Evidence for Different Pathways during Horizontal Gene Transfer in Competent Bacillus subtilis Cells

Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of R...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 5; no. 9; p. e1000630
Main Authors Kidane, Dawit, Carrasco, Begoña, Manfredi, Candela, Rothmaier, Katharina, Ayora, Silvia, Tadesse, Serkalem, Alonso, Juan C., Graumann, Peter L.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.09.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways.
AbstractList Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways.
  Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways.
Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways.Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways.
Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro , independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways. Many bacteria can actively acquire novel genetic material from their environment, which leads to the rapid spreading of, for example, antibiotic resistance genes. The bacterium Bacillus subtilis can differentiate into the state of competence, in which cells take up ssDNA through a DNA uptake complex that is specifically localized at a single cell pole. DNA can be integrated into the chromosome, via RecA, or can be reconstituted as circular dsDNA, if derived from plasmid or from viral DNA. We show that RecO, RecU, and Ku proteins, but not RecA, are important for plasmid transformation, and differentially accumulate at the polar DNA uptake machinery. Upon addition of any kind of DNA, the assembly of RecU at the competence pole dissipated, while RecA formed filamentous structures that rapidly grew and shrank within a 1 minute time scale. RecO visibly accumulated at the competence machinery only upon addition of plasmid DNA, but not of chromosomal DNA. In vitro , RecO was highly efficient at enhancing the annealing of complementary strands covered by SsbA, without the need for any nucleotide cofactor. The findings show that competent cells possess a dynamic recombination machinery and provide visual evidence for the existence of different pathways for transformation with chromosomal DNA or with plasmid DNA.
Audience Academic
Author Tadesse, Serkalem
Rothmaier, Katharina
Graumann, Peter L.
Manfredi, Candela
Carrasco, Begoña
Ayora, Silvia
Kidane, Dawit
Alonso, Juan C.
AuthorAffiliation Université Paris Descartes, INSERM U571, France
2 Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
1 Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
AuthorAffiliation_xml – name: 2 Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
– name: 1 Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
– name: Université Paris Descartes, INSERM U571, France
Author_xml – sequence: 1
  givenname: Dawit
  surname: Kidane
  fullname: Kidane, Dawit
– sequence: 2
  givenname: Begoña
  surname: Carrasco
  fullname: Carrasco, Begoña
– sequence: 3
  givenname: Candela
  surname: Manfredi
  fullname: Manfredi, Candela
– sequence: 4
  givenname: Katharina
  surname: Rothmaier
  fullname: Rothmaier, Katharina
– sequence: 5
  givenname: Silvia
  surname: Ayora
  fullname: Ayora, Silvia
– sequence: 6
  givenname: Serkalem
  surname: Tadesse
  fullname: Tadesse, Serkalem
– sequence: 7
  givenname: Juan C.
  surname: Alonso
  fullname: Alonso, Juan C.
– sequence: 8
  givenname: Peter L.
  surname: Graumann
  fullname: Graumann, Peter L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19730681$$D View this record in MEDLINE/PubMed
BookMark eNqVk19v0zAUxSM0xP7AN0AQCWkSDy12nNjJHpBGGVuliSEYvFpOfJO6cu1iO4Px6XFoNzUIIVAeEt38zrHv0b2HyZ6xBpLkKUZTTBh-tbS9M0JP1x2YKUYIUYIeJAe4KMiE5Sjf2_neTw69XyJEirJij5J9XDGCaIkPEnl2oySYBtLWuvStaltwYEL6QYTFN3HrU9k7Zbr0wjr1w5ogdHoOBtJrJ4yPbKpMOrOrNYRB9UY0Suvep76vg9LKpzPQ2j9OHrZCe3iyfR8ln9-dXc8uJpdX5_PZ6eWkYTQLk6qGTGQS5UMvtWSkzSlhNYWiZZiBZJIhkmMmZYlJTksJlJKslYgCoUWFyFHyfOO71tbzbUCeY4JJkUeLLBLzDSGtWPK1UyvhbrkViv8qWNdx4YJqNPACFaKsy0xUmOYZIIEQq-qqzsuiqIqyjl6vt6f19QpkEwNwQo9Mx3-MWvDO3vCMZSynRTQ43ho4-7UHH_hK-SYGJgzY3nPKKIlt4Qi-2ICdiBdTprXRrxlgfpphRmgW24vU9A9UfCSsVBOHp1WxPhK8HAkiE-B76ETvPZ9_-vgf7Pt_Z6--jNnjHXYBQoeFt7oPyho_Bp_tpn0f890oR-BkAzTOeu-g5Y0KYvCJMSjNMeLD3tyNBR_2hm_3Jorz38T3_n-T_QSxvhp5
CitedBy_id crossref_primary_10_3390_ijms24054536
crossref_primary_10_1146_annurev_food_052720_011445
crossref_primary_10_1016_j_jmb_2011_05_008
crossref_primary_10_1021_acssynbio_0c00240
crossref_primary_10_3389_fmicb_2017_01390
crossref_primary_10_1074_jbc_M111_327577
crossref_primary_10_3109_10409238_2012_729562
crossref_primary_10_1093_nar_gkp909
crossref_primary_10_1093_nar_gkv1546
crossref_primary_10_1016_j_bbrc_2019_04_042
crossref_primary_10_1093_femsre_fuad065
crossref_primary_10_1099_mic_0_000489
crossref_primary_10_3389_fmicb_2018_01514
crossref_primary_10_1016_j_dnarep_2012_12_005
crossref_primary_10_1111_1462_2920_15342
crossref_primary_10_1128_spectrum_03470_22
crossref_primary_10_1007_s00792_021_01233_0
crossref_primary_10_1128_AAC_00013_11
crossref_primary_10_1093_nar_gkq533
crossref_primary_10_1128_mBio_01409_14
crossref_primary_10_1038_s41598_018_38289_6
crossref_primary_10_1111_prd_12010
crossref_primary_10_1111_j_1574_6976_2011_00272_x
crossref_primary_10_1111_mmi_14457
crossref_primary_10_1016_j_cell_2016_12_003
crossref_primary_10_1016_j_dnarep_2011_09_010
crossref_primary_10_3389_fpls_2015_00231
crossref_primary_10_1007_s00253_012_3987_2
crossref_primary_10_1093_nar_gkad377
crossref_primary_10_3389_fmicb_2017_01816
crossref_primary_10_1111_mmi_14218
crossref_primary_10_3389_fmicb_2020_01253
crossref_primary_10_1074_jbc_M113_478347
crossref_primary_10_1099_mic_0_001003
crossref_primary_10_1128_aem_01948_23
crossref_primary_10_3389_fgene_2019_00429
crossref_primary_10_35534_sbe_2024_10014
crossref_primary_10_1111_1462_2920_14908
crossref_primary_10_1111_mmi_13234
crossref_primary_10_1128_JB_00272_17
crossref_primary_10_1128_JB_01128_10
crossref_primary_10_1371_journal_pgen_1004934
crossref_primary_10_1266_ggs_16_00071
crossref_primary_10_1371_journal_pgen_1003126
crossref_primary_10_1371_journal_pgen_1002156
crossref_primary_10_1093_nar_gks173
crossref_primary_10_1371_journal_pgen_1010696
crossref_primary_10_1093_nar_gkx583
crossref_primary_10_1128_jb_00465_22
crossref_primary_10_1007_s00203_010_0583_7
crossref_primary_10_1007_s00253_014_6316_0
crossref_primary_10_3389_fmicb_2020_00092
crossref_primary_10_1007_s00253_013_4935_5
crossref_primary_10_1038_nrmicro3199
Cites_doi 10.1046/j.1365-2958.2002.02833.x
10.1093/nar/gkn500
10.1093/nar/gki533
10.1016/j.cell.2007.07.038
10.1016/S0378-1119(97)00547-7
10.1128/JB.117.2.488-493.1974
10.1038/nsmb783
10.1111/j.1365-2958.2007.05799.x
10.1083/jcb.200412090
10.1128/JB.184.9.2344-2351.2002
10.1126/science.1074584
10.1074/jbc.M204467200
10.1007/BF00633853
10.1007/BF00267617
10.1093/nar/gkj418
10.1074/jbc.M802002200
10.1093/nar/gki713
10.1007/s004380051002
10.1016/j.cell.2005.04.036
10.1126/science.1114021
10.1073/pnas.252633399
10.1007/BF00281611
10.1128/JB.180.13.3405-3409.1998
10.1016/j.cell.2005.04.035
10.1016/S0923-2508(00)00165-0
10.1016/j.jmb.2005.06.064
10.1016/S0021-9258(18)54092-8
10.1128/JB.188.2.353-360.2006
10.1128/jb.170.7.3001-3007.1988
10.1186/1471-2199-7-20
10.1038/nrmicro844
10.1093/nar/gkm759
10.1111/j.1365-2958.2004.04102.x
10.1128/JB.114.1.273-286.1973
10.1186/1471-2180-7-105
10.1038/nature05197
10.1073/pnas.2533829100
10.1007/BF00428732
10.1534/genetics.105.045906
ContentType Journal Article
Copyright COPYRIGHT 2009 Public Library of Science
Kidane et al. 2009
2009 Kidane et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kidane D, Carrasco B, Manfredi C, Rothmaier K, Ayora S, et al. (2009) Evidence for Different Pathways during Horizontal Gene Transfer in Competent Bacillus subtilis Cells. PLoS Genet 5(9): e1000630. doi:10.1371/journal.pgen.1000630
Copyright_xml – notice: COPYRIGHT 2009 Public Library of Science
– notice: Kidane et al. 2009
– notice: 2009 Kidane et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kidane D, Carrasco B, Manfredi C, Rothmaier K, Ayora S, et al. (2009) Evidence for Different Pathways during Horizontal Gene Transfer in Competent Bacillus subtilis Cells. PLoS Genet 5(9): e1000630. doi:10.1371/journal.pgen.1000630
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1000630
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Science in Context
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Dynamic Recombination Machinery in Competent Cells
EISSN 1553-7404
ExternalDocumentID 1313547172
oai_doaj_org_article_505a8b82a91642e0a0079b9b4855958b
PMC2727465
A217362547
19730681
10_1371_journal_pgen_1000630
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
QF4
RIG
RZL
WOQ
PMFND
7X8
5PM
PUEGO
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c762t-9be2a2d040063bd73f4637b6e5f717ed7d703417dd813468de6632fd06e365903
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:36 EDT 2023
Wed Aug 27 01:30:00 EDT 2025
Thu Aug 21 18:33:23 EDT 2025
Mon Jul 21 09:43:02 EDT 2025
Tue Jun 17 22:07:13 EDT 2025
Tue Jun 10 21:12:02 EDT 2025
Fri Jun 27 06:01:01 EDT 2025
Fri Jun 27 04:17:39 EDT 2025
Fri Jun 27 06:05:20 EDT 2025
Thu May 22 21:23:34 EDT 2025
Mon Jul 21 05:14:11 EDT 2025
Tue Jul 01 02:38:26 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c762t-9be2a2d040063bd73f4637b6e5f717ed7d703417dd813468de6632fd06e365903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: DK BC SA JCA PLG. Performed the experiments: DK BC CM KR ST. Analyzed the data: DK BC SA JCA. Wrote the paper: DK BC SA JCA PLG.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1000630
PMID 19730681
PQID 67635901
PQPubID 23479
ParticipantIDs plos_journals_1313547172
doaj_primary_oai_doaj_org_article_505a8b82a91642e0a0079b9b4855958b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2727465
proquest_miscellaneous_67635901
gale_infotracmisc_A217362547
gale_infotracacademiconefile_A217362547
gale_incontextgauss_ISR_A217362547
gale_incontextgauss_ISN_A217362547
gale_incontextgauss_IOV_A217362547
gale_healthsolutions_A217362547
pubmed_primary_19730681
crossref_citationtrail_10_1371_journal_pgen_1000630
crossref_primary_10_1371_journal_pgen_1000630
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-09-01
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2009
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References I Mortier-Barriere (ref22) 2007; 130
D Kidane (ref24) 2005; 170
S Ayora (ref39) 2002; 277
MI Martínez-Jiménez (ref40) 2005; 351
P Ceglowski (ref43) 1990; 222
D Dubnau (ref8) 1974; 117
U Canosi (ref33) 1981; 181
I Chen (ref1) 2005; 310
U Canosi (ref14) 1978; 166
H Sanchez (ref25) 2005; 171
C Manfredi (ref28) 2008; 283
B Carrasco (ref36) 2005; 33
D Dubnau (ref16) 1980
H Sanchez (ref26) 2006; 188
D Kidane (ref19) 2005; 122
D Kidane (ref41) 2005; 170
S Fernandez (ref10) 2000; 151
N Kantake (ref37) 2002; 99
B Maier (ref5) 2004; 11
G Lopez-Torrejon (ref44) 2006; 34
H Sanchez (ref34) 2006
H Sanchez (ref11) 2007
R Galletto (ref32) 2006; 443
S Fernández (ref13) 1998; 180
JC Alonso (ref9) 1988; 170
D Dubnau (ref42) 1973; 114
S Ayora (ref27) 2004; 101
M Ogura (ref4) 2002; 184
S Tadesse (ref18) 2007; 7
TA Trautner (ref38) 1973; 62
J Mascarenhas (ref46) 2006; 7
JC Alonso (ref31) 1997; 204
S Fernández (ref12) 1999; 261
SA Lacks (ref17) 1988
C Cañas (ref30) 2008; 36
RM Berka (ref3) 2002; 43
N Kramer (ref7) 2007; 65
JC Alonso (ref45) 1993; 268
I Chen (ref2) 2004; 2
D Kidane (ref23) 2004; 52
JC Alonso (ref47) 1993; 239
GR Weller (ref29) 2002; 297
J Hahn (ref6) 2005; 122
H Sanchez (ref21) 2007; 36
B Maier (ref35) 2004; 11
H Sanchez (ref20) 2005; 33
H Sanchez (ref15) 2007
17803906 - Cell. 2007 Sep 7;130(5):824-36
18045469 - BMC Microbiol. 2007;7:105
16055153 - J Mol Biol. 2005 Sep 2;351(5):1007-19
18684995 - Nucleic Acids Res. 2008 Sep;36(16):5242-9
16020779 - Genetics. 2005 Nov;171(3):873-83
16322448 - Science. 2005 Dec 2;310(5753):1456-60
16024744 - Nucleic Acids Res. 2005;33(12):3942-52
11948146 - J Bacteriol. 2002 May;184(9):2344-51
6267418 - Mol Gen Genet. 1981;181(4):434-40
12438681 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15327-32
9434185 - Gene. 1997 Dec 19;204(1-2):201-12
16009134 - Cell. 2005 Jul 15;122(1):73-84
4208299 - Curr Top Microbiol Immunol. 1973;62:61-88
16407330 - Nucleic Acids Res. 2006;34(1):120-9
16061691 - J Cell Biol. 2005 Aug 1;170(3):357-66
16780573 - BMC Mol Biol. 2006;7:20
4272775 - J Bacteriol. 1974 Feb;117(2):488-93
8510642 - Mol Gen Genet. 1993 May;239(1-2):129-36
8419343 - J Biol Chem. 1993 Jan 15;268(2):1424-9
105241 - Mol Gen Genet. 1978 Nov 9;166(3):259-67
17630974 - Mol Microbiol. 2007 Jul;65(2):454-64
16385024 - J Bacteriol. 2006 Jan;188(2):353-60
3133357 - J Bacteriol. 1988 Jul;170(7):3001-7
11918817 - Mol Microbiol. 2002 Mar;43(5):1331-45
15083159 - Nat Rev Microbiol. 2004 Mar;2(3):241-9
15849320 - Nucleic Acids Res. 2005;33(7):2343-50
18599486 - J Biol Chem. 2008 Sep 5;283(36):24837-47
10323239 - Mol Gen Genet. 1999 Apr;261(3):567-73
12215643 - Science. 2002 Sep 6;297(5587):1686-9
12124388 - J Biol Chem. 2002 Sep 27;277(39):35969-79
2177138 - Mol Gen Genet. 1990 Jul;222(2-3):441-5
14701911 - Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):452-7
17999999 - Nucleic Acids Res. 2008 Jan;36(1):110-20
4349031 - J Bacteriol. 1973 Apr;114(1):273-86
16988658 - Nature. 2006 Oct 19;443(7113):875-8
15184891 - Nat Struct Mol Biol. 2004 Jul;11(7):643-9
9642195 - J Bacteriol. 1998 Jul;180(13):3405-9
10961463 - Res Microbiol. 2000 Jul-Aug;151(6):481-6
16009133 - Cell. 2005 Jul 15;122(1):59-71
15186413 - Mol Microbiol. 2004 Jun;52(6):1627-39
References_xml – volume: 43
  start-page: 1331
  year: 2002
  ident: ref3
  article-title: Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK.
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2002.02833.x
– volume: 36
  start-page: 5242
  year: 2008
  ident: ref30
  article-title: The RecU Holliday junction resolvase acts at early stages of homologous recombination.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn500
– volume: 33
  start-page: 2343
  year: 2005
  ident: ref20
  article-title: Bacillus subtilis RecN binds and protects 3′-single-stranded DNA extensions in the presence of ATP.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki533
– volume: 130
  start-page: 824
  year: 2007
  ident: ref22
  article-title: A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.07.038
– volume: 204
  start-page: 201
  year: 1997
  ident: ref31
  article-title: The complete nucleotide sequence and functional organization of Bacillus subtilis bacteriophage SPP1.
  publication-title: Gene
  doi: 10.1016/S0378-1119(97)00547-7
– year: 2006
  ident: ref34
  article-title: Homologous recombination in low dC+dG Gram-positive bacteria
– volume: 117
  start-page: 488
  year: 1974
  ident: ref8
  article-title: Genetic characterization of recombination-deficient mutants of Bacillus subtilis.
  publication-title: J Bacteriol
  doi: 10.1128/JB.117.2.488-493.1974
– volume: 11
  start-page: 643
  year: 2004
  ident: ref5
  article-title: DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces.
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb783
– volume: 65
  start-page: 454
  year: 2007
  ident: ref7
  article-title: Multiple interactions among the competence proteins of Bacillus subtilis.
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2007.05799.x
– volume: 62
  start-page: 61
  year: 1973
  ident: ref38
  article-title: Transfection in B. subtilis.
  publication-title: Curr Top Microbiol Immunol
– volume: 170
  start-page: 357
  year: 2005
  ident: ref41
  article-title: Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200412090
– volume: 184
  start-page: 2344
  year: 2002
  ident: ref4
  article-title: Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK.
  publication-title: J Bacteriol
  doi: 10.1128/JB.184.9.2344-2351.2002
– start-page: 43
  year: 1988
  ident: ref17
  article-title: Mechanisms of genetic recombination in Gram-positive bacteria
– volume: 297
  start-page: 1686
  year: 2002
  ident: ref29
  article-title: Identification of a DNA nonhomologous end-joining complex in bacteria.
  publication-title: Science
  doi: 10.1126/science.1074584
– volume: 277
  start-page: 35969
  year: 2002
  ident: ref39
  article-title: Homologous-pairing activity of the Bacillus subtilis bacteriophage SPP1 replication protein G35P.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M204467200
– volume: 222
  start-page: 441
  year: 1990
  ident: ref43
  article-title: Genetic analysis of recE activities in Bacillus subtilis.
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00633853
– volume: 166
  start-page: 259
  year: 1978
  ident: ref14
  article-title: The relationship between molecular structure and transformation efficiency of some S. aureus plasmids isolated from B. subtilis.
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00267617
– volume: 34
  start-page: 120
  year: 2006
  ident: ref44
  article-title: Role of LrpC from Bacillus subtilis in DNA transactions during DNA repair and recombination.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj418
– volume: 283
  start-page: 24837
  year: 2008
  ident: ref28
  article-title: Bacillus subtilis RecO nucleates RecA onto SsbA-coated single-stranded DNA.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M802002200
– volume: 33
  start-page: 3942
  year: 2005
  ident: ref36
  article-title: Bacillus subtilis RecU Holliday-junction resolvase modulates RecA activities.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki713
– volume: 261
  start-page: 567
  year: 1999
  ident: ref12
  article-title: Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function.
  publication-title: Mol Gen Genet
  doi: 10.1007/s004380051002
– volume: 122
  start-page: 73
  year: 2005
  ident: ref19
  article-title: Intracellular protein and DNA dynamics in competent Bacillus subtilis cells.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.04.036
– volume: 310
  start-page: 1456
  year: 2005
  ident: ref1
  article-title: The ins and outs of DNA transfer in bacteria.
  publication-title: Science
  doi: 10.1126/science.1114021
– volume: 99
  start-page: 15327
  year: 2002
  ident: ref37
  article-title: Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.252633399
– volume: 239
  start-page: 129
  year: 1993
  ident: ref47
  article-title: Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination.
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00281611
– volume: 170
  start-page: 357
  year: 2005
  ident: ref24
  article-title: Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200412090
– volume: 180
  start-page: 3405
  year: 1998
  ident: ref13
  article-title: Genetic recombination in Bacillus subtilis 168: effects of recU and recS mutations on DNA repair and homologous recombination.
  publication-title: J Bacteriol
  doi: 10.1128/JB.180.13.3405-3409.1998
– volume: 122
  start-page: 59
  year: 2005
  ident: ref6
  article-title: Transformation proteins and DNA uptake localize to the cell poles in Bacillus subtilis.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.04.035
– volume: 151
  start-page: 481
  year: 2000
  ident: ref10
  article-title: Bacillus subtilis homologous recombination: genes and products.
  publication-title: Res Microbiol
  doi: 10.1016/S0923-2508(00)00165-0
– volume: 351
  start-page: 1007
  year: 2005
  ident: ref40
  article-title: Bacillus subtilis bacteriophage SPP1-encoded gene 34.1 product is a recombination-dependent DNA replication protein.
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.06.064
– volume: 268
  start-page: 1424
  year: 1993
  ident: ref45
  article-title: Purification and properties of the RecR protein from Bacillus subtilis 168.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)54092-8
– start-page: 43
  year: 2007
  ident: ref15
  article-title: Dynamics of DNA Double-Strand Break Repair in Bacillus subtilis;
– volume: 188
  start-page: 353
  year: 2006
  ident: ref26
  article-title: Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing.
  publication-title: J Bacteriol
  doi: 10.1128/JB.188.2.353-360.2006
– volume: 170
  start-page: 3001
  year: 1988
  ident: ref9
  article-title: Characterization of recombination-deficient mutants of Bacillus subtilis.
  publication-title: J Bacteriol
  doi: 10.1128/jb.170.7.3001-3007.1988
– volume: 11
  start-page: 643
  year: 2004
  ident: ref35
  article-title: DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces.
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb783
– volume: 7
  start-page: 20
  year: 2006
  ident: ref46
  article-title: Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair.
  publication-title: BMC Mol Biol
  doi: 10.1186/1471-2199-7-20
– volume: 2
  start-page: 241
  year: 2004
  ident: ref2
  article-title: DNA uptake during bacterial transformation.
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro844
– start-page: 43
  year: 2007
  ident: ref11
  article-title: Dynamics of DNA Double-Strand Break Repair in Bacillus subtilis;
– volume: 36
  start-page: 110
  year: 2007
  ident: ref21
  article-title: Dynamic structures of Bacillus subtilis RecN DNA complexes.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm759
– volume: 52
  start-page: 1627
  year: 2004
  ident: ref23
  article-title: Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids.
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04102.x
– volume: 114
  start-page: 273
  year: 1973
  ident: ref42
  article-title: Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: phenotypic characterization of radiation-sensitive recombination-deficient mutants.
  publication-title: J Bacteriol
  doi: 10.1128/JB.114.1.273-286.1973
– volume: 7
  start-page: 105
  year: 2007
  ident: ref18
  article-title: DprA/Smf protein localizes at the DNA uptake machinery in competent Bacillus subtilis cells.
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-7-105
– volume: 443
  start-page: 875
  year: 2006
  ident: ref32
  article-title: Direct observation of individual RecA filaments assembling on single DNA molecules.
  publication-title: Nature
  doi: 10.1038/nature05197
– start-page: 365
  year: 1980
  ident: ref16
  article-title: On the use of plasmids for study of genetic transformation in Bacillus subtilis.
– volume: 101
  start-page: 452
  year: 2004
  ident: ref27
  article-title: Bacillus subtilis RecU protein cleaves Holliday junctions and anneals single-stranded DNA.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2533829100
– volume: 181
  start-page: 434
  year: 1981
  ident: ref33
  article-title: Plasmid transformation in Bacillus subtilis: effects of insertion of Bacillus subtilis DNA into plasmid pC194.
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00428732
– volume: 171
  start-page: 873
  year: 2005
  ident: ref25
  article-title: The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis.
  publication-title: Genetics
  doi: 10.1534/genetics.105.045906
– reference: 15083159 - Nat Rev Microbiol. 2004 Mar;2(3):241-9
– reference: 16055153 - J Mol Biol. 2005 Sep 2;351(5):1007-19
– reference: 14701911 - Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):452-7
– reference: 18599486 - J Biol Chem. 2008 Sep 5;283(36):24837-47
– reference: 12438681 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15327-32
– reference: 15186413 - Mol Microbiol. 2004 Jun;52(6):1627-39
– reference: 3133357 - J Bacteriol. 1988 Jul;170(7):3001-7
– reference: 17999999 - Nucleic Acids Res. 2008 Jan;36(1):110-20
– reference: 16009134 - Cell. 2005 Jul 15;122(1):73-84
– reference: 11918817 - Mol Microbiol. 2002 Mar;43(5):1331-45
– reference: 17630974 - Mol Microbiol. 2007 Jul;65(2):454-64
– reference: 17803906 - Cell. 2007 Sep 7;130(5):824-36
– reference: 11948146 - J Bacteriol. 2002 May;184(9):2344-51
– reference: 10961463 - Res Microbiol. 2000 Jul-Aug;151(6):481-6
– reference: 16407330 - Nucleic Acids Res. 2006;34(1):120-9
– reference: 18045469 - BMC Microbiol. 2007;7:105
– reference: 16024744 - Nucleic Acids Res. 2005;33(12):3942-52
– reference: 4349031 - J Bacteriol. 1973 Apr;114(1):273-86
– reference: 4272775 - J Bacteriol. 1974 Feb;117(2):488-93
– reference: 8510642 - Mol Gen Genet. 1993 May;239(1-2):129-36
– reference: 9434185 - Gene. 1997 Dec 19;204(1-2):201-12
– reference: 16009133 - Cell. 2005 Jul 15;122(1):59-71
– reference: 12124388 - J Biol Chem. 2002 Sep 27;277(39):35969-79
– reference: 10323239 - Mol Gen Genet. 1999 Apr;261(3):567-73
– reference: 16020779 - Genetics. 2005 Nov;171(3):873-83
– reference: 6267418 - Mol Gen Genet. 1981;181(4):434-40
– reference: 105241 - Mol Gen Genet. 1978 Nov 9;166(3):259-67
– reference: 18684995 - Nucleic Acids Res. 2008 Sep;36(16):5242-9
– reference: 16061691 - J Cell Biol. 2005 Aug 1;170(3):357-66
– reference: 15184891 - Nat Struct Mol Biol. 2004 Jul;11(7):643-9
– reference: 16780573 - BMC Mol Biol. 2006;7:20
– reference: 9642195 - J Bacteriol. 1998 Jul;180(13):3405-9
– reference: 4208299 - Curr Top Microbiol Immunol. 1973;62:61-88
– reference: 16322448 - Science. 2005 Dec 2;310(5753):1456-60
– reference: 16988658 - Nature. 2006 Oct 19;443(7113):875-8
– reference: 15849320 - Nucleic Acids Res. 2005;33(7):2343-50
– reference: 12215643 - Science. 2002 Sep 6;297(5587):1686-9
– reference: 16385024 - J Bacteriol. 2006 Jan;188(2):353-60
– reference: 2177138 - Mol Gen Genet. 1990 Jul;222(2-3):441-5
– reference: 8419343 - J Biol Chem. 1993 Jan 15;268(2):1424-9
SSID ssj0035897
Score 2.20303
Snippet Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss)...
Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss)...
  Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss)...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000630
SubjectTerms Bacillus subtilis
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Bacterial genetics
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biochemistry/ and Repair
Cell Biology/Microbial Growth and Development
Deoxyribonucleic acid
Developmental Biology/Microbial Growth and Development
DNA
DNA - genetics
Gene Transfer, Horizontal
Genes
Genetic aspects
Genetic transformation
Genetics and Genomics/Microbial Evolution and Genomics
Microbiology
Molecular Biology/DNA Repair
Plasmids - genetics
Proteins
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF_O5p1UUEn2KTbHY3eWzFUgUrqJW-LfsVGwjJcUmQ-tc7k03ORoT2wdfs5LjMzM78Npn5DSGvuS1tCZ4S6VhiS46DOJhix3KJXOPcWufwhf6nU3Fyln085-dXRn1hTVigBw6KO4AMrXOTpxpwTJb6WENSK0xhkNSk4LnB6As5bz5MhRjMeB7GqnDOIgnH-qlpjsnkYLLR2w0YCGsEkHRqkZRG7v5dhF5t6rb7F_z8u4rySlo6vkfuTniSHobnuE9u-eYBuR0mTF4-JG6eGkoBnNJ5GkpPcRDxT33Z0dCmSC_abfWrxc5ICn_Y037Es35Lq4baCVr39Ejbqq6HjnaD6au66ii-9-8ekbPj99_enUTTYIXIQuzro8L4VKcO969gxklWZoJJIzwv4XTnnXQQB7JEOpcnLBO584BL0tLFwjPBi5g9JqumbfweofB7peFMOFfYzGeJ1qaQNi10ZqVOYrMmbNasshPrOA6_qNX4KU3C6SMoSqE91GSPNYl2d20C68Y18kdotJ0scmaPF8CT1ORJ6jpPWpOXaHIVGlB3O18dwqkN0jzP5Jq8GiWQN6PBwpwfeug69eHz9xsIfT29idCXhdCbSahsQWdWTx0ToHkk7VpI7i8kIUTYxfIeevGsug4UmTC4DuAVHnr2bIV3Ycld49uhUwKpCgEtrsmT4Od_LFFAWhA5rMjFDliof7nSVBcjdXkKcDkT_On_sNczcid82sOCv32y6reDfw4IsTcvxmDwGxRDYO0
  priority: 102
  providerName: Directory of Open Access Journals
Title Evidence for Different Pathways during Horizontal Gene Transfer in Competent Bacillus subtilis Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/19730681
https://www.proquest.com/docview/67635901
https://pubmed.ncbi.nlm.nih.gov/PMC2727465
https://doaj.org/article/505a8b82a91642e0a0079b9b4855958b
http://dx.doi.org/10.1371/journal.pgen.1000630
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8IL7XMYqFkHjK1CaxnTwgtKJNA2kFDYr6Zjm2s0WKklKnGuWv5y4fhaABe43PkXP2nX_O-X5HyCumU53CSvHUWGBKjgE_6GPGcopc40xrY_CH_vmMn83DDwu22CFdzdZWge7Gox3Wk5qv8qPv3zZvweDf1FUbxKTrdLQElWPUH2mkdske7E0Caxqch9u4QsCiptwKY4En4LjfJtP97S29zarm9N967sEyL91NsPTP25W_bVen98m9FmfS42ZhPCA7tnhI7jSVJzePiOmqiVIArbSrklJRLFB8rTaONumL9KpcZT9KzJikMGBLqxrn2hXNCqpbyF3RqdJZnq8ddeukyvLMUYwHuMdkfnry5d2Z1xZc8DT4xMqLE-sr36Bd8yAxIkhDHoiEW5bCqc8aYcA_gFaNiSZByCNjAa_4qRlzG3AWj4MnZFCUhd0nFN6XJizgxsQ6tOFEqSQW2o9VqIWajJMhCTrNSt2ykWNRjFzWITYBp5JGURLnQ7bzMSTetteyYeP4j_wUJ20ri1za9YNydSlb05SAAVWURL4CpBz6dqwANsVJnCBtTswiGOoLnHLZJKZuPYI8htMcbP8sFEPyspZAPo0CL-xcqrVz8v3Hr7cQ-jy7jdBFT-h1K5SWoDOt2kwK0DySefUkD3uS4Dp0r3kfV3GnOgeKnATwHOwGPrpb2RJ74VW8wpZrJzlSGAKKHJKnzTr_NRMxbBc8ghbRs4Ce-vstRXZVU5r7AKNDzg7-Pd5n5G4TzMMrfodkUK3W9jlgwioZkV2xECOyNz2ZfboY1X9WRrXp_wTUymK0
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+different+pathways+during+horizontal+gene+transfer+in+competent+Bacillus+subtilis+cells&rft.jtitle=PLoS+genetics&rft.au=Kidane%2C+Dawit&rft.au=Carrasco%2C+Begona&rft.au=Manfredi%2C+Candela&rft.au=Rothmaier%2C+Katharina&rft.date=2009-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=5&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pgen.1000630&rft.externalDocID=A217362547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon