Evidence for Different Pathways during Horizontal Gene Transfer in Competent Bacillus subtilis Cells
Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of R...
Saved in:
Published in | PLoS genetics Vol. 5; no. 9; p. e1000630 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.09.2009
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways. |
---|---|
AbstractList | Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways. Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways. Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways.Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways. Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro , independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways. Many bacteria can actively acquire novel genetic material from their environment, which leads to the rapid spreading of, for example, antibiotic resistance genes. The bacterium Bacillus subtilis can differentiate into the state of competence, in which cells take up ssDNA through a DNA uptake complex that is specifically localized at a single cell pole. DNA can be integrated into the chromosome, via RecA, or can be reconstituted as circular dsDNA, if derived from plasmid or from viral DNA. We show that RecO, RecU, and Ku proteins, but not RecA, are important for plasmid transformation, and differentially accumulate at the polar DNA uptake machinery. Upon addition of any kind of DNA, the assembly of RecU at the competence pole dissipated, while RecA formed filamentous structures that rapidly grew and shrank within a 1 minute time scale. RecO visibly accumulated at the competence machinery only upon addition of plasmid DNA, but not of chromosomal DNA. In vitro , RecO was highly efficient at enhancing the annealing of complementary strands covered by SsbA, without the need for any nucleotide cofactor. The findings show that competent cells possess a dynamic recombination machinery and provide visual evidence for the existence of different pathways for transformation with chromosomal DNA or with plasmid DNA. |
Audience | Academic |
Author | Tadesse, Serkalem Rothmaier, Katharina Graumann, Peter L. Manfredi, Candela Carrasco, Begoña Ayora, Silvia Kidane, Dawit Alonso, Juan C. |
AuthorAffiliation | Université Paris Descartes, INSERM U571, France 2 Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain 1 Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany |
AuthorAffiliation_xml | – name: 2 Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain – name: 1 Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany – name: Université Paris Descartes, INSERM U571, France |
Author_xml | – sequence: 1 givenname: Dawit surname: Kidane fullname: Kidane, Dawit – sequence: 2 givenname: Begoña surname: Carrasco fullname: Carrasco, Begoña – sequence: 3 givenname: Candela surname: Manfredi fullname: Manfredi, Candela – sequence: 4 givenname: Katharina surname: Rothmaier fullname: Rothmaier, Katharina – sequence: 5 givenname: Silvia surname: Ayora fullname: Ayora, Silvia – sequence: 6 givenname: Serkalem surname: Tadesse fullname: Tadesse, Serkalem – sequence: 7 givenname: Juan C. surname: Alonso fullname: Alonso, Juan C. – sequence: 8 givenname: Peter L. surname: Graumann fullname: Graumann, Peter L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19730681$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk19v0zAUxSM0xP7AN0AQCWkSDy12nNjJHpBGGVuliSEYvFpOfJO6cu1iO4Px6XFoNzUIIVAeEt38zrHv0b2HyZ6xBpLkKUZTTBh-tbS9M0JP1x2YKUYIUYIeJAe4KMiE5Sjf2_neTw69XyJEirJij5J9XDGCaIkPEnl2oySYBtLWuvStaltwYEL6QYTFN3HrU9k7Zbr0wjr1w5ogdHoOBtJrJ4yPbKpMOrOrNYRB9UY0Suvep76vg9LKpzPQ2j9OHrZCe3iyfR8ln9-dXc8uJpdX5_PZ6eWkYTQLk6qGTGQS5UMvtWSkzSlhNYWiZZiBZJIhkmMmZYlJTksJlJKslYgCoUWFyFHyfOO71tbzbUCeY4JJkUeLLBLzDSGtWPK1UyvhbrkViv8qWNdx4YJqNPACFaKsy0xUmOYZIIEQq-qqzsuiqIqyjl6vt6f19QpkEwNwQo9Mx3-MWvDO3vCMZSynRTQ43ho4-7UHH_hK-SYGJgzY3nPKKIlt4Qi-2ICdiBdTprXRrxlgfpphRmgW24vU9A9UfCSsVBOHp1WxPhK8HAkiE-B76ETvPZ9_-vgf7Pt_Z6--jNnjHXYBQoeFt7oPyho_Bp_tpn0f890oR-BkAzTOeu-g5Y0KYvCJMSjNMeLD3tyNBR_2hm_3Jorz38T3_n-T_QSxvhp5 |
CitedBy_id | crossref_primary_10_3390_ijms24054536 crossref_primary_10_1146_annurev_food_052720_011445 crossref_primary_10_1016_j_jmb_2011_05_008 crossref_primary_10_1021_acssynbio_0c00240 crossref_primary_10_3389_fmicb_2017_01390 crossref_primary_10_1074_jbc_M111_327577 crossref_primary_10_3109_10409238_2012_729562 crossref_primary_10_1093_nar_gkp909 crossref_primary_10_1093_nar_gkv1546 crossref_primary_10_1016_j_bbrc_2019_04_042 crossref_primary_10_1093_femsre_fuad065 crossref_primary_10_1099_mic_0_000489 crossref_primary_10_3389_fmicb_2018_01514 crossref_primary_10_1016_j_dnarep_2012_12_005 crossref_primary_10_1111_1462_2920_15342 crossref_primary_10_1128_spectrum_03470_22 crossref_primary_10_1007_s00792_021_01233_0 crossref_primary_10_1128_AAC_00013_11 crossref_primary_10_1093_nar_gkq533 crossref_primary_10_1128_mBio_01409_14 crossref_primary_10_1038_s41598_018_38289_6 crossref_primary_10_1111_prd_12010 crossref_primary_10_1111_j_1574_6976_2011_00272_x crossref_primary_10_1111_mmi_14457 crossref_primary_10_1016_j_cell_2016_12_003 crossref_primary_10_1016_j_dnarep_2011_09_010 crossref_primary_10_3389_fpls_2015_00231 crossref_primary_10_1007_s00253_012_3987_2 crossref_primary_10_1093_nar_gkad377 crossref_primary_10_3389_fmicb_2017_01816 crossref_primary_10_1111_mmi_14218 crossref_primary_10_3389_fmicb_2020_01253 crossref_primary_10_1074_jbc_M113_478347 crossref_primary_10_1099_mic_0_001003 crossref_primary_10_1128_aem_01948_23 crossref_primary_10_3389_fgene_2019_00429 crossref_primary_10_35534_sbe_2024_10014 crossref_primary_10_1111_1462_2920_14908 crossref_primary_10_1111_mmi_13234 crossref_primary_10_1128_JB_00272_17 crossref_primary_10_1128_JB_01128_10 crossref_primary_10_1371_journal_pgen_1004934 crossref_primary_10_1266_ggs_16_00071 crossref_primary_10_1371_journal_pgen_1003126 crossref_primary_10_1371_journal_pgen_1002156 crossref_primary_10_1093_nar_gks173 crossref_primary_10_1371_journal_pgen_1010696 crossref_primary_10_1093_nar_gkx583 crossref_primary_10_1128_jb_00465_22 crossref_primary_10_1007_s00203_010_0583_7 crossref_primary_10_1007_s00253_014_6316_0 crossref_primary_10_3389_fmicb_2020_00092 crossref_primary_10_1007_s00253_013_4935_5 crossref_primary_10_1038_nrmicro3199 |
Cites_doi | 10.1046/j.1365-2958.2002.02833.x 10.1093/nar/gkn500 10.1093/nar/gki533 10.1016/j.cell.2007.07.038 10.1016/S0378-1119(97)00547-7 10.1128/JB.117.2.488-493.1974 10.1038/nsmb783 10.1111/j.1365-2958.2007.05799.x 10.1083/jcb.200412090 10.1128/JB.184.9.2344-2351.2002 10.1126/science.1074584 10.1074/jbc.M204467200 10.1007/BF00633853 10.1007/BF00267617 10.1093/nar/gkj418 10.1074/jbc.M802002200 10.1093/nar/gki713 10.1007/s004380051002 10.1016/j.cell.2005.04.036 10.1126/science.1114021 10.1073/pnas.252633399 10.1007/BF00281611 10.1128/JB.180.13.3405-3409.1998 10.1016/j.cell.2005.04.035 10.1016/S0923-2508(00)00165-0 10.1016/j.jmb.2005.06.064 10.1016/S0021-9258(18)54092-8 10.1128/JB.188.2.353-360.2006 10.1128/jb.170.7.3001-3007.1988 10.1186/1471-2199-7-20 10.1038/nrmicro844 10.1093/nar/gkm759 10.1111/j.1365-2958.2004.04102.x 10.1128/JB.114.1.273-286.1973 10.1186/1471-2180-7-105 10.1038/nature05197 10.1073/pnas.2533829100 10.1007/BF00428732 10.1534/genetics.105.045906 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2009 Public Library of Science Kidane et al. 2009 2009 Kidane et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kidane D, Carrasco B, Manfredi C, Rothmaier K, Ayora S, et al. (2009) Evidence for Different Pathways during Horizontal Gene Transfer in Competent Bacillus subtilis Cells. PLoS Genet 5(9): e1000630. doi:10.1371/journal.pgen.1000630 |
Copyright_xml | – notice: COPYRIGHT 2009 Public Library of Science – notice: Kidane et al. 2009 – notice: 2009 Kidane et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kidane D, Carrasco B, Manfredi C, Rothmaier K, Ayora S, et al. (2009) Evidence for Different Pathways during Horizontal Gene Transfer in Competent Bacillus subtilis Cells. PLoS Genet 5(9): e1000630. doi:10.1371/journal.pgen.1000630 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1000630 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Science in Context MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Dynamic Recombination Machinery in Competent Cells |
EISSN | 1553-7404 |
ExternalDocumentID | 1313547172 oai_doaj_org_article_505a8b82a91642e0a0079b9b4855958b PMC2727465 A217362547 19730681 10_1371_journal_pgen_1000630 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB PV9 QF4 RIG RZL WOQ PMFND 7X8 5PM PUEGO 3V. AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c762t-9be2a2d040063bd73f4637b6e5f717ed7d703417dd813468de6632fd06e365903 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun Oct 01 00:20:36 EDT 2023 Wed Aug 27 01:30:00 EDT 2025 Thu Aug 21 18:33:23 EDT 2025 Mon Jul 21 09:43:02 EDT 2025 Tue Jun 17 22:07:13 EDT 2025 Tue Jun 10 21:12:02 EDT 2025 Fri Jun 27 06:01:01 EDT 2025 Fri Jun 27 04:17:39 EDT 2025 Fri Jun 27 06:05:20 EDT 2025 Thu May 22 21:23:34 EDT 2025 Mon Jul 21 05:14:11 EDT 2025 Tue Jul 01 02:38:26 EDT 2025 Thu Apr 24 22:59:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c762t-9be2a2d040063bd73f4637b6e5f717ed7d703417dd813468de6632fd06e365903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: DK BC SA JCA PLG. Performed the experiments: DK BC CM KR ST. Analyzed the data: DK BC SA JCA. Wrote the paper: DK BC SA JCA PLG. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1000630 |
PMID | 19730681 |
PQID | 67635901 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1313547172 doaj_primary_oai_doaj_org_article_505a8b82a91642e0a0079b9b4855958b pubmedcentral_primary_oai_pubmedcentral_nih_gov_2727465 proquest_miscellaneous_67635901 gale_infotracmisc_A217362547 gale_infotracacademiconefile_A217362547 gale_incontextgauss_ISR_A217362547 gale_incontextgauss_ISN_A217362547 gale_incontextgauss_IOV_A217362547 gale_healthsolutions_A217362547 pubmed_primary_19730681 crossref_citationtrail_10_1371_journal_pgen_1000630 crossref_primary_10_1371_journal_pgen_1000630 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-09-01 |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: 2009-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2009 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | I Mortier-Barriere (ref22) 2007; 130 D Kidane (ref24) 2005; 170 S Ayora (ref39) 2002; 277 MI Martínez-Jiménez (ref40) 2005; 351 P Ceglowski (ref43) 1990; 222 D Dubnau (ref8) 1974; 117 U Canosi (ref33) 1981; 181 I Chen (ref1) 2005; 310 U Canosi (ref14) 1978; 166 H Sanchez (ref25) 2005; 171 C Manfredi (ref28) 2008; 283 B Carrasco (ref36) 2005; 33 D Dubnau (ref16) 1980 H Sanchez (ref26) 2006; 188 D Kidane (ref19) 2005; 122 D Kidane (ref41) 2005; 170 S Fernandez (ref10) 2000; 151 N Kantake (ref37) 2002; 99 B Maier (ref5) 2004; 11 G Lopez-Torrejon (ref44) 2006; 34 H Sanchez (ref34) 2006 H Sanchez (ref11) 2007 R Galletto (ref32) 2006; 443 S Fernández (ref13) 1998; 180 JC Alonso (ref9) 1988; 170 D Dubnau (ref42) 1973; 114 S Ayora (ref27) 2004; 101 M Ogura (ref4) 2002; 184 S Tadesse (ref18) 2007; 7 TA Trautner (ref38) 1973; 62 J Mascarenhas (ref46) 2006; 7 JC Alonso (ref31) 1997; 204 S Fernández (ref12) 1999; 261 SA Lacks (ref17) 1988 C Cañas (ref30) 2008; 36 RM Berka (ref3) 2002; 43 N Kramer (ref7) 2007; 65 JC Alonso (ref45) 1993; 268 I Chen (ref2) 2004; 2 D Kidane (ref23) 2004; 52 JC Alonso (ref47) 1993; 239 GR Weller (ref29) 2002; 297 J Hahn (ref6) 2005; 122 H Sanchez (ref21) 2007; 36 B Maier (ref35) 2004; 11 H Sanchez (ref20) 2005; 33 H Sanchez (ref15) 2007 17803906 - Cell. 2007 Sep 7;130(5):824-36 18045469 - BMC Microbiol. 2007;7:105 16055153 - J Mol Biol. 2005 Sep 2;351(5):1007-19 18684995 - Nucleic Acids Res. 2008 Sep;36(16):5242-9 16020779 - Genetics. 2005 Nov;171(3):873-83 16322448 - Science. 2005 Dec 2;310(5753):1456-60 16024744 - Nucleic Acids Res. 2005;33(12):3942-52 11948146 - J Bacteriol. 2002 May;184(9):2344-51 6267418 - Mol Gen Genet. 1981;181(4):434-40 12438681 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15327-32 9434185 - Gene. 1997 Dec 19;204(1-2):201-12 16009134 - Cell. 2005 Jul 15;122(1):73-84 4208299 - Curr Top Microbiol Immunol. 1973;62:61-88 16407330 - Nucleic Acids Res. 2006;34(1):120-9 16061691 - J Cell Biol. 2005 Aug 1;170(3):357-66 16780573 - BMC Mol Biol. 2006;7:20 4272775 - J Bacteriol. 1974 Feb;117(2):488-93 8510642 - Mol Gen Genet. 1993 May;239(1-2):129-36 8419343 - J Biol Chem. 1993 Jan 15;268(2):1424-9 105241 - Mol Gen Genet. 1978 Nov 9;166(3):259-67 17630974 - Mol Microbiol. 2007 Jul;65(2):454-64 16385024 - J Bacteriol. 2006 Jan;188(2):353-60 3133357 - J Bacteriol. 1988 Jul;170(7):3001-7 11918817 - Mol Microbiol. 2002 Mar;43(5):1331-45 15083159 - Nat Rev Microbiol. 2004 Mar;2(3):241-9 15849320 - Nucleic Acids Res. 2005;33(7):2343-50 18599486 - J Biol Chem. 2008 Sep 5;283(36):24837-47 10323239 - Mol Gen Genet. 1999 Apr;261(3):567-73 12215643 - Science. 2002 Sep 6;297(5587):1686-9 12124388 - J Biol Chem. 2002 Sep 27;277(39):35969-79 2177138 - Mol Gen Genet. 1990 Jul;222(2-3):441-5 14701911 - Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):452-7 17999999 - Nucleic Acids Res. 2008 Jan;36(1):110-20 4349031 - J Bacteriol. 1973 Apr;114(1):273-86 16988658 - Nature. 2006 Oct 19;443(7113):875-8 15184891 - Nat Struct Mol Biol. 2004 Jul;11(7):643-9 9642195 - J Bacteriol. 1998 Jul;180(13):3405-9 10961463 - Res Microbiol. 2000 Jul-Aug;151(6):481-6 16009133 - Cell. 2005 Jul 15;122(1):59-71 15186413 - Mol Microbiol. 2004 Jun;52(6):1627-39 |
References_xml | – volume: 43 start-page: 1331 year: 2002 ident: ref3 article-title: Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2002.02833.x – volume: 36 start-page: 5242 year: 2008 ident: ref30 article-title: The RecU Holliday junction resolvase acts at early stages of homologous recombination. publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn500 – volume: 33 start-page: 2343 year: 2005 ident: ref20 article-title: Bacillus subtilis RecN binds and protects 3′-single-stranded DNA extensions in the presence of ATP. publication-title: Nucleic Acids Res doi: 10.1093/nar/gki533 – volume: 130 start-page: 824 year: 2007 ident: ref22 article-title: A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. publication-title: Cell doi: 10.1016/j.cell.2007.07.038 – volume: 204 start-page: 201 year: 1997 ident: ref31 article-title: The complete nucleotide sequence and functional organization of Bacillus subtilis bacteriophage SPP1. publication-title: Gene doi: 10.1016/S0378-1119(97)00547-7 – year: 2006 ident: ref34 article-title: Homologous recombination in low dC+dG Gram-positive bacteria – volume: 117 start-page: 488 year: 1974 ident: ref8 article-title: Genetic characterization of recombination-deficient mutants of Bacillus subtilis. publication-title: J Bacteriol doi: 10.1128/JB.117.2.488-493.1974 – volume: 11 start-page: 643 year: 2004 ident: ref5 article-title: DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb783 – volume: 65 start-page: 454 year: 2007 ident: ref7 article-title: Multiple interactions among the competence proteins of Bacillus subtilis. publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2007.05799.x – volume: 62 start-page: 61 year: 1973 ident: ref38 article-title: Transfection in B. subtilis. publication-title: Curr Top Microbiol Immunol – volume: 170 start-page: 357 year: 2005 ident: ref41 article-title: Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells. publication-title: J Cell Biol doi: 10.1083/jcb.200412090 – volume: 184 start-page: 2344 year: 2002 ident: ref4 article-title: Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. publication-title: J Bacteriol doi: 10.1128/JB.184.9.2344-2351.2002 – start-page: 43 year: 1988 ident: ref17 article-title: Mechanisms of genetic recombination in Gram-positive bacteria – volume: 297 start-page: 1686 year: 2002 ident: ref29 article-title: Identification of a DNA nonhomologous end-joining complex in bacteria. publication-title: Science doi: 10.1126/science.1074584 – volume: 277 start-page: 35969 year: 2002 ident: ref39 article-title: Homologous-pairing activity of the Bacillus subtilis bacteriophage SPP1 replication protein G35P. publication-title: J Biol Chem doi: 10.1074/jbc.M204467200 – volume: 222 start-page: 441 year: 1990 ident: ref43 article-title: Genetic analysis of recE activities in Bacillus subtilis. publication-title: Mol Gen Genet doi: 10.1007/BF00633853 – volume: 166 start-page: 259 year: 1978 ident: ref14 article-title: The relationship between molecular structure and transformation efficiency of some S. aureus plasmids isolated from B. subtilis. publication-title: Mol Gen Genet doi: 10.1007/BF00267617 – volume: 34 start-page: 120 year: 2006 ident: ref44 article-title: Role of LrpC from Bacillus subtilis in DNA transactions during DNA repair and recombination. publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj418 – volume: 283 start-page: 24837 year: 2008 ident: ref28 article-title: Bacillus subtilis RecO nucleates RecA onto SsbA-coated single-stranded DNA. publication-title: J Biol Chem doi: 10.1074/jbc.M802002200 – volume: 33 start-page: 3942 year: 2005 ident: ref36 article-title: Bacillus subtilis RecU Holliday-junction resolvase modulates RecA activities. publication-title: Nucleic Acids Res doi: 10.1093/nar/gki713 – volume: 261 start-page: 567 year: 1999 ident: ref12 article-title: Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function. publication-title: Mol Gen Genet doi: 10.1007/s004380051002 – volume: 122 start-page: 73 year: 2005 ident: ref19 article-title: Intracellular protein and DNA dynamics in competent Bacillus subtilis cells. publication-title: Cell doi: 10.1016/j.cell.2005.04.036 – volume: 310 start-page: 1456 year: 2005 ident: ref1 article-title: The ins and outs of DNA transfer in bacteria. publication-title: Science doi: 10.1126/science.1114021 – volume: 99 start-page: 15327 year: 2002 ident: ref37 article-title: Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.252633399 – volume: 239 start-page: 129 year: 1993 ident: ref47 article-title: Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination. publication-title: Mol Gen Genet doi: 10.1007/BF00281611 – volume: 170 start-page: 357 year: 2005 ident: ref24 article-title: Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells. publication-title: J Cell Biol doi: 10.1083/jcb.200412090 – volume: 180 start-page: 3405 year: 1998 ident: ref13 article-title: Genetic recombination in Bacillus subtilis 168: effects of recU and recS mutations on DNA repair and homologous recombination. publication-title: J Bacteriol doi: 10.1128/JB.180.13.3405-3409.1998 – volume: 122 start-page: 59 year: 2005 ident: ref6 article-title: Transformation proteins and DNA uptake localize to the cell poles in Bacillus subtilis. publication-title: Cell doi: 10.1016/j.cell.2005.04.035 – volume: 151 start-page: 481 year: 2000 ident: ref10 article-title: Bacillus subtilis homologous recombination: genes and products. publication-title: Res Microbiol doi: 10.1016/S0923-2508(00)00165-0 – volume: 351 start-page: 1007 year: 2005 ident: ref40 article-title: Bacillus subtilis bacteriophage SPP1-encoded gene 34.1 product is a recombination-dependent DNA replication protein. publication-title: J Mol Biol doi: 10.1016/j.jmb.2005.06.064 – volume: 268 start-page: 1424 year: 1993 ident: ref45 article-title: Purification and properties of the RecR protein from Bacillus subtilis 168. publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)54092-8 – start-page: 43 year: 2007 ident: ref15 article-title: Dynamics of DNA Double-Strand Break Repair in Bacillus subtilis; – volume: 188 start-page: 353 year: 2006 ident: ref26 article-title: Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing. publication-title: J Bacteriol doi: 10.1128/JB.188.2.353-360.2006 – volume: 170 start-page: 3001 year: 1988 ident: ref9 article-title: Characterization of recombination-deficient mutants of Bacillus subtilis. publication-title: J Bacteriol doi: 10.1128/jb.170.7.3001-3007.1988 – volume: 11 start-page: 643 year: 2004 ident: ref35 article-title: DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb783 – volume: 7 start-page: 20 year: 2006 ident: ref46 article-title: Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair. publication-title: BMC Mol Biol doi: 10.1186/1471-2199-7-20 – volume: 2 start-page: 241 year: 2004 ident: ref2 article-title: DNA uptake during bacterial transformation. publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro844 – start-page: 43 year: 2007 ident: ref11 article-title: Dynamics of DNA Double-Strand Break Repair in Bacillus subtilis; – volume: 36 start-page: 110 year: 2007 ident: ref21 article-title: Dynamic structures of Bacillus subtilis RecN DNA complexes. publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm759 – volume: 52 start-page: 1627 year: 2004 ident: ref23 article-title: Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2004.04102.x – volume: 114 start-page: 273 year: 1973 ident: ref42 article-title: Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: phenotypic characterization of radiation-sensitive recombination-deficient mutants. publication-title: J Bacteriol doi: 10.1128/JB.114.1.273-286.1973 – volume: 7 start-page: 105 year: 2007 ident: ref18 article-title: DprA/Smf protein localizes at the DNA uptake machinery in competent Bacillus subtilis cells. publication-title: BMC Microbiol doi: 10.1186/1471-2180-7-105 – volume: 443 start-page: 875 year: 2006 ident: ref32 article-title: Direct observation of individual RecA filaments assembling on single DNA molecules. publication-title: Nature doi: 10.1038/nature05197 – start-page: 365 year: 1980 ident: ref16 article-title: On the use of plasmids for study of genetic transformation in Bacillus subtilis. – volume: 101 start-page: 452 year: 2004 ident: ref27 article-title: Bacillus subtilis RecU protein cleaves Holliday junctions and anneals single-stranded DNA. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2533829100 – volume: 181 start-page: 434 year: 1981 ident: ref33 article-title: Plasmid transformation in Bacillus subtilis: effects of insertion of Bacillus subtilis DNA into plasmid pC194. publication-title: Mol Gen Genet doi: 10.1007/BF00428732 – volume: 171 start-page: 873 year: 2005 ident: ref25 article-title: The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis. publication-title: Genetics doi: 10.1534/genetics.105.045906 – reference: 15083159 - Nat Rev Microbiol. 2004 Mar;2(3):241-9 – reference: 16055153 - J Mol Biol. 2005 Sep 2;351(5):1007-19 – reference: 14701911 - Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):452-7 – reference: 18599486 - J Biol Chem. 2008 Sep 5;283(36):24837-47 – reference: 12438681 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15327-32 – reference: 15186413 - Mol Microbiol. 2004 Jun;52(6):1627-39 – reference: 3133357 - J Bacteriol. 1988 Jul;170(7):3001-7 – reference: 17999999 - Nucleic Acids Res. 2008 Jan;36(1):110-20 – reference: 16009134 - Cell. 2005 Jul 15;122(1):73-84 – reference: 11918817 - Mol Microbiol. 2002 Mar;43(5):1331-45 – reference: 17630974 - Mol Microbiol. 2007 Jul;65(2):454-64 – reference: 17803906 - Cell. 2007 Sep 7;130(5):824-36 – reference: 11948146 - J Bacteriol. 2002 May;184(9):2344-51 – reference: 10961463 - Res Microbiol. 2000 Jul-Aug;151(6):481-6 – reference: 16407330 - Nucleic Acids Res. 2006;34(1):120-9 – reference: 18045469 - BMC Microbiol. 2007;7:105 – reference: 16024744 - Nucleic Acids Res. 2005;33(12):3942-52 – reference: 4349031 - J Bacteriol. 1973 Apr;114(1):273-86 – reference: 4272775 - J Bacteriol. 1974 Feb;117(2):488-93 – reference: 8510642 - Mol Gen Genet. 1993 May;239(1-2):129-36 – reference: 9434185 - Gene. 1997 Dec 19;204(1-2):201-12 – reference: 16009133 - Cell. 2005 Jul 15;122(1):59-71 – reference: 12124388 - J Biol Chem. 2002 Sep 27;277(39):35969-79 – reference: 10323239 - Mol Gen Genet. 1999 Apr;261(3):567-73 – reference: 16020779 - Genetics. 2005 Nov;171(3):873-83 – reference: 6267418 - Mol Gen Genet. 1981;181(4):434-40 – reference: 105241 - Mol Gen Genet. 1978 Nov 9;166(3):259-67 – reference: 18684995 - Nucleic Acids Res. 2008 Sep;36(16):5242-9 – reference: 16061691 - J Cell Biol. 2005 Aug 1;170(3):357-66 – reference: 15184891 - Nat Struct Mol Biol. 2004 Jul;11(7):643-9 – reference: 16780573 - BMC Mol Biol. 2006;7:20 – reference: 9642195 - J Bacteriol. 1998 Jul;180(13):3405-9 – reference: 4208299 - Curr Top Microbiol Immunol. 1973;62:61-88 – reference: 16322448 - Science. 2005 Dec 2;310(5753):1456-60 – reference: 16988658 - Nature. 2006 Oct 19;443(7113):875-8 – reference: 15849320 - Nucleic Acids Res. 2005;33(7):2343-50 – reference: 12215643 - Science. 2002 Sep 6;297(5587):1686-9 – reference: 16385024 - J Bacteriol. 2006 Jan;188(2):353-60 – reference: 2177138 - Mol Gen Genet. 1990 Jul;222(2-3):441-5 – reference: 8419343 - J Biol Chem. 1993 Jan 15;268(2):1424-9 |
SSID | ssj0035897 |
Score | 2.20303 |
Snippet | Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss)... Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss)... Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss)... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1000630 |
SubjectTerms | Bacillus subtilis Bacillus subtilis - genetics Bacillus subtilis - metabolism Bacterial genetics Bacterial Proteins - genetics Bacterial Proteins - metabolism Biochemistry/ and Repair Cell Biology/Microbial Growth and Development Deoxyribonucleic acid Developmental Biology/Microbial Growth and Development DNA DNA - genetics Gene Transfer, Horizontal Genes Genetic aspects Genetic transformation Genetics and Genomics/Microbial Evolution and Genomics Microbiology Molecular Biology/DNA Repair Plasmids - genetics Proteins |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF_O5p1UUEn2KTbHY3eWzFUgUrqJW-LfsVGwjJcUmQ-tc7k03ORoT2wdfs5LjMzM78Npn5DSGvuS1tCZ4S6VhiS46DOJhix3KJXOPcWufwhf6nU3Fyln085-dXRn1hTVigBw6KO4AMrXOTpxpwTJb6WENSK0xhkNSk4LnB6As5bz5MhRjMeB7GqnDOIgnH-qlpjsnkYLLR2w0YCGsEkHRqkZRG7v5dhF5t6rb7F_z8u4rySlo6vkfuTniSHobnuE9u-eYBuR0mTF4-JG6eGkoBnNJ5GkpPcRDxT33Z0dCmSC_abfWrxc5ICn_Y037Es35Lq4baCVr39Ejbqq6HjnaD6au66ii-9-8ekbPj99_enUTTYIXIQuzro8L4VKcO969gxklWZoJJIzwv4XTnnXQQB7JEOpcnLBO584BL0tLFwjPBi5g9JqumbfweofB7peFMOFfYzGeJ1qaQNi10ZqVOYrMmbNasshPrOA6_qNX4KU3C6SMoSqE91GSPNYl2d20C68Y18kdotJ0scmaPF8CT1ORJ6jpPWpOXaHIVGlB3O18dwqkN0jzP5Jq8GiWQN6PBwpwfeug69eHz9xsIfT29idCXhdCbSahsQWdWTx0ToHkk7VpI7i8kIUTYxfIeevGsug4UmTC4DuAVHnr2bIV3Ycld49uhUwKpCgEtrsmT4Od_LFFAWhA5rMjFDliof7nSVBcjdXkKcDkT_On_sNczcid82sOCv32y6reDfw4IsTcvxmDwGxRDYO0 priority: 102 providerName: Directory of Open Access Journals |
Title | Evidence for Different Pathways during Horizontal Gene Transfer in Competent Bacillus subtilis Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19730681 https://www.proquest.com/docview/67635901 https://pubmed.ncbi.nlm.nih.gov/PMC2727465 https://doaj.org/article/505a8b82a91642e0a0079b9b4855958b http://dx.doi.org/10.1371/journal.pgen.1000630 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8IL7XMYqFkHjK1CaxnTwgtKJNA2kFDYr6Zjm2s0WKklKnGuWv5y4fhaABe43PkXP2nX_O-X5HyCumU53CSvHUWGBKjgE_6GPGcopc40xrY_CH_vmMn83DDwu22CFdzdZWge7Gox3Wk5qv8qPv3zZvweDf1FUbxKTrdLQElWPUH2mkdske7E0Caxqch9u4QsCiptwKY4En4LjfJtP97S29zarm9N967sEyL91NsPTP25W_bVen98m9FmfS42ZhPCA7tnhI7jSVJzePiOmqiVIArbSrklJRLFB8rTaONumL9KpcZT9KzJikMGBLqxrn2hXNCqpbyF3RqdJZnq8ddeukyvLMUYwHuMdkfnry5d2Z1xZc8DT4xMqLE-sr36Bd8yAxIkhDHoiEW5bCqc8aYcA_gFaNiSZByCNjAa_4qRlzG3AWj4MnZFCUhd0nFN6XJizgxsQ6tOFEqSQW2o9VqIWajJMhCTrNSt2ykWNRjFzWITYBp5JGURLnQ7bzMSTetteyYeP4j_wUJ20ri1za9YNydSlb05SAAVWURL4CpBz6dqwANsVJnCBtTswiGOoLnHLZJKZuPYI8htMcbP8sFEPyspZAPo0CL-xcqrVz8v3Hr7cQ-jy7jdBFT-h1K5SWoDOt2kwK0DySefUkD3uS4Dp0r3kfV3GnOgeKnATwHOwGPrpb2RJ74VW8wpZrJzlSGAKKHJKnzTr_NRMxbBc8ghbRs4Ce-vstRXZVU5r7AKNDzg7-Pd5n5G4TzMMrfodkUK3W9jlgwioZkV2xECOyNz2ZfboY1X9WRrXp_wTUymK0 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+different+pathways+during+horizontal+gene+transfer+in+competent+Bacillus+subtilis+cells&rft.jtitle=PLoS+genetics&rft.au=Kidane%2C+Dawit&rft.au=Carrasco%2C+Begona&rft.au=Manfredi%2C+Candela&rft.au=Rothmaier%2C+Katharina&rft.date=2009-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=5&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pgen.1000630&rft.externalDocID=A217362547 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |