An Autism-Associated Variant of Epac2 Reveals a Role for Ras/Epac2 Signaling in Controlling Basal Dendrite Maintenance in Mice
The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is impaired in several psychiatric disorders. While apical and basal dendritic compartments of pyramidal neurons are functionally specialized and d...
Saved in:
Published in | PLoS biology Vol. 10; no. 6; p. e1001350 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.06.2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-7885 1544-9173 1545-7885 |
DOI | 10.1371/journal.pbio.1001350 |
Cover
Loading…
Abstract | The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is impaired in several psychiatric disorders. While apical and basal dendritic compartments of pyramidal neurons are functionally specialized and differentially regulated, little is known about mechanisms that selectively maintain basal dendrites. Here we identified a role for the Ras/Epac2 pathway in maintaining basal dendrite complexity of cortical neurons. Epac2 is a guanine nucleotide exchange factor (GEF) for the Ras-like small GTPase Rap, and it is highly enriched in the adult mouse brain. We found that in vivo Epac2 knockdown in layer 2/3 cortical neurons via in utero electroporation reduced basal dendritic architecture, and that Epac2 knockdown in mature cortical neurons in vitro mimicked this effect. Overexpression of an Epac2 rare coding variant, found in human subjects diagnosed with autism, also impaired basal dendritic morphology. This mutation disrupted Epac2's interaction with Ras, and inhibition of Ras selectively interfered with basal dendrite maintenance. Finally, we observed that components of the Ras/Epac2/Rap pathway exhibited differential abundance in the basal versus apical dendritic compartments. These findings define a role for Epac2 in enabling crosstalk between Ras and Rap signaling in maintaining basal dendrite complexity, and exemplify how rare coding variants, in addition to their disease relevance, can provide insight into cellular mechanisms relevant for brain connectivity. |
---|---|
AbstractList | The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is impaired in several psychiatric disorders. While apical and basal dendritic compartments of pyramidal neurons are functionally specialized and differentially regulated, little is known about mechanisms that selectively maintain basal dendrites. Here we identified a role for the Ras/Epac2 pathway in maintaining basal dendrite complexity of cortical neurons. Epac2 is a guanine nucleotide exchange factor (GEF) for the Ras-like small GTPase Rap, and it is highly enriched in the adult mouse brain. We found that in vivo Epac2 knockdown in layer 2/3 cortical neurons via in utero electroporation reduced basal dendritic architecture, and that Epac2 knockdown in mature cortical neurons in vitro mimicked this effect. Overexpression of an Epac2 rare coding variant, found in human subjects diagnosed with autism, also impaired basal dendritic morphology. This mutation disrupted Epac2's interaction with Ras, and inhibition of Ras selectively interfered with basal dendrite maintenance. Finally, we observed that components of the Ras/Epac2/Rap pathway exhibited differential abundance in the basal versus apical dendritic compartments. These findings define a role for Epac2 in enabling crosstalk between Ras and Rap signaling in maintaining basal dendrite complexity, and exemplify how rare coding variants, in addition to their disease relevance, can provide insight into cellular mechanisms relevant for brain connectivity. The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is impaired in several psychiatric disorders. While apical and basal dendritic compartments of pyramidal neurons are functionally specialized and differentially regulated, little is known about mechanisms that selectively maintain basal dendrites. Here we identified a role for the Ras/Epac2 pathway in maintaining basal dendrite complexity of cortical neurons. Epac2 is a guanine nucleotide exchange factor (GEF) for the Ras-like small GTPase Rap, and it is highly enriched in the adult mouse brain. We found that in vivo Epac2 knockdown in layer 2/3 cortical neurons via in utero electroporation reduced basal dendritic architecture, and that Epac2 knockdown in mature cortical neurons in vitro mimicked this effect. Over expression of an Epac2 rare coding variant, found in human subjects diagnosed with autism, also impaired basal dendritic morphology. This mutation disrupted Epac2's interaction with Ras, and inhibition of Ras selectively interfered with basal dendrite maintenance. Finally, we observed that components of the Ras/Epac2/Rap pathway exhibited differential abundance in the basal versus apical dendritic compartments. These findings define a role for Epac2 in enabling crosstalk between Ras and Rap signaling in maintaining basal dendrite complexity, and exemplify how rare coding variants, in addition to their disease relevance, can provide insight into cellular mechanisms relevant for brain connectivity. Epac2 disruption impairs basal (but not apical) dendrite complexity in cortical neurons, and an autism-associated mutation in Epac2 implicates a Ras/Epac2 signaling pathway in the active maintenance of basal dendritic arbors. The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is impaired in several psychiatric disorders. While apical and basal dendritic compartments of pyramidal neurons are functionally specialized and differentially regulated, little is known about mechanisms that selectively maintain basal dendrites. Here we identified a role for the Ras/Epac2 pathway in maintaining basal dendrite complexity of cortical neurons. Epac2 is a guanine nucleotide exchange factor (GEF) for the Ras-like small GTPase Rap, and it is highly enriched in the adult mouse brain. We found that in vivo Epac2 knockdown in layer 2/3 cortical neurons via in utero electroporation reduced basal dendritic architecture, and that Epac2 knockdown in mature cortical neurons in vitro mimicked this effect. Overexpression of an Epac2 rare coding variant, found in human subjects diagnosed with autism, also impaired basal dendritic morphology. This mutation disrupted Epac2's interaction with Ras, and inhibition of Ras selectively interfered with basal dendrite maintenance. Finally, we observed that components of the Ras/Epac2/Rap pathway exhibited differential abundance in the basal versus apical dendritic compartments. These findings define a role for Epac2 in enabling crosstalk between Ras and Rap signaling in maintaining basal dendrite complexity, and exemplify how rare coding variants, in addition to their disease relevance, can provide insight into cellular mechanisms relevant for brain connectivity. A fundamental feature of a neuron is the morphology of its dendrites, which are the processes that receive and integrate synaptic signals from other neurons. Neurons in the mammalian cortex exhibit two distinct dendritic arbors: apical dendrites, which extend far from the cell body, and basal dendrites, which elaborate locally around the cell body. After development, neurons must actively maintain each of these dendritic arbors to sustain their specific connectivity. Because several neurological and neurodevelopmental disorders are associated with disruptions in dendritic morphology, it is crucial to understand the molecular mechanisms that regulate the process of active maintenance of dendritic arbors. We find that disruption of a particular molecular pathway, the Ras-Epac2 pathway, can result in dramatic simplification of basal, but not apical, dendritic arbors in both cultured neurons and in the intact mouse brain. We show that a mutant form of Epac2, identified in patients with autism, also impairs basal dendrite maintenance and disrupts its interaction with Ras. Our findings suggest that specific molecular pathways can regulate distinct dendritic regions, and that disease-related mutations can inform our understanding of the molecules that regulate important biological processes. The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is impaired in several psychiatric disorders. While apical and basal dendritic compartments of pyramidal neurons are functionally specialized and differentially regulated, little is known about mechanisms that selectively maintain basal dendrites. Here we identified a role for the Ras/Epac2 pathway in maintaining basal dendrite complexity of cortical neurons. Epac2 is a guanine nucleotide exchange factor (GEF) for the Ras-like small GTPase Rap, and it is highly enriched in the adult mouse brain. We found that in vivo Epac2 knockdown in layer 2/3 cortical neurons via in utero electroporation reduced basal dendritic architecture, and that Epac2 knockdown in mature cortical neurons in vitro mimicked this effect. Overexpression of an Epac2 rare coding variant, found in human subjects diagnosed with autism, also impaired basal dendritic morphology. This mutation disrupted Epac2's interaction with Ras, and inhibition of Ras selectively interfered with basal dendrite maintenance. Finally, we observed that components of the Ras/Epac2/Rap pathway exhibited differential abundance in the basal versus apical dendritic compartments. These findings define a role for Epac2 in enabling crosstalk between Ras and Rap signaling in maintaining basal dendrite complexity, and exemplify how rare coding variants, in addition to their disease relevance, can provide insight into cellular mechanisms relevant for brain connectivity. The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is impaired in several psychiatric disorders. While apical and basal dendritic compartments of pyramidal neurons are functionally specialized and differentially regulated, little is known about mechanisms that selectively maintain basal dendrites. Here we identified a role for the Ras/Epac2 pathway in maintaining basal dendrite complexity of cortical neurons. Epac2 is a guanine nucleotide exchange factor (GEF) for the Ras-like small GTPase Rap, and it is highly enriched in the adult mouse brain. We found that in vivo Epac2 knockdown in layer 2/3 cortical neurons via in utero electroporation reduced basal dendritic architecture, and that Epac2 knockdown in mature cortical neurons in vitro mimicked this effect. Overexpression of an Epac2 rare coding variant, found in human subjects diagnosed with autism, also impaired basal dendritic morphology. This mutation disrupted Epac2's interaction with Ras, and inhibition of Ras selectively interfered with basal dendrite maintenance. Finally, we observed that components of the Ras/Epac2/Rap pathway exhibited differential abundance in the basal versus apical dendritic compartments. These findings define a role for Epac2 in enabling crosstalk between Ras and Rap signaling in maintaining basal dendrite complexity, and exemplify how rare coding variants, in addition to their disease relevance, can provide insight into cellular mechanisms relevant for brain connectivity.The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is impaired in several psychiatric disorders. While apical and basal dendritic compartments of pyramidal neurons are functionally specialized and differentially regulated, little is known about mechanisms that selectively maintain basal dendrites. Here we identified a role for the Ras/Epac2 pathway in maintaining basal dendrite complexity of cortical neurons. Epac2 is a guanine nucleotide exchange factor (GEF) for the Ras-like small GTPase Rap, and it is highly enriched in the adult mouse brain. We found that in vivo Epac2 knockdown in layer 2/3 cortical neurons via in utero electroporation reduced basal dendritic architecture, and that Epac2 knockdown in mature cortical neurons in vitro mimicked this effect. Overexpression of an Epac2 rare coding variant, found in human subjects diagnosed with autism, also impaired basal dendritic morphology. This mutation disrupted Epac2's interaction with Ras, and inhibition of Ras selectively interfered with basal dendrite maintenance. Finally, we observed that components of the Ras/Epac2/Rap pathway exhibited differential abundance in the basal versus apical dendritic compartments. These findings define a role for Epac2 in enabling crosstalk between Ras and Rap signaling in maintaining basal dendrite complexity, and exemplify how rare coding variants, in addition to their disease relevance, can provide insight into cellular mechanisms relevant for brain connectivity. |
Audience | Academic |
Author | Penzes, Peter Russell, Theron A. Shepherd, Gordon M. G. Smith, Katharine R. Woolfrey, Kevin M. Yasvoina, Marina V. Srivastava, Deepak P. Lee, Hyerin Wokosin, David L. Jones, Kelly A. Anderson, Charles T. Ozdinler, P. Hande |
AuthorAffiliation | 3 Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, United States of America University of Cambridge, United Kingdom 4 Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America 7 Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America 1 Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America 2 Department of Neuroscience & Centre for the Cellular Basis of Behaviour, The James Black Centre, King's College London, Institute of Psychiatry, London, United Kingdom 6 Lurie Cancer Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America 5 Cognitive Neurology and Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America |
AuthorAffiliation_xml | – name: 6 Lurie Cancer Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America – name: 7 Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America – name: University of Cambridge, United Kingdom – name: 2 Department of Neuroscience & Centre for the Cellular Basis of Behaviour, The James Black Centre, King's College London, Institute of Psychiatry, London, United Kingdom – name: 3 Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, United States of America – name: 1 Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America – name: 5 Cognitive Neurology and Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America – name: 4 Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America |
Author_xml | – sequence: 1 givenname: Deepak P. surname: Srivastava fullname: Srivastava, Deepak P. – sequence: 2 givenname: Kevin M. surname: Woolfrey fullname: Woolfrey, Kevin M. – sequence: 3 givenname: Kelly A. surname: Jones fullname: Jones, Kelly A. – sequence: 4 givenname: Charles T. surname: Anderson fullname: Anderson, Charles T. – sequence: 5 givenname: Katharine R. surname: Smith fullname: Smith, Katharine R. – sequence: 6 givenname: Theron A. surname: Russell fullname: Russell, Theron A. – sequence: 7 givenname: Hyerin surname: Lee fullname: Lee, Hyerin – sequence: 8 givenname: Marina V. surname: Yasvoina fullname: Yasvoina, Marina V. – sequence: 9 givenname: David L. surname: Wokosin fullname: Wokosin, David L. – sequence: 10 givenname: P. Hande surname: Ozdinler fullname: Ozdinler, P. Hande – sequence: 11 givenname: Gordon M. G. surname: Shepherd fullname: Shepherd, Gordon M. G. – sequence: 12 givenname: Peter surname: Penzes fullname: Penzes, Peter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22745599$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk11v0zAUhiM0xD7gHyCwxA1ctEviOB-7QCplQKWNSR3s1jpxjoun1C6xM8ENv53TNUXrNCFQLpLYz_va57XPYbRnncUoep7E44QXyfG16zsL7XhVGzdO4jjhIn4UHSQiE6OiLMXene_96ND76zhO0yotn0T7aVpkQlTVQfRrYtmkD8YvRxPvnTIQsGFX0BmwgTnNTlegUjbHG4TWM2Bz1yLTrmNz8MebyUuzoI0Yu2DGsqmzoXPt7e878NCy92ibzgRk52BsQAtW4Zo8NwqfRo81-eKz4X0Uff1w-mX6aXR28XE2nZyNVJEnYVRoEJUWeVYInmvkNSR5XNVlkqECDUrlMRSlrhCoxjzO6iatK1FS_ai0AOBH0cuN76p1Xg7ReZnwmOciS7kgYrYhGgfXctWZJXQ_pQMjbwdct5DQBaNalGVaY41YlyrLSNtUUMV5U-uap3QMyMnr7bBaXy-xUUiRQLtjujtjzTe5cDeS85IXIiGD14NB57736INcGq-wbcGi62nfdJJlnlVJReire-jD1Q3UAqgAY7WjddXaVE7SihiKLSVq_ABFT4NLo-j6aUPjO4I3OwJiAv4IC-i9l7PL-X-wn_-dvbjaZV_cDftPyts7TsDJBlCd875DLZUJEMz6ooJpKUy5bqhtbnLdUHJoKBJn98Rb_7_KfgP1OCNh |
CitedBy_id | crossref_primary_10_1002_dneu_22417 crossref_primary_10_1093_hmg_ddab277 crossref_primary_10_1186_s13287_015_0136_8 crossref_primary_10_1124_pr_110_003707 crossref_primary_10_3389_fnmol_2024_1352731 crossref_primary_10_1002_dneu_22215 crossref_primary_10_3390_molecules27010311 crossref_primary_10_3389_fnana_2018_00070 crossref_primary_10_1186_s13041_018_0370_y crossref_primary_10_13070_mm_en_3_176 crossref_primary_10_1016_j_yfrne_2014_08_001 crossref_primary_10_1242_jcs_154542 crossref_primary_10_1007_s12031_018_1215_y crossref_primary_10_3389_fncel_2015_00314 crossref_primary_10_3390_cells10102750 crossref_primary_10_1007_s13721_019_0187_3 crossref_primary_10_5607_en_2013_22_3_133 crossref_primary_10_1186_s13041_020_00707_0 crossref_primary_10_3390_cells13231983 crossref_primary_10_1038_tp_2013_124 crossref_primary_10_1007_s12640_014_9484_x crossref_primary_10_1111_ejn_14755 crossref_primary_10_3389_fnana_2019_00075 crossref_primary_10_3389_fncel_2021_692232 crossref_primary_10_1101_lm_037101_114 crossref_primary_10_1371_journal_pone_0179409 crossref_primary_10_1038_ncomms5826 crossref_primary_10_3389_fnins_2018_00245 crossref_primary_10_1007_s00795_015_0127_y crossref_primary_10_1523_JNEUROSCI_1349_12_2012 crossref_primary_10_1016_j_gep_2019_119057 crossref_primary_10_1093_hmg_ddt298 crossref_primary_10_1523_ENEURO_0272_17_2017 crossref_primary_10_1523_ENEURO_0167_20_2020 crossref_primary_10_1038_jhg_2015_141 crossref_primary_10_1124_pr_111_005272 crossref_primary_10_1152_physrev_00025_2017 crossref_primary_10_1155_2016_8051861 crossref_primary_10_1007_s12021_024_09696_0 crossref_primary_10_1007_s12017_013_8224_3 crossref_primary_10_1002_dneu_22392 crossref_primary_10_1155_2016_3025948 crossref_primary_10_1371_journal_pgen_1008587 crossref_primary_10_1074_jbc_M112_363358 crossref_primary_10_1002_cm_21355 crossref_primary_10_1021_jm401425e crossref_primary_10_4081_oncol_2020_446 crossref_primary_10_1007_s00018_024_05315_y crossref_primary_10_1038_s41386_022_01502_2 crossref_primary_10_3390_molecules26102836 crossref_primary_10_1016_j_ejphar_2023_175645 crossref_primary_10_1016_j_neubiorev_2016_04_008 crossref_primary_10_1371_journal_pone_0118482 crossref_primary_10_1523_JNEUROSCI_1498_13_2014 crossref_primary_10_1016_j_mcn_2019_05_001 crossref_primary_10_5483_BMBRep_2021_54_3_233 crossref_primary_10_1073_pnas_1423205112 crossref_primary_10_1074_jbc_M114_569319 crossref_primary_10_1016_j_gene_2015_09_029 crossref_primary_10_1016_j_neuroscience_2014_07_029 |
Cites_doi | 10.1111/j.1365-2990.2004.00574.x 10.1016/j.neuron.2011.08.022 10.1523/JNEUROSCI.3213-04.2004 10.1016/j.mcn.2004.08.012 10.1523/JNEUROSCI.6569-10.2011 10.1016/j.neuron.2005.11.005 10.1001/jama.2010.869 10.1523/JNEUROSCI.2284-05.2005 10.1111/j.1460-9568.2008.06313.x 10.1016/j.neuropharm.2011.01.002 10.1038/nrn2286 10.1093/cercor/bhh026 10.1038/nn.2386 10.1007/s004010050401 10.1146/annurev.neuro.28.061604.135703 10.1016/0378-1119(91)90434-D 10.1016/j.neuron.2010.09.013 10.1113/jphysiol.2004.061416 10.1073/pnas.0905884106 10.1016/S0896-6273(00)80376-1 10.1097/00005072-199503000-00006 10.1002/ana.410200413 10.1083/jcb.200702036 10.1038/sj.mp.4001340 10.1016/0006-8993(81)90314-0 10.1038/mp.2008.124 10.1097/00001756-200502080-00016 10.1002/cyto.a.20022 10.1093/cercor/10.10.981 10.1074/jbc.M508165200 10.3389/fnana.2011.00005 10.1086/513473 10.1126/science.282.5397.2275 10.1016/j.cell.2010.03.032 10.1038/nrn1519 10.1128/MCB.01060-08 10.1038/nn.2255 10.1002/jnr.20194 10.1101/lm.830008 10.1016/S0920-9964(02)00201-3 10.1146/annurev.neuro.29.051605.112907 10.1007/s11068-006-9003-y 10.1016/j.neuron.2012.02.003 10.1016/j.brainres.2009.09.008 10.1016/j.neuron.2007.10.005 10.1038/nature07709 10.1038/nrn2836 10.1016/j.nlm.2009.01.010 10.1091/mbc.E05-05-0432 10.1002/syn.20710 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2012 Public Library of Science 2012 Srivastava et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Srivastava DP, Woolfrey KM, Jones KA, Anderson CT, Smith KR, et al. (2012) An Autism-Associated Variant of Epac2 Reveals a Role for Ras/Epac2 Signaling in Controlling Basal Dendrite Maintenance in Mice. PLoS Biol 10(6): e1001350. doi:10.1371/journal.pbio.1001350 Srivastava et al. 2012 |
Copyright_xml | – notice: COPYRIGHT 2012 Public Library of Science – notice: 2012 Srivastava et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Srivastava DP, Woolfrey KM, Jones KA, Anderson CT, Smith KR, et al. (2012) An Autism-Associated Variant of Epac2 Reveals a Role for Ras/Epac2 Signaling in Controlling Basal Dendrite Maintenance in Mice. PLoS Biol 10(6): e1001350. doi:10.1371/journal.pbio.1001350 – notice: Srivastava et al. 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PYCSY RC3 7X8 5PM DOA CZG |
DOI | 10.1371/journal.pbio.1001350 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context : Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Epac2 Autism Mutation Affects Basal Dendrites |
EISSN | 1545-7885 |
ExternalDocumentID | 1303654235 oai_doaj_org_article_82bebeeb8c44423d9a906dbfb32001e3 PMC3383751 2899879231 A295420262 22745599 10_1371_journal_pbio_1001350 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: F31MH085362 – fundername: NIMH NIH HHS grantid: R01MH097216 – fundername: NIMH NIH HHS grantid: R01 MH097216 – fundername: NINDS NIH HHS grantid: R01NS061963 – fundername: NIA NIH HHS grantid: T32 AG020506 – fundername: NIMH NIH HHS grantid: F31 MH085362 – fundername: NIMH NIH HHS grantid: F31MH092056 – fundername: NINDS NIH HHS grantid: P30 NS054850 – fundername: NIMH NIH HHS grantid: F31 MH092056 – fundername: NINDS NIH HHS grantid: P30NS054850 |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PYCSY QF4 QN7 RNS RPM SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M .GJ CGR CUY CVF ECM EIF IPNFZ NPM PV9 RIG RZL WOQ PMFND 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 5PM PUEGO AAPBV ABPTK AGJBV CZG M~E ZA5 |
ID | FETCH-LOGICAL-c761t-7fa59f5647536fe3ba1609b814ecafacc60a78f9ea002604bd2b958154ecf5aa3 |
IEDL.DBID | DOA |
ISSN | 1545-7885 1544-9173 |
IngestDate | Sun Oct 01 00:20:32 EDT 2023 Wed Aug 27 01:28:03 EDT 2025 Thu Aug 21 18:26:56 EDT 2025 Tue Aug 05 10:36:21 EDT 2025 Fri Jul 25 12:03:45 EDT 2025 Tue Jun 17 22:02:04 EDT 2025 Tue Jun 10 21:02:04 EDT 2025 Fri Jun 27 05:31:33 EDT 2025 Fri Jun 27 05:31:18 EDT 2025 Fri Jun 27 05:30:04 EDT 2025 Thu Apr 03 07:07:01 EDT 2025 Tue Jul 01 03:38:22 EDT 2025 Thu Apr 24 22:58:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | ras Proteins Signal Transduction Autistic Disorder Neurons Humans Mice, Inbred C57BL Cell Communication Rats Rats, Sprague-Dawley Guanine Nucleotide Exchange Factors Animals HEK293 Cells Female Dendrites Mice |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c761t-7fa59f5647536fe3ba1609b814ecafacc60a78f9ea002604bd2b958154ecf5aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: DPS KMW PHO GMGS PP. Performed the experiments: DPS KMW KAJ CTA TAR HL MVY KRS. Analyzed the data: DPS KMW CTA KRS DLW PHO GMGS PP. Contributed reagents/materials/analysis tools: DLW PHO GMGS. Wrote the paper: DPS KMW KAJ PP. |
OpenAccessLink | https://doaj.org/article/82bebeeb8c44423d9a906dbfb32001e3 |
PMID | 22745599 |
PQID | 1303654235 |
PQPubID | 1436341 |
ParticipantIDs | plos_journals_1303654235 doaj_primary_oai_doaj_org_article_82bebeeb8c44423d9a906dbfb32001e3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3383751 proquest_miscellaneous_1022864919 proquest_journals_1303654235 gale_infotracmisc_A295420262 gale_infotracacademiconefile_A295420262 gale_incontextgauss_ISR_A295420262 gale_incontextgauss_ISN_A295420262 gale_incontextgauss_IOV_A295420262 pubmed_primary_22745599 crossref_citationtrail_10_1371_journal_pbio_1001350 crossref_primary_10_1371_journal_pbio_1001350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-01 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2012 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | A. C Horton (ref35) 2006; 35 M. P Kelly (ref24) 2009; 14 C Liu (ref49) 2008; 28 M Maravall (ref17) 2004; 14 L Petreanu (ref13) 2009; 457 Z Xie (ref32) 2007; 56 S Kiermayer (ref27) 2005; 16 A Alpar (ref42) 2008; 27 H Niwa (ref52) 1991; 108 S Takashima (ref47) 1981; 225 K. M Woolfrey (ref22) 2009; 12 U Gartner (ref44) 2005; 16 J. Z Parrish (ref2) 2007; 30 R Threadgill (ref36) 1997; 19 M Bose (ref15) 2009; 64 M London (ref10) 2005; 28 K. A Jones (ref46) 2009; 106 F Gelfo (ref16) 2009; 91 E. B Mukaetova-Ladinska (ref4) 2004; 30 Y. N Jan (ref1) 2010; 11 S Cohen (ref33) 2011; 72 Y Li (ref43) 2006; 281 J McClellan (ref28) 2010; 303 H Kawasaki (ref21) 1998; 282 G. V Kryukov (ref51) 2007; 80 Y Chen (ref38) 2005; 28 S Romand (ref48) 2011; 5 J McClellan (ref50) 2010; 141 L. E Becker (ref8) 1986; 20 W. E Kaufmann (ref9) 2000; 10 A. C Horton (ref34) 2005; 48 E Meijering (ref53) 2004; 58 Y Yang (ref25) 2012; 73 U Gartner (ref41) 2004; 77 D Armstrong (ref6) 1995; 54 S. L Mironov (ref26) 2011; 60 X Ye (ref20) 2010; 68 K Broadbelt (ref3) 2002; 58 B. A Milojkovic (ref12) 2004; 558 H Markram (ref14) 2004; 5 H. D Wang (ref19) 2009; 1300 V Kumar (ref39) 2005; 25 S Qiu (ref31) 2011; 31 D. A Sholl (ref37) 1956 G. V Raymond (ref5) 1996; 91 J. N Gelinas (ref23) 2008; 15 E Bacchelli (ref29) 2003; 8 J Huang (ref40) 2007; 179 D. K Chow (ref18) 2009; 12 L Becker (ref7) 1991; 373 Y Taniguchi (ref30) 2011 N Spruston (ref11) 2008; 9 L. E Vazquez (ref45) 2004; 24 19734897 - Nat Neurosci. 2009 Oct;12(10):1275-84 21369363 - Front Neuroanat. 2011 Feb 17;5:5 6457667 - Brain Res. 1981 Nov 23;225(1):1-21 13441807 - Prog Neurobiol. 1956;(2):324-33 12363393 - Schizophr Res. 2002 Nov 1;58(1):75-81 22365550 - Neuron. 2012 Feb 23;73(4):774-88 21982370 - Neuron. 2011 Oct 6;72(1):72-85 9331353 - Neuron. 1997 Sep;19(3):625-34 17378766 - Annu Rev Neurosci. 2007;30:399-423 19151697 - Nature. 2009 Feb 26;457(7233):1142-5 16316996 - J Biol Chem. 2006 Feb 3;281(5):2506-14 15054062 - Cereb Cortex. 2004 Jun;14(6):655-64 18270515 - Nat Rev Neurosci. 2008 Mar;9(3):206-21 18031682 - Neuron. 2007 Nov 21;56(4):640-56 8773156 - Acta Neuropathol. 1996;91(1):117-9 17940911 - Brain Cell Biol. 2006 Feb;35(1):29-38 21551077 - Neuroscientist. 2012 Apr;18(2):169-79 19340947 - Neurobiol Learn Mem. 2009 May;91(4):353-65 7876888 - J Neuropathol Exp Neurol. 1995 Mar;54(2):195-201 19030002 - Mol Psychiatry. 2009 Apr;14(4):398-415, 347 14593429 - Mol Psychiatry. 2003 Nov;8(11):916-24 19889983 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19575-80 15671866 - Neuroreport. 2005 Feb 8;16(2):149-52 15470153 - J Neurosci. 2004 Oct 6;24(40):8862-72 15691704 - Mol Cell Neurosci. 2005 Feb;28(2):215-28 17357078 - Am J Hum Genet. 2007 Apr;80(4):727-39 21490227 - J Neurosci. 2011 Apr 13;31(15):5855-64 22745603 - PLoS Biol. 2012;10(6):e1001355 18824540 - Mol Cell Biol. 2008 Dec;28(23):7109-25 17984326 - J Cell Biol. 2007 Nov 5;179(3):539-52 9856955 - Science. 1998 Dec 18;282(5397):2275-9 20571020 - JAMA. 2010 Jun 23;303(24):2523-4 15378039 - Nat Rev Neurosci. 2004 Oct;5(10):793-807 15541002 - Neuropathol Appl Neurobiol. 2004 Dec;30(6):615-23 11007549 - Cereb Cortex. 2000 Oct;10(10):981-91 16337914 - Neuron. 2005 Dec 8;48(5):757-71 15155788 - J Physiol. 2004 Jul 1;558(Pt 1):193-211 18598255 - Eur J Neurosci. 2008 Jun;27(12):3083-94 21232545 - Neuropharmacology. 2011 May;60(6):869-77 16207818 - Mol Biol Cell. 2005 Dec;16(12):5639-48 15352209 - J Neurosci Res. 2004 Sep 1;77(5):630-41 20404840 - Nat Rev Neurosci. 2010 May;11(5):316-28 19771593 - Synapse. 2010 Feb;64(2):97-110 16033324 - Annu Rev Neurosci. 2005;28:503-32 20403315 - Cell. 2010 Apr 16;141(2):210-7 1660837 - Gene. 1991 Dec 15;108(2):193-9 16339024 - J Neurosci. 2005 Dec 7;25(49):11288-99 15057970 - Cytometry A. 2004 Apr;58(2):167-76 19747903 - Brain Res. 2009 Dec 1;1300:58-64 18509114 - Learn Mem. 2008 Jun;15(6):403-11 2947535 - Ann Neurol. 1986 Oct;20(4):520-6 19151711 - Nat Neurosci. 2009 Feb;12(2):116-8 21040840 - Neuron. 2010 Nov 4;68(3):340-61 1838182 - Prog Clin Biol Res. 1991;373:133-52 |
References_xml | – volume: 30 start-page: 615 year: 2004 ident: ref4 article-title: Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. publication-title: Neuropathol Appl Neurobiol doi: 10.1111/j.1365-2990.2004.00574.x – volume: 72 start-page: 72 year: 2011 ident: ref33 article-title: Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. publication-title: Neuron doi: 10.1016/j.neuron.2011.08.022 – volume: 24 start-page: 8862 year: 2004 ident: ref45 article-title: SynGAP regulates spine formation. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3213-04.2004 – volume: 28 start-page: 215 year: 2005 ident: ref38 article-title: Regulation of cortical dendrite development by Rap1 signaling. publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2004.08.012 – volume: 31 start-page: 5855 year: 2011 ident: ref31 article-title: Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated met receptor tyrosine kinase. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.6569-10.2011 – start-page: 324 year: 1956 ident: ref37 article-title: The measurable parameters of the cerebral cortex and their significance in its organization. publication-title: Prog Neurobiol – volume: 48 start-page: 757 year: 2005 ident: ref34 article-title: Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. publication-title: Neuron doi: 10.1016/j.neuron.2005.11.005 – volume: 303 start-page: 2523 year: 2010 ident: ref28 article-title: Genomic analysis of mental illness: a changing landscape. publication-title: JAMA doi: 10.1001/jama.2010.869 – year: 2011 ident: ref30 article-title: In utero electroporation as a tool for genetic manipulation in vivo to study psychiatric disorders: from genes to circuits and behaviors. publication-title: Neuroscientist – volume: 25 start-page: 11288 year: 2005 ident: ref39 article-title: Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2284-05.2005 – volume: 27 start-page: 3083 year: 2008 ident: ref42 article-title: Enhanced Ras activity preserves dendritic size and extension as well as synaptic contacts of neurons after functional deprivation in synRas mice. publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2008.06313.x – volume: 60 start-page: 869 year: 2011 ident: ref26 article-title: Epac-mediated cAMP-signalling in the mouse model of Rett Syndrome. publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.01.002 – volume: 9 start-page: 206 year: 2008 ident: ref11 article-title: Pyramidal neurons: dendritic structure and synaptic integration. publication-title: Nat Rev Neurosci doi: 10.1038/nrn2286 – volume: 14 start-page: 655 year: 2004 ident: ref17 article-title: Experience-dependent changes in basal dendritic branching of layer 2/3 pyramidal neurons during a critical period for developmental plasticity in rat barrel cortex. publication-title: Cereb Cortex doi: 10.1093/cercor/bhh026 – volume: 12 start-page: 1275 year: 2009 ident: ref22 article-title: Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. publication-title: Nat Neurosci doi: 10.1038/nn.2386 – volume: 91 start-page: 117 year: 1996 ident: ref5 article-title: Hippocampus in autism: a Golgi analysis. publication-title: Acta Neuropathol doi: 10.1007/s004010050401 – volume: 28 start-page: 503 year: 2005 ident: ref10 article-title: Dendritic computation. publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.28.061604.135703 – volume: 108 start-page: 193 year: 1991 ident: ref52 article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector. publication-title: Gene doi: 10.1016/0378-1119(91)90434-D – volume: 68 start-page: 340 year: 2010 ident: ref20 article-title: Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. publication-title: Neuron doi: 10.1016/j.neuron.2010.09.013 – volume: 558 start-page: 193 year: 2004 ident: ref12 article-title: Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree. publication-title: J Physiol doi: 10.1113/jphysiol.2004.061416 – volume: 106 start-page: 19575 year: 2009 ident: ref46 article-title: Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0905884106 – volume: 19 start-page: 625 year: 1997 ident: ref36 article-title: Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. publication-title: Neuron doi: 10.1016/S0896-6273(00)80376-1 – volume: 54 start-page: 195 year: 1995 ident: ref6 article-title: Selective dendritic alterations in the cortex of Rett syndrome. publication-title: J Neuropathol Exp Neurol doi: 10.1097/00005072-199503000-00006 – volume: 20 start-page: 520 year: 1986 ident: ref8 article-title: Dendritic atrophy in children with Down's syndrome. publication-title: Ann Neurol doi: 10.1002/ana.410200413 – volume: 179 start-page: 539 year: 2007 ident: ref40 article-title: Very-KIND, a KIND domain containing RasGEF, controls dendrite growth by linking Ras small GTPases and MAP2. publication-title: J Cell Biol doi: 10.1083/jcb.200702036 – volume: 8 start-page: 916 year: 2003 ident: ref29 article-title: Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene. publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4001340 – volume: 225 start-page: 1 year: 1981 ident: ref47 article-title: Abnormal neuronal development in the visual cortex of the human fetus and infant with Down's Syndrome. A quantitative and qualitative Golgi study. publication-title: Brain Res doi: 10.1016/0006-8993(81)90314-0 – volume: 14 start-page: 347, 398 year: 2009 ident: ref24 article-title: Developmental etiology for neuroanatomical and cognitive deficits in mice overexpressing Galphas, a G-protein subunit genetically linked to schizophrenia. publication-title: Mol Psychiatry doi: 10.1038/mp.2008.124 – volume: 16 start-page: 149 year: 2005 ident: ref44 article-title: Enhanced Ras activity promotes spine formation in synRas mice neocortex. publication-title: Neuroreport doi: 10.1097/00001756-200502080-00016 – volume: 58 start-page: 167 year: 2004 ident: ref53 article-title: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. publication-title: Cytometry A doi: 10.1002/cyto.a.20022 – volume: 10 start-page: 981 year: 2000 ident: ref9 article-title: Dendritic anomalies in disorders associated with mental retardation. publication-title: Cereb Cortex doi: 10.1093/cercor/10.10.981 – volume: 281 start-page: 2506 year: 2006 ident: ref43 article-title: The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. publication-title: J Biol Chem doi: 10.1074/jbc.M508165200 – volume: 373 start-page: 133 year: 1991 ident: ref7 article-title: Growth and development of the brain in Down syndrome. publication-title: Prog Clin Biol Res – volume: 5 start-page: 5 year: 2011 ident: ref48 article-title: Morphological development of thick-tufted layer v pyramidal cells in the rat somatosensory cortex. publication-title: Front Neuroanat doi: 10.3389/fnana.2011.00005 – volume: 80 start-page: 727 year: 2007 ident: ref51 article-title: Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. publication-title: Am J Hum Genet doi: 10.1086/513473 – volume: 282 start-page: 2275 year: 1998 ident: ref21 article-title: A family of cAMP-binding proteins that directly activate Rap1. publication-title: Science doi: 10.1126/science.282.5397.2275 – volume: 141 start-page: 210 year: 2010 ident: ref50 article-title: Genetic heterogeneity in human disease. publication-title: Cell doi: 10.1016/j.cell.2010.03.032 – volume: 5 start-page: 793 year: 2004 ident: ref14 article-title: Interneurons of the neocortical inhibitory system. publication-title: Nat Rev Neurosci doi: 10.1038/nrn1519 – volume: 28 start-page: 7109 year: 2008 ident: ref49 article-title: Ras is required for the cyclic AMP-dependent activation of Rap1 via Epac2. publication-title: Mol Cell Biol doi: 10.1128/MCB.01060-08 – volume: 12 start-page: 116 year: 2009 ident: ref18 article-title: Laminar and compartmental regulation of dendritic growth in mature cortex. publication-title: Nat Neurosci doi: 10.1038/nn.2255 – volume: 77 start-page: 630 year: 2004 ident: ref41 article-title: Constitutive Ras activity induces hippocampal hypertrophy and remodeling of pyramidal neurons in synRas mice. publication-title: J Neurosci Res doi: 10.1002/jnr.20194 – volume: 15 start-page: 403 year: 2008 ident: ref23 article-title: Activation of exchange protein activated by cyclic-AMP enhances long-lasting synaptic potentiation in the hippocampus. publication-title: Learn Mem doi: 10.1101/lm.830008 – volume: 58 start-page: 75 year: 2002 ident: ref3 article-title: Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. publication-title: Schizophr Res doi: 10.1016/S0920-9964(02)00201-3 – volume: 30 start-page: 399 year: 2007 ident: ref2 article-title: Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.29.051605.112907 – volume: 35 start-page: 29 year: 2006 ident: ref35 article-title: Cell type-specific dendritic polarity in the absence of spatially organized external cues. publication-title: Brain Cell Biol doi: 10.1007/s11068-006-9003-y – volume: 73 start-page: 774 year: 2012 ident: ref25 article-title: EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif268 translation. publication-title: Neuron doi: 10.1016/j.neuron.2012.02.003 – volume: 1300 start-page: 58 year: 2009 ident: ref19 article-title: Dystrophic dendrites in prefrontal cortical pyramidal cells of dopamine D1 and D2 but not D4 receptor knockout mice. publication-title: Brain Res doi: 10.1016/j.brainres.2009.09.008 – volume: 56 start-page: 640 year: 2007 ident: ref32 article-title: Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. publication-title: Neuron doi: 10.1016/j.neuron.2007.10.005 – volume: 457 start-page: 1142 year: 2009 ident: ref13 article-title: The subcellular organization of neocortical excitatory connections. publication-title: Nature doi: 10.1038/nature07709 – volume: 11 start-page: 316 year: 2010 ident: ref1 article-title: Branching out: mechanisms of dendritic arborization. publication-title: Nat Rev Neurosci doi: 10.1038/nrn2836 – volume: 91 start-page: 353 year: 2009 ident: ref16 article-title: Layer and regional effects of environmental enrichment on the pyramidal neuron morphology of the rat. publication-title: Neurobiol Learn Mem doi: 10.1016/j.nlm.2009.01.010 – volume: 16 start-page: 5639 year: 2005 ident: ref27 article-title: Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. publication-title: Mol Biol Cell doi: 10.1091/mbc.E05-05-0432 – volume: 64 start-page: 97 year: 2009 ident: ref15 article-title: Effect of the environment on the dendritic morphology of the rat auditory cortex. publication-title: Synapse doi: 10.1002/syn.20710 – reference: 19151697 - Nature. 2009 Feb 26;457(7233):1142-5 – reference: 17357078 - Am J Hum Genet. 2007 Apr;80(4):727-39 – reference: 19734897 - Nat Neurosci. 2009 Oct;12(10):1275-84 – reference: 13441807 - Prog Neurobiol. 1956;(2):324-33 – reference: 15691704 - Mol Cell Neurosci. 2005 Feb;28(2):215-28 – reference: 19889983 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19575-80 – reference: 17940911 - Brain Cell Biol. 2006 Feb;35(1):29-38 – reference: 20403315 - Cell. 2010 Apr 16;141(2):210-7 – reference: 16316996 - J Biol Chem. 2006 Feb 3;281(5):2506-14 – reference: 17984326 - J Cell Biol. 2007 Nov 5;179(3):539-52 – reference: 18031682 - Neuron. 2007 Nov 21;56(4):640-56 – reference: 9856955 - Science. 1998 Dec 18;282(5397):2275-9 – reference: 22745603 - PLoS Biol. 2012;10(6):e1001355 – reference: 19151711 - Nat Neurosci. 2009 Feb;12(2):116-8 – reference: 18270515 - Nat Rev Neurosci. 2008 Mar;9(3):206-21 – reference: 1660837 - Gene. 1991 Dec 15;108(2):193-9 – reference: 12363393 - Schizophr Res. 2002 Nov 1;58(1):75-81 – reference: 15057970 - Cytometry A. 2004 Apr;58(2):167-76 – reference: 15470153 - J Neurosci. 2004 Oct 6;24(40):8862-72 – reference: 15054062 - Cereb Cortex. 2004 Jun;14(6):655-64 – reference: 16207818 - Mol Biol Cell. 2005 Dec;16(12):5639-48 – reference: 14593429 - Mol Psychiatry. 2003 Nov;8(11):916-24 – reference: 17378766 - Annu Rev Neurosci. 2007;30:399-423 – reference: 1838182 - Prog Clin Biol Res. 1991;373:133-52 – reference: 18509114 - Learn Mem. 2008 Jun;15(6):403-11 – reference: 8773156 - Acta Neuropathol. 1996;91(1):117-9 – reference: 19030002 - Mol Psychiatry. 2009 Apr;14(4):398-415, 347 – reference: 18598255 - Eur J Neurosci. 2008 Jun;27(12):3083-94 – reference: 22365550 - Neuron. 2012 Feb 23;73(4):774-88 – reference: 9331353 - Neuron. 1997 Sep;19(3):625-34 – reference: 6457667 - Brain Res. 1981 Nov 23;225(1):1-21 – reference: 19771593 - Synapse. 2010 Feb;64(2):97-110 – reference: 15378039 - Nat Rev Neurosci. 2004 Oct;5(10):793-807 – reference: 11007549 - Cereb Cortex. 2000 Oct;10(10):981-91 – reference: 21232545 - Neuropharmacology. 2011 May;60(6):869-77 – reference: 21490227 - J Neurosci. 2011 Apr 13;31(15):5855-64 – reference: 15671866 - Neuroreport. 2005 Feb 8;16(2):149-52 – reference: 2947535 - Ann Neurol. 1986 Oct;20(4):520-6 – reference: 20404840 - Nat Rev Neurosci. 2010 May;11(5):316-28 – reference: 20571020 - JAMA. 2010 Jun 23;303(24):2523-4 – reference: 7876888 - J Neuropathol Exp Neurol. 1995 Mar;54(2):195-201 – reference: 21982370 - Neuron. 2011 Oct 6;72(1):72-85 – reference: 15541002 - Neuropathol Appl Neurobiol. 2004 Dec;30(6):615-23 – reference: 16337914 - Neuron. 2005 Dec 8;48(5):757-71 – reference: 16339024 - J Neurosci. 2005 Dec 7;25(49):11288-99 – reference: 21040840 - Neuron. 2010 Nov 4;68(3):340-61 – reference: 15155788 - J Physiol. 2004 Jul 1;558(Pt 1):193-211 – reference: 21369363 - Front Neuroanat. 2011 Feb 17;5:5 – reference: 19340947 - Neurobiol Learn Mem. 2009 May;91(4):353-65 – reference: 15352209 - J Neurosci Res. 2004 Sep 1;77(5):630-41 – reference: 19747903 - Brain Res. 2009 Dec 1;1300:58-64 – reference: 21551077 - Neuroscientist. 2012 Apr;18(2):169-79 – reference: 18824540 - Mol Cell Biol. 2008 Dec;28(23):7109-25 – reference: 16033324 - Annu Rev Neurosci. 2005;28:503-32 |
SSID | ssj0022928 |
Score | 2.318251 |
Snippet | The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is... Epac2 disruption impairs basal (but not apical) dendrite complexity in cortical neurons, and an autism-associated mutation in Epac2 implicates a Ras/Epac2... The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1001350 |
SubjectTerms | Alliances Animals Autism Autistic Disorder - genetics Autistic Disorder - metabolism Biology Brain research Cell Communication Dendrites Dendrites - metabolism Development and progression Experiments Female Guanine Nucleotide Exchange Factors - genetics Guanine Nucleotide Exchange Factors - metabolism Health aspects HEK293 Cells Humans Mental disorders Mice Mice, Inbred C57BL Mutation Neural circuitry Neurons Neurons - metabolism Physiological aspects Proteins ras Proteins Rats Rats, Sprague-Dawley Schizophrenia Signal Transduction |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegCIkXxPcCAxmExFNoEidx8oS6sWkgdUgdm_oW-SulUklK0yLxwt_OneNkCxofj60vbfTz3fnOPv-OkNfIsALZfwa5iTZ-bBj3JayTPtNCoXOMtO0SMT1NT87jj_Nk7jbcGldW2flE66h1rXCPfGx9bQKLf_Ju_c3HrlF4uupaaNwkt5C6DJMvPr9MuKLc9lZFwhkwas7c1TnGw7GbqbdruawtDxHDm_dXlibL4N_76dF6VTfXBaG_11JeWZyO75G7Lqqkk1YN7pMbpnpAbrd9Jn88JD8nFZ2AhjVf_W46jKYXkCYDrrQu6RFyKNKZ-Q5hY0MFndUrQyGcpTPRjNvBs-UCY_ZqQZcVPWwL3O3HA9HAX783ld4AVHQqkIECaTwMSk7BET0i58dHnw9PfNd4wVc8Dbc-L0WSl0kaQy6TloZJEaZBLrMwNkqUQqk0EDwrcyMsJVksdSTzJAOcjSoTIdhjMqrqyuwRGspM5CqBNU-rWJssA0WQikVBybhMWeAR1mFeKMdKjs0xVoU9auOQnbQQFjhThZspj_j9U-uWleMf8gc4nb0scmrbL-rNonAmWmSRBI02MlNxDHqmc5EHqZalZFh3ZphHXqEyFMiaUWFZzkLsmqb48OmimOBpaQRYRH8SOjv9H6HZQOiNEyprQEQJd18CcEXKroHk_kASHIQaDO-h9nbANMWlKcGTnUZfP_yyH8YfxXq8ytQ7kEHapDTOw9wjT1oD6MGNIh4jj51H-MA0BugPR6rlF8tsbvdLkvDp31_rGbkDYWvUFuztk9F2szPPITTcyhfW_n8BYe5gag priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemIiReEN8LG8ggJJ4yGtuJkweECto0kDakQdHeIttxtkpt0jUtYi_87dw5TkRQJ3jgsb1LKv18vo_6_DtCXiHDClT_KdQmhQ2F5TLUECdDXiiDzpEVbkrEyWlyPBWfzuPzHdLNbPUANltLO5wnNV3ND35cXb-DDf_WTW2QUffQwVLPascpxLGIvwWxSeIwhxPRnyswlrlpq0hBA9tccn-Z7qa3DIKV4_TvPfdoOa-bbWnpn92Vv4Wro3vkrs8z6aQ1jPtkx1YPyO128uT1Q_JzUlEFNtcsQuUXyBb0OxTOgDStS3qIrIoU-Z0AJ6oodiFSSHDpmWretEJs_VB4m53OKupb3t1HiIzw0-DQihUktHShkJMCiT0sai7ANT0i06PDrx-OQz-KITQyidahLFWclXEioLpJSsu1ipJxptNIWKNKZUwyVjItM6scSZnQBdNZnALO1pSxUvwxGVV1ZXcJjXSqMhNDFCyMKGyagmlow9m45FInfBwQ3mGeG89TjuMy5rk7fJNQr7QQ5rhSuV-pgIT9U8uWp-Mv-u9xOXtdZNl2X9Sri9xv2jxlGmzc6tQIAWlnkalsnBS61Bw70SwPyEs0hhx5NCps1LlQm6bJP37-lk_w_JQBFuwmpS-n_6J0NlB67ZXKGhAxyt-gAFyRxGuguT_QBJdhBuJdtN4OmCZ3iQwIeQxPdha9XfyiF-NLsUOvsvUGdJBIKRFZlAXkSbsBenAZkwKZ7QIiB1tjgP5QUs0uHde5-wcljp7-j-XaI3cg3WVto98-Ga1XG_sMUsq1fu68xC9zMHT3 priority: 102 providerName: Scholars Portal |
Title | An Autism-Associated Variant of Epac2 Reveals a Role for Ras/Epac2 Signaling in Controlling Basal Dendrite Maintenance in Mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22745599 https://www.proquest.com/docview/1303654235 https://www.proquest.com/docview/1022864919 https://pubmed.ncbi.nlm.nih.gov/PMC3383751 https://doaj.org/article/82bebeeb8c44423d9a906dbfb32001e3 http://dx.doi.org/10.1371/journal.pbio.1001350 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELagCIkXNH4uMCqDkHgKbWIndh471GmAVqAw1LfIdpxRaUuqpZ3EC387d44bNWhoPPASqb1Lo3538d0l5-8IeY0MK1D9S6hNChtyy0SoIU6GrFAGF8e4cFMiTmbp8Sn_sEgWO6O-sCespQdugRvJWMN1rJaGcwj9RaaycVroUjPsBrKO5xNi3raY8qVWnLmpqkg1A7ezYH7THBPRyNvo7Uova8dAxHDP_U5Qctz93Qo9WJ3XzXXp559dlDth6WiP3Pf5JJ20_-MBuWWrh-RuO2Hy5yPya1JRBb7VXITKG8IW9AoKZECU1iWdInsiRR4n8EOqKHYbUkhk6Vw1o1aILR4Kd63TZUV9a7v7CBEQLg0LV3EJiSu9UMg9gQQeFjVxzv1jcno0_fbuOPQjF0Ij0mgdilIlWZmkHKqYtLRMqygdZ1pG3BpVKmPSsRKyzKxyZGRcF7HOEgk4W1MmSrEnZFDVld0nNNJSZSaBaFcYXlgpwQW0AauVTOiUjQPCtpjnxvOR41iM89y9ZBNQl7QQ5mip3FsqIGF31qrl47hB_xDN2ekim7b7Anws9z6W3-RjAXmFzpAjX0aFDTlnatM0-ftP3_MJvieNAYv4b0pfZ_-iNO8pvfFKZQ2IGOV3SgCuSNbV0zzoacLSYHriffTeLTBN7hIWELIEztx69PXil50YfxQ78Spbb0AHCZNSnkVZQJ62N0AHbhwLjgx2ARG9W6OHfl9SLX84TnP3pCSJnv0Pcz0n9yCtjduGvgMyWF9u7AtIHdd6SG6LhRiSO4fT2ef50K0ZcPz4RcLxhMvf315vaA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiHcDBRYE4uQm3vXzgFDSpkpoE1D6UG9md70OkYId4gTUCz-J38jM2g41Ko9Lj86M7Whmdh7e2W8IeYkIK1D9B1CbxNpyNPctCXHS4rFQ6BxZbKZEDEde_8R5d-aebZAf1VkYbKusfKJx1HGm8Bt5y_haF4K_-3b-xcKpUbi7Wo3QKMziQJ9_g5ItfzPYA_2-Ymy_d7zbt8qpApaCkn1p-Ylww8T1HEjUvURzKWyvHcrAdrQSiVDKaws_SEItDN6WI2MmQzeAVEOrxBWCw3OvkU2HQ6rQIJvd3ujDeF3isdBMc0WIG3AjPi8P63HfbpW2sTOX08wgH3E8638hGJqZAevI0JjPsvyytPf37s0L4XD_NrlV5rG0UxjeHbKh07vkejHZ8vwe-d5JaQdsOv9sVQagY3oKhTlokmYJ7SFqIx3rr5Co5lTQcTbTFBJoOhZ5qyAeTSdYJaQTOk3pbtFSby67IodX7-k0XoBy6FAg5gUCh2jkHILru09OrkQpD0gjzVK9RagtAxEqF6JsrJxYBwGYnlSctRPuS4-3m4RXMo9UiYOO4zhmkdnc86EeKkQYoaaiUlNNYq3vmhc4IP_g76I617yI4m1-yBaTqHQKUcAkrCEtA-U4YNlxKMK2F8tEcux007xJXqAxRIjTkWIj0ESs8jwavD-NOrg_y0AW7E9MR6P_YRrXmF6XTEkGElGiPKEBckWQsBrndo0TXJKqkbfQeivB5NGvxQt3VhZ9Ofn5mowPxQ7AVGcr4EGgJs8J7bBJHhYLYC1cxnwHkfOaxK8tjZr065R0-slgqZsvNK796O9_6xm50T8eHkaHg9HBY3ITkmZWtAtuk8ZysdJPIDFdyqelN6Dk41U7oJ-x9p-N |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIBAXRHk1UMqCQJzcxLt-HhBKm0YNJQGltMrN7K7XIVKwQ5yAeuGH8euYWdtpjcrj0mOyYyea-XYe9uw3hLxAhhWo_gOoTWJtOZr7loQ4afFYKHSOLDZTIgZD7_DEeTt2xxvkZ3UWBtsqK59oHHWcKXxG3jK-1oXg77aSsi3iQ7f3Zv7VwglS-Ka1GqdRQORIn32H8i1_3e-CrV8y1jv4uH9olRMGLAXl-9LyE-GGies5kLR7ieZS2F47lIHtaCUSoZTXFn6QhFoY7i1HxkyGbgBph1aJKwSH-14j130OYRP2kj8-L_ZYaOa6ItkNOBSfl8f2uG-3SpTszuU0MxxIHE_9XwiLZnrAOkY05rMsvywB_r2P80Jg7N0ht8uMlnYKCG6SDZ3eJTeKGZdn98iPTko7gO78i1VBQcf0FEp0sCnNEnqA_I10pL9ByppTQUfZTFNIpelI5K1i8Xg6wXohndBpSveL5nrzcU_k8NNdncYLMA0dCGS_QAoRjZIDcIL3ycmVmOQBaaRZqrcItWUgQuVCvI2VE-sgABBKxVk74b70eLtJeKXzSJWM6DiYYxaZ13w-VEaFCiO0VFRaqkms9VXzghHkH_J7aM61LPJ5my-yxSQq3UMUMAm7SctAOQ5gPA5F2PZimUiOPW-aN8lzBEOEjB0pYn8iVnke9d-fRh18U8tAF-xPQsfD_xEa1YRelUJJBhpRojyrAXpFurCa5HZNEpyTqi1vIXorxeTR-TaGKytEX778bL2MN8VewFRnK5BByibPCe2wSR4WG2CtXMZ8Bzn0msSvbY2a9usr6fSzYVU3z2pc-9Hf_9ZTchPcTvSuPzx6TG5B9syKvsFt0lguVvoJZKhLuWNcASWfrtr3_AJKEKJd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+autism-associated+variant+of+Epac2+reveals+a+role+for+Ras%2FEpac2+signaling+in+controlling+basal+dendrite+maintenance+in+mice&rft.jtitle=PLoS+biology&rft.au=Deepak+P+Srivastava&rft.au=Kevin+M+Woolfrey&rft.au=Kelly+A+Jones&rft.au=Charles+T+Anderson&rft.date=2012-06-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=10&rft.issue=6&rft.spage=e1001350&rft_id=info:doi/10.1371%2Fjournal.pbio.1001350&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_82bebeeb8c44423d9a906dbfb32001e3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |