
crossref_primary_10_1371_journal_pgen_1007797
crossref_primary_10_1111_jipb_12841
crossref_primary_10_1111_evo_14367
crossref_primary_10_1016_j_jgg_2012_12_005
crossref_primary_10_1007_s00497_018_0337_2
crossref_primary_10_1111_ppl_12462
crossref_primary_10_1016_j_bbagrm_2012_02_022
crossref_primary_10_1073_pnas_1203148109
crossref_primary_10_1016_j_jgg_2019_09_005
crossref_primary_10_1016_j_jgg_2022_09_001
crossref_primary_10_1007_s00294_021_01177_0
crossref_primary_10_1371_journal_pgen_1003862
crossref_primary_10_3389_fpls_2022_916831
crossref_primary_10_1093_jxb_ert403
crossref_primary_10_3389_fpls_2023_1079218
crossref_primary_10_1371_journal_pone_0030715
crossref_primary_10_3389_fpls_2016_00938
crossref_primary_10_3390_ijms21165871
crossref_primary_10_1105_tpc_112_096313
crossref_primary_10_1186_gb_2012_13_12_r117
crossref_primary_10_1016_j_pbi_2016_07_010
crossref_primary_10_1111_tpj_12455
crossref_primary_10_1038_s41598_019_48958_9
crossref_primary_10_1093_plphys_kiab243
crossref_primary_10_1016_j_plantsci_2017_04_005
crossref_primary_10_1007_s11240_016_1161_8
crossref_primary_10_3390_plants11131708
crossref_primary_10_1016_j_pbi_2021_102002
crossref_primary_10_5010_JPB_2019_46_4_255
crossref_primary_10_1016_j_plantsci_2016_06_013
crossref_primary_10_1080_15592324_2020_1784549
crossref_primary_10_1371_journal_pgen_1005806
crossref_primary_10_1371_journal_pgen_1004944
crossref_primary_10_1111_nph_13486
crossref_primary_10_1007_s11738_017_2487_5
crossref_primary_10_1186_s12870_016_0890_5
crossref_primary_10_1007_s11103_016_0569_1
crossref_primary_10_1534_g3_117_300550
crossref_primary_10_1186_s12870_019_2057_7
crossref_primary_10_3390_ijms232415950
crossref_primary_10_1016_j_cub_2023_07_033
crossref_primary_10_1002_reg2_73
crossref_primary_10_1371_journal_pgen_1006562
crossref_primary_10_1016_j_bbagrm_2014_05_011
crossref_primary_10_1146_annurev_arplant_070122_025047
crossref_primary_10_3390_ijms24033025
crossref_primary_10_3390_plants11040490
crossref_primary_10_1016_j_jplph_2015_12_006
crossref_primary_10_1093_hr_uhac132
crossref_primary_10_1111_tpj_12542
crossref_primary_10_3390_ijms22147533
crossref_primary_10_1093_dnares_dsz021
crossref_primary_10_1007_s00425_014_2059_5
crossref_primary_10_1371_journal_pone_0051532
crossref_primary_10_1186_s13059_017_1228_9
crossref_primary_10_1371_journal_pgen_1002512
crossref_primary_10_1038_ncomms15120
crossref_primary_10_1038_ncomms8243
crossref_primary_10_3389_fcell_2021_774719
crossref_primary_10_1038_s41467_020_20614_1
crossref_primary_10_1093_jxb_eraf051
crossref_primary_10_1016_j_envexpbot_2015_05_004
crossref_primary_10_1080_15592324_2015_1027851
crossref_primary_10_3390_cells10051136
crossref_primary_10_1111_jipb_12972
crossref_primary_10_1080_15592324_2015_1105418
crossref_primary_10_1186_s12864_024_10623_5
crossref_primary_10_1038_s42003_019_0646_5
crossref_primary_10_1093_plcell_koac133
crossref_primary_10_1093_plcell_koac134
crossref_primary_10_1093_jxb_erw024
crossref_primary_10_1042_EBC20220048
crossref_primary_10_1111_tpj_16446
crossref_primary_10_1105_tpc_111_087809
crossref_primary_10_1093_pcp_pcw209
crossref_primary_10_1111_nph_19165
crossref_primary_10_1007_s00299_023_03071_0
crossref_primary_10_1016_j_ydbio_2018_06_021
crossref_primary_10_1038_s41586_022_05171_5
crossref_primary_10_1371_journal_pgen_1004091
crossref_primary_10_1111_jipb_12485
crossref_primary_10_1093_plcell_koad112
crossref_primary_10_1007_s11103_016_0436_0
crossref_primary_10_1093_bib_bbr054
crossref_primary_10_1093_pcp_pcu139
crossref_primary_10_1007_s11033_025_10285_w
crossref_primary_10_1186_s12870_021_03153_9
crossref_primary_10_1534_genetics_115_180141
crossref_primary_10_4161_psb_18893
crossref_primary_10_1007_s11816_012_0229_0
crossref_primary_10_1093_mp_sst150
crossref_primary_10_1104_pp_111_186445
crossref_primary_10_1016_j_pbi_2011_10_001
crossref_primary_10_1038_s41598_018_26349_w
crossref_primary_10_3389_fpls_2015_00159
crossref_primary_10_1093_jxb_ert410
crossref_primary_10_1186_s12870_021_02922_w
crossref_primary_10_3389_fpls_2019_00240
crossref_primary_10_1093_jxb_eru069
crossref_primary_10_1371_journal_pone_0072160
crossref_primary_10_3390_ijms21072307
crossref_primary_10_1093_mp_ssu001
crossref_primary_10_1038_s41598_017_03665_1
crossref_primary_10_1111_tpj_16548
crossref_primary_10_1093_jxb_erad120
crossref_primary_10_14348_molcells_2016_0049
crossref_primary_10_1007_s10725_023_00983_5
crossref_primary_10_1111_tpj_14125
crossref_primary_10_1016_j_semcdb_2022_04_006
crossref_primary_10_1111_tpj_14002
crossref_primary_10_1111_jipb_12025
crossref_primary_10_1093_jxb_erw373
crossref_primary_10_1038_ncomms13412
crossref_primary_10_1186_s12870_014_0293_4
crossref_primary_10_1111_nph_20125
crossref_primary_10_1111_tpj_12070
crossref_primary_10_1093_plcell_koae304
crossref_primary_10_1007_s42977_022_00126_3
crossref_primary_10_1111_tpj_12629
crossref_primary_10_1007_s12374_023_09397_2
crossref_primary_10_1038_s41598_017_01159_8
crossref_primary_10_1042_BST20200192
crossref_primary_10_1186_s12870_018_1589_6
crossref_primary_10_1093_plcell_koad328
crossref_primary_10_1101_gr_131342_111
Cites_doi 10.1186/gb-2010-11-4-r42
10.1093/mp/ssp027
10.1073/pnas.93.11.5319
10.1104/pp.109.145581
10.1371/journal.pgen.1000242
10.1371/journal.pbio.0050129
10.1111/j.1365-313X.2005.02404.x
10.1105/tpc.109.070060
10.1016/j.devcel.2009.08.005
10.1111/j.1469-8137.2006.01787.x
10.1038/ng1694
10.1007/s11103-008-9304-x
10.1111/j.1365-313X.2003.01996.x
10.1105/tpc.104.022236
10.1093/bioinformatics/bti551
10.1038/nature06008
10.1186/1471-2164-9-488
10.1104/pp.109.143941
10.1074/jbc.M109298200
10.1105/tpc.105.031831
10.1073/pnas.0906997106
10.1073/pnas.0901367106
10.1242/dev.01294
10.1016/j.tcb.2008.02.005
10.1111/j.1469-8137.2008.02437.x
10.1093/genetics/164.2.711
10.1038/sj.emboj.7600430
10.1105/tpc.13.11.2471
10.1111/j.1365-313X.2005.02643.x
10.1242/dev.035048
10.1002/j.1460-2075.1985.tb04075.x
10.1016/j.pbi.2007.06.009
10.1371/journal.pgen.0030086
10.1016/j.semcdb.2008.07.018
10.1146/annurev.arplant.59.032607.092740
10.1016/j.ceb.2008.03.002
10.1016/j.bbaexp.2007.01.010
10.1371/journal.pone.0008033
10.1016/j.ydbio.2007.10.025
10.1105/tpc.106.049221
10.1186/1471-2105-9-465
10.1016/j.cell.2007.02.009
10.1016/j.ceb.2006.04.003
10.1371/journal.pgen.1000605
10.1093/bioinformatics/btn280
10.1101/gad.1812609
10.1186/gb-2009-10-6-r62
10.1093/nar/gkm464
10.1038/sj.emboj.7600604
10.1111/j.1365-313X.2009.04065.x
10.1105/tpc.11.3.407
10.1186/1471-2164-9-118
10.1038/nature05770
10.1093/mp/ssp005
10.1016/j.stem.2007.08.004
10.1073/pnas.0605551103
10.1146/annurev.cellbio.042308.113411
10.1016/S0960-9822(03)00243-4
10.1016/j.tplants.2009.08.003
10.1093/nar/gkg071
10.1101/gr.2544504
10.1242/dev.01400
10.1016/j.stem.2007.08.003
10.1016/j.semcdb.2008.07.015
10.1242/dev.114.2.493
10.1186/gb-2009-10-12-248
10.1101/gad.388706
10.1111/j.1365-313X.2010.04148.x
10.1093/nar/gkm757
10.1016/j.ejcb.2009.11.010
10.1016/j.gde.2007.09.004
10.1038/nature08836
10.1111/j.1365-313X.2009.04095.x
10.1073/pnas.170292997
10.1016/j.gde.2007.08.011
10.1242/dev.121.2.273
10.1242/dev.033076
10.1105/tpc.108.058172
10.1073/pnas.0607877103
ContentType Journal Article
Copyright COPYRIGHT 2011 Public Library of Science
Distributed under a Creative Commons Attribution 4.0 International License
Bouyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2011
2011 Bouyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, et al. (2011) Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition. PLoS Genet 7(3): e1002014. doi:10.1371/journal.pgen.1002014
Copyright_xml – notice: COPYRIGHT 2011 Public Library of Science
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Bouyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2011
– notice: 2011 Bouyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, et al. (2011) Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition. PLoS Genet 7(3): e1002014. doi:10.1371/journal.pgen.1002014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
7TM
8FD
FR3
P64
RC3
1XC
VOOES
5PM
DOA
DOI 10.1371/journal.pgen.1002014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
MEDLINE






Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Environmental Sciences
DocumentTitleAlternate PRC2 Controls the Embryo-to-Seedling Transition
EISSN 1553-7404
ExternalDocumentID 1313566225
oai_doaj_org_article_61c35fe5b7e64ef9980023cf25d220f0
PMC3053347
oai_HAL_hal_02647278v1
A253845051
21423668
10_1371_journal_pgen_1002014
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Belgium
France
United Kingdom
GeographicLocations_xml – name: United Kingdom
– name: France
– name: Belgium
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H004319/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/F007442/1
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
QF4
RIG
RZL
WOQ
PMFND
7X8
7TM
8FD
FR3
P64
RC3
1XC
VOOES
5PM
PUEGO
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c763t-51690a8e4408677b70fbaeb41b353fe47e87d6323014f2399b7c04a2b4e8faf93
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:30 EDT 2023
Wed Aug 27 01:32:57 EDT 2025
Thu Aug 21 18:04:50 EDT 2025
Wed Aug 13 07:44:39 EDT 2025
Tue Aug 05 10:53:54 EDT 2025
Thu Jul 10 20:26:50 EDT 2025
Tue Jun 17 21:18:40 EDT 2025
Tue Jun 10 20:28:59 EDT 2025
Fri Jun 27 04:37:36 EDT 2025
Fri Jun 27 04:21:13 EDT 2025
Fri Jun 27 04:15:29 EDT 2025
Thu May 22 21:18:01 EDT 2025
Mon Jul 21 06:04:01 EDT 2025
Tue Jul 01 02:38:31 EDT 2025
Thu Apr 24 23:09:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords STEM-CELLS
ARABIDOPSIS-THALIANA
FIE
TRITHORAX
GENE-EXPRESSION
GROUP PROTEINS
LAND PLANT EVOLUTION
ENDOSPERM DEVELOPMENT
FLOWERING-LOCUS-C
DORMANCY
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c763t-51690a8e4408677b70fbaeb41b353fe47e87d6323014f2399b7c04a2b4e8faf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC3053347
Conceived and designed the experiments: DB FR MH MKN JG JPR PEG VC AS. Performed the experiments: DB FR EDA DG MKN. Analyzed the data: DB FR MH EDA DG MKN JG JPR PEG VC AS. Wrote the paper: DB FR MH PEG VC AS.
ORCID 0000-0001-7067-0091
0000-0002-5656-1793
0000-0002-6382-1610
0000-0002-7438-5551
0000-0002-1757-6386
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1002014
PMID 21423668
PQID 858284020
PQPubID 23479
ParticipantIDs plos_journals_1313566225
doaj_primary_oai_doaj_org_article_61c35fe5b7e64ef9980023cf25d220f0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3053347
hal_primary_oai_HAL_hal_02647278v1
proquest_miscellaneous_954653000
proquest_miscellaneous_858284020
gale_infotracmisc_A253845051
gale_infotracacademiconefile_A253845051
gale_incontextgauss_ISR_A253845051
gale_incontextgauss_ISN_A253845051
gale_incontextgauss_IOV_A253845051
gale_healthsolutions_A253845051
pubmed_primary_21423668
crossref_primary_10_1371_journal_pgen_1002014
crossref_citationtrail_10_1371_journal_pgen_1002014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2011
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References MK Nowack (ref22) 2006; 38
H Iwakawa (ref23) 2006; 45
Y He (ref2) 2009; 2
X Zhang (ref29) 2007; 5
X Ge (ref79) 2003; 14
R Amasino (ref55) 2010; 61
C Baroux (ref19) 2007; 17
TS Mikkelsen (ref48) 2007; 448
M Hundertmark (ref36) 2008; 9
A Mosquna (ref67) 2009; 136
ML Crowe (ref75) 2003; 31
C Alonso-Blanco (ref64) 2003; 164
T Hulsen (ref81) 2008; 9
CC Carles (ref42) 2009; 23
JH Jeong (ref52) 2009; 4
SJ Aw (ref21) 2010
X Zhang (ref43) 2009; 10
H Zhang (ref58) 2009; 2
D Wang (ref73) 2006; 103
G Struhl (ref14) 1985; 4
Q Gan (ref51) 2010; 11
B Papp (ref9) 2006; 20
HU Kim (ref35) 2002; 277
IR Henderson (ref57) 2004; 131
A Junker (ref60) 2010
S Pien (ref12) 2007; 1769
S Arvidsson (ref74) 2008; 9
MJ Holdsworth (ref61) 2008; 179
M Ingouff (ref70) 2005; 42
M Luo (ref71) 2000; 97
DH Kim (ref4) 2009; 25
R Alvarez-Venegas (ref38) 2003; 13
Y Liu (ref63) 2007; 19
AM Lindroth (ref27) 2004; 23
MR Doyle (ref72) 2009; 151
C Lurin (ref77) 2004; 16
E van der Graaff (ref82) 2009; 10
B Schuettengruber (ref7) 2007; 128
RL Kurzhals (ref25) 2008; 313
N Yoshida (ref32) 2001; 13
N Bies-Ethève (ref37) 2008; 67
Y Okano (ref68) 2009; 106
T Kinoshita (ref18) 2008; 19
H North (ref59) 2010; 61
F Turck (ref33) 2007; 3
N Ohad (ref83) 1999; 11
J Bramsiepe (ref26)
C Faust (ref15) 1995; 121
ES Dennis (ref56) 2007; 10
S Pien (ref45) 2008; 20
MK Nowack (ref24) 2007; 447
S Lau (ref54) 2010; 89
M Ku (ref47) 2008; 4
A Berr (ref40) 2009; 151
S Gagnot (ref78) 2008; 36
F Bantignies (ref10) 2006; 18
RC Akkers (ref46) 2009; 17
J Simon (ref13) 1992; 114
E Aichinger (ref41) 2009; 5
A Saleh (ref44) 2007; 35
P Hilson (ref76) 2004; 14
T Kinoshita (ref5) 2001
GC Chiang (ref66) 2009; 106
WE Finch-Savage (ref65) 2006; 171
ML Martin-Magniette (ref80) 2008; 24
VF Irish (ref84) 2010; 61
YB Schwartz (ref8) 2008; 20
Y Chanvivattana (ref6) 2004; 131
K Naumann (ref28) 2005; 24
XD Zhao (ref50) 2007; 1
A Schlereth (ref53) 2010; 464
S de Folter (ref34) 2005; 17
N Ohad (ref69) 1996; 93
F Berger (ref17) 2009; 14
JH Huh (ref16) 2007; 17
A Katz (ref20) 2004; 37
G Pan (ref49) 2007; 1
R Finkelstein (ref1) 2008; 59
C Kohler (ref11) 2008; 18
S Maere (ref31) 2005; 21
Y Tamada (ref39) 2009; 21
L Bentsink (ref62) 2006; 103
C Liu (ref85) 2009; 136
S Farrona (ref3) 2008; 19
Y Jacob (ref30) 2010
References_xml – volume: 11
  start-page: R42
  year: 2010
  ident: ref51
  article-title: Monovalent and unpoised status of most genes in undifferentiated cell-enriched Drosophila testis.
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-4-r42
– volume: 2
  start-page: 610
  year: 2009
  ident: ref58
  article-title: An Epigenetic Perspective on Developmental Regulation of Seed Genes.
  publication-title: Molecular Plant
  doi: 10.1093/mp/ssp027
– volume: 93
  start-page: 5319
  year: 1996
  ident: ref69
  article-title: A mutation that allows endosperm development without fertilization.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.11.5319
– volume: 151
  start-page: 1688
  year: 2009
  ident: ref72
  article-title: A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent, rapid flowering in Arabidopsis.
  publication-title: PLANT PHYSIOLOGY
  doi: 10.1104/pp.109.145581
– volume: 4
  start-page: e1000242
  year: 2008
  ident: ref47
  article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000242
– volume: 5
  start-page: e129
  year: 2007
  ident: ref29
  article-title: Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050129
– year: 2010
  ident: ref21
  article-title: Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis.
  publication-title: Development
– volume: 42
  start-page: 663
  year: 2005
  ident: ref70
  article-title: Polycomb group genes control developmental timing of endosperm.
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02404.x
– volume: 21
  start-page: 3257
  year: 2009
  ident: ref39
  article-title: ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.109.070060
– volume: 17
  start-page: 425
  year: 2009
  ident: ref46
  article-title: A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos.
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2009.08.005
– volume: 171
  start-page: 501
  year: 2006
  ident: ref65
  article-title: Seed dormancy and the control of germination.
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2006.01787.x
– volume: 38
  start-page: 63
  year: 2006
  ident: ref22
  article-title: A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis.
  publication-title: Nat Genet
  doi: 10.1038/ng1694
– volume: 67
  start-page: 107
  year: 2008
  ident: ref37
  article-title: Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana.
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-008-9304-x
– volume: 37
  start-page: 707
  year: 2004
  ident: ref20
  article-title: FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development.
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2003.01996.x
– volume: 16
  start-page: 2089
  year: 2004
  ident: ref77
  article-title: Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.104.022236
– volume: 21
  start-page: 3448
  year: 2005
  ident: ref31
  article-title: BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti551
– volume: 448
  start-page: 553
  year: 2007
  ident: ref48
  article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.
  publication-title: Nature
  doi: 10.1038/nature06008
– volume: 9
  start-page: 488
  year: 2008
  ident: ref81
  article-title: BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-488
– volume: 151
  start-page: 1476
  year: 2009
  ident: ref40
  article-title: SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering.
  publication-title: PLANT PHYSIOLOGY
  doi: 10.1104/pp.109.143941
– volume: 277
  start-page: 22677
  year: 2002
  ident: ref35
  article-title: A novel group of oleosins is present inside the pollen of Arabidopsis.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109298200
– volume: 17
  start-page: 1424
  year: 2005
  ident: ref34
  article-title: Comprehensive interaction map of the Arabidopsis MADS Box transcription factors.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.105.031831
– volume: 106
  start-page: 16321
  year: 2009
  ident: ref68
  article-title: A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0906997106
– volume: 106
  start-page: 11661
  year: 2009
  ident: ref66
  article-title: Major flowering time gene, flowering locus C, regulates seed germination in Arabidopsis thaliana.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0901367106
– volume: 131
  start-page: 3829
  year: 2004
  ident: ref57
  article-title: Control of Arabidopsis flowering: the chill before the bloom.
  publication-title: Development
  doi: 10.1242/dev.01294
– volume: 18
  start-page: 236
  year: 2008
  ident: ref11
  article-title: Programming of gene expression by Polycomb group proteins.
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2008.02.005
– volume: 179
  start-page: 33
  year: 2008
  ident: ref61
  article-title: Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination.
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2008.02437.x
– volume: 164
  start-page: 711
  year: 2003
  ident: ref64
  article-title: Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana.
  publication-title: Genetics
  doi: 10.1093/genetics/164.2.711
– volume: 23
  start-page: 4286
  year: 2004
  ident: ref27
  article-title: Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3.
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600430
– volume: 13
  start-page: 2471
  year: 2001
  ident: ref32
  article-title: EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.13.11.2471
– volume: 45
  start-page: 819
  year: 2006
  ident: ref23
  article-title: Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis.
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02643.x
– volume: 136
  start-page: 2433
  year: 2009
  ident: ref67
  article-title: Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution.
  publication-title: Development
  doi: 10.1242/dev.035048
– year: 2001
  ident: ref5
  article-title: Polycomb repression of flowering during early plant development.
  publication-title: Proceedings of the National Academy of Sciences
– volume: 4
  start-page: 3259
  year: 1985
  ident: ref14
  article-title: Altered distributions of Ultrabithorax transcripts in extra sex combs mutant embryos of Drosophila.
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1985.tb04075.x
– volume: 10
  start-page: 520
  year: 2007
  ident: ref56
  article-title: Epigenetic regulation of flowering.
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2007.06.009
– volume: 3
  start-page: e86
  year: 2007
  ident: ref33
  article-title: Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030086
– volume: 19
  start-page: 574
  year: 2008
  ident: ref18
  article-title: Genomic imprinting: A balance between antagonistic roles of parental chromosomes.
  publication-title: Seminars in Cell and Developmental Biology
  doi: 10.1016/j.semcdb.2008.07.018
– year: 2010
  ident: ref30
  article-title: Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases.
  publication-title: Nature
– volume: 59
  start-page: 387
  year: 2008
  ident: ref1
  article-title: Molecular aspects of seed dormancy.
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092740
– volume: 20
  start-page: 266
  year: 2008
  ident: ref8
  article-title: Polycomb complexes and epigenetic states.
  publication-title: Current Opinion in Cell Biology
  doi: 10.1016/j.ceb.2008.03.002
– volume: 1769
  start-page: 375
  year: 2007
  ident: ref12
  article-title: Polycomb group and trithorax group proteins in Arabidopsis.
  publication-title: BBA-Gene Structure and Expression
  doi: 10.1016/j.bbaexp.2007.01.010
– volume: 4
  start-page: e8033
  year: 2009
  ident: ref52
  article-title: Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008033
– volume: 313
  start-page: 293
  year: 2008
  ident: ref25
  article-title: Drosophila ESC-like can substitute for ESC and becomes required for Polycomb silencing if ESC is absent.
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2007.10.025
– volume: 19
  start-page: 433
  year: 2007
  ident: ref63
  article-title: The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.106.049221
– volume: 9
  start-page: 465
  year: 2008
  ident: ref74
  article-title: QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-465
– volume: 128
  start-page: 735
  year: 2007
  ident: ref7
  article-title: Genome regulation by polycomb and trithorax proteins.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.009
– volume: 18
  start-page: 275
  year: 2006
  ident: ref10
  article-title: Cellular memory and dynamic regulation of polycomb group proteins.
  publication-title: Current Opinion in Cell Biology
  doi: 10.1016/j.ceb.2006.04.003
– volume: 5
  start-page: e1000605
  year: 2009
  ident: ref41
  article-title: CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000605
– volume: 24
  start-page: i181
  year: 2008
  ident: ref80
  article-title: ChIPmix: mixture model of regressions for two-color ChIP-chip analysis.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn280
– ident: ref26
  article-title: Endoreplication and development.
  publication-title: Plant Signaling & Behavior
– volume: 23
  start-page: 2723
  year: 2009
  ident: ref42
  article-title: The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants.
  publication-title: Genes & Development
  doi: 10.1101/gad.1812609
– volume: 10
  start-page: R62
  year: 2009
  ident: ref43
  article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana.
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-6-r62
– volume: 35
  start-page: 6290
  year: 2007
  ident: ref44
  article-title: The Arabidopsis homologs of trithorax (ATX1) and enhancer of zeste (CLF) establish 'bivalent chromatin marks' at the silent AGAMOUS locus.
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkm464
– volume: 24
  start-page: 1418
  year: 2005
  ident: ref28
  article-title: Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis.
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600604
– volume: 61
  start-page: 1014
  year: 2010
  ident: ref84
  article-title: The flowering of Arabidopsis flower development.
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.04065.x
– volume: 11
  start-page: 407
  year: 1999
  ident: ref83
  article-title: Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.11.3.407
– volume: 9
  start-page: 118
  year: 2008
  ident: ref36
  article-title: LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-118
– volume: 447
  start-page: 312
  year: 2007
  ident: ref24
  article-title: Bypassing genomic imprinting allows seed development.
  publication-title: Nature
  doi: 10.1038/nature05770
– volume: 2
  start-page: 554
  year: 2009
  ident: ref2
  article-title: Control of the transition to flowering by chromatin modifications.
  publication-title: Molecular Plant
  doi: 10.1093/mp/ssp005
– volume: 1
  start-page: 286
  year: 2007
  ident: ref50
  article-title: Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.08.004
– volume: 103
  start-page: 13244
  year: 2006
  ident: ref73
  article-title: Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0605551103
– volume: 25
  start-page: 277
  year: 2009
  ident: ref4
  article-title: Vernalization: winter and the timing of flowering in plants.
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.042308.113411
– volume: 13
  start-page: 627
  year: 2003
  ident: ref38
  article-title: ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes.
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(03)00243-4
– volume: 14
  start-page: 550
  year: 2009
  ident: ref17
  article-title: Parental memories shape seeds.
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2009.08.003
– volume: 31
  start-page: 156
  year: 2003
  ident: ref75
  article-title: CATMA: a complete Arabidopsis GST database.
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkg071
– volume: 14
  start-page: 2176
  year: 2004
  ident: ref76
  article-title: Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications.
  publication-title: Genome Research
  doi: 10.1101/gr.2544504
– volume: 131
  start-page: 5263
  year: 2004
  ident: ref6
  article-title: Interaction of Polycomb-group proteins controlling flowering in Arabidopsis.
  publication-title: Development
  doi: 10.1242/dev.01400
– volume: 1
  start-page: 299
  year: 2007
  ident: ref49
  article-title: Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.08.003
– volume: 19
  start-page: 560
  year: 2008
  ident: ref3
  article-title: The impact of chromatin regulation on the floral transition.
  publication-title: Seminars in Cell & Developmental Biology
  doi: 10.1016/j.semcdb.2008.07.015
– volume: 114
  start-page: 493
  year: 1992
  ident: ref13
  article-title: Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products.
  publication-title: Development
  doi: 10.1242/dev.114.2.493
– volume: 10
  start-page: 248
  year: 2009
  ident: ref82
  article-title: The WUS homeobox-containing (WOX) protein family.
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-12-248
– volume: 20
  start-page: 2041
  year: 2006
  ident: ref9
  article-title: Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins.
  publication-title: Genes & Development
  doi: 10.1101/gad.388706
– volume: 61
  start-page: 1001
  year: 2010
  ident: ref55
  article-title: Seasonal and developmental timing of flowering.
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04148.x
– volume: 36
  start-page: D986
  year: 2008
  ident: ref78
  article-title: CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform.
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkm757
– volume: 14
  start-page: 34
  year: 2003
  ident: ref79
  article-title: Reducing false positives in molecular pattern recognition.
  publication-title: Genome informatics International Conference on Genome Informatics
– volume: 89
  start-page: 225
  year: 2010
  ident: ref54
  article-title: Cell-cell communication in Arabidopsis early embryogenesis.
  publication-title: Eur J Cell Biol
  doi: 10.1016/j.ejcb.2009.11.010
– volume: 17
  start-page: 473
  year: 2007
  ident: ref19
  article-title: Chromatin modification and remodeling during early seed development.
  publication-title: Current opinion in genetics & development
  doi: 10.1016/j.gde.2007.09.004
– volume: 464
  start-page: 913
  year: 2010
  ident: ref53
  article-title: MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor.
  publication-title: Nature
  doi: 10.1038/nature08836
– volume: 61
  start-page: 971
  year: 2010
  ident: ref59
  article-title: Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research.
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.04095.x
– volume: 97
  start-page: 10637
  year: 2000
  ident: ref71
  article-title: Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.170292997
– volume: 17
  start-page: 480
  year: 2007
  ident: ref16
  article-title: Endosperm gene imprinting and seed development.
  publication-title: Current opinion in genetics & development
  doi: 10.1016/j.gde.2007.08.011
– volume: 121
  start-page: 273
  year: 1995
  ident: ref15
  article-title: The eed mutation disrupts anterior mesoderm production in mice.
  publication-title: Development
  doi: 10.1242/dev.121.2.273
– volume: 136
  start-page: 3379
  year: 2009
  ident: ref85
  article-title: Coming into bloom: the specification of floral meristems.
  publication-title: Development
  doi: 10.1242/dev.033076
– volume: 20
  start-page: 580
  year: 2008
  ident: ref45
  article-title: ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.108.058172
– volume: 103
  start-page: 17042
  year: 2006
  ident: ref62
  article-title: Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0607877103
– year: 2010
  ident: ref60
  article-title: An engineer's view on regulation of seed development.
SSID ssj0035897
Score 2.4958992
Snippet Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin...
  Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1002014
SubjectTerms Arabidopsis
Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biochemistry, Molecular Biology
Biology
Cellular Biology
Chromatin - metabolism
Chromatin Immunoprecipitation
Chromosome Segregation
Chromosomes, Plant - physiology
Cyclin-Dependent Kinases - genetics
DNA binding proteins
Drosophila
Environmental Sciences
Epigenetics
Experiments
Flowers - genetics
Flowers - physiology
Gene Expression Profiling
Genes
Genetic aspects
Genomes
Grants
Histones - metabolism
Homozygote
Life Sciences
Molecular biology
Phenotype
Physiological aspects
Polycomb-Group Proteins
Protein Binding
Repressor Proteins - genetics
Repressor Proteins - metabolism
Seedlings - genetics
Seedlings - physiology
Seeds
Seeds - genetics
Seeds - physiology
Vegetal Biology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagEhIXxHsDC1gIiVPYJHbi9FgQqwVBQcCivVm2Y2-RSlI17Yr-e2Zst2oQaPfANZ22yefxPOKZbwh5YXWdl6bhqTVVk3IrbKoKplKuITp3TIGbwObkj9Pq5JS_PyvP9kZ9YU1YoAcOwB1VuWGls6UWtuLWQXaAbsa4omyKInM-Wweft02mgg1mZR3GqpQlSwWk9bFpjon8KK7RqwUskCcgzXI-cEqeu39noa_PsEBytJh3_d-C0D9rKfec0_FtcitGlXQSnuYOuWbbu-RGmDO5uUemn7v5BlRL02UsfL2w1BeT21-0oLFcvacQDFL7Uy83Xbrq0h4cGzar08UMXB1doVfzBV73yenx229vTtI4SCE1YD5WqT8LU7XF6dKVEFpkTiurea5ZyZzlwtaiqViB6ZXDZlctTMZVobmtnXJj9oCM2q61B4Ta2mbaNWM1bjKuXa4YN43BFydNk42tSwjbIilNZBnHYRdz6Y_OBGQbARKJ-MuIf0LS3bcWgWXjEvnXuEg7WeTI9hdAc2TUHHmZ5iTkGS6xDA2nu50uJwU4AQ6RYZ6Q514CeTJaLMQ5V-u-l-8-fb-C0NfpVYS-DIReRiHXAWZGxQ4JQB5JugaShwNJMAlm-G8zRGwPnZPJB4nXIOXmELLWFyB0gEq9xbcHtHMGwT0Y-ITQraJL_Gmsw2ttt-5ljaes-Mrh3yLjEin7wNMm5GHYGrsbQXo_VlV1QsRg0wzudPhJ-2PmOc-Z7xkXj_7Hwj8mN8PJAFYSHpLRarm2TyC0XOmn3or8BhNPdIw
  priority: 102
  providerName: Directory of Open Access Journals
Title Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition
URI https://www.ncbi.nlm.nih.gov/pubmed/21423668
https://www.proquest.com/docview/858284020
https://www.proquest.com/docview/954653000
https://hal.inrae.fr/hal-02647278
https://pubmed.ncbi.nlm.nih.gov/PMC3053347
https://doaj.org/article/61c35fe5b7e64ef9980023cf25d220f0
http://dx.doi.org/10.1371/journal.pgen.1002014
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2Tki8IL4XGCVCSDxlSmInTh8Q6qZOBbFSdRT1zbITe0UqSWnaaf3vuXPSaEGbGK_pL2n0y_nu7Psi5L1WSRClGfN0Gmce01x7MqTSYwq8c0MlmAksTj4fxcMp-zKLZntkN7O1JrC8dWuH86Smq8Xx9e_tJ1jwH-3UBh7sbjpeAuW2paiPk60PwDZxnGlwzpq4Ao2SatxKFFGPM5_VxXR3PaVlrGxP_0Zz788xcbKzXBTlbc7p3zmWN4zW2WPyqPY23X4lHk_Ins6fkgfV_MntMzIaF4stiJxyJ3VC7JV2UUMs9LUbuqdVGnvpgpPoDn6p1bbw1oV3AQYPi9jd8RxMoGutnU38ek6mZ4Pvp0OvHrDgpaBW1p6NkclE49TpmHPFfaOkVixQNKJGM64TnsU0xG2XwSJYxVOfyVAxnRhpevQF6eRFrg-JqxPtK5P1ZC_zmTKBpCzNUjxQyTK_p41D6I5Jkdbdx3EIxkLYkBqHXUhFiUD-Rc2_Q7zmrmXVfeMf-BP8SA0We2fbC8XqUtRLUcRBSiOjI8V1zLSB_SY6LqkJoywMfeM75C1-YlEVojYaQPRDMA4MPMbAIe8sAvtn5Jigcyk3ZSk-f_txD9DF6D6gSQv0oQaZAjhLZV05Acxj864W8qiFBFWRtv9tjozdYGfY_yrwGmzFGbiyyRWADlGod_yWwHZAwekHxe8QdyfoAh-N-Xm5LjalSDD6ikcRd0N6EbbyAwvskJfV0mheBNv-0ThOHMJbi6b1pu1f8p9z2wud2lpy_uo_BeU1eVgFBzCZ8Ih01quNfgPe5Vp1yT6f8S45OBmMxpOuPaPpWiXyBzXpesg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polycomb+Repressive+Complex+2+Controls+the+Embryo-to-Seedling+Phase+Transition&rft.jtitle=PLoS+genetics&rft.au=Bouyer%2C+Daniel&rft.au=Roudier%2C+Francois&rft.au=Heese%2C+Maren&rft.au=Andersen%2C+Ellen+D.&rft.date=2011-03-01&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=7&rft.issue=3&rft.spage=e1002014&rft_id=info:doi/10.1371%2Fjournal.pgen.1002014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1002014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon