Rapid turnover of life-cycle-related genes in the brown algae
Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporoph...
Saved in:
Published in | Genome Biology Vol. 20; no. 1; p. 35 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
14.02.2019
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations.
We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression.
Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity. |
---|---|
AbstractList | Abstract Background Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. Results We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. Conclusion Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity. BackgroundSexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations.ResultsWe show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression.ConclusionOur analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity. BACKGROUND: Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. RESULTS: We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. CONCLUSION: Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity. Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity. Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations.BACKGROUNDSexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations.We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression.RESULTSWe show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression.Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.CONCLUSIONOur analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity. |
ArticleNumber | 35 |
Author | Cock, J. Mark Cormier, Alexandre Peters, Akira F. Serrano-Serrano, Martha L. Lipinska, Agnieszka P. Kogame, Kazuhiro Coelho, Susana M. |
Author_xml | – sequence: 1 givenname: Agnieszka P. surname: Lipinska fullname: Lipinska, Agnieszka P. – sequence: 2 givenname: Martha L. surname: Serrano-Serrano fullname: Serrano-Serrano, Martha L. – sequence: 3 givenname: Alexandre surname: Cormier fullname: Cormier, Alexandre – sequence: 4 givenname: Akira F. surname: Peters fullname: Peters, Akira F. – sequence: 5 givenname: Kazuhiro surname: Kogame fullname: Kogame, Kazuhiro – sequence: 6 givenname: J. Mark surname: Cock fullname: Cock, J. Mark – sequence: 7 givenname: Susana M. orcidid: 0000-0002-9171-2550 surname: Coelho fullname: Coelho, Susana M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30764885$$D View this record in MEDLINE/PubMed https://hal.sorbonne-universite.fr/hal-02046119$$DView record in HAL |
BookMark | eNqFkk1v1DAQhiNURD_gB3BBkbjQQ8BjO_44UKmqgFZaCQmBxM2yk_GuV9l4cbKL-u9xmlK1e4CTrfEz78x43tPiqI89FsVrIO8BlPgwACO1rgjoCgQjlXhWnACXvJKC_Dx6dD8uTodhTTLIqXhRHDMiBVeqPik-frPb0JbjLvVxj6mMvuyCx6q5bTqsEnZ2xLZcYo9DGfpyXGHpUvzdl7ZbWnxZPPe2G_DV_XlW_Pj86fvVdbX4-uXm6nJRNVLAWDHqPFNt07qWcOWsb4mtZQvS6ppS7qUDVM4roK7xHOsaCaFaUi-QM00dOytuZt022rXZprCx6dZEG8xdIKalsWkMuWXjiAaU0gkKNUeOVlGvNKISTAlCada6mLW2O7fBtsF-TLZ7Ivr0pQ8rs4x7I5jkGlgWOJ8FVgdp15cLM8UIJVwA6D1k9t19sRR_7XAYzSYMDXad7THuBkMpBUIZI-L_KCheU61hGuHtAbqOeYF5A1mQaEGYZCRTbx4P-tDq3-VnAGagSXEYEvoHBIiZDGZmg5nsGzMZzExdyoOcJox2DHH6q9D9I_MPpkbRjw |
CitedBy_id | crossref_primary_10_1186_s12870_021_03117_z crossref_primary_10_1038_s41598_021_96854_y crossref_primary_10_1111_nph_17582 crossref_primary_10_1186_s13059_019_1657_8 crossref_primary_10_1038_s41559_024_02490_w crossref_primary_10_4467_16890027AP_22_003_16206 crossref_primary_10_1007_s00497_021_00417_0 crossref_primary_10_1038_s41559_022_01692_4 crossref_primary_10_3389_fmicb_2020_00316 crossref_primary_10_1111_jeb_13880 crossref_primary_10_1016_j_sajb_2024_09_070 crossref_primary_10_1242_dev_201283 crossref_primary_10_1186_s12870_022_04031_8 crossref_primary_10_1146_annurev_genet_030620_093031 crossref_primary_10_1016_j_margen_2020_100740 crossref_primary_10_1016_j_devcel_2024_12_022 crossref_primary_10_1242_dev_203004 crossref_primary_10_1080_07352689_2020_1787679 crossref_primary_10_1186_s13059_020_02216_8 crossref_primary_10_1093_nar_gkac145 crossref_primary_10_3390_cells10092467 crossref_primary_10_1111_jpy_13212 |
Cites_doi | 10.1038/nrg2063 10.1038/nbt.1883 10.1016/j.pbi.2008.12.001 10.1093/molbev/msx319 10.1093/molbev/msh128 10.1016/j.jtbi.2010.08.016 10.1093/genetics/136.4.1475 10.3732/ajb.1000316 10.1016/j.tig.2007.12.004 10.1111/evo.12602 10.1093/gbe/evq059 10.1186/s13059-017-1201-7 10.1093/gbe/evs101 10.1016/0169-5347(92)90195-H 10.1016/j.ympev.2010.04.020 10.12688/f1000research.12232.1 10.1038/nature09016 10.1515/botm.1988.31.5.379 10.1073/pnas.0910339107 10.1093/genetics/131.3.745 10.1534/genetics.109.110247 10.1111/gtc.12474 10.1111/evo.12702 10.1093/icb/icl018 10.1093/molbev/msw044 10.1093/bioinformatics/btn013 10.1093/oxfordjournals.molbev.a026334 10.1098/rstb.2011.0252 10.1086/684167 10.1093/oxfordjournals.molbev.a026239 10.1111/evo.13014 10.1086/303241 10.1111/nph.14321 10.1093/nar/gkg770 10.1073/pnas.1016106108 10.1093/nar/gku557 10.1093/nar/gkl315 10.1093/molbev/msv049 10.1093/bioinformatics/btu170 10.1038/ncomms7986 10.1073/pnas.0506318103 10.1038/306368a0 10.1093/bioinformatics/btt476 10.1038/nrg3376 10.1111/j.1525-142X.2005.05008.x 10.1261/rna.053959.115 10.1093/gbe/evx117 10.1111/j.1469-8137.2009.03054.x 10.1038/35082561 10.1038/ncomms1688 10.1534/genetics.110.123729 10.1101/gr.1589103 10.1093/nar/gkq291 10.1038/351315a0 10.1126/science.1108296 10.1093/bioinformatics/17.9.847 10.1111/j.1420-9101.2010.02188.x 10.1101/gr.1224503 10.1016/j.pbi.2013.09.004 10.1007/s13205-018-1204-4 10.1093/genetics/133.2.401 10.1002/(SICI)1521-1878(199806)20:6<453::AID-BIES3>3.0.CO;2-N 10.1127/2198-011X/2014/0002 10.1155/2008/619832 10.1073/pnas.1501339112 10.1073/pnas.1102274108 10.1186/gb-2013-14-4-r36 10.1093/gbe/evr101 10.1093/genetics/158.2.927 10.1093/bioinformatics/btv661 10.7554/eLife.43101 10.1242/dev.141523 10.1093/molbev/mst095 10.1016/j.gene.2007.07.025 10.1111/j.2041-210X.2011.00169.x 10.1111/evo.13125 10.1016/j.gene.2005.04.025 10.1126/science.1101156 10.1093/molbev/msq254 10.3389/fpls.2017.02018 10.1016/j.infsof.2005.09.005 10.1105/tpc.17.00440 10.1006/jmbi.2000.4042 10.1371/journal.pone.0021800 10.1093/molbev/msm088 10.1093/bioinformatics/btq549 10.1111/nph.12007 10.1186/s13059-015-0721-2 10.1016/j.tig.2005.07.006 10.1093/gbe/evr094 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License The Author(s). 2019 |
Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author(s). 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 1XC VOOES 5PM DOA |
DOI | 10.1186/s13059-019-1630-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 35 |
ExternalDocumentID | oai_doaj_org_article_b091e77b62154e4ea82f89ee86386022 PMC6374913 oai_HAL_hal_02046119v1 30764885 10_1186_s13059_019_1630_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: European Research Council grantid: 638240 – fundername: ; grantid: 638240 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 7S9 L.6 123 1XC 8R4 8R5 AHSBF H13 VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c761t-32bf38dcdbd048bafd0a57d17a95224f7b1e8bf812bcf4e55e002972f6e4392b3 |
IEDL.DBID | 7X7 |
ISSN | 1474-760X 1474-7596 1465-6906 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Thu Aug 21 14:13:12 EDT 2025 Fri May 09 12:18:24 EDT 2025 Fri Jul 11 02:18:03 EDT 2025 Fri Jul 11 06:33:43 EDT 2025 Fri Jul 25 12:05:35 EDT 2025 Thu Apr 03 07:08:09 EDT 2025 Thu Apr 24 23:01:38 EDT 2025 Tue Jul 01 03:10:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c761t-32bf38dcdbd048bafd0a57d17a95224f7b1e8bf812bcf4e55e002972f6e4392b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-9171-2550 0000-0002-2650-0383 |
OpenAccessLink | https://www.proquest.com/docview/2209603730?pq-origsite=%requestingapplication% |
PMID | 30764885 |
PQID | 2209603730 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b091e77b62154e4ea82f89ee86386022 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6374913 hal_primary_oai_HAL_hal_02046119v1 proquest_miscellaneous_2221023306 proquest_miscellaneous_2184529912 proquest_journals_2209603730 pubmed_primary_30764885 crossref_primary_10_1186_s13059_019_1630_6 crossref_citationtrail_10_1186_s13059_019_1630_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-14 |
PublicationDateYYYYMMDD | 2019-02-14 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Genome Biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2019 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | CE Paquin (1630_CR11) 1983; 306 T Silberfeld (1630_CR24) 2010; 56 A Lomsadze (1630_CR79) 2014; 42 JM Cock (1630_CR23) 2014; 17 P Khaitovich (1630_CR68) 2005; 309 F Supek (1630_CR86) 2011; 6 V Pereira (1630_CR93) 2009; 183 M Rescan (1630_CR9) 2016; 187 CS Thornber (1630_CR46) 2006; 46 A Arun (1630_CR3) 2013; 197 CJ Gobler (1630_CR83) 2011; 108 EM Zdobnov (1630_CR85) 2001; 17 D Laetsch (1630_CR73) 2017; 6 T Connallon (1630_CR16) 2005; 21 A Conesa (1630_CR37) 2008; 2008 HA Orr (1630_CR56) 1994; 136 R Radakovits (1630_CR82) 2012; 3 MS Lehti (1630_CR40) 2017; 144 AJ Shaw (1630_CR52) 2011; 98 P Szovenyi (1630_CR42) 2011; 28 BJ Haas (1630_CR29) 2003; 31 JL Cherry (1630_CR60) 2010; 2 L Li (1630_CR81) 2003; 13 KJ Hoff (1630_CR76) 2016; 32 AP Lipinska (1630_CR27) 2017; 18 E Salavarría (1630_CR33) 2018; 8 A Cormier (1630_CR38) 2017; 214 L Dolan (1630_CR50) 2009; 12 R Luthringer (1630_CR22) 2015; 1 PW Harrison (1630_CR19) 2015; 112 NJ Schurch (1630_CR34) 2016; 22 F Abascal (1630_CR90) 2010; 38 O Cohen (1630_CR36) 2011; 3 1630_CR49 SS Satapathy (1630_CR92) 2017; 22 CD Jenkins (1630_CR7) 1993; 133 S Immler (1630_CR15) 2015; 69 RJ Safran (1630_CR20) 2016; 70 1630_CR48 L Couceiro (1630_CR14) 2015; 69 C Pal (1630_CR62) 2001; 158 ND Pires (1630_CR51) 2012; 367 T Connallon (1630_CR18) 2011; 187 DM Emms (1630_CR35) 2015; 16 L Teng (1630_CR32) 2017; 8 1630_CR44 AC Gerstein (1630_CR55) 2011; 24 N Ye (1630_CR25) 2015; 6 SM Coelho (1630_CR1) 2007; 406 P Szovenyi (1630_CR43) 2013; 30 D Alvarez-Ponce (1630_CR64) 2017; 9 M Valero (1630_CR2) 1992; 7 LJ Revell (1630_CR95) 2012; 3 AV Zimin (1630_CR26) 2013; 29 T Slotte (1630_CR59) 2011; 3 BK Mable (1630_CR8) 1998; 20 G Gremme (1630_CR77) 2005; 47 A Lipinska (1630_CR31) 2015; 32 O Cohen (1630_CR94) 2010; 26 GA Wray (1630_CR70) 2007; 8 I Tirosh (1630_CR67) 2008; 24 D Kim (1630_CR78) 2013; 14 D Alvarez-Ponce (1630_CR63) 2012; 4 M Stanke (1630_CR74) 2008; 24 TI Gossmann (1630_CR57) 2016; 33 Z Yang (1630_CR91) 2007; 24 MG Grabherr (1630_CR75) 2011; 29 O Hughes (1630_CR12) 1999; 154 KJ Niklas (1630_CR53) 2010; 185 J Castresana (1630_CR88) 2000; 17 L Duret (1630_CR58) 2000; 17 K Bessho (1630_CR47) 2010; 267 V Perrot (1630_CR5) 1991; 351 A Sironen (1630_CR41) 2006; 103 SV Nuzhdin (1630_CR69) 2004; 21 AM Bolger (1630_CR80) 2014; 30 SM Coelho (1630_CR4) 2011; 108 SM Coelho (1630_CR72) 2012; 2012 K Nishitsuji (1630_CR28) 2016; 23 MN Clayton (1630_CR45) 2009; 31 DM Krylov (1630_CR61) 2003; 13 B-Y Liao (1630_CR66) 2010; 107 C Destombe (1630_CR13) 1993 EV Armbrust (1630_CR84) 2004; 306 SW Chan (1630_CR39) 2005; 353 RM Waterhouse (1630_CR30) 2018; 35 SM Coelho (1630_CR71) 2012; 2012 R Sano (1630_CR54) 2005; 7 M Suyama (1630_CR89) 2006; 34 SP Otto (1630_CR6) 1992; 131 J Parsch (1630_CR17) 2013; 14 C Notredame (1630_CR87) 2000; 302 JM Cock (1630_CR21) 2010; 465 MF Scott (1630_CR10) 2017; 71 AE Hirsh (1630_CR65) 2001; 411 30795789 - Genome Biol. 2019 Feb 22;20(1):44 |
References_xml | – volume: 8 start-page: 206 year: 2007 ident: 1630_CR70 publication-title: Nat Rev Genet. doi: 10.1038/nrg2063 – volume: 29 start-page: 644 year: 2011 ident: 1630_CR75 publication-title: Nat Biotechnol doi: 10.1038/nbt.1883 – volume: 12 start-page: 4 year: 2009 ident: 1630_CR50 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2008.12.001 – volume: 35 start-page: 543 year: 2018 ident: 1630_CR30 publication-title: Mol Biol Evol doi: 10.1093/molbev/msx319 – volume: 21 start-page: 1308 year: 2004 ident: 1630_CR69 publication-title: Mol Biol Evol doi: 10.1093/molbev/msh128 – volume: 267 start-page: 201 year: 2010 ident: 1630_CR47 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2010.08.016 – volume: 136 start-page: 1475 year: 1994 ident: 1630_CR56 publication-title: Genetics doi: 10.1093/genetics/136.4.1475 – volume-title: Differences in response between haploid and diploid isomorphic phases of Gracilaria verrucosa (Rhodophyta: Gigartinales) exposed to artificial environmental conditions year: 1993 ident: 1630_CR13 – volume: 98 start-page: 352 year: 2011 ident: 1630_CR52 publication-title: Am J Bot doi: 10.3732/ajb.1000316 – volume: 24 start-page: 109 year: 2008 ident: 1630_CR67 publication-title: Trends Genet doi: 10.1016/j.tig.2007.12.004 – volume: 69 start-page: 694 year: 2015 ident: 1630_CR15 publication-title: Evolution doi: 10.1111/evo.12602 – volume: 2 start-page: 757 year: 2010 ident: 1630_CR60 publication-title: Genome Biol Evol doi: 10.1093/gbe/evq059 – volume: 18 start-page: 104 year: 2017 ident: 1630_CR27 publication-title: Genome Biol doi: 10.1186/s13059-017-1201-7 – volume: 4 start-page: 1263 year: 2012 ident: 1630_CR63 publication-title: Genome Biol Evol. doi: 10.1093/gbe/evs101 – volume: 7 start-page: 25 year: 1992 ident: 1630_CR2 publication-title: Trends Ecol Evol doi: 10.1016/0169-5347(92)90195-H – volume: 56 start-page: 659 year: 2010 ident: 1630_CR24 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2010.04.020 – volume: 6 start-page: 1287 year: 2017 ident: 1630_CR73 publication-title: F1000Research doi: 10.12688/f1000research.12232.1 – volume: 465 start-page: 617 year: 2010 ident: 1630_CR21 publication-title: Nature doi: 10.1038/nature09016 – volume: 31 start-page: 379 year: 2009 ident: 1630_CR45 publication-title: Bot doi: 10.1515/botm.1988.31.5.379 – volume: 107 start-page: 7353 year: 2010 ident: 1630_CR66 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0910339107 – volume: 131 start-page: 745 year: 1992 ident: 1630_CR6 publication-title: Genetics doi: 10.1093/genetics/131.3.745 – volume: 2012 start-page: 258 year: 2012 ident: 1630_CR71 publication-title: Cold Spring Harb Protoc – volume: 23 start-page: 561 year: 2016 ident: 1630_CR28 publication-title: DNA Res Int J Rapid Publ Rep Genes Genomes – volume: 183 start-page: 1597 year: 2009 ident: 1630_CR93 publication-title: Genetics doi: 10.1534/genetics.109.110247 – volume: 22 start-page: 277 year: 2017 ident: 1630_CR92 publication-title: Genes Cells Devoted Mol Cell Mech doi: 10.1111/gtc.12474 – volume: 69 start-page: 1808 year: 2015 ident: 1630_CR14 publication-title: Evol Int J Org Evol. doi: 10.1111/evo.12702 – volume: 46 start-page: 605 year: 2006 ident: 1630_CR46 publication-title: Integr Comp Biol doi: 10.1093/icb/icl018 – volume: 33 start-page: 1669 year: 2016 ident: 1630_CR57 publication-title: Mol Biol Evol doi: 10.1093/molbev/msw044 – volume: 24 start-page: 637 year: 2008 ident: 1630_CR74 publication-title: Bioinforma Oxf Engl. doi: 10.1093/bioinformatics/btn013 – volume: 17 start-page: 540 year: 2000 ident: 1630_CR88 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026334 – volume: 367 start-page: 508 year: 2012 ident: 1630_CR51 publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2011.0252 – volume: 187 start-page: 19 year: 2016 ident: 1630_CR9 publication-title: Am Nat doi: 10.1086/684167 – volume: 17 start-page: 68 year: 2000 ident: 1630_CR58 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026239 – volume: 70 start-page: 2074 year: 2016 ident: 1630_CR20 publication-title: Evol Int J Org Evol. doi: 10.1111/evo.13014 – volume: 154 start-page: 306 year: 1999 ident: 1630_CR12 publication-title: Am Nat doi: 10.1086/303241 – volume: 214 start-page: 219 year: 2017 ident: 1630_CR38 publication-title: New Phytol doi: 10.1111/nph.14321 – volume: 31 start-page: 5654 year: 2003 ident: 1630_CR29 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg770 – volume: 108 start-page: 4352 year: 2011 ident: 1630_CR83 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1016106108 – volume: 42 start-page: e119 year: 2014 ident: 1630_CR79 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku557 – volume: 34 start-page: W609 year: 2006 ident: 1630_CR89 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl315 – volume: 32 start-page: 1581 year: 2015 ident: 1630_CR31 publication-title: Mol Biol Evol doi: 10.1093/molbev/msv049 – volume: 30 start-page: 2114 year: 2014 ident: 1630_CR80 publication-title: Bioinforma Oxf Engl. doi: 10.1093/bioinformatics/btu170 – volume: 6 start-page: 6986 year: 2015 ident: 1630_CR25 publication-title: Nat Commun doi: 10.1038/ncomms7986 – volume: 103 start-page: 5006 year: 2006 ident: 1630_CR41 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506318103 – volume: 306 start-page: 368 year: 1983 ident: 1630_CR11 publication-title: Nature doi: 10.1038/306368a0 – volume: 29 start-page: 2669 year: 2013 ident: 1630_CR26 publication-title: Bioinforma Oxf Engl. doi: 10.1093/bioinformatics/btt476 – volume: 14 start-page: 83 year: 2013 ident: 1630_CR17 publication-title: Nat Rev Genet doi: 10.1038/nrg3376 – volume: 7 start-page: 69 year: 2005 ident: 1630_CR54 publication-title: Evol Dev doi: 10.1111/j.1525-142X.2005.05008.x – volume: 22 start-page: 839 year: 2016 ident: 1630_CR34 publication-title: RNA N Y N doi: 10.1261/rna.053959.115 – volume: 9 start-page: 1742 year: 2017 ident: 1630_CR64 publication-title: Genome Biol Evol. doi: 10.1093/gbe/evx117 – volume: 185 start-page: 27 year: 2010 ident: 1630_CR53 publication-title: New Phytol doi: 10.1111/j.1469-8137.2009.03054.x – volume: 411 start-page: 1046 year: 2001 ident: 1630_CR65 publication-title: Nature doi: 10.1038/35082561 – volume: 3 start-page: 686 year: 2012 ident: 1630_CR82 publication-title: Nat Commun doi: 10.1038/ncomms1688 – volume: 144 start-page: 2683 year: 2017 ident: 1630_CR40 publication-title: Dev Camb Engl – volume: 187 start-page: 919 year: 2011 ident: 1630_CR18 publication-title: Genetics doi: 10.1534/genetics.110.123729 – volume: 13 start-page: 2229 year: 2003 ident: 1630_CR61 publication-title: Genome Res doi: 10.1101/gr.1589103 – volume: 38 start-page: W7 year: 2010 ident: 1630_CR90 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq291 – volume: 351 start-page: 315 year: 1991 ident: 1630_CR5 publication-title: Nature doi: 10.1038/351315a0 – volume: 309 start-page: 1850 year: 2005 ident: 1630_CR68 publication-title: Science doi: 10.1126/science.1108296 – volume: 17 start-page: 847 year: 2001 ident: 1630_CR85 publication-title: Bioinforma Oxf Engl doi: 10.1093/bioinformatics/17.9.847 – volume: 24 start-page: 531 year: 2011 ident: 1630_CR55 publication-title: J Evol Biol doi: 10.1111/j.1420-9101.2010.02188.x – volume: 13 start-page: 2178 year: 2003 ident: 1630_CR81 publication-title: Genome Res doi: 10.1101/gr.1224503 – volume: 17 start-page: 1 year: 2014 ident: 1630_CR23 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2013.09.004 – volume: 8 start-page: 185 year: 2018 ident: 1630_CR33 publication-title: 3 Biotech doi: 10.1007/s13205-018-1204-4 – volume: 133 start-page: 401 year: 1993 ident: 1630_CR7 publication-title: Genetics doi: 10.1093/genetics/133.2.401 – volume: 20 start-page: 453 year: 1998 ident: 1630_CR8 publication-title: BioEssays doi: 10.1002/(SICI)1521-1878(199806)20:6<453::AID-BIES3>3.0.CO;2-N – volume: 1 start-page: 11 year: 2015 ident: 1630_CR22 publication-title: Perspectives in Phycology doi: 10.1127/2198-011X/2014/0002 – volume: 2008 start-page: 619832 year: 2008 ident: 1630_CR37 publication-title: Int J Plant Genomics doi: 10.1155/2008/619832 – volume: 112 start-page: 4393 year: 2015 ident: 1630_CR19 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1501339112 – volume: 108 start-page: 11518 year: 2011 ident: 1630_CR4 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1102274108 – volume: 14 start-page: R36 year: 2013 ident: 1630_CR78 publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r36 – volume: 3 start-page: 1265 year: 2011 ident: 1630_CR36 publication-title: Genome Biol Evol. doi: 10.1093/gbe/evr101 – volume: 158 start-page: 927 year: 2001 ident: 1630_CR62 publication-title: Genetics doi: 10.1093/genetics/158.2.927 – volume: 32 start-page: 767 year: 2016 ident: 1630_CR76 publication-title: Bioinforma Oxf Engl. doi: 10.1093/bioinformatics/btv661 – ident: 1630_CR44 doi: 10.7554/eLife.43101 – ident: 1630_CR49 doi: 10.1242/dev.141523 – volume: 30 start-page: 1929 year: 2013 ident: 1630_CR43 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst095 – volume: 406 start-page: 152 year: 2007 ident: 1630_CR1 publication-title: Gene doi: 10.1016/j.gene.2007.07.025 – volume: 3 start-page: 217 year: 2012 ident: 1630_CR95 publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2011.00169.x – volume: 71 start-page: 215 year: 2017 ident: 1630_CR10 publication-title: Evol Int J Org Evol doi: 10.1111/evo.13125 – volume: 353 start-page: 189 year: 2005 ident: 1630_CR39 publication-title: Gene doi: 10.1016/j.gene.2005.04.025 – volume: 306 start-page: 79 year: 2004 ident: 1630_CR84 publication-title: Science doi: 10.1126/science.1101156 – volume: 28 start-page: 803 year: 2011 ident: 1630_CR42 publication-title: Mol Biol Evol doi: 10.1093/molbev/msq254 – volume: 8 start-page: 2018 year: 2017 ident: 1630_CR32 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.02018 – volume: 2012 start-page: 193 year: 2012 ident: 1630_CR72 publication-title: Cold Spring Harb Protoc – volume: 47 start-page: 965 year: 2005 ident: 1630_CR77 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2005.09.005 – ident: 1630_CR48 doi: 10.1105/tpc.17.00440 – volume: 302 start-page: 205 year: 2000 ident: 1630_CR87 publication-title: J Mol Biol doi: 10.1006/jmbi.2000.4042 – volume: 6 start-page: e21800 year: 2011 ident: 1630_CR86 publication-title: PLoS One doi: 10.1371/journal.pone.0021800 – volume: 24 start-page: 1586 year: 2007 ident: 1630_CR91 publication-title: Mol Biol Evol doi: 10.1093/molbev/msm088 – volume: 26 start-page: 2914 year: 2010 ident: 1630_CR94 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq549 – volume: 197 start-page: 503 year: 2013 ident: 1630_CR3 publication-title: New Phytol doi: 10.1111/nph.12007 – volume: 16 start-page: 157 year: 2015 ident: 1630_CR35 publication-title: Genome Biol doi: 10.1186/s13059-015-0721-2 – volume: 21 start-page: 495 year: 2005 ident: 1630_CR16 publication-title: Trends Genet TIG doi: 10.1016/j.tig.2005.07.006 – volume: 3 start-page: 1210 year: 2011 ident: 1630_CR59 publication-title: Genome Biol Evol. doi: 10.1093/gbe/evr094 – reference: 30795789 - Genome Biol. 2019 Feb 22;20(1):44 |
SSID | ssj0019426 ssj0017866 |
Score | 2.4121678 |
Snippet | Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants... BackgroundSexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle,... Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants... BACKGROUND: Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle,... Background: Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle,... Abstract Background Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 35 |
SubjectTerms | Algae Biochemistry, Molecular Biology Dimorphism diploidy eukaryotic cells Evolution Evolution, Molecular Evolutionary genetics Gametophytes Gene Duplication Gene Expression genes Genomes Genomics Germ Cells, Plant haploidy Life Cycle Stages - genetics Life cycles Life Sciences Mutation Organisms Phaeophyceae Phaeophyceae - genetics Phaeophyceae - growth & development Phaeophyceae - metabolism Phenotype phenotypic variation Phylogenetics Selection, Genetic species Sporophytes transcriptome |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kIHgRv12tEsWTEPrynRw8VLE8RD2Ihd5CspvYB2Vfsa9C_3tndvc9ugr14nV3dgmTmfnNj0xmAN54YVqPwZG3FrmJLlrykELmJama0QSCU3Q5-ctXuzzWn07MybVRX1QTNrYHHhV3kBHQinPZIjbhr0rysvpQikfDsQhAFH1RZEumpvODgMAznWEKbw8uMFIbqgsKHPMP5EszFBqa9SO2nFIp5N955p_lktfw5-ge3J0SR3Y4Lvg-3Cr9A7g9jpK8egjvvqXzVccQQHoqymTrys5WtfD2CqX5cGOldOwHRTa26hmmfSwTA2d0l6M8guOjj98_LPk0GoG3zooNVzJX5bu2yx26YE61WyTjOuFSwIRKV5dF8bkieue26mJMGaZUyWoLZiAyq8ew16_78hTYQnUSlRvQcYWui5Sk9V6rhK7ZCmtKA4utqmI79Q2n8RVnceAP3sZRuxG1G0m70TbwdvfJ-dg04ybh96T_nSD1ux4eoBXEyQriv6yggde4e7N_LA8_R3pGt3-tEOGXaGB_u7lx8tSLKCWROIWBroFXu9foY3RwkvqyvkQZpMEGcVvIG2QkkWeFDKyBJ6O97JaDcdRioDQNuJklzdY7f9OvTode31Y5HYR69j-U9BzuSHIBGmej92Fv8_OyvMCUapNfDt7zG6dIGLc priority: 102 providerName: Directory of Open Access Journals |
Title | Rapid turnover of life-cycle-related genes in the brown algae |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30764885 https://www.proquest.com/docview/2209603730 https://www.proquest.com/docview/2184529912 https://www.proquest.com/docview/2221023306 https://hal.sorbonne-universite.fr/hal-02046119 https://pubmed.ncbi.nlm.nih.gov/PMC6374913 https://doaj.org/article/b091e77b62154e4ea82f89ee86386022 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gVt7GkgGknWhx_GaEZLGFsZYYWwFyHZUhsodtakhf73vbMdb9kgL4bYFyPO9_E76T4I-WC5Ki0YR1ZqiE3ymAtW-CKw6GUKIAKFkVic_P1UT8_yr3M17zfcVn1a5cYmtoa6akrcIz8UAsG2BIH8vPzNcGoUnq72IzTuk31sXYYpXWY-BFzcWMQq_Y8iF12pESYgqkL3R5zc6sMVGHKFaUMFA3gC4dSWk2p7-YPrucBMyf9h6L_ZlH-5p5PH5FGPK-lRJwhPyL1YPyUPukmTt8_Ip5lfLioK_qXGnE3aJHq5SJGVt0DN2oKWWNFzNHx0UVNAhTRggE6x1CM-J2cnxz-_TFk_OYGVRvM1kyIkaauyChVoaPCpGntlKm58AXgrTybwaEMC5x7KlEelYjvESiQdAaCIIF-Qvbqp4ytCx7ISWuDWBARTaey90Nbm0oPmllyrmJHxhlWu7NuK43SLS9eGF1a7jrsOuOuQu05n5OPwl2XXU2MX8QT5PxBiO-z2RnN17nrtcgFQTzQmwEIVyFv0ViRbxGjBumhAKRl5D19v6x3To28O72FxsAbhueEZOdh8XNcr8sr9EbuMvBsegwriuYqvY3MNNBAlK3DrXOygERhbSwjQMvKyk5dhOWBmNdhRlRGzJUlb691-Ui8u2lbgWpq84PL17qW_IQ8FCjfOsckPyN766jq-BSy1DqNWYUZkf3J8-mM2anck4Dqb_LoD5HkZYg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgheEL_JGGAQvCBFa-zYcR4mtMGmjnUVmjZpb8ZO7K3SlHZrB-o_xd_IXZIWClLf9tjkGlnn89332Xc-gPc6kYVG5xgXCrlJ6lMe5zZ3sbciODSBPBNUnHw0UL3T9OuZPFuDX_NaGEqrnPvE2lGXo4L2yLc4J7At0CA_ja9i6hpFp6vzFhqNWRz62U-kbJPtgy84vx843987-dyL264CcYGUfRoL7oLQZVG6Eq3X2VB2rczKJLM5YpE0ZC7x2gUMfK4IqZfS1w2eeFAegzd3Ar97B9ZTgVSmA-u7e4Nvx4tzi0wTOmp_5Clvipso5VHmqj1UTbTammDokJSolMcIiJDALYXFunsABrsLys38H_j-m7_5V0DcfwgPWiTLdhrTewRrvnoMd5velrMnsH1sx8OSYUSrKEuUjQK7HAYfFzOUjusSGl-yc3K1bFgxxKHM0ZYAo-IS_xROb0Wrz6BTjSr_AlhXlFxx2gxB-ha61nKldSos-ooiUdJH0J2ryhTtRebUT-PS1IRGK9No16B2DWnXqAg-Lv4ybm7xWCW8S_pfCNIF3PWD0fW5adezcYizfJY5HKhEC_dW86Bz7zX6M4W4KIJ3OHtL3-jt9A09o3JklST5jySCzfnkmtZ1TMwfQ4_g7eI1Lno6ybGVH92gDPJyiUAi4StkOLF5gZQwgueNvSyGg45doeeWEWRLlrQ03uU31fCivnxciSzNE7Gxeuhv4F7v5Khv-geDw5dwn5OhUxeddBM60-sb_wqR3NS9bpcPg--3vWJ_A-N7VN8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+turnover+of+life-cycle-related+genes+in+the+brown+algae&rft.jtitle=Genome+Biology&rft.au=Lipinska%2C+Agnieszka+P&rft.au=Serrano-Serrano%2C+Martha+L&rft.au=Cormier%2C+Alexandre&rft.au=Peters%2C+Akira+F&rft.date=2019-02-14&rft.pub=BioMed+Central&rft.issn=1474-7596&rft.eissn=1474-760X&rft.volume=20&rft.spage=1&rft_id=info:doi/10.1186%2Fs13059-019-1630-6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |