Rapid turnover of life-cycle-related genes in the brown algae

Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporoph...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 20; no. 1; p. 35
Main Authors Lipinska, Agnieszka P., Serrano-Serrano, Martha L., Cormier, Alexandre, Peters, Akira F., Kogame, Kazuhiro, Cock, J. Mark, Coelho, Susana M.
Format Journal Article
LanguageEnglish
Published England BioMed Central 14.02.2019
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.
AbstractList Abstract Background Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. Results We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. Conclusion Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.
BackgroundSexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations.ResultsWe show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression.ConclusionOur analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.
BACKGROUND: Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. RESULTS: We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. CONCLUSION: Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.
Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.
Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations.BACKGROUNDSexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations.We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression.RESULTSWe show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression.Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.CONCLUSIONOur analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.
ArticleNumber 35
Author Cock, J. Mark
Cormier, Alexandre
Peters, Akira F.
Serrano-Serrano, Martha L.
Lipinska, Agnieszka P.
Kogame, Kazuhiro
Coelho, Susana M.
Author_xml – sequence: 1
  givenname: Agnieszka P.
  surname: Lipinska
  fullname: Lipinska, Agnieszka P.
– sequence: 2
  givenname: Martha L.
  surname: Serrano-Serrano
  fullname: Serrano-Serrano, Martha L.
– sequence: 3
  givenname: Alexandre
  surname: Cormier
  fullname: Cormier, Alexandre
– sequence: 4
  givenname: Akira F.
  surname: Peters
  fullname: Peters, Akira F.
– sequence: 5
  givenname: Kazuhiro
  surname: Kogame
  fullname: Kogame, Kazuhiro
– sequence: 6
  givenname: J. Mark
  surname: Cock
  fullname: Cock, J. Mark
– sequence: 7
  givenname: Susana M.
  orcidid: 0000-0002-9171-2550
  surname: Coelho
  fullname: Coelho, Susana M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30764885$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-02046119$$DView record in HAL
BookMark eNqFkk1v1DAQhiNURD_gB3BBkbjQQ8BjO_44UKmqgFZaCQmBxM2yk_GuV9l4cbKL-u9xmlK1e4CTrfEz78x43tPiqI89FsVrIO8BlPgwACO1rgjoCgQjlXhWnACXvJKC_Dx6dD8uTodhTTLIqXhRHDMiBVeqPik-frPb0JbjLvVxj6mMvuyCx6q5bTqsEnZ2xLZcYo9DGfpyXGHpUvzdl7ZbWnxZPPe2G_DV_XlW_Pj86fvVdbX4-uXm6nJRNVLAWDHqPFNt07qWcOWsb4mtZQvS6ppS7qUDVM4roK7xHOsaCaFaUi-QM00dOytuZt022rXZprCx6dZEG8xdIKalsWkMuWXjiAaU0gkKNUeOVlGvNKISTAlCada6mLW2O7fBtsF-TLZ7Ivr0pQ8rs4x7I5jkGlgWOJ8FVgdp15cLM8UIJVwA6D1k9t19sRR_7XAYzSYMDXad7THuBkMpBUIZI-L_KCheU61hGuHtAbqOeYF5A1mQaEGYZCRTbx4P-tDq3-VnAGagSXEYEvoHBIiZDGZmg5nsGzMZzExdyoOcJox2DHH6q9D9I_MPpkbRjw
CitedBy_id crossref_primary_10_1186_s12870_021_03117_z
crossref_primary_10_1038_s41598_021_96854_y
crossref_primary_10_1111_nph_17582
crossref_primary_10_1186_s13059_019_1657_8
crossref_primary_10_1038_s41559_024_02490_w
crossref_primary_10_4467_16890027AP_22_003_16206
crossref_primary_10_1007_s00497_021_00417_0
crossref_primary_10_1038_s41559_022_01692_4
crossref_primary_10_3389_fmicb_2020_00316
crossref_primary_10_1111_jeb_13880
crossref_primary_10_1016_j_sajb_2024_09_070
crossref_primary_10_1242_dev_201283
crossref_primary_10_1186_s12870_022_04031_8
crossref_primary_10_1146_annurev_genet_030620_093031
crossref_primary_10_1016_j_margen_2020_100740
crossref_primary_10_1016_j_devcel_2024_12_022
crossref_primary_10_1242_dev_203004
crossref_primary_10_1080_07352689_2020_1787679
crossref_primary_10_1186_s13059_020_02216_8
crossref_primary_10_1093_nar_gkac145
crossref_primary_10_3390_cells10092467
crossref_primary_10_1111_jpy_13212
Cites_doi 10.1038/nrg2063
10.1038/nbt.1883
10.1016/j.pbi.2008.12.001
10.1093/molbev/msx319
10.1093/molbev/msh128
10.1016/j.jtbi.2010.08.016
10.1093/genetics/136.4.1475
10.3732/ajb.1000316
10.1016/j.tig.2007.12.004
10.1111/evo.12602
10.1093/gbe/evq059
10.1186/s13059-017-1201-7
10.1093/gbe/evs101
10.1016/0169-5347(92)90195-H
10.1016/j.ympev.2010.04.020
10.12688/f1000research.12232.1
10.1038/nature09016
10.1515/botm.1988.31.5.379
10.1073/pnas.0910339107
10.1093/genetics/131.3.745
10.1534/genetics.109.110247
10.1111/gtc.12474
10.1111/evo.12702
10.1093/icb/icl018
10.1093/molbev/msw044
10.1093/bioinformatics/btn013
10.1093/oxfordjournals.molbev.a026334
10.1098/rstb.2011.0252
10.1086/684167
10.1093/oxfordjournals.molbev.a026239
10.1111/evo.13014
10.1086/303241
10.1111/nph.14321
10.1093/nar/gkg770
10.1073/pnas.1016106108
10.1093/nar/gku557
10.1093/nar/gkl315
10.1093/molbev/msv049
10.1093/bioinformatics/btu170
10.1038/ncomms7986
10.1073/pnas.0506318103
10.1038/306368a0
10.1093/bioinformatics/btt476
10.1038/nrg3376
10.1111/j.1525-142X.2005.05008.x
10.1261/rna.053959.115
10.1093/gbe/evx117
10.1111/j.1469-8137.2009.03054.x
10.1038/35082561
10.1038/ncomms1688
10.1534/genetics.110.123729
10.1101/gr.1589103
10.1093/nar/gkq291
10.1038/351315a0
10.1126/science.1108296
10.1093/bioinformatics/17.9.847
10.1111/j.1420-9101.2010.02188.x
10.1101/gr.1224503
10.1016/j.pbi.2013.09.004
10.1007/s13205-018-1204-4
10.1093/genetics/133.2.401
10.1002/(SICI)1521-1878(199806)20:6<453::AID-BIES3>3.0.CO;2-N
10.1127/2198-011X/2014/0002
10.1155/2008/619832
10.1073/pnas.1501339112
10.1073/pnas.1102274108
10.1186/gb-2013-14-4-r36
10.1093/gbe/evr101
10.1093/genetics/158.2.927
10.1093/bioinformatics/btv661
10.7554/eLife.43101
10.1242/dev.141523
10.1093/molbev/mst095
10.1016/j.gene.2007.07.025
10.1111/j.2041-210X.2011.00169.x
10.1111/evo.13125
10.1016/j.gene.2005.04.025
10.1126/science.1101156
10.1093/molbev/msq254
10.3389/fpls.2017.02018
10.1016/j.infsof.2005.09.005
10.1105/tpc.17.00440
10.1006/jmbi.2000.4042
10.1371/journal.pone.0021800
10.1093/molbev/msm088
10.1093/bioinformatics/btq549
10.1111/nph.12007
10.1186/s13059-015-0721-2
10.1016/j.tig.2005.07.006
10.1093/gbe/evr094
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
The Author(s). 2019
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: The Author(s). 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
1XC
VOOES
5PM
DOA
DOI 10.1186/s13059-019-1630-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 35
ExternalDocumentID oai_doaj_org_article_b091e77b62154e4ea82f89ee86386022
PMC6374913
oai_HAL_hal_02046119v1
30764885
10_1186_s13059_019_1630_6
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: European Research Council
  grantid: 638240
– fundername: ;
  grantid: 638240
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
7S9
L.6
123
1XC
8R4
8R5
AHSBF
H13
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c761t-32bf38dcdbd048bafd0a57d17a95224f7b1e8bf812bcf4e55e002972f6e4392b3
IEDL.DBID 7X7
ISSN 1474-760X
1474-7596
1465-6906
IngestDate Wed Aug 27 01:30:53 EDT 2025
Thu Aug 21 14:13:12 EDT 2025
Fri May 09 12:18:24 EDT 2025
Fri Jul 11 02:18:03 EDT 2025
Fri Jul 11 06:33:43 EDT 2025
Fri Jul 25 12:05:35 EDT 2025
Thu Apr 03 07:08:09 EDT 2025
Thu Apr 24 23:01:38 EDT 2025
Tue Jul 01 03:10:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c761t-32bf38dcdbd048bafd0a57d17a95224f7b1e8bf812bcf4e55e002972f6e4392b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-9171-2550
0000-0002-2650-0383
OpenAccessLink https://www.proquest.com/docview/2209603730?pq-origsite=%requestingapplication%
PMID 30764885
PQID 2209603730
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_b091e77b62154e4ea82f89ee86386022
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6374913
hal_primary_oai_HAL_hal_02046119v1
proquest_miscellaneous_2221023306
proquest_miscellaneous_2184529912
proquest_journals_2209603730
pubmed_primary_30764885
crossref_primary_10_1186_s13059_019_1630_6
crossref_citationtrail_10_1186_s13059_019_1630_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-14
PublicationDateYYYYMMDD 2019-02-14
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Genome Biology
PublicationTitleAlternate Genome Biol
PublicationYear 2019
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References CE Paquin (1630_CR11) 1983; 306
T Silberfeld (1630_CR24) 2010; 56
A Lomsadze (1630_CR79) 2014; 42
JM Cock (1630_CR23) 2014; 17
P Khaitovich (1630_CR68) 2005; 309
F Supek (1630_CR86) 2011; 6
V Pereira (1630_CR93) 2009; 183
M Rescan (1630_CR9) 2016; 187
CS Thornber (1630_CR46) 2006; 46
A Arun (1630_CR3) 2013; 197
CJ Gobler (1630_CR83) 2011; 108
EM Zdobnov (1630_CR85) 2001; 17
D Laetsch (1630_CR73) 2017; 6
T Connallon (1630_CR16) 2005; 21
A Conesa (1630_CR37) 2008; 2008
HA Orr (1630_CR56) 1994; 136
R Radakovits (1630_CR82) 2012; 3
MS Lehti (1630_CR40) 2017; 144
AJ Shaw (1630_CR52) 2011; 98
P Szovenyi (1630_CR42) 2011; 28
BJ Haas (1630_CR29) 2003; 31
JL Cherry (1630_CR60) 2010; 2
L Li (1630_CR81) 2003; 13
KJ Hoff (1630_CR76) 2016; 32
AP Lipinska (1630_CR27) 2017; 18
E Salavarría (1630_CR33) 2018; 8
A Cormier (1630_CR38) 2017; 214
L Dolan (1630_CR50) 2009; 12
R Luthringer (1630_CR22) 2015; 1
PW Harrison (1630_CR19) 2015; 112
NJ Schurch (1630_CR34) 2016; 22
F Abascal (1630_CR90) 2010; 38
O Cohen (1630_CR36) 2011; 3
1630_CR49
SS Satapathy (1630_CR92) 2017; 22
CD Jenkins (1630_CR7) 1993; 133
S Immler (1630_CR15) 2015; 69
RJ Safran (1630_CR20) 2016; 70
1630_CR48
L Couceiro (1630_CR14) 2015; 69
C Pal (1630_CR62) 2001; 158
ND Pires (1630_CR51) 2012; 367
T Connallon (1630_CR18) 2011; 187
DM Emms (1630_CR35) 2015; 16
L Teng (1630_CR32) 2017; 8
1630_CR44
AC Gerstein (1630_CR55) 2011; 24
N Ye (1630_CR25) 2015; 6
SM Coelho (1630_CR1) 2007; 406
P Szovenyi (1630_CR43) 2013; 30
D Alvarez-Ponce (1630_CR64) 2017; 9
M Valero (1630_CR2) 1992; 7
LJ Revell (1630_CR95) 2012; 3
AV Zimin (1630_CR26) 2013; 29
T Slotte (1630_CR59) 2011; 3
BK Mable (1630_CR8) 1998; 20
G Gremme (1630_CR77) 2005; 47
A Lipinska (1630_CR31) 2015; 32
O Cohen (1630_CR94) 2010; 26
GA Wray (1630_CR70) 2007; 8
I Tirosh (1630_CR67) 2008; 24
D Kim (1630_CR78) 2013; 14
D Alvarez-Ponce (1630_CR63) 2012; 4
M Stanke (1630_CR74) 2008; 24
TI Gossmann (1630_CR57) 2016; 33
Z Yang (1630_CR91) 2007; 24
MG Grabherr (1630_CR75) 2011; 29
O Hughes (1630_CR12) 1999; 154
KJ Niklas (1630_CR53) 2010; 185
J Castresana (1630_CR88) 2000; 17
L Duret (1630_CR58) 2000; 17
K Bessho (1630_CR47) 2010; 267
V Perrot (1630_CR5) 1991; 351
A Sironen (1630_CR41) 2006; 103
SV Nuzhdin (1630_CR69) 2004; 21
AM Bolger (1630_CR80) 2014; 30
SM Coelho (1630_CR4) 2011; 108
SM Coelho (1630_CR72) 2012; 2012
K Nishitsuji (1630_CR28) 2016; 23
MN Clayton (1630_CR45) 2009; 31
DM Krylov (1630_CR61) 2003; 13
B-Y Liao (1630_CR66) 2010; 107
C Destombe (1630_CR13) 1993
EV Armbrust (1630_CR84) 2004; 306
SW Chan (1630_CR39) 2005; 353
RM Waterhouse (1630_CR30) 2018; 35
SM Coelho (1630_CR71) 2012; 2012
R Sano (1630_CR54) 2005; 7
M Suyama (1630_CR89) 2006; 34
SP Otto (1630_CR6) 1992; 131
J Parsch (1630_CR17) 2013; 14
C Notredame (1630_CR87) 2000; 302
JM Cock (1630_CR21) 2010; 465
MF Scott (1630_CR10) 2017; 71
AE Hirsh (1630_CR65) 2001; 411
30795789 - Genome Biol. 2019 Feb 22;20(1):44
References_xml – volume: 8
  start-page: 206
  year: 2007
  ident: 1630_CR70
  publication-title: Nat Rev Genet.
  doi: 10.1038/nrg2063
– volume: 29
  start-page: 644
  year: 2011
  ident: 1630_CR75
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1883
– volume: 12
  start-page: 4
  year: 2009
  ident: 1630_CR50
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2008.12.001
– volume: 35
  start-page: 543
  year: 2018
  ident: 1630_CR30
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msx319
– volume: 21
  start-page: 1308
  year: 2004
  ident: 1630_CR69
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msh128
– volume: 267
  start-page: 201
  year: 2010
  ident: 1630_CR47
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2010.08.016
– volume: 136
  start-page: 1475
  year: 1994
  ident: 1630_CR56
  publication-title: Genetics
  doi: 10.1093/genetics/136.4.1475
– volume-title: Differences in response between haploid and diploid isomorphic phases of Gracilaria verrucosa (Rhodophyta: Gigartinales) exposed to artificial environmental conditions
  year: 1993
  ident: 1630_CR13
– volume: 98
  start-page: 352
  year: 2011
  ident: 1630_CR52
  publication-title: Am J Bot
  doi: 10.3732/ajb.1000316
– volume: 24
  start-page: 109
  year: 2008
  ident: 1630_CR67
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2007.12.004
– volume: 69
  start-page: 694
  year: 2015
  ident: 1630_CR15
  publication-title: Evolution
  doi: 10.1111/evo.12602
– volume: 2
  start-page: 757
  year: 2010
  ident: 1630_CR60
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evq059
– volume: 18
  start-page: 104
  year: 2017
  ident: 1630_CR27
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1201-7
– volume: 4
  start-page: 1263
  year: 2012
  ident: 1630_CR63
  publication-title: Genome Biol Evol.
  doi: 10.1093/gbe/evs101
– volume: 7
  start-page: 25
  year: 1992
  ident: 1630_CR2
  publication-title: Trends Ecol Evol
  doi: 10.1016/0169-5347(92)90195-H
– volume: 56
  start-page: 659
  year: 2010
  ident: 1630_CR24
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2010.04.020
– volume: 6
  start-page: 1287
  year: 2017
  ident: 1630_CR73
  publication-title: F1000Research
  doi: 10.12688/f1000research.12232.1
– volume: 465
  start-page: 617
  year: 2010
  ident: 1630_CR21
  publication-title: Nature
  doi: 10.1038/nature09016
– volume: 31
  start-page: 379
  year: 2009
  ident: 1630_CR45
  publication-title: Bot
  doi: 10.1515/botm.1988.31.5.379
– volume: 107
  start-page: 7353
  year: 2010
  ident: 1630_CR66
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0910339107
– volume: 131
  start-page: 745
  year: 1992
  ident: 1630_CR6
  publication-title: Genetics
  doi: 10.1093/genetics/131.3.745
– volume: 2012
  start-page: 258
  year: 2012
  ident: 1630_CR71
  publication-title: Cold Spring Harb Protoc
– volume: 23
  start-page: 561
  year: 2016
  ident: 1630_CR28
  publication-title: DNA Res Int J Rapid Publ Rep Genes Genomes
– volume: 183
  start-page: 1597
  year: 2009
  ident: 1630_CR93
  publication-title: Genetics
  doi: 10.1534/genetics.109.110247
– volume: 22
  start-page: 277
  year: 2017
  ident: 1630_CR92
  publication-title: Genes Cells Devoted Mol Cell Mech
  doi: 10.1111/gtc.12474
– volume: 69
  start-page: 1808
  year: 2015
  ident: 1630_CR14
  publication-title: Evol Int J Org Evol.
  doi: 10.1111/evo.12702
– volume: 46
  start-page: 605
  year: 2006
  ident: 1630_CR46
  publication-title: Integr Comp Biol
  doi: 10.1093/icb/icl018
– volume: 33
  start-page: 1669
  year: 2016
  ident: 1630_CR57
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw044
– volume: 24
  start-page: 637
  year: 2008
  ident: 1630_CR74
  publication-title: Bioinforma Oxf Engl.
  doi: 10.1093/bioinformatics/btn013
– volume: 17
  start-page: 540
  year: 2000
  ident: 1630_CR88
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026334
– volume: 367
  start-page: 508
  year: 2012
  ident: 1630_CR51
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/rstb.2011.0252
– volume: 187
  start-page: 19
  year: 2016
  ident: 1630_CR9
  publication-title: Am Nat
  doi: 10.1086/684167
– volume: 17
  start-page: 68
  year: 2000
  ident: 1630_CR58
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026239
– volume: 70
  start-page: 2074
  year: 2016
  ident: 1630_CR20
  publication-title: Evol Int J Org Evol.
  doi: 10.1111/evo.13014
– volume: 154
  start-page: 306
  year: 1999
  ident: 1630_CR12
  publication-title: Am Nat
  doi: 10.1086/303241
– volume: 214
  start-page: 219
  year: 2017
  ident: 1630_CR38
  publication-title: New Phytol
  doi: 10.1111/nph.14321
– volume: 31
  start-page: 5654
  year: 2003
  ident: 1630_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg770
– volume: 108
  start-page: 4352
  year: 2011
  ident: 1630_CR83
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1016106108
– volume: 42
  start-page: e119
  year: 2014
  ident: 1630_CR79
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku557
– volume: 34
  start-page: W609
  year: 2006
  ident: 1630_CR89
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl315
– volume: 32
  start-page: 1581
  year: 2015
  ident: 1630_CR31
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msv049
– volume: 30
  start-page: 2114
  year: 2014
  ident: 1630_CR80
  publication-title: Bioinforma Oxf Engl.
  doi: 10.1093/bioinformatics/btu170
– volume: 6
  start-page: 6986
  year: 2015
  ident: 1630_CR25
  publication-title: Nat Commun
  doi: 10.1038/ncomms7986
– volume: 103
  start-page: 5006
  year: 2006
  ident: 1630_CR41
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506318103
– volume: 306
  start-page: 368
  year: 1983
  ident: 1630_CR11
  publication-title: Nature
  doi: 10.1038/306368a0
– volume: 29
  start-page: 2669
  year: 2013
  ident: 1630_CR26
  publication-title: Bioinforma Oxf Engl.
  doi: 10.1093/bioinformatics/btt476
– volume: 14
  start-page: 83
  year: 2013
  ident: 1630_CR17
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3376
– volume: 7
  start-page: 69
  year: 2005
  ident: 1630_CR54
  publication-title: Evol Dev
  doi: 10.1111/j.1525-142X.2005.05008.x
– volume: 22
  start-page: 839
  year: 2016
  ident: 1630_CR34
  publication-title: RNA N Y N
  doi: 10.1261/rna.053959.115
– volume: 9
  start-page: 1742
  year: 2017
  ident: 1630_CR64
  publication-title: Genome Biol Evol.
  doi: 10.1093/gbe/evx117
– volume: 185
  start-page: 27
  year: 2010
  ident: 1630_CR53
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2009.03054.x
– volume: 411
  start-page: 1046
  year: 2001
  ident: 1630_CR65
  publication-title: Nature
  doi: 10.1038/35082561
– volume: 3
  start-page: 686
  year: 2012
  ident: 1630_CR82
  publication-title: Nat Commun
  doi: 10.1038/ncomms1688
– volume: 144
  start-page: 2683
  year: 2017
  ident: 1630_CR40
  publication-title: Dev Camb Engl
– volume: 187
  start-page: 919
  year: 2011
  ident: 1630_CR18
  publication-title: Genetics
  doi: 10.1534/genetics.110.123729
– volume: 13
  start-page: 2229
  year: 2003
  ident: 1630_CR61
  publication-title: Genome Res
  doi: 10.1101/gr.1589103
– volume: 38
  start-page: W7
  year: 2010
  ident: 1630_CR90
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq291
– volume: 351
  start-page: 315
  year: 1991
  ident: 1630_CR5
  publication-title: Nature
  doi: 10.1038/351315a0
– volume: 309
  start-page: 1850
  year: 2005
  ident: 1630_CR68
  publication-title: Science
  doi: 10.1126/science.1108296
– volume: 17
  start-page: 847
  year: 2001
  ident: 1630_CR85
  publication-title: Bioinforma Oxf Engl
  doi: 10.1093/bioinformatics/17.9.847
– volume: 24
  start-page: 531
  year: 2011
  ident: 1630_CR55
  publication-title: J Evol Biol
  doi: 10.1111/j.1420-9101.2010.02188.x
– volume: 13
  start-page: 2178
  year: 2003
  ident: 1630_CR81
  publication-title: Genome Res
  doi: 10.1101/gr.1224503
– volume: 17
  start-page: 1
  year: 2014
  ident: 1630_CR23
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2013.09.004
– volume: 8
  start-page: 185
  year: 2018
  ident: 1630_CR33
  publication-title: 3 Biotech
  doi: 10.1007/s13205-018-1204-4
– volume: 133
  start-page: 401
  year: 1993
  ident: 1630_CR7
  publication-title: Genetics
  doi: 10.1093/genetics/133.2.401
– volume: 20
  start-page: 453
  year: 1998
  ident: 1630_CR8
  publication-title: BioEssays
  doi: 10.1002/(SICI)1521-1878(199806)20:6<453::AID-BIES3>3.0.CO;2-N
– volume: 1
  start-page: 11
  year: 2015
  ident: 1630_CR22
  publication-title: Perspectives in Phycology
  doi: 10.1127/2198-011X/2014/0002
– volume: 2008
  start-page: 619832
  year: 2008
  ident: 1630_CR37
  publication-title: Int J Plant Genomics
  doi: 10.1155/2008/619832
– volume: 112
  start-page: 4393
  year: 2015
  ident: 1630_CR19
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1501339112
– volume: 108
  start-page: 11518
  year: 2011
  ident: 1630_CR4
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1102274108
– volume: 14
  start-page: R36
  year: 2013
  ident: 1630_CR78
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-4-r36
– volume: 3
  start-page: 1265
  year: 2011
  ident: 1630_CR36
  publication-title: Genome Biol Evol.
  doi: 10.1093/gbe/evr101
– volume: 158
  start-page: 927
  year: 2001
  ident: 1630_CR62
  publication-title: Genetics
  doi: 10.1093/genetics/158.2.927
– volume: 32
  start-page: 767
  year: 2016
  ident: 1630_CR76
  publication-title: Bioinforma Oxf Engl.
  doi: 10.1093/bioinformatics/btv661
– ident: 1630_CR44
  doi: 10.7554/eLife.43101
– ident: 1630_CR49
  doi: 10.1242/dev.141523
– volume: 30
  start-page: 1929
  year: 2013
  ident: 1630_CR43
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst095
– volume: 406
  start-page: 152
  year: 2007
  ident: 1630_CR1
  publication-title: Gene
  doi: 10.1016/j.gene.2007.07.025
– volume: 3
  start-page: 217
  year: 2012
  ident: 1630_CR95
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2011.00169.x
– volume: 71
  start-page: 215
  year: 2017
  ident: 1630_CR10
  publication-title: Evol Int J Org Evol
  doi: 10.1111/evo.13125
– volume: 353
  start-page: 189
  year: 2005
  ident: 1630_CR39
  publication-title: Gene
  doi: 10.1016/j.gene.2005.04.025
– volume: 306
  start-page: 79
  year: 2004
  ident: 1630_CR84
  publication-title: Science
  doi: 10.1126/science.1101156
– volume: 28
  start-page: 803
  year: 2011
  ident: 1630_CR42
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msq254
– volume: 8
  start-page: 2018
  year: 2017
  ident: 1630_CR32
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.02018
– volume: 2012
  start-page: 193
  year: 2012
  ident: 1630_CR72
  publication-title: Cold Spring Harb Protoc
– volume: 47
  start-page: 965
  year: 2005
  ident: 1630_CR77
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2005.09.005
– ident: 1630_CR48
  doi: 10.1105/tpc.17.00440
– volume: 302
  start-page: 205
  year: 2000
  ident: 1630_CR87
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.4042
– volume: 6
  start-page: e21800
  year: 2011
  ident: 1630_CR86
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021800
– volume: 24
  start-page: 1586
  year: 2007
  ident: 1630_CR91
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm088
– volume: 26
  start-page: 2914
  year: 2010
  ident: 1630_CR94
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq549
– volume: 197
  start-page: 503
  year: 2013
  ident: 1630_CR3
  publication-title: New Phytol
  doi: 10.1111/nph.12007
– volume: 16
  start-page: 157
  year: 2015
  ident: 1630_CR35
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0721-2
– volume: 21
  start-page: 495
  year: 2005
  ident: 1630_CR16
  publication-title: Trends Genet TIG
  doi: 10.1016/j.tig.2005.07.006
– volume: 3
  start-page: 1210
  year: 2011
  ident: 1630_CR59
  publication-title: Genome Biol Evol.
  doi: 10.1093/gbe/evr094
– reference: 30795789 - Genome Biol. 2019 Feb 22;20(1):44
SSID ssj0019426
ssj0017866
Score 2.4121678
Snippet Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants...
BackgroundSexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle,...
Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants...
BACKGROUND: Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle,...
Background: Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle,...
Abstract Background Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 35
SubjectTerms Algae
Biochemistry, Molecular Biology
Dimorphism
diploidy
eukaryotic cells
Evolution
Evolution, Molecular
Evolutionary genetics
Gametophytes
Gene Duplication
Gene Expression
genes
Genomes
Genomics
Germ Cells, Plant
haploidy
Life Cycle Stages - genetics
Life cycles
Life Sciences
Mutation
Organisms
Phaeophyceae
Phaeophyceae - genetics
Phaeophyceae - growth & development
Phaeophyceae - metabolism
Phenotype
phenotypic variation
Phylogenetics
Selection, Genetic
species
Sporophytes
transcriptome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kIHgRv12tEsWTEPrynRw8VLE8RD2Ihd5CspvYB2Vfsa9C_3tndvc9ugr14nV3dgmTmfnNj0xmAN54YVqPwZG3FrmJLlrykELmJama0QSCU3Q5-ctXuzzWn07MybVRX1QTNrYHHhV3kBHQinPZIjbhr0rysvpQikfDsQhAFH1RZEumpvODgMAznWEKbw8uMFIbqgsKHPMP5EszFBqa9SO2nFIp5N955p_lktfw5-ge3J0SR3Y4Lvg-3Cr9A7g9jpK8egjvvqXzVccQQHoqymTrys5WtfD2CqX5cGOldOwHRTa26hmmfSwTA2d0l6M8guOjj98_LPk0GoG3zooNVzJX5bu2yx26YE61WyTjOuFSwIRKV5dF8bkieue26mJMGaZUyWoLZiAyq8ew16_78hTYQnUSlRvQcYWui5Sk9V6rhK7ZCmtKA4utqmI79Q2n8RVnceAP3sZRuxG1G0m70TbwdvfJ-dg04ybh96T_nSD1ux4eoBXEyQriv6yggde4e7N_LA8_R3pGt3-tEOGXaGB_u7lx8tSLKCWROIWBroFXu9foY3RwkvqyvkQZpMEGcVvIG2QkkWeFDKyBJ6O97JaDcdRioDQNuJklzdY7f9OvTode31Y5HYR69j-U9BzuSHIBGmej92Fv8_OyvMCUapNfDt7zG6dIGLc
  priority: 102
  providerName: Directory of Open Access Journals
Title Rapid turnover of life-cycle-related genes in the brown algae
URI https://www.ncbi.nlm.nih.gov/pubmed/30764885
https://www.proquest.com/docview/2209603730
https://www.proquest.com/docview/2184529912
https://www.proquest.com/docview/2221023306
https://hal.sorbonne-universite.fr/hal-02046119
https://pubmed.ncbi.nlm.nih.gov/PMC6374913
https://doaj.org/article/b091e77b62154e4ea82f89ee86386022
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gVt7GkgGknWhx_GaEZLGFsZYYWwFyHZUhsodtakhf73vbMdb9kgL4bYFyPO9_E76T4I-WC5Ki0YR1ZqiE3ymAtW-CKw6GUKIAKFkVic_P1UT8_yr3M17zfcVn1a5cYmtoa6akrcIz8UAsG2BIH8vPzNcGoUnq72IzTuk31sXYYpXWY-BFzcWMQq_Y8iF12pESYgqkL3R5zc6sMVGHKFaUMFA3gC4dSWk2p7-YPrucBMyf9h6L_ZlH-5p5PH5FGPK-lRJwhPyL1YPyUPukmTt8_Ip5lfLioK_qXGnE3aJHq5SJGVt0DN2oKWWNFzNHx0UVNAhTRggE6x1CM-J2cnxz-_TFk_OYGVRvM1kyIkaauyChVoaPCpGntlKm58AXgrTybwaEMC5x7KlEelYjvESiQdAaCIIF-Qvbqp4ytCx7ISWuDWBARTaey90Nbm0oPmllyrmJHxhlWu7NuK43SLS9eGF1a7jrsOuOuQu05n5OPwl2XXU2MX8QT5PxBiO-z2RnN17nrtcgFQTzQmwEIVyFv0ViRbxGjBumhAKRl5D19v6x3To28O72FxsAbhueEZOdh8XNcr8sr9EbuMvBsegwriuYqvY3MNNBAlK3DrXOygERhbSwjQMvKyk5dhOWBmNdhRlRGzJUlb691-Ui8u2lbgWpq84PL17qW_IQ8FCjfOsckPyN766jq-BSy1DqNWYUZkf3J8-mM2anck4Dqb_LoD5HkZYg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgheEL_JGGAQvCBFa-zYcR4mtMGmjnUVmjZpb8ZO7K3SlHZrB-o_xd_IXZIWClLf9tjkGlnn89332Xc-gPc6kYVG5xgXCrlJ6lMe5zZ3sbciODSBPBNUnHw0UL3T9OuZPFuDX_NaGEqrnPvE2lGXo4L2yLc4J7At0CA_ja9i6hpFp6vzFhqNWRz62U-kbJPtgy84vx843987-dyL264CcYGUfRoL7oLQZVG6Eq3X2VB2rczKJLM5YpE0ZC7x2gUMfK4IqZfS1w2eeFAegzd3Ar97B9ZTgVSmA-u7e4Nvx4tzi0wTOmp_5Clvipso5VHmqj1UTbTammDokJSolMcIiJDALYXFunsABrsLys38H_j-m7_5V0DcfwgPWiTLdhrTewRrvnoMd5velrMnsH1sx8OSYUSrKEuUjQK7HAYfFzOUjusSGl-yc3K1bFgxxKHM0ZYAo-IS_xROb0Wrz6BTjSr_AlhXlFxx2gxB-ha61nKldSos-ooiUdJH0J2ryhTtRebUT-PS1IRGK9No16B2DWnXqAg-Lv4ybm7xWCW8S_pfCNIF3PWD0fW5adezcYizfJY5HKhEC_dW86Bz7zX6M4W4KIJ3OHtL3-jt9A09o3JklST5jySCzfnkmtZ1TMwfQ4_g7eI1Lno6ybGVH92gDPJyiUAi4StkOLF5gZQwgueNvSyGg45doeeWEWRLlrQ03uU31fCivnxciSzNE7Gxeuhv4F7v5Khv-geDw5dwn5OhUxeddBM60-sb_wqR3NS9bpcPg--3vWJ_A-N7VN8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+turnover+of+life-cycle-related+genes+in+the+brown+algae&rft.jtitle=Genome+Biology&rft.au=Lipinska%2C+Agnieszka+P&rft.au=Serrano-Serrano%2C+Martha+L&rft.au=Cormier%2C+Alexandre&rft.au=Peters%2C+Akira+F&rft.date=2019-02-14&rft.pub=BioMed+Central&rft.issn=1474-7596&rft.eissn=1474-760X&rft.volume=20&rft.spage=1&rft_id=info:doi/10.1186%2Fs13059-019-1630-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon