Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection
Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform...
Saved in:
Published in | PLoS pathogens Vol. 8; no. 3; p. e1002529 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.03.2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7374 1553-7366 1553-7374 |
DOI | 10.1371/journal.ppat.1002529 |
Cover
Loading…
Abstract | Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia. |
---|---|
AbstractList | Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia. Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia. The ability of HIV-1 and other highly variable pathogens to rapidly mutate to escape vaccine-induced immune responses represents a major hurdle to the development of effective vaccines to these highly persistent pathogens. Application of next-generation or deep sequencing technologies to the study of host pathogens could significantly improve our understanding of the mechanisms by which these pathogens subvert host immunity, and aid in the development of novel vaccines and therapeutics. Here, we developed a 454 deep sequencing approach to enable the sensitive detection of low-frequency viral variants across the entire HIV-1 genome. When applied to the acute phase of HIV-1 infection we observed that the majority of early, low frequency mutations represented viral adaptations to host cellular immune responses, evidence of strong host immunity developing during the early decline of peak viral load. Rapid viral escape from the most dominant immune responses however correlated with loss of this initial viral control, suggestive of the importance of mounting immune responses against more conserved regions of the virus. These data provide a greater understanding of the early evolutionary events subverting the ability of host immune responses to control early HIV-1 replication, yielding important insight into the design of more effective vaccine strategies. Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia. Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia. Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia. The ability of HIV-1 and other highly variable pathogens to rapidly mutate to escape vaccine-induced immune responses represents a major hurdle to the development of effective vaccines to these highly persistent pathogens. Application of next-generation or deep sequencing technologies to the study of host pathogens could significantly improve our understanding of the mechanisms by which these pathogens subvert host immunity, and aid in the development of novel vaccines and therapeutics. Here, we developed a 454 deep sequencing approach to enable the sensitive detection of low-frequency viral variants across the entire HIV-1 genome. When applied to the acute phase of HIV-1 infection we observed that the majority of early, low frequency mutations represented viral adaptations to host cellular immune responses, evidence of strong host immunity developing during the early decline of peak viral load. Rapid viral escape from the most dominant immune responses however correlated with loss of this initial viral control, suggestive of the importance of mounting immune responses against more conserved regions of the virus. These data provide a greater understanding of the early evolutionary events subverting the ability of host immune responses to control early HIV-1 replication, yielding important insight into the design of more effective vaccine strategies. |
Audience | Academic |
Author | Zeng, Qiandong Ryan, Elizabeth M. Tully, Damien Zody, Michael C. Mayer, Ken H. Axten, Karen L. Shea, Terrance P. Tinsley, Jake P. Gladden, Adrianne D. Rychert, Jenna Henn, Matthew R. Dudek, Tim Brander, Christian Levin, Joshua Z. Birren, Bruce W. Walker, Bruce D. Battis, Laura Brumme, Chanson J. Streeck, Hendrik Boutwell, Christian L. Rosenberg, Eric Allen, Todd M. Pereyra, Florencia Erlich, Rachel L. Gnerre, Sante Wang, Yaoyu Günthard, Huldrych F. Berlin, Aaron M. Young, Sarah K. Hess, Christoph Zedlack, Carmen Gujja, Sharvari Brumme, Zabrina L. Gasser, Olivier Bloom, Allyson K. Lennon, Niall J. Bazner, Suzane Green, Lisa M. Macalalad, Alexander R. Malboeuf, Christine M. Charlebois, Patrick Berical, Andrew Casali, Monica Kemper, Michael Power, Karen A. Jessen, Heiko Altfeld, Marcus Newman, Ruchi |
AuthorAffiliation | 1 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America 8 Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America 9 The Fenway Institute, Fenway Health, Boston, Massachusetts, United States of America 2 Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America 10 Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America 6 Irsicaixa AIDS Research Institute-HIVACAT, Hospital University Germans Trias I Pujol, Badalona, Spain 7 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland 4 Immunobiology Lab, Department of Biomedicine, University Hospital Basel, Basel, Switzerland 3 HIV Clinic Praxis. Jessen, Berlin, Germany 5 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain Nationwide Children's Hospital, United States of America |
AuthorAffiliation_xml | – name: 4 Immunobiology Lab, Department of Biomedicine, University Hospital Basel, Basel, Switzerland – name: 7 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland – name: 2 Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America – name: 5 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain – name: 9 The Fenway Institute, Fenway Health, Boston, Massachusetts, United States of America – name: 10 Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America – name: 6 Irsicaixa AIDS Research Institute-HIVACAT, Hospital University Germans Trias I Pujol, Badalona, Spain – name: 1 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America – name: Nationwide Children's Hospital, United States of America – name: 3 HIV Clinic Praxis. Jessen, Berlin, Germany – name: 8 Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America |
Author_xml | – sequence: 1 givenname: Matthew R. surname: Henn fullname: Henn, Matthew R. – sequence: 2 givenname: Christian L. surname: Boutwell fullname: Boutwell, Christian L. – sequence: 3 givenname: Patrick surname: Charlebois fullname: Charlebois, Patrick – sequence: 4 givenname: Niall J. surname: Lennon fullname: Lennon, Niall J. – sequence: 5 givenname: Karen A. surname: Power fullname: Power, Karen A. – sequence: 6 givenname: Alexander R. surname: Macalalad fullname: Macalalad, Alexander R. – sequence: 7 givenname: Aaron M. surname: Berlin fullname: Berlin, Aaron M. – sequence: 8 givenname: Christine M. surname: Malboeuf fullname: Malboeuf, Christine M. – sequence: 9 givenname: Elizabeth M. surname: Ryan fullname: Ryan, Elizabeth M. – sequence: 10 givenname: Sante surname: Gnerre fullname: Gnerre, Sante – sequence: 11 givenname: Michael C. surname: Zody fullname: Zody, Michael C. – sequence: 12 givenname: Rachel L. surname: Erlich fullname: Erlich, Rachel L. – sequence: 13 givenname: Lisa M. surname: Green fullname: Green, Lisa M. – sequence: 14 givenname: Andrew surname: Berical fullname: Berical, Andrew – sequence: 15 givenname: Yaoyu surname: Wang fullname: Wang, Yaoyu – sequence: 16 givenname: Monica surname: Casali fullname: Casali, Monica – sequence: 17 givenname: Hendrik surname: Streeck fullname: Streeck, Hendrik – sequence: 18 givenname: Allyson K. surname: Bloom fullname: Bloom, Allyson K. – sequence: 19 givenname: Tim surname: Dudek fullname: Dudek, Tim – sequence: 20 givenname: Damien surname: Tully fullname: Tully, Damien – sequence: 21 givenname: Ruchi surname: Newman fullname: Newman, Ruchi – sequence: 22 givenname: Karen L. surname: Axten fullname: Axten, Karen L. – sequence: 23 givenname: Adrianne D. surname: Gladden fullname: Gladden, Adrianne D. – sequence: 24 givenname: Laura surname: Battis fullname: Battis, Laura – sequence: 25 givenname: Michael surname: Kemper fullname: Kemper, Michael – sequence: 26 givenname: Qiandong surname: Zeng fullname: Zeng, Qiandong – sequence: 27 givenname: Terrance P. surname: Shea fullname: Shea, Terrance P. – sequence: 28 givenname: Sharvari surname: Gujja fullname: Gujja, Sharvari – sequence: 29 givenname: Carmen surname: Zedlack fullname: Zedlack, Carmen – sequence: 30 givenname: Olivier surname: Gasser fullname: Gasser, Olivier – sequence: 31 givenname: Christian surname: Brander fullname: Brander, Christian – sequence: 32 givenname: Christoph surname: Hess fullname: Hess, Christoph – sequence: 33 givenname: Huldrych F. surname: Günthard fullname: Günthard, Huldrych F. – sequence: 34 givenname: Zabrina L. surname: Brumme fullname: Brumme, Zabrina L. – sequence: 35 givenname: Chanson J. surname: Brumme fullname: Brumme, Chanson J. – sequence: 36 givenname: Suzane surname: Bazner fullname: Bazner, Suzane – sequence: 37 givenname: Jenna surname: Rychert fullname: Rychert, Jenna – sequence: 38 givenname: Jake P. surname: Tinsley fullname: Tinsley, Jake P. – sequence: 39 givenname: Ken H. surname: Mayer fullname: Mayer, Ken H. – sequence: 40 givenname: Eric surname: Rosenberg fullname: Rosenberg, Eric – sequence: 41 givenname: Florencia surname: Pereyra fullname: Pereyra, Florencia – sequence: 42 givenname: Joshua Z. surname: Levin fullname: Levin, Joshua Z. – sequence: 43 givenname: Sarah K. surname: Young fullname: Young, Sarah K. – sequence: 44 givenname: Heiko surname: Jessen fullname: Jessen, Heiko – sequence: 45 givenname: Marcus surname: Altfeld fullname: Altfeld, Marcus – sequence: 46 givenname: Bruce W. surname: Birren fullname: Birren, Bruce W. – sequence: 47 givenname: Bruce D. surname: Walker fullname: Walker, Bruce D. – sequence: 48 givenname: Todd M. surname: Allen fullname: Allen, Todd M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22412369$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk81u1DAUhSNURH_gDRBEYgEsZrAdx45ZIFVtaUcqILW0LC3HuZm6SuxgOxVd8eo4dIo6VVUJZZHo-jsn9vG929mGdRay7CVGc1xw_OHSjd6qbj4MKs4xQqQk4km2hcuymPGC040735vZdgiXCFFcYPYs2ySEYlIwsZX9_nHhOsgPwboe8n2AIT-FnyNYbewyd21-tDif4fwErkB1IY8XkC_6Qek4rR0o313nX4x1Pj9X3igbQ342OJuYfrSQZNotrYkmlfZHP1nu6jEmD9uCnsrPs6dtMoYXq_dOdvb54Pve0ez42-Fib_d4pnkp4qzmmjaa83RKCpUmmjWgy4ZhhjmgqkCUV4KpslKs0BgRhBtGVaXqtippXRfFTvb6xnfoXJCr7ILEpBKoIkiwRCxuiMapSzl40yt_LZ0y8m_B-aVUPhrdgeQVZS1TTNSVoHWrFAhG6pKWummBEJ28Pq3-NtY9NBps9KpbM11fseZCLt2VLIjgZUWTwduVgXfpNkKUvQkauk5ZcGOQgnAhULrFRL57lMQIc8FKykhC39xDH85hRS1VOqqxrUs71JOp3E05F4hX1UTNH6DS00BvdOrU1qT6muD9miAxEX7FpRpDkIvTk_9gv66zr-5G_S_j2xZPwMcbQHsXgodWahPV1Htpx6ZLAclpnm6zkNM8ydU8JTG9J771f1T2B9KFI3k |
CitedBy_id | crossref_primary_10_1007_s00203_023_03579_9 crossref_primary_10_1016_j_imlet_2015_07_009 crossref_primary_10_1093_infdis_jiz368 crossref_primary_10_1146_annurev_immunol_051116_052155 crossref_primary_10_1007_s11908_014_0401_5 crossref_primary_10_1089_aid_2015_0330 crossref_primary_10_1371_journal_pone_0141723 crossref_primary_10_1371_journal_pone_0070318 crossref_primary_10_1186_1471_2164_14_444 crossref_primary_10_1007_s10096_013_1813_0 crossref_primary_10_1186_s12864_020_06801_w crossref_primary_10_4049_jimmunol_1502411 crossref_primary_10_1093_ve_vey007 crossref_primary_10_1097_MD_0000000000001865 crossref_primary_10_1038_s41467_020_20075_6 crossref_primary_10_1038_s41467_018_07209_7 crossref_primary_10_1128_JVI_02156_15 crossref_primary_10_1186_1471_2164_15_264 crossref_primary_10_1371_journal_pone_0185559 crossref_primary_10_1186_1471_2164_14_96 crossref_primary_10_1093_cid_ciab596 crossref_primary_10_1002_jmv_23853 crossref_primary_10_1098_rspb_2012_0595 crossref_primary_10_1093_bioinformatics_btx187 crossref_primary_10_1038_srep02837 crossref_primary_10_1097_QAD_0000000000001702 crossref_primary_10_1099_vir_0_045088_0 crossref_primary_10_24072_pcjournal_6 crossref_primary_10_1371_journal_ppat_1006510 crossref_primary_10_1016_j_meegid_2012_05_012 crossref_primary_10_1016_j_virusres_2019_197763 crossref_primary_10_1126_science_aae0491 crossref_primary_10_1534_genetics_115_177931 crossref_primary_10_1038_s41590_021_00982_6 crossref_primary_10_1016_j_biologicals_2015_11_003 crossref_primary_10_1093_nar_gkv630 crossref_primary_10_1128_JVI_03717_14 crossref_primary_10_3201_eid2702_202957 crossref_primary_10_1016_j_epidem_2015_09_001 crossref_primary_10_1016_j_virusres_2018_05_009 crossref_primary_10_1186_s13059_014_0517_9 crossref_primary_10_1084_jem_20151984 crossref_primary_10_1126_science_1254031 crossref_primary_10_1186_1742_4690_11_56 crossref_primary_10_1186_s12859_015_0607_z crossref_primary_10_1099_jgv_0_000231 crossref_primary_10_3389_fimmu_2017_00423 crossref_primary_10_1186_s12864_018_5070_6 crossref_primary_10_1016_j_tim_2014_12_008 crossref_primary_10_1038_nrg_2017_117 crossref_primary_10_1097_COH_0000000000000660 crossref_primary_10_1186_s12859_015_0458_7 crossref_primary_10_1097_QAD_0000000000000508 crossref_primary_10_1089_vim_2018_0040 crossref_primary_10_1097_COH_0b013e328356e9da crossref_primary_10_1186_1471_2164_14_674 crossref_primary_10_2174_1871526518666180222111611 crossref_primary_10_2217_fvl_12_45 crossref_primary_10_1097_COH_0000000000000541 crossref_primary_10_1371_journal_pone_0184496 crossref_primary_10_1128_JVI_01862_12 crossref_primary_10_1111_jam_12656 crossref_primary_10_3390_vaccines4030027 crossref_primary_10_12688_wellcomeopenres_13538_2 crossref_primary_10_12688_wellcomeopenres_13538_1 crossref_primary_10_3390_v7102881 crossref_primary_10_1007_s00239_013_9603_y crossref_primary_10_1371_journal_pone_0080045 crossref_primary_10_1016_j_meegid_2017_09_008 crossref_primary_10_1128_JVI_01832_18 crossref_primary_10_1371_journal_pone_0171333 crossref_primary_10_3389_fimmu_2015_00506 crossref_primary_10_7448_IAS_18_1_20035 crossref_primary_10_1111_jeb_13225 crossref_primary_10_1103_PhysRevE_88_062705 crossref_primary_10_1089_aid_2014_0097 crossref_primary_10_1371_journal_pbio_1002251 crossref_primary_10_1038_s41587_018_0006_x crossref_primary_10_1371_journal_pgen_1004914 crossref_primary_10_1128_JCM_02479_15 crossref_primary_10_1371_journal_pone_0139037 crossref_primary_10_1128_JVI_01574_17 crossref_primary_10_1371_journal_ppat_1008577 crossref_primary_10_3389_fimmu_2021_709962 crossref_primary_10_1186_s12864_015_1456_x crossref_primary_10_1371_journal_pcbi_1004721 crossref_primary_10_1371_journal_pcbi_1003878 crossref_primary_10_1371_journal_ppat_1005619 crossref_primary_10_1371_journal_pcbi_1003515 crossref_primary_10_1111_j_1469_0691_2012_03984_x crossref_primary_10_7554_eLife_11282 crossref_primary_10_1002_hep_29837 crossref_primary_10_1016_j_meegid_2020_104277 crossref_primary_10_1007_s10096_018_3235_5 crossref_primary_10_1038_nature11443 crossref_primary_10_1159_000345935 crossref_primary_10_1128_JVI_01998_12 crossref_primary_10_1186_1742_4690_9_108 crossref_primary_10_1098_rsif_2017_0921 crossref_primary_10_1016_j_meegid_2018_11_004 crossref_primary_10_1371_journal_pone_0135903 crossref_primary_10_4049_jimmunol_1300962 crossref_primary_10_1038_nm_4100 crossref_primary_10_1016_j_immuni_2012_11_021 crossref_primary_10_1186_s12977_015_0148_6 crossref_primary_10_1016_j_immuni_2012_11_022 crossref_primary_10_1186_s12865_022_00491_7 crossref_primary_10_1371_journal_pone_0068188 crossref_primary_10_3390_v8010012 crossref_primary_10_1016_S2666_5247_22_00327_5 crossref_primary_10_1186_1471_2164_14_501 crossref_primary_10_1186_s12977_018_0444_z crossref_primary_10_1186_s12977_014_0069_9 crossref_primary_10_1371_journal_pone_0054220 crossref_primary_10_1038_s41598_017_04931_y crossref_primary_10_3389_fmicb_2017_01168 crossref_primary_10_3389_fimmu_2014_00661 crossref_primary_10_1128_microbiolspec_AME_0003_2018 crossref_primary_10_1093_bioinformatics_btu295 crossref_primary_10_1371_journal_pcbi_1003899 crossref_primary_10_1073_pnas_2109172119 crossref_primary_10_1093_nar_gku473 crossref_primary_10_1093_infdis_jis679 crossref_primary_10_1038_nrmicro3471 crossref_primary_10_1089_aid_2017_0046 crossref_primary_10_1016_j_jtbi_2014_02_020 crossref_primary_10_1098_rstb_2022_0056 crossref_primary_10_1186_s12859_017_1630_z crossref_primary_10_1093_bib_bbs081 crossref_primary_10_1186_s13059_018_1618_7 crossref_primary_10_1002_wsbm_1446 crossref_primary_10_1128_JVI_00522_15 crossref_primary_10_3389_fimmu_2020_622343 crossref_primary_10_1016_j_immuni_2021_08_007 crossref_primary_10_1093_bioinformatics_btt434 crossref_primary_10_1146_annurev_genom_091212_153406 crossref_primary_10_1186_1471_2164_15_S6_S17 crossref_primary_10_1186_s12977_014_0064_1 crossref_primary_10_1002_jmv_25746 crossref_primary_10_1097_QAD_0b013e32835cab64 crossref_primary_10_3389_fmicb_2015_01258 crossref_primary_10_1371_journal_pbio_3002225 crossref_primary_10_1371_journal_pone_0140912 crossref_primary_10_1128_JVI_00814_19 crossref_primary_10_1371_journal_pone_0119886 crossref_primary_10_1007_s13365_016_0462_3 crossref_primary_10_1089_aid_2017_0061 crossref_primary_10_3390_ijms25073696 crossref_primary_10_1089_aid_2013_0175 crossref_primary_10_1371_journal_pcbi_1004249 crossref_primary_10_1016_j_jhep_2016_07_048 crossref_primary_10_1093_nar_gks794 crossref_primary_10_1186_1471_2105_14_255 crossref_primary_10_1111_hiv_12507 crossref_primary_10_1093_bib_bbx079 crossref_primary_10_1093_molbev_msy088 crossref_primary_10_1172_JCI73104 crossref_primary_10_1084_jem_20162123 crossref_primary_10_1016_j_jviromet_2014_09_009 crossref_primary_10_1007_s00705_017_3599_3 crossref_primary_10_1093_bib_bbaa101 crossref_primary_10_3390_v11100932 crossref_primary_10_1371_journal_ppat_1004838 crossref_primary_10_1016_j_jcv_2014_06_013 crossref_primary_10_1111_bph_12580 crossref_primary_10_1128_mBio_02490_21 crossref_primary_10_1186_s12985_020_01473_0 crossref_primary_10_1128_JVI_02361_13 crossref_primary_10_1128_JVI_00690_18 crossref_primary_10_1186_1471_2164_13_475 crossref_primary_10_1016_j_jviromet_2013_01_019 crossref_primary_10_1128_JVI_03128_13 crossref_primary_10_1128_JCM_01516_12 crossref_primary_10_1007_s13337_020_00595_x crossref_primary_10_1128_JVI_00483_14 crossref_primary_10_1128_JVI_00865_13 crossref_primary_10_1016_j_chom_2012_10_002 crossref_primary_10_1093_nar_gkv128 crossref_primary_10_1128_JVI_01876_15 crossref_primary_10_1002_lt_24349 crossref_primary_10_1038_nature14053 crossref_primary_10_1073_pnas_1802028115 crossref_primary_10_1016_j_virusres_2016_12_009 crossref_primary_10_3390_v11040317 crossref_primary_10_1016_j_virol_2013_03_021 crossref_primary_10_1016_j_virusres_2016_08_004 crossref_primary_10_1371_journal_pone_0097505 crossref_primary_10_1016_j_virusres_2016_12_008 crossref_primary_10_1126_science_aav5095 crossref_primary_10_1038_s41598_017_03581_4 crossref_primary_10_1101_gr_276917_122 crossref_primary_10_12688_f1000research_7111_1 crossref_primary_10_1128_mbio_02417_23 crossref_primary_10_3390_math10010096 crossref_primary_10_1128_jvi_01720_23 crossref_primary_10_1093_jac_dkx475 crossref_primary_10_1111_liv_13134 crossref_primary_10_4049_jimmunol_1400793 crossref_primary_10_1093_ve_veac008 crossref_primary_10_1186_s12977_018_0390_9 crossref_primary_10_1371_journal_pone_0090485 crossref_primary_10_1159_000121607 crossref_primary_10_1016_j_virol_2018_08_005 crossref_primary_10_1016_j_jviromet_2016_03_010 crossref_primary_10_2174_1570162X16666180626152252 crossref_primary_10_1093_ofid_ofz125 crossref_primary_10_1128_JVI_01440_15 crossref_primary_10_1371_journal_ppat_1008853 crossref_primary_10_1093_nar_gku537 crossref_primary_10_3390_v12070758 crossref_primary_10_1371_journal_pone_0066129 crossref_primary_10_1186_2042_5783_4_1 crossref_primary_10_1371_journal_pcbi_1004694 crossref_primary_10_1128_JVI_00771_17 crossref_primary_10_3390_vaccines12030279 crossref_primary_10_1186_s12977_016_0321_6 crossref_primary_10_1002_bies_202000159 crossref_primary_10_1128_JVI_00736_12 crossref_primary_10_1128_JVI_01187_17 crossref_primary_10_1016_j_virusres_2016_09_016 crossref_primary_10_1093_bioinformatics_btu587 crossref_primary_10_1128_JVI_01164_14 crossref_primary_10_1186_1742_4690_10_49 crossref_primary_10_1007_s10344_014_0882_4 crossref_primary_10_1128_JVI_01334_14 crossref_primary_10_1016_j_virusres_2016_11_023 crossref_primary_10_1128_AAC_02710_13 crossref_primary_10_1371_journal_pone_0090581 crossref_primary_10_1186_s12917_016_0902_6 crossref_primary_10_1016_j_jviromet_2016_07_010 crossref_primary_10_1186_s12977_015_0179_z crossref_primary_10_1371_journal_pgen_1004295 crossref_primary_10_3109_10408363_2016_1163663 crossref_primary_10_1371_journal_pone_0061383 crossref_primary_10_3390_v14122682 crossref_primary_10_3389_fpls_2018_00932 crossref_primary_10_3390_ijms19041241 crossref_primary_10_1186_s12981_017_0144_0 crossref_primary_10_1371_journal_pone_0076502 crossref_primary_10_1186_s12977_022_00591_7 crossref_primary_10_1016_j_immuni_2018_08_002 |
Cites_doi | 10.1128/JVI.01543-07 10.1016/j.gene.2010.08.009 10.1128/JVI.02660-07 10.1086/525281 10.1016/j.jviromet.2010.04.030 10.4049/jimmunol.176.10.6130 10.1084/jem.20041006 10.1128/JVI.00117-10 10.1371/journal.pone.0015639 10.1038/nm.2316 10.1371/journal.pone.0005683 10.1128/JVI.79.21.13239-13249.2005 10.1128/JVI.01827-07 10.1371/journal.pone.0006687 10.1073/pnas.92.15.6971 10.1371/journal.ppat.1000033 10.1038/nature03959 10.1073/pnas.0630530100 10.1126/science.272.5265.1167 10.1128/JVI.02132-08 10.1016/S0140-6736(97)03256-X 10.1128/JVI.00575-06 10.1073/pnas.0802203105 10.1371/journal.ppat.1000274 10.1097/00002030-200309050-00005 10.1371/journal.pone.0012303 10.1371/journal.ppat.1001273 10.1038/35036559 10.1038/nature07746 10.1128/JVI.78.18.10064-10073.2004 10.1128/JVI.80.7.3617-3623.2006 10.1093/molbev/msp289 10.1084/jem.20090365 10.1128/JVI.78.13.7069-7078.2004 10.1128/JVI.01378-10 10.1084/jem.20072457 10.1038/nm.2108 10.1371/journal.ppat.1001123 10.1371/journal.pmed.0030403 10.1371/journal.pbio.0040090 10.1371/journal.pcbi.1000225 10.1084/jem.20080281 10.1128/JVI.01369-07 10.1101/gr.6468307 10.1371/journal.pone.0011345 10.1086/596736 10.1128/JVI.00968-06 10.1371/journal.ppat.1000365 10.1038/35035083 10.1128/JVI.02265-08 10.1038/nm0297-212 10.4049/jimmunol.174.12.7524 10.1128/JVI.02356-07 10.1016/j.it.2006.09.007 10.1128/JVI.79.20.12952-12960.2005 10.1128/JVI.00897-09 10.1128/JVI.79.8.5000-5005.2005 10.1128/JVI.00182-09 10.1073/pnas.1105315108 10.1038/nm1461 10.1086/529206 10.1073/pnas.94.5.1890 10.1084/jem.20041455 10.1038/nm0297-205 10.1128/JCM.43.1.406-413.2005 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2012 Public Library of Science 2012 Henn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, et al. (2012) Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection. PLoS Pathog 8(3): e1002529. doi:10.1371/journal.ppat.1002529 Henn et al. 2012 |
Copyright_xml | – notice: COPYRIGHT 2012 Public Library of Science – notice: 2012 Henn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, et al. (2012) Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection. PLoS Pathog 8(3): e1002529. doi:10.1371/journal.ppat.1002529 – notice: Henn et al. 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QL 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7T5 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1002529 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Sciences Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Immunology Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Medicine |
DocumentTitleAlternate | Deep Sequencing of HIV-1 |
EISSN | 1553-7374 |
ExternalDocumentID | 1289082096 oai_doaj_org_article_7846f6a69b894bfaae962b545cdfe22c PMC3297584 2896638341 A304307886 22412369 10_1371_journal_ppat_1002529 |
Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI007245 – fundername: PHS HHS grantid: HHSN272200900006C – fundername: NIAID NIH HHS grantid: HHSN272200900018C – fundername: NIAID NIH HHS grantid: P01 AI074415 – fundername: NIAID NIH HHS grantid: P01-AI074415 – fundername: NIAID NIH HHS grantid: HHSN272200900006C – fundername: NIAID NIH HHS grantid: T32 AI007387 – fundername: NIAID NIH HHS grantid: P30 AI060354 – fundername: NIAID NIH HHS grantid: T32-AI07245 – fundername: PHS HHS grantid: HHSN272200900018C |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 RIG RZL WOQ PMFND 3V. 7QL 7U9 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7T5 7X8 5PM PUEGO AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c759t-b7c4dc770254e8c2c6dec5d61617e083047896a58a63c10201d64a8abf854bb33 |
IEDL.DBID | DOA |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Oct 01 00:11:19 EDT 2023 Wed Aug 27 01:29:21 EDT 2025 Thu Aug 21 17:38:03 EDT 2025 Fri Jul 11 01:55:59 EDT 2025 Mon Jul 21 11:38:44 EDT 2025 Fri Jul 25 12:16:47 EDT 2025 Tue Jun 17 21:10:48 EDT 2025 Tue Jun 10 20:40:09 EDT 2025 Fri Jun 27 04:09:47 EDT 2025 Fri Jun 27 04:19:15 EDT 2025 Thu Apr 03 07:09:21 EDT 2025 Tue Jul 01 02:54:48 EDT 2025 Thu Apr 24 22:50:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | HIV Infections HIV-1 Genome, Viral Genome-Wide Association Study Oligonucleotide Array Sequence Analysis Humans CD8-Positive T-Lymphocytes Genetic Variation Genomic Structural Variation Immune Evasion Sequence Analysis, RNA RNA, Viral Viral Vaccines |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c759t-b7c4dc770254e8c2c6dec5d61617e083047896a58a63c10201d64a8abf854bb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 Conceived and designed the experiments: TMA MRH CLB PC NJL KAP ARM MCZ. Performed the experiments: CMM EMR RLE LMG AB YW MC HS AKB TD RN ADG LB MK. Analyzed the data: TMA MRH CLB PC NJL KAP ARM AMB CMM EMR SG MCZ RLE YW HS DT RN QZ TPS SG JZL SKY MA. Contributed reagents/materials/analysis tools: KLA CZ OG CB CH HFG ZLB CJB SB JR JPT KHM ER FP HJ BWB BDW. Wrote the paper: TMA MRH CLB PC NJL KAP ARM MCZ BWB BDW. |
OpenAccessLink | https://doaj.org/article/7846f6a69b894bfaae962b545cdfe22c |
PMID | 22412369 |
PQID | 1289082096 |
PQPubID | 1436335 |
ParticipantIDs | plos_journals_1289082096 doaj_primary_oai_doaj_org_article_7846f6a69b894bfaae962b545cdfe22c pubmedcentral_primary_oai_pubmedcentral_nih_gov_3297584 proquest_miscellaneous_927990241 proquest_miscellaneous_1017965462 proquest_journals_1289082096 gale_infotracmisc_A304307886 gale_infotracacademiconefile_A304307886 gale_incontextgauss_ISR_A304307886 gale_incontextgauss_ISN_A304307886 pubmed_primary_22412369 crossref_citationtrail_10_1371_journal_ppat_1002529 crossref_primary_10_1371_journal_ppat_1002529 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2012 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | AM Tsibris (ref22) 2009; 4 C Hedskog (ref21) 2010; 5 W Fischer (ref51) 2007; 13 H Streeck (ref38) 2008; 205 TM Allen (ref37) 2005; 79 JF Salazar-Gonzalez (ref16) 2008; 82 M Altfeld (ref43) 2005; 79 S Santra (ref50) 2010; 16 D Kwiatkowski (ref4) 1997; 350 W Fischer (ref26) 2010; 5 H Streeck (ref44) 2009; 83 JM Carlson (ref53) 2008; 4 V Dahirel (ref56) 2011; 108 BB Simen (ref18) 2009; 199 J Mellors (ref47) 1996; 272 TC Friedrich (ref48) 2004; 78 M Rolland (ref64) 2011; 17 C Wang (ref20) 2007; 17 P Borrow (ref8) 1997; 3 A Schneidewind (ref54) 2008; 82 Y Mitsuya (ref27) 2008; 82 P Zimbwa (ref36) 2006; 81 B Asquith (ref65) 2006; 4 Y Liu (ref14) 2006; 80 BF Keele (ref30) 2008; 105 ZL Brumme (ref41) 2009; 4 D Altshuler (ref28) 2000; 407 TM Love (ref24) 2010; 84 MA Brockman (ref52) 2007; 81 TM Allen (ref35) 2004; 78 M Altfeld (ref55) 2006; 27 MR Jordan (ref61) 2010; 168 BN Bimber (ref25) 2010; 84 J Martinez-Picado (ref11) 2006; 80 T Miura (ref13) 2009; 83 MS Bennett (ref49) 2008; 197 S Alizon (ref60) 2010; 6 M Negroni (ref63) 1995; 92 A Leslie (ref57) 2005; 201 DR Chopera (ref59) 2008; 4 G Ferrari (ref46) 2011; 7 J Timm (ref3) 2004; 200 GS Gottlieb (ref31) 2008; 197 MR Abrahams (ref32) 2009; 83 PA Goepfert (ref58) 2008; 205 EW Fiebig (ref29) 2003; 17 Y Kawashima (ref42) 2009; 458 AF Poon (ref19) 2010; 27 TM Allen (ref1) 2000; 407 PJ Goulder (ref2) 1997; 3 TM Allen (ref5) 2005; 79 DD Richman (ref9) 2003; 100 RM Troyer (ref12) 2009; 5 BN Bimber (ref23) 2009; 83 EL Turnbull (ref40) 2006; 176 DA Price (ref6) 1997; 94 N Goonetilleke (ref7) 2009; 206 S Palmer (ref15) 2005; 43 A Schneidewind (ref10) 2007; 81 Y Liu (ref34) 2011; 6 M Margulies (ref17) 2005; 437 RP Smyth (ref62) 2010; 469 ME Feeney (ref39) 2005; 174 M Altfeld (ref45) 2006; 3 RE Haaland (ref33) 2009; 5 15635002 - J Clin Microbiol. 2005 Jan;43(1):406-13 17187074 - Nat Med. 2007 Jan;13(1):100-6 12644702 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4144-9 12960819 - AIDS. 2003 Sep 5;17(13):1871-9 15781581 - J Exp Med. 2005 Mar 21;201(6):891-902 17600086 - Genome Res. 2007 Aug;17(8):1195-201 18184090 - J Infect Dis. 2008 Feb 1;197(3):390-7 9018241 - Nat Med. 1997 Feb;3(2):212-7 19193811 - J Virol. 2009 Apr;83(8):3556-67 18419538 - J Infect Dis. 2008 Apr 1;197(7):1011-5 15331739 - J Virol. 2004 Sep;78(18):10064-73 18256145 - J Virol. 2008 Apr;82(8):3952-70 15944251 - J Immunol. 2005 Jun 15;174(12):7524-30 20628644 - PLoS One. 2010;5(7):e11345 9018240 - Nat Med. 1997 Feb;3(2):205-11 9400530 - Lancet. 1997 Dec 6;350(9092):1696-701 20173754 - Nat Med. 2010 Mar;16(3):324-8 16515366 - PLoS Biol. 2006 Apr;4(4):e90 18625749 - J Exp Med. 2008 Aug 4;205(8):1789-96 16670322 - J Immunol. 2006 May 15;176(10):6130-46 19242411 - Nature. 2009 Apr 2;458(7238):641-5 19165325 - PLoS Pathog. 2009 Jan;5(1):e1000274 19515775 - J Virol. 2009 Aug;83(16):8247-53 7542781 - Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6971-5 17108020 - J Virol. 2007 Feb;81(4):2031-8 18490657 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7552-7 19955476 - Mol Biol Evol. 2010 Apr;27(4):819-32 21358627 - Nat Med. 2011 Mar;17(3):366-71 15194783 - J Virol. 2004 Jul;78(13):7069-78 19343217 - PLoS Pathog. 2009 Apr;5(4):e1000365 16997629 - Trends Immunol. 2006 Nov;27(11):504-10 20808830 - PLoS One. 2010;5(8):e12303 19023406 - PLoS Comput Biol. 2008 Nov;4(11):e1000225 20941398 - PLoS Pathog. 2010;6(9):e1001123 20844037 - J Virol. 2010 Nov;84(22):12087-92 21347345 - PLoS Pathog. 2011;7(2):e1001273 20335256 - J Virol. 2010 Jun;84(11):5802-14 18715933 - J Virol. 2008 Nov;82(21):10747-55 8638160 - Science. 1996 May 24;272(5265):1167-70 16188997 - J Virol. 2005 Oct;79(20):12952-60 16973556 - J Virol. 2006 Oct;80(19):9519-29 16056220 - Nature. 2005 Sep 15;437(7057):376-80 18369479 - PLoS Pathog. 2008 Mar;4(3):e1000033 21283794 - PLoS One. 2011;6(1):e15639 16227247 - J Virol. 2005 Nov;79(21):13239-49 19479085 - PLoS One. 2009;4(5):e5683 16537629 - J Virol. 2006 Apr;80(7):3617-23 19458000 - J Virol. 2009 Aug;83(15):7641-8 19116253 - J Virol. 2009 Mar;83(6):2743-55 11014195 - Nature. 2000 Sep 21;407(6802):386-90 15611288 - J Exp Med. 2004 Dec 20;200(12):1593-604 15795285 - J Virol. 2005 Apr;79(8):5000-5 21690407 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11530-5 20451557 - J Virol Methods. 2010 Sep;168(1-2):114-20 19487423 - J Exp Med. 2009 Jun 8;206(6):1253-72 17804494 - J Virol. 2007 Nov;81(22):12382-93 18385228 - J Virol. 2008 Jun;82(11):5594-605 20833233 - Gene. 2010 Dec 1;469(1-2):45-51 18426987 - J Exp Med. 2008 May 12;205(5):1009-17 17076553 - PLoS Med. 2006 Oct;3(10):e403 17728232 - J Virol. 2007 Nov;81(22):12608-18 19690614 - PLoS One. 2009;4(8):e6687 11029002 - Nature. 2000 Sep 28;407(6803):513-6 9050875 - Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1890-5 19210162 - J Infect Dis. 2009 Mar 1;199(5):693-701 |
References_xml | – volume: 81 start-page: 12382 year: 2007 ident: ref10 article-title: Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. publication-title: J Virol doi: 10.1128/JVI.01543-07 – volume: 469 start-page: 45 year: 2010 ident: ref62 article-title: Reducing chimera formation during PCR amplification to ensure accurate genotyping. publication-title: Gene doi: 10.1016/j.gene.2010.08.009 – volume: 82 start-page: 3952 year: 2008 ident: ref16 article-title: Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. publication-title: J Virol doi: 10.1128/JVI.02660-07 – volume: 197 start-page: 390 year: 2008 ident: ref49 article-title: Cross-clade detection of HIV-1-specific cytotoxic T lymphocytes does not reflect cross-clade antiviral activity. publication-title: J Infect Dis doi: 10.1086/525281 – volume: 168 start-page: 114 year: 2010 ident: ref61 article-title: Comparison of standard PCR/cloning to single genome sequencing for analysis of HIV-1 populations. publication-title: J Virol Methods doi: 10.1016/j.jviromet.2010.04.030 – volume: 176 start-page: 6130 year: 2006 ident: ref40 article-title: HIV-1 epitope-specific CD8+ T cell responses strongly associated with delayed disease progression cross-recognize epitope variants efficiently. publication-title: J Immunol doi: 10.4049/jimmunol.176.10.6130 – volume: 200 start-page: 1593 year: 2004 ident: ref3 article-title: CD8 epitope escape and reversion in acute HCV infection. publication-title: J Exp Med doi: 10.1084/jem.20041006 – volume: 84 start-page: 5802 year: 2010 ident: ref24 article-title: Mathematical Modeling of Ultradeep Sequencing Data Reveals That Acute CD8+ T-Lymphocyte Responses Exert Strong Selective Pressure in Simian Immunodeficiency Virus-Infected Macaques, but Still Fail to Clear Founder Epitope Sequences. publication-title: J Virol doi: 10.1128/JVI.00117-10 – volume: 6 start-page: e15639 year: 2011 ident: ref34 article-title: Dynamics of viral evolution and CTL responses in HIV-1 infection. publication-title: PLoS One doi: 10.1371/journal.pone.0015639 – volume: 17 start-page: 366 year: 2011 ident: ref64 article-title: Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. publication-title: Nat Med doi: 10.1038/nm.2316 – volume: 4 start-page: e5683 year: 2009 ident: ref22 article-title: Quantitative deep sequencing reveals dynamic HIV-1 escape and large population shifts during CCR5 antagonist therapy in vivo. publication-title: PLoS One doi: 10.1371/journal.pone.0005683 – volume: 79 start-page: 13239 year: 2005 ident: ref5 article-title: Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. publication-title: J Virol doi: 10.1128/JVI.79.21.13239-13249.2005 – volume: 82 start-page: 10747 year: 2008 ident: ref27 article-title: Minority human immunodeficiency virus type 1 variants in antiretroviral-naive persons with reverse transcriptase codon 215 revertant mutations. publication-title: J Virol doi: 10.1128/JVI.01827-07 – volume: 4 start-page: e6687 year: 2009 ident: ref41 article-title: HLA-associated immune escape pathways in HIV-1 subtype B Gag, Pol and Nef proteins. publication-title: PLoS One doi: 10.1371/journal.pone.0006687 – volume: 92 start-page: 6971 year: 1995 ident: ref63 article-title: Homologous recombination promoted by reverse transcriptase during copying of two distinct RNA templates. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.15.6971 – volume: 4 start-page: e1000033 year: 2008 ident: ref59 article-title: Transmission of HIV-1 CTL escape variants provides HLA mis-matched recipients with a survival advantage. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000033 – volume: 437 start-page: 376 year: 2005 ident: ref17 article-title: Genome sequencing in microfabricated high-density picolitre reactors. publication-title: Nature doi: 10.1038/nature03959 – volume: 100 start-page: 4144 year: 2003 ident: ref9 article-title: Rapid evolution of the neutralizing antibody response to HIV type 1 infection. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0630530100 – volume: 272 start-page: 1167 year: 1996 ident: ref47 article-title: Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. publication-title: Science doi: 10.1126/science.272.5265.1167 – volume: 83 start-page: 3556 year: 2009 ident: ref32 article-title: Quantitating the multiplicity of infection with human immunodeficiency virus type 1 subtype C reveals a non-poisson distribution of transmitted variants. publication-title: J Virol doi: 10.1128/JVI.02132-08 – volume: 350 start-page: 1696 year: 1997 ident: ref4 article-title: Development of a malaria vaccine. publication-title: Lancet doi: 10.1016/S0140-6736(97)03256-X – volume: 80 start-page: 9519 year: 2006 ident: ref14 article-title: Selection on the human immunodeficiency virus type 1 proteome following primary infection. publication-title: J Virol doi: 10.1128/JVI.00575-06 – volume: 105 start-page: 7552 year: 2008 ident: ref30 article-title: Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0802203105 – volume: 5 start-page: e1000274 year: 2009 ident: ref33 article-title: Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000274 – volume: 17 start-page: 1871 year: 2003 ident: ref29 article-title: Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. publication-title: Aids doi: 10.1097/00002030-200309050-00005 – volume: 5 start-page: e12303 year: 2010 ident: ref26 article-title: Transmission of single HIV-1 genomes and dynamics of early immune escape revealed by ultra-deep sequencing. publication-title: PLoS One doi: 10.1371/journal.pone.0012303 – volume: 7 start-page: e1001273 year: 2011 ident: ref46 article-title: Relationship between functional profile of HIV-1 specific CD8 T cells and epitope variability with the selection of escape mutants in acute HIV-1 infection. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001273 – volume: 407 start-page: 386 year: 2000 ident: ref1 article-title: Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. publication-title: Nature doi: 10.1038/35036559 – volume: 458 start-page: 641 year: 2009 ident: ref42 article-title: Adaptation of HIV-1 to human leukocyte antigen class I. publication-title: Nature doi: 10.1038/nature07746 – volume: 78 start-page: 10064 year: 2004 ident: ref48 article-title: Consequences of cytotoxic T-lymphocyte escape: common escape mutations in simian immunodeficiency virus are poorly recognized in naive hosts. publication-title: J Virol doi: 10.1128/JVI.78.18.10064-10073.2004 – volume: 80 start-page: 3617 year: 2006 ident: ref11 article-title: Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. publication-title: J Virol doi: 10.1128/JVI.80.7.3617-3623.2006 – volume: 27 start-page: 819 year: 2010 ident: ref19 article-title: Phylogenetic analysis of population-based and deep sequencing data to identify coevolving sites in the nef gene of HIV-1. publication-title: Mol Biol Evol doi: 10.1093/molbev/msp289 – volume: 206 start-page: 1253 year: 2009 ident: ref7 article-title: The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. publication-title: J Exp Med doi: 10.1084/jem.20090365 – volume: 78 start-page: 7069 year: 2004 ident: ref35 article-title: Selection, transmission, and reversion of an antigen-processing cytotoxic T-lymphocyte escape mutation in human immunodeficiency virus type 1 infection. publication-title: J Virol doi: 10.1128/JVI.78.13.7069-7078.2004 – volume: 84 start-page: 12087 year: 2010 ident: ref25 article-title: Whole genome characterization of HIV/SIV intra-host diversity by ultra-deep pyrosequencing. publication-title: J Virol doi: 10.1128/JVI.01378-10 – volume: 205 start-page: 1009 year: 2008 ident: ref58 article-title: Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. publication-title: J Exp Med doi: 10.1084/jem.20072457 – volume: 16 start-page: 324 year: 2010 ident: ref50 article-title: Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys. publication-title: Nat Med doi: 10.1038/nm.2108 – volume: 6 start-page: e1001123 year: 2010 ident: ref60 article-title: Phylogenetic approach reveals that virus genotype largely determines HIV set-point viral load. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001123 – volume: 3 start-page: e403 year: 2006 ident: ref45 article-title: HLA Alleles Associated with Delayed Progression to AIDS Contribute Strongly to the Initial CD8(+) T Cell Response against HIV-1. publication-title: PLoS Med doi: 10.1371/journal.pmed.0030403 – volume: 4 start-page: e90 year: 2006 ident: ref65 article-title: Inefficient cytotoxic T lymphocyte-mediated killing of HIV-1-infected cells in vivo. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040090 – volume: 4 start-page: e1000225 year: 2008 ident: ref53 article-title: Phylogenetic dependency networks: inferring patterns of CTL escape and codon covariation in HIV-1 Gag. publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000225 – volume: 205 start-page: 1789 year: 2008 ident: ref38 article-title: Immune-driven recombination and loss of control after HIV superinfection. publication-title: J Exp Med doi: 10.1084/jem.20080281 – volume: 81 start-page: 12608 year: 2007 ident: ref52 article-title: Escape and compensation from early HLA-B57-mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus type 1 Gag alter capsid interactions with cyclophilin A. publication-title: J Virol doi: 10.1128/JVI.01369-07 – volume: 17 start-page: 1195 year: 2007 ident: ref20 article-title: Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. publication-title: Genome Res doi: 10.1101/gr.6468307 – volume: 5 start-page: e11345 year: 2010 ident: ref21 article-title: Dynamics of HIV-1 quasispecies during antiviral treatment dissected using ultra-deep pyrosequencing. publication-title: PLoS One doi: 10.1371/journal.pone.0011345 – volume: 199 start-page: 693 year: 2009 ident: ref18 article-title: Low-abundance drug-resistant viral variants in chronically HIV-infected, antiretroviral treatment-naive patients significantly impact treatment outcomes. publication-title: J Infect Dis doi: 10.1086/596736 – volume: 81 start-page: 2031 year: 2006 ident: ref36 article-title: Precise Identification Of An Hiv-1 Antigen Processing Mutant. publication-title: J Virol doi: 10.1128/JVI.00968-06 – volume: 5 start-page: e1000365 year: 2009 ident: ref12 article-title: Variable fitness impact of HIV-1 escape mutations to cytotoxic T lymphocyte (CTL) response. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000365 – volume: 407 start-page: 513 year: 2000 ident: ref28 article-title: An SNP map of the human genome generated by reduced representation shotgun sequencing. publication-title: Nature doi: 10.1038/35035083 – volume: 83 start-page: 2743 year: 2009 ident: ref13 article-title: HLA-B57/B*5801 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte [corrected] recognition. publication-title: J Virol doi: 10.1128/JVI.02265-08 – volume: 3 start-page: 212 year: 1997 ident: ref2 article-title: Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. publication-title: Nat Med doi: 10.1038/nm0297-212 – volume: 174 start-page: 7524 year: 2005 ident: ref39 article-title: HIV-1 viral escape in infancy followed by emergence of a variant-specific CTL response. publication-title: J Immunol doi: 10.4049/jimmunol.174.12.7524 – volume: 82 start-page: 5594 year: 2008 ident: ref54 article-title: Structural and functional constraints limit options for cytotoxic T-lymphocyte escape in the immunodominant HLA-B27-restricted epitope in human immunodeficiency virus type 1 capsid. publication-title: J Virol doi: 10.1128/JVI.02356-07 – volume: 27 start-page: 504 year: 2006 ident: ref55 article-title: Hitting HIV where it hurts: an alternative approach to HIV vaccine design. publication-title: Trends Immunol doi: 10.1016/j.it.2006.09.007 – volume: 79 start-page: 12952 year: 2005 ident: ref37 article-title: De novo generation of escape variant-specific CD8+ T-cell responses following cytotoxic T-lymphocyte escape in chronic human immunodeficiency virus type 1 infection. publication-title: J Virol doi: 10.1128/JVI.79.20.12952-12960.2005 – volume: 83 start-page: 8247 year: 2009 ident: ref23 article-title: Ultradeep pyrosequencing detects complex patterns of CD8+ T-lymphocyte escape in simian immunodeficiency virus-infected macaques. publication-title: J Virol doi: 10.1128/JVI.00897-09 – volume: 79 start-page: 5000 year: 2005 ident: ref43 article-title: The majority of currently circulating human immunodeficiency virus type 1 clade B viruses fail to prime cytotoxic T-lymphocyte responses against an otherwise immunodominant HLA-A2-restricted epitope: implications for vaccine design. publication-title: J Virol doi: 10.1128/JVI.79.8.5000-5005.2005 – volume: 83 start-page: 7641 year: 2009 ident: ref44 article-title: Human immunodeficiency virus type 1-specific CD8+ T-cell responses during primary infection are major determinants of the viral set point and loss of CD4+ T cells. publication-title: J Virol doi: 10.1128/JVI.00182-09 – volume: 108 start-page: 11530 year: 2011 ident: ref56 article-title: From the Cover: Coordinate linkage of HIV evolution reveals regions of immunological vulnerability. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1105315108 – volume: 13 start-page: 100 year: 2007 ident: ref51 article-title: Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. publication-title: Nat Med doi: 10.1038/nm1461 – volume: 197 start-page: 1011 year: 2008 ident: ref31 article-title: HIV-1 variation before seroconversion in men who have sex with men: analysis of acute/early HIV infection in the multicenter AIDS cohort study. publication-title: J Infect Dis doi: 10.1086/529206 – volume: 94 start-page: 1890 year: 1997 ident: ref6 article-title: Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.5.1890 – volume: 201 start-page: 891 year: 2005 ident: ref57 article-title: Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. publication-title: J Exp Med doi: 10.1084/jem.20041455 – volume: 3 start-page: 205 year: 1997 ident: ref8 article-title: Antiviral pressure exerted By HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. publication-title: Nat Med doi: 10.1038/nm0297-205 – volume: 43 start-page: 406 year: 2005 ident: ref15 article-title: Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. publication-title: J Clin Microbiol doi: 10.1128/JCM.43.1.406-413.2005 – reference: 20844037 - J Virol. 2010 Nov;84(22):12087-92 – reference: 17600086 - Genome Res. 2007 Aug;17(8):1195-201 – reference: 18490657 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7552-7 – reference: 19458000 - J Virol. 2009 Aug;83(15):7641-8 – reference: 9018241 - Nat Med. 1997 Feb;3(2):212-7 – reference: 7542781 - Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6971-5 – reference: 21283794 - PLoS One. 2011;6(1):e15639 – reference: 16515366 - PLoS Biol. 2006 Apr;4(4):e90 – reference: 19479085 - PLoS One. 2009;4(5):e5683 – reference: 11014195 - Nature. 2000 Sep 21;407(6802):386-90 – reference: 15611288 - J Exp Med. 2004 Dec 20;200(12):1593-604 – reference: 18385228 - J Virol. 2008 Jun;82(11):5594-605 – reference: 16227247 - J Virol. 2005 Nov;79(21):13239-49 – reference: 19242411 - Nature. 2009 Apr 2;458(7238):641-5 – reference: 17076553 - PLoS Med. 2006 Oct;3(10):e403 – reference: 18419538 - J Infect Dis. 2008 Apr 1;197(7):1011-5 – reference: 17728232 - J Virol. 2007 Nov;81(22):12608-18 – reference: 21358627 - Nat Med. 2011 Mar;17(3):366-71 – reference: 20808830 - PLoS One. 2010;5(8):e12303 – reference: 8638160 - Science. 1996 May 24;272(5265):1167-70 – reference: 16188997 - J Virol. 2005 Oct;79(20):12952-60 – reference: 18184090 - J Infect Dis. 2008 Feb 1;197(3):390-7 – reference: 15635002 - J Clin Microbiol. 2005 Jan;43(1):406-13 – reference: 18426987 - J Exp Med. 2008 May 12;205(5):1009-17 – reference: 19023406 - PLoS Comput Biol. 2008 Nov;4(11):e1000225 – reference: 19193811 - J Virol. 2009 Apr;83(8):3556-67 – reference: 17804494 - J Virol. 2007 Nov;81(22):12382-93 – reference: 19210162 - J Infect Dis. 2009 Mar 1;199(5):693-701 – reference: 9400530 - Lancet. 1997 Dec 6;350(9092):1696-701 – reference: 16670322 - J Immunol. 2006 May 15;176(10):6130-46 – reference: 19165325 - PLoS Pathog. 2009 Jan;5(1):e1000274 – reference: 16973556 - J Virol. 2006 Oct;80(19):9519-29 – reference: 16997629 - Trends Immunol. 2006 Nov;27(11):504-10 – reference: 21690407 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11530-5 – reference: 16056220 - Nature. 2005 Sep 15;437(7057):376-80 – reference: 15331739 - J Virol. 2004 Sep;78(18):10064-73 – reference: 20335256 - J Virol. 2010 Jun;84(11):5802-14 – reference: 15795285 - J Virol. 2005 Apr;79(8):5000-5 – reference: 20451557 - J Virol Methods. 2010 Sep;168(1-2):114-20 – reference: 18256145 - J Virol. 2008 Apr;82(8):3952-70 – reference: 19955476 - Mol Biol Evol. 2010 Apr;27(4):819-32 – reference: 20628644 - PLoS One. 2010;5(7):e11345 – reference: 17187074 - Nat Med. 2007 Jan;13(1):100-6 – reference: 19487423 - J Exp Med. 2009 Jun 8;206(6):1253-72 – reference: 20833233 - Gene. 2010 Dec 1;469(1-2):45-51 – reference: 12644702 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4144-9 – reference: 9018240 - Nat Med. 1997 Feb;3(2):205-11 – reference: 20941398 - PLoS Pathog. 2010;6(9):e1001123 – reference: 15944251 - J Immunol. 2005 Jun 15;174(12):7524-30 – reference: 15194783 - J Virol. 2004 Jul;78(13):7069-78 – reference: 20173754 - Nat Med. 2010 Mar;16(3):324-8 – reference: 9050875 - Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1890-5 – reference: 19116253 - J Virol. 2009 Mar;83(6):2743-55 – reference: 16537629 - J Virol. 2006 Apr;80(7):3617-23 – reference: 17108020 - J Virol. 2007 Feb;81(4):2031-8 – reference: 21347345 - PLoS Pathog. 2011;7(2):e1001273 – reference: 18715933 - J Virol. 2008 Nov;82(21):10747-55 – reference: 19515775 - J Virol. 2009 Aug;83(16):8247-53 – reference: 19690614 - PLoS One. 2009;4(8):e6687 – reference: 18369479 - PLoS Pathog. 2008 Mar;4(3):e1000033 – reference: 12960819 - AIDS. 2003 Sep 5;17(13):1871-9 – reference: 19343217 - PLoS Pathog. 2009 Apr;5(4):e1000365 – reference: 15781581 - J Exp Med. 2005 Mar 21;201(6):891-902 – reference: 18625749 - J Exp Med. 2008 Aug 4;205(8):1789-96 – reference: 11029002 - Nature. 2000 Sep 28;407(6803):513-6 |
SSID | ssj0041316 |
Score | 2.5079706 |
Snippet | Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to... Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1002529 |
SubjectTerms | Adaptations Algorithms Biology CD8 antigen CD8-Positive T-Lymphocytes - immunology Data processing DNA sequencing Epitopes Evolution Genetic aspects Genetic Variation Genome, Viral - genetics Genome-Wide Association Study Genomes Genomic Structural Variation Genomics Health aspects Histocompatibility antigen HLA HIV (Viruses) HIV Infections - immunology HIV Infections - prevention & control HIV Infections - virology HIV-1 - genetics HIV-1 - immunology HIV-1 - pathogenicity Human immunodeficiency virus 1 Humans Immune Evasion - genetics Immune Evasion - immunology Immune response Immune system Immunity Immunology Infection Infections Lymphocytes T Medicine Mutation Nucleotide sequencing Oligonucleotide Array Sequence Analysis Pathogens Physiological aspects Replication Reversion RNA, Viral - analysis Sequence Analysis, RNA Vaccines Viral genetics Viral Vaccines - immunology Viremia |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXxPcCAxmExJNZ82U7T6gwRou0PXR09C2yHWdM2pLQtEg88a9z57gZQRu8VfElas539u_iu98R8jrlqjRmrFlRxglLhDFMqjBjvIDtdhxqWbqsysMjPl0kn5fp0n9wa31a5XZNdAt1URv8Rr4X4okYbFcZf9d8Z9g1Ck9XfQuNm-QWUpdh8CWWfcAF67NrfYqtcZiIOfelc7EI9_xMvW0atXY0pKkDmZdbk2Pw79fpUXNet1eB0L9zKf_YnA7ukbseVdJJZwb3yQ1bPSC3uz6TPx-SX1-xCy79ZKv6wtJ9axt63KVQw8ZF65JOZycspHP7A2BjSwET0pmrnsQxR4FMD8-qekVPILLGxBm6aOoKZC42laXzbQ4SXNp3VY90YjZreIZP9KoekcXBxy8fpsx3XmBGpNmaaWGSwgiBpfJWmsjwwpq04BgMWQBtSOmTcZVKxWMDEGUcFjxRUulSponWcfyYjKq6sjuE6iRT0ihZIksPxMDawi-uwlIrBVAzDki8VXpuPC05dsc4z91Zm4DwpNNhjlOV-6kKCOvvajpajv_Iv8f57GWRVNtdqFenuffRXAAWK7nimZZZokulbMYjDRDTFKWNIhOQV2gNOdJmVJiXc6o2bZvPjo_ySYzcaUJKfq3QfCD0xguVNbysUb4WAlSGdFwDyd2BJDi_GQzvoGVu37nNL90E7txa69XDL_thfCjm2lW23rS5W6Sxxi0KCL1GJosEwBhAfwF50tl_r1rEhFHMQeVi4BkD3Q9HqrNvjtg8xjJvmTz99z9_Ru6AwUVdIuAuGa1XG_sckOFav3Du_xtf12IB priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKIiQuiHcXCjIIiVOqzct2DggVRLVFag_AQm-W7dhtpd0kbBJET_x1ZhJvRNCuuHCL7LGljMfjz_LMN4S8Splyxsx0kLs4CRJuTCBUmAUsh-N2FmrhuqjK0zM2XyQfz9PzPbKp2eoVWG-92mE9qcV6efjz-_Vb2PBvuqoNPNwMOqwq1XSUommU3SA34WziWMzhNBneFcBjd8VQsVhOwGPGfDLdrllGh1XH6T947km1LOttsPTv6Mo_jqvju-SOx5n0qDeMe2TPFvfJrb7y5PUD8usb1sWlyNC6sjS3tqI-qBqOMlo6Oj_5GoQU-Z1ATxRQIu3zKbHPIikyXV0V5Zr-gLs2htLQtioLkFm1haVDVBI09XmQVJm2gTl86FfxkCyOP3x5Pw98LYbA8DRrAs1NkhvOMXneChMZlluT5gyvRxZgHJL8ZEylQrHYAGiZhTlLlFDaiTTROo4fkUlRFnafUJ1kShglHPL2wK1YW_hiKnRaKQCf8ZTEG6VL44nKsV7GUnavbxwuLL0OJS6V9Es1JcEwquqJOv4h_w7Xc5BFmu2uoVxfSL9rJQd05phimRZZop1SNmORBtBpcmejyEzJS7QGiUQaBUbqXKi2ruXJ5zN5FCObGheC7RT6NBJ67YVcCT9rlM-OAJUhQddI8mAkCe7AjLr30TI3_1zLEJ-SAedlOHJjrdu7XwzdOClG3xW2bGvZuW3MeoumhO6QySIOwAb23JQ87u1_UC2ixChmoHI-2hkj3Y97iqvLjuo8xsRvkTz5H4v1lNwGs4z6AMIDMmnWrX0GiLLRzzsn8Rv8GHcJ priority: 102 providerName: Scholars Portal |
Title | Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22412369 https://www.proquest.com/docview/1289082096 https://www.proquest.com/docview/1017965462 https://www.proquest.com/docview/927990241 https://pubmed.ncbi.nlm.nih.gov/PMC3297584 https://doaj.org/article/7846f6a69b894bfaae962b545cdfe22c http://dx.doi.org/10.1371/journal.ppat.1002529 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZbxmAvY7-btQvaGOzJa2zZkvzYjpZ00DC6dcubkGS5KzS2aeJBn_av785SvHq09GUvIVhng07nu-_w3XeEvM-4Lq2dmqgoWRqlwtpI6jiPeAHhdhobWXZVlcdzPjtNPy-yxbVRX1gT5umBveJ2BQTIkmueG5mnptTa5TwxEPdtUbokseh9IeZtkinvg8Ezd0NPcShOJBjnoWmOiXg3nNHHptHrjoA06-Dl36DUcff3HnrUXNSrm-Dnv1WU18LS4RPyOOBJuuf38ZTcc9Uz8tBPmLx6Tn7_wPm3FJlYl44WzjU0FE9DyKJ1SWdH36OYIo8T2CEFNEh93ySuOSQ_psvzqr6kvyCnxpIZ2jZ1BTLLtnK0rz6CS77fkWrbruEZocSrekFODw--fZpFYeZCZEWWryMjbFpYIbBJ3kmbWF44mxUc0yAHcA3JfHKuM6k5swBOpnHBUy21KWWWGsPYSzKq6sptEWrSXEurZYn8PJD9Ggf_uI5LozWATDYmbKN0ZQMhOc7FuFDdVzYBiYnXocKjUuGoxiTq72o8Iccd8vt4nr0s0ml3F8DIVDAydZeRjck7tAaFhBkVVuSc6Xa1Ukdf52qPIWuakJLfKnQyEPoQhMoaNmt16IIAlSER10ByZyAJr70dLG-hZW72vFIxfjIGPJfjnRtrvXn5bb-MD8Uqu8rV7Up17hm725IxobfI5IkAAAO4b0xeefvvVYtoMGEcVC4Gb8ZA98OV6vxnR2nOsMFbpq__x2Ftk0dglokvFNwho_Vl694AclybCbkvFmJCHuwfzL-cTDqXAb_HqfwDF7Jwkg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguiHcDBRYE4mQav3bXB4QCoSS0ySFt2tzM7npdKrW2iRNQT_wjfiMzazvFqIVTb5Z3bNmz45lvvTPfEPIyZDLVuqucJPUDJ-BaO0K6kcMSCLddV4nUZlWOxmwwDT7Pwtka-dXUwmBaZeMTraNOco3_yLdc3BGDcBWxd8U3B7tG4e5q00KjMosdc_YDlmzl22Ef5veV521_3P8wcOquAo7mYbRwFNdBojnHMnAjtKdZYnSYMAT6BgAJ0tVETIZCMl9D-O26CQukkCoVYaAU_gAFl38NAm8XUwj5bLXAg3hgW61iKx6H-4zVpXo-d7dqy3hTFHJhaU9DC2rPQ6HtGLCKC-vFSV5eBHr_zt38Ixhu3ya3ahRLe5XZ3SFrJrtLrld9Lc_ukZ-H2HWXfjJZfmpo35iC7lUp2xAoaZ7SwfDAcenEfAeYWlLAoHRoqzVxzFIu09Fxls_pAazkMVGHTos8A5nTZWbopMl5glN9W2VJe3q5gHvUiWXZfTK9kjl5QNazPDMbhKogkkJLkSIrEKy5lYEjJt1USQnQ1u8Qv1F6rGsadOzGcRLbvT0Oy6FKhzFOVVxPVYc4q6uKigbkP_LvcT5XskjibU_k86O49gkxB-yXMskiJaJApVKaiHkKIK1OUuN5ukNeoDXESNORYR7QkVyWZTzcG8c9H7nauBDsUqFJS-h1LZTm8LJa1rUXoDKk_2pJbrYkwdno1vAGWmbzzmV8_lnClY21Xjz8fDWMN8XcvszkyzK2QQFr6rwOoZfIRB4H2ARos0MeVva_Ui1iUM9noHLe-jJaum-PZMdfLZG6j2XlInj07yd_Rm4M9ke78e5wvPOY3ATj86okxE2yvpgvzRNApQv11LoCSr5cte_5DWylneQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIhAviO8VBhgE4im0-bKTB4QKpbSMVahjo2_GdpwxaUtC04L2xP_FX8edk3QEbfC0tyq-RM35fPdzfPc7Qp6GTKZa95WTpH7gBFxrJ5Ju7LAEwm3fVVFqsyp3pmy8F7yfh_MN8quphcG0ysYnWked5Bq_kfdcPBGDcBWzXlqnRXwcjl4V3xzsIIUnrU07jcpEts3JD9i-lS8nQ5jrZ543evvpzdipOww4mofx0lFcB4nmHEvCTaQ9zRKjw4Qh6DcATpC6JmYyjCTzNYTivpuwQEZSpVEYKIUfQ8H9X-I-hE1YS3y-3uxBbLBtV7Etj8N9xuqyPZ-7vdpKXhSFXFoK1NAC3NOwaLsHrGNEpzjKy7MA8N95nH8ExtF1cq1GtHRQmeANsmGym-Ry1ePy5Bb5-Rk78NJ3JsuPDR0aU9DdKn0bgibNUzqe7DsunZnvAFlLCniUTmzlJo5Z-mW6c5jlC7oPu3pM2qF7RZ6BzPEqM3TW5D_BpaGtuKQDvVrCM-oks-w22buQOblDOlmemU1CVRDLSMsoRYYg2H8rA7-YdFMlJcBcv0v8RulC15To2JnjSNhzPg5bo0qHAqdK1FPVJc76rqKiBPmP_Gucz7UsEnrbC_niQNT-QXDAgSmTLFZRHKhUShMzTwG81UlqPE93yRO0BoGUHRka_4FclaWY7E7FwEfeNh5F7FyhWUvoeS2U5vCyWtZ1GKAypAJrSW61JMHx6NbwJlpm886lOF2icGdjrWcPP14P40Mxzy8z-aoUNkBgfZ3XJfQcmdjjAKEAeXbJ3cr-16pFPOr5DFTOWyujpfv2SHb41ZKq-1hiHgX3_v3PH5Er4HXEh8l0-z65CrbnVfmIW6SzXKzMAwCoS_XQegJKvly06_kN_xqiGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole+genome+deep+sequencing+of+HIV-1+reveals+the+impact+of+early+minor+variants+upon+immune+recognition+during+acute+infection&rft.jtitle=PLoS+pathogens&rft.au=Matthew+R+Henn&rft.au=Christian+L+Boutwell&rft.au=Patrick+Charlebois&rft.au=Niall+J+Lennon&rft.date=2012-03-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=8&rft.issue=3&rft.spage=e1002529&rft_id=info:doi/10.1371%2Fjournal.ppat.1002529&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7846f6a69b894bfaae962b545cdfe22c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |