Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection

Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 8; no. 3; p. e1002529
Main Authors Henn, Matthew R., Boutwell, Christian L., Charlebois, Patrick, Lennon, Niall J., Power, Karen A., Macalalad, Alexander R., Berlin, Aaron M., Malboeuf, Christine M., Ryan, Elizabeth M., Gnerre, Sante, Zody, Michael C., Erlich, Rachel L., Green, Lisa M., Berical, Andrew, Wang, Yaoyu, Casali, Monica, Streeck, Hendrik, Bloom, Allyson K., Dudek, Tim, Tully, Damien, Newman, Ruchi, Axten, Karen L., Gladden, Adrianne D., Battis, Laura, Kemper, Michael, Zeng, Qiandong, Shea, Terrance P., Gujja, Sharvari, Zedlack, Carmen, Gasser, Olivier, Brander, Christian, Hess, Christoph, Günthard, Huldrych F., Brumme, Zabrina L., Brumme, Chanson J., Bazner, Suzane, Rychert, Jenna, Tinsley, Jake P., Mayer, Ken H., Rosenberg, Eric, Pereyra, Florencia, Levin, Joshua Z., Young, Sarah K., Jessen, Heiko, Altfeld, Marcus, Birren, Bruce W., Walker, Bruce D., Allen, Todd M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.03.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7374
1553-7366
1553-7374
DOI10.1371/journal.ppat.1002529

Cover

Loading…
Abstract Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.
AbstractList Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.
Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia. The ability of HIV-1 and other highly variable pathogens to rapidly mutate to escape vaccine-induced immune responses represents a major hurdle to the development of effective vaccines to these highly persistent pathogens. Application of next-generation or deep sequencing technologies to the study of host pathogens could significantly improve our understanding of the mechanisms by which these pathogens subvert host immunity, and aid in the development of novel vaccines and therapeutics. Here, we developed a 454 deep sequencing approach to enable the sensitive detection of low-frequency viral variants across the entire HIV-1 genome. When applied to the acute phase of HIV-1 infection we observed that the majority of early, low frequency mutations represented viral adaptations to host cellular immune responses, evidence of strong host immunity developing during the early decline of peak viral load. Rapid viral escape from the most dominant immune responses however correlated with loss of this initial viral control, suggestive of the importance of mounting immune responses against more conserved regions of the virus. These data provide a greater understanding of the early evolutionary events subverting the ability of host immune responses to control early HIV-1 replication, yielding important insight into the design of more effective vaccine strategies.
  Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.
Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.
Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia. The ability of HIV-1 and other highly variable pathogens to rapidly mutate to escape vaccine-induced immune responses represents a major hurdle to the development of effective vaccines to these highly persistent pathogens. Application of next-generation or deep sequencing technologies to the study of host pathogens could significantly improve our understanding of the mechanisms by which these pathogens subvert host immunity, and aid in the development of novel vaccines and therapeutics. Here, we developed a 454 deep sequencing approach to enable the sensitive detection of low-frequency viral variants across the entire HIV-1 genome. When applied to the acute phase of HIV-1 infection we observed that the majority of early, low frequency mutations represented viral adaptations to host cellular immune responses, evidence of strong host immunity developing during the early decline of peak viral load. Rapid viral escape from the most dominant immune responses however correlated with loss of this initial viral control, suggestive of the importance of mounting immune responses against more conserved regions of the virus. These data provide a greater understanding of the early evolutionary events subverting the ability of host immune responses to control early HIV-1 replication, yielding important insight into the design of more effective vaccine strategies.
Audience Academic
Author Zeng, Qiandong
Ryan, Elizabeth M.
Tully, Damien
Zody, Michael C.
Mayer, Ken H.
Axten, Karen L.
Shea, Terrance P.
Tinsley, Jake P.
Gladden, Adrianne D.
Rychert, Jenna
Henn, Matthew R.
Dudek, Tim
Brander, Christian
Levin, Joshua Z.
Birren, Bruce W.
Walker, Bruce D.
Battis, Laura
Brumme, Chanson J.
Streeck, Hendrik
Boutwell, Christian L.
Rosenberg, Eric
Allen, Todd M.
Pereyra, Florencia
Erlich, Rachel L.
Gnerre, Sante
Wang, Yaoyu
Günthard, Huldrych F.
Berlin, Aaron M.
Young, Sarah K.
Hess, Christoph
Zedlack, Carmen
Gujja, Sharvari
Brumme, Zabrina L.
Gasser, Olivier
Bloom, Allyson K.
Lennon, Niall J.
Bazner, Suzane
Green, Lisa M.
Macalalad, Alexander R.
Malboeuf, Christine M.
Charlebois, Patrick
Berical, Andrew
Casali, Monica
Kemper, Michael
Power, Karen A.
Jessen, Heiko
Altfeld, Marcus
Newman, Ruchi
AuthorAffiliation 1 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
8 Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
9 The Fenway Institute, Fenway Health, Boston, Massachusetts, United States of America
2 Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
10 Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
6 Irsicaixa AIDS Research Institute-HIVACAT, Hospital University Germans Trias I Pujol, Badalona, Spain
7 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
4 Immunobiology Lab, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
3 HIV Clinic Praxis. Jessen, Berlin, Germany
5 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
Nationwide Children's Hospital, United States of America
AuthorAffiliation_xml – name: 4 Immunobiology Lab, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
– name: 7 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
– name: 2 Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
– name: 5 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
– name: 9 The Fenway Institute, Fenway Health, Boston, Massachusetts, United States of America
– name: 10 Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
– name: 6 Irsicaixa AIDS Research Institute-HIVACAT, Hospital University Germans Trias I Pujol, Badalona, Spain
– name: 1 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
– name: Nationwide Children's Hospital, United States of America
– name: 3 HIV Clinic Praxis. Jessen, Berlin, Germany
– name: 8 Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
Author_xml – sequence: 1
  givenname: Matthew R.
  surname: Henn
  fullname: Henn, Matthew R.
– sequence: 2
  givenname: Christian L.
  surname: Boutwell
  fullname: Boutwell, Christian L.
– sequence: 3
  givenname: Patrick
  surname: Charlebois
  fullname: Charlebois, Patrick
– sequence: 4
  givenname: Niall J.
  surname: Lennon
  fullname: Lennon, Niall J.
– sequence: 5
  givenname: Karen A.
  surname: Power
  fullname: Power, Karen A.
– sequence: 6
  givenname: Alexander R.
  surname: Macalalad
  fullname: Macalalad, Alexander R.
– sequence: 7
  givenname: Aaron M.
  surname: Berlin
  fullname: Berlin, Aaron M.
– sequence: 8
  givenname: Christine M.
  surname: Malboeuf
  fullname: Malboeuf, Christine M.
– sequence: 9
  givenname: Elizabeth M.
  surname: Ryan
  fullname: Ryan, Elizabeth M.
– sequence: 10
  givenname: Sante
  surname: Gnerre
  fullname: Gnerre, Sante
– sequence: 11
  givenname: Michael C.
  surname: Zody
  fullname: Zody, Michael C.
– sequence: 12
  givenname: Rachel L.
  surname: Erlich
  fullname: Erlich, Rachel L.
– sequence: 13
  givenname: Lisa M.
  surname: Green
  fullname: Green, Lisa M.
– sequence: 14
  givenname: Andrew
  surname: Berical
  fullname: Berical, Andrew
– sequence: 15
  givenname: Yaoyu
  surname: Wang
  fullname: Wang, Yaoyu
– sequence: 16
  givenname: Monica
  surname: Casali
  fullname: Casali, Monica
– sequence: 17
  givenname: Hendrik
  surname: Streeck
  fullname: Streeck, Hendrik
– sequence: 18
  givenname: Allyson K.
  surname: Bloom
  fullname: Bloom, Allyson K.
– sequence: 19
  givenname: Tim
  surname: Dudek
  fullname: Dudek, Tim
– sequence: 20
  givenname: Damien
  surname: Tully
  fullname: Tully, Damien
– sequence: 21
  givenname: Ruchi
  surname: Newman
  fullname: Newman, Ruchi
– sequence: 22
  givenname: Karen L.
  surname: Axten
  fullname: Axten, Karen L.
– sequence: 23
  givenname: Adrianne D.
  surname: Gladden
  fullname: Gladden, Adrianne D.
– sequence: 24
  givenname: Laura
  surname: Battis
  fullname: Battis, Laura
– sequence: 25
  givenname: Michael
  surname: Kemper
  fullname: Kemper, Michael
– sequence: 26
  givenname: Qiandong
  surname: Zeng
  fullname: Zeng, Qiandong
– sequence: 27
  givenname: Terrance P.
  surname: Shea
  fullname: Shea, Terrance P.
– sequence: 28
  givenname: Sharvari
  surname: Gujja
  fullname: Gujja, Sharvari
– sequence: 29
  givenname: Carmen
  surname: Zedlack
  fullname: Zedlack, Carmen
– sequence: 30
  givenname: Olivier
  surname: Gasser
  fullname: Gasser, Olivier
– sequence: 31
  givenname: Christian
  surname: Brander
  fullname: Brander, Christian
– sequence: 32
  givenname: Christoph
  surname: Hess
  fullname: Hess, Christoph
– sequence: 33
  givenname: Huldrych F.
  surname: Günthard
  fullname: Günthard, Huldrych F.
– sequence: 34
  givenname: Zabrina L.
  surname: Brumme
  fullname: Brumme, Zabrina L.
– sequence: 35
  givenname: Chanson J.
  surname: Brumme
  fullname: Brumme, Chanson J.
– sequence: 36
  givenname: Suzane
  surname: Bazner
  fullname: Bazner, Suzane
– sequence: 37
  givenname: Jenna
  surname: Rychert
  fullname: Rychert, Jenna
– sequence: 38
  givenname: Jake P.
  surname: Tinsley
  fullname: Tinsley, Jake P.
– sequence: 39
  givenname: Ken H.
  surname: Mayer
  fullname: Mayer, Ken H.
– sequence: 40
  givenname: Eric
  surname: Rosenberg
  fullname: Rosenberg, Eric
– sequence: 41
  givenname: Florencia
  surname: Pereyra
  fullname: Pereyra, Florencia
– sequence: 42
  givenname: Joshua Z.
  surname: Levin
  fullname: Levin, Joshua Z.
– sequence: 43
  givenname: Sarah K.
  surname: Young
  fullname: Young, Sarah K.
– sequence: 44
  givenname: Heiko
  surname: Jessen
  fullname: Jessen, Heiko
– sequence: 45
  givenname: Marcus
  surname: Altfeld
  fullname: Altfeld, Marcus
– sequence: 46
  givenname: Bruce W.
  surname: Birren
  fullname: Birren, Bruce W.
– sequence: 47
  givenname: Bruce D.
  surname: Walker
  fullname: Walker, Bruce D.
– sequence: 48
  givenname: Todd M.
  surname: Allen
  fullname: Allen, Todd M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22412369$$D View this record in MEDLINE/PubMed
BookMark eNqVk81u1DAUhSNURH_gDRBEYgEsZrAdx45ZIFVtaUcqILW0LC3HuZm6SuxgOxVd8eo4dIo6VVUJZZHo-jsn9vG929mGdRay7CVGc1xw_OHSjd6qbj4MKs4xQqQk4km2hcuymPGC040735vZdgiXCFFcYPYs2ySEYlIwsZX9_nHhOsgPwboe8n2AIT-FnyNYbewyd21-tDif4fwErkB1IY8XkC_6Qek4rR0o313nX4x1Pj9X3igbQ342OJuYfrSQZNotrYkmlfZHP1nu6jEmD9uCnsrPs6dtMoYXq_dOdvb54Pve0ez42-Fib_d4pnkp4qzmmjaa83RKCpUmmjWgy4ZhhjmgqkCUV4KpslKs0BgRhBtGVaXqtippXRfFTvb6xnfoXJCr7ILEpBKoIkiwRCxuiMapSzl40yt_LZ0y8m_B-aVUPhrdgeQVZS1TTNSVoHWrFAhG6pKWummBEJ28Pq3-NtY9NBps9KpbM11fseZCLt2VLIjgZUWTwduVgXfpNkKUvQkauk5ZcGOQgnAhULrFRL57lMQIc8FKykhC39xDH85hRS1VOqqxrUs71JOp3E05F4hX1UTNH6DS00BvdOrU1qT6muD9miAxEX7FpRpDkIvTk_9gv66zr-5G_S_j2xZPwMcbQHsXgodWahPV1Htpx6ZLAclpnm6zkNM8ydU8JTG9J771f1T2B9KFI3k
CitedBy_id crossref_primary_10_1007_s00203_023_03579_9
crossref_primary_10_1016_j_imlet_2015_07_009
crossref_primary_10_1093_infdis_jiz368
crossref_primary_10_1146_annurev_immunol_051116_052155
crossref_primary_10_1007_s11908_014_0401_5
crossref_primary_10_1089_aid_2015_0330
crossref_primary_10_1371_journal_pone_0141723
crossref_primary_10_1371_journal_pone_0070318
crossref_primary_10_1186_1471_2164_14_444
crossref_primary_10_1007_s10096_013_1813_0
crossref_primary_10_1186_s12864_020_06801_w
crossref_primary_10_4049_jimmunol_1502411
crossref_primary_10_1093_ve_vey007
crossref_primary_10_1097_MD_0000000000001865
crossref_primary_10_1038_s41467_020_20075_6
crossref_primary_10_1038_s41467_018_07209_7
crossref_primary_10_1128_JVI_02156_15
crossref_primary_10_1186_1471_2164_15_264
crossref_primary_10_1371_journal_pone_0185559
crossref_primary_10_1186_1471_2164_14_96
crossref_primary_10_1093_cid_ciab596
crossref_primary_10_1002_jmv_23853
crossref_primary_10_1098_rspb_2012_0595
crossref_primary_10_1093_bioinformatics_btx187
crossref_primary_10_1038_srep02837
crossref_primary_10_1097_QAD_0000000000001702
crossref_primary_10_1099_vir_0_045088_0
crossref_primary_10_24072_pcjournal_6
crossref_primary_10_1371_journal_ppat_1006510
crossref_primary_10_1016_j_meegid_2012_05_012
crossref_primary_10_1016_j_virusres_2019_197763
crossref_primary_10_1126_science_aae0491
crossref_primary_10_1534_genetics_115_177931
crossref_primary_10_1038_s41590_021_00982_6
crossref_primary_10_1016_j_biologicals_2015_11_003
crossref_primary_10_1093_nar_gkv630
crossref_primary_10_1128_JVI_03717_14
crossref_primary_10_3201_eid2702_202957
crossref_primary_10_1016_j_epidem_2015_09_001
crossref_primary_10_1016_j_virusres_2018_05_009
crossref_primary_10_1186_s13059_014_0517_9
crossref_primary_10_1084_jem_20151984
crossref_primary_10_1126_science_1254031
crossref_primary_10_1186_1742_4690_11_56
crossref_primary_10_1186_s12859_015_0607_z
crossref_primary_10_1099_jgv_0_000231
crossref_primary_10_3389_fimmu_2017_00423
crossref_primary_10_1186_s12864_018_5070_6
crossref_primary_10_1016_j_tim_2014_12_008
crossref_primary_10_1038_nrg_2017_117
crossref_primary_10_1097_COH_0000000000000660
crossref_primary_10_1186_s12859_015_0458_7
crossref_primary_10_1097_QAD_0000000000000508
crossref_primary_10_1089_vim_2018_0040
crossref_primary_10_1097_COH_0b013e328356e9da
crossref_primary_10_1186_1471_2164_14_674
crossref_primary_10_2174_1871526518666180222111611
crossref_primary_10_2217_fvl_12_45
crossref_primary_10_1097_COH_0000000000000541
crossref_primary_10_1371_journal_pone_0184496
crossref_primary_10_1128_JVI_01862_12
crossref_primary_10_1111_jam_12656
crossref_primary_10_3390_vaccines4030027
crossref_primary_10_12688_wellcomeopenres_13538_2
crossref_primary_10_12688_wellcomeopenres_13538_1
crossref_primary_10_3390_v7102881
crossref_primary_10_1007_s00239_013_9603_y
crossref_primary_10_1371_journal_pone_0080045
crossref_primary_10_1016_j_meegid_2017_09_008
crossref_primary_10_1128_JVI_01832_18
crossref_primary_10_1371_journal_pone_0171333
crossref_primary_10_3389_fimmu_2015_00506
crossref_primary_10_7448_IAS_18_1_20035
crossref_primary_10_1111_jeb_13225
crossref_primary_10_1103_PhysRevE_88_062705
crossref_primary_10_1089_aid_2014_0097
crossref_primary_10_1371_journal_pbio_1002251
crossref_primary_10_1038_s41587_018_0006_x
crossref_primary_10_1371_journal_pgen_1004914
crossref_primary_10_1128_JCM_02479_15
crossref_primary_10_1371_journal_pone_0139037
crossref_primary_10_1128_JVI_01574_17
crossref_primary_10_1371_journal_ppat_1008577
crossref_primary_10_3389_fimmu_2021_709962
crossref_primary_10_1186_s12864_015_1456_x
crossref_primary_10_1371_journal_pcbi_1004721
crossref_primary_10_1371_journal_pcbi_1003878
crossref_primary_10_1371_journal_ppat_1005619
crossref_primary_10_1371_journal_pcbi_1003515
crossref_primary_10_1111_j_1469_0691_2012_03984_x
crossref_primary_10_7554_eLife_11282
crossref_primary_10_1002_hep_29837
crossref_primary_10_1016_j_meegid_2020_104277
crossref_primary_10_1007_s10096_018_3235_5
crossref_primary_10_1038_nature11443
crossref_primary_10_1159_000345935
crossref_primary_10_1128_JVI_01998_12
crossref_primary_10_1186_1742_4690_9_108
crossref_primary_10_1098_rsif_2017_0921
crossref_primary_10_1016_j_meegid_2018_11_004
crossref_primary_10_1371_journal_pone_0135903
crossref_primary_10_4049_jimmunol_1300962
crossref_primary_10_1038_nm_4100
crossref_primary_10_1016_j_immuni_2012_11_021
crossref_primary_10_1186_s12977_015_0148_6
crossref_primary_10_1016_j_immuni_2012_11_022
crossref_primary_10_1186_s12865_022_00491_7
crossref_primary_10_1371_journal_pone_0068188
crossref_primary_10_3390_v8010012
crossref_primary_10_1016_S2666_5247_22_00327_5
crossref_primary_10_1186_1471_2164_14_501
crossref_primary_10_1186_s12977_018_0444_z
crossref_primary_10_1186_s12977_014_0069_9
crossref_primary_10_1371_journal_pone_0054220
crossref_primary_10_1038_s41598_017_04931_y
crossref_primary_10_3389_fmicb_2017_01168
crossref_primary_10_3389_fimmu_2014_00661
crossref_primary_10_1128_microbiolspec_AME_0003_2018
crossref_primary_10_1093_bioinformatics_btu295
crossref_primary_10_1371_journal_pcbi_1003899
crossref_primary_10_1073_pnas_2109172119
crossref_primary_10_1093_nar_gku473
crossref_primary_10_1093_infdis_jis679
crossref_primary_10_1038_nrmicro3471
crossref_primary_10_1089_aid_2017_0046
crossref_primary_10_1016_j_jtbi_2014_02_020
crossref_primary_10_1098_rstb_2022_0056
crossref_primary_10_1186_s12859_017_1630_z
crossref_primary_10_1093_bib_bbs081
crossref_primary_10_1186_s13059_018_1618_7
crossref_primary_10_1002_wsbm_1446
crossref_primary_10_1128_JVI_00522_15
crossref_primary_10_3389_fimmu_2020_622343
crossref_primary_10_1016_j_immuni_2021_08_007
crossref_primary_10_1093_bioinformatics_btt434
crossref_primary_10_1146_annurev_genom_091212_153406
crossref_primary_10_1186_1471_2164_15_S6_S17
crossref_primary_10_1186_s12977_014_0064_1
crossref_primary_10_1002_jmv_25746
crossref_primary_10_1097_QAD_0b013e32835cab64
crossref_primary_10_3389_fmicb_2015_01258
crossref_primary_10_1371_journal_pbio_3002225
crossref_primary_10_1371_journal_pone_0140912
crossref_primary_10_1128_JVI_00814_19
crossref_primary_10_1371_journal_pone_0119886
crossref_primary_10_1007_s13365_016_0462_3
crossref_primary_10_1089_aid_2017_0061
crossref_primary_10_3390_ijms25073696
crossref_primary_10_1089_aid_2013_0175
crossref_primary_10_1371_journal_pcbi_1004249
crossref_primary_10_1016_j_jhep_2016_07_048
crossref_primary_10_1093_nar_gks794
crossref_primary_10_1186_1471_2105_14_255
crossref_primary_10_1111_hiv_12507
crossref_primary_10_1093_bib_bbx079
crossref_primary_10_1093_molbev_msy088
crossref_primary_10_1172_JCI73104
crossref_primary_10_1084_jem_20162123
crossref_primary_10_1016_j_jviromet_2014_09_009
crossref_primary_10_1007_s00705_017_3599_3
crossref_primary_10_1093_bib_bbaa101
crossref_primary_10_3390_v11100932
crossref_primary_10_1371_journal_ppat_1004838
crossref_primary_10_1016_j_jcv_2014_06_013
crossref_primary_10_1111_bph_12580
crossref_primary_10_1128_mBio_02490_21
crossref_primary_10_1186_s12985_020_01473_0
crossref_primary_10_1128_JVI_02361_13
crossref_primary_10_1128_JVI_00690_18
crossref_primary_10_1186_1471_2164_13_475
crossref_primary_10_1016_j_jviromet_2013_01_019
crossref_primary_10_1128_JVI_03128_13
crossref_primary_10_1128_JCM_01516_12
crossref_primary_10_1007_s13337_020_00595_x
crossref_primary_10_1128_JVI_00483_14
crossref_primary_10_1128_JVI_00865_13
crossref_primary_10_1016_j_chom_2012_10_002
crossref_primary_10_1093_nar_gkv128
crossref_primary_10_1128_JVI_01876_15
crossref_primary_10_1002_lt_24349
crossref_primary_10_1038_nature14053
crossref_primary_10_1073_pnas_1802028115
crossref_primary_10_1016_j_virusres_2016_12_009
crossref_primary_10_3390_v11040317
crossref_primary_10_1016_j_virol_2013_03_021
crossref_primary_10_1016_j_virusres_2016_08_004
crossref_primary_10_1371_journal_pone_0097505
crossref_primary_10_1016_j_virusres_2016_12_008
crossref_primary_10_1126_science_aav5095
crossref_primary_10_1038_s41598_017_03581_4
crossref_primary_10_1101_gr_276917_122
crossref_primary_10_12688_f1000research_7111_1
crossref_primary_10_1128_mbio_02417_23
crossref_primary_10_3390_math10010096
crossref_primary_10_1128_jvi_01720_23
crossref_primary_10_1093_jac_dkx475
crossref_primary_10_1111_liv_13134
crossref_primary_10_4049_jimmunol_1400793
crossref_primary_10_1093_ve_veac008
crossref_primary_10_1186_s12977_018_0390_9
crossref_primary_10_1371_journal_pone_0090485
crossref_primary_10_1159_000121607
crossref_primary_10_1016_j_virol_2018_08_005
crossref_primary_10_1016_j_jviromet_2016_03_010
crossref_primary_10_2174_1570162X16666180626152252
crossref_primary_10_1093_ofid_ofz125
crossref_primary_10_1128_JVI_01440_15
crossref_primary_10_1371_journal_ppat_1008853
crossref_primary_10_1093_nar_gku537
crossref_primary_10_3390_v12070758
crossref_primary_10_1371_journal_pone_0066129
crossref_primary_10_1186_2042_5783_4_1
crossref_primary_10_1371_journal_pcbi_1004694
crossref_primary_10_1128_JVI_00771_17
crossref_primary_10_3390_vaccines12030279
crossref_primary_10_1186_s12977_016_0321_6
crossref_primary_10_1002_bies_202000159
crossref_primary_10_1128_JVI_00736_12
crossref_primary_10_1128_JVI_01187_17
crossref_primary_10_1016_j_virusres_2016_09_016
crossref_primary_10_1093_bioinformatics_btu587
crossref_primary_10_1128_JVI_01164_14
crossref_primary_10_1186_1742_4690_10_49
crossref_primary_10_1007_s10344_014_0882_4
crossref_primary_10_1128_JVI_01334_14
crossref_primary_10_1016_j_virusres_2016_11_023
crossref_primary_10_1128_AAC_02710_13
crossref_primary_10_1371_journal_pone_0090581
crossref_primary_10_1186_s12917_016_0902_6
crossref_primary_10_1016_j_jviromet_2016_07_010
crossref_primary_10_1186_s12977_015_0179_z
crossref_primary_10_1371_journal_pgen_1004295
crossref_primary_10_3109_10408363_2016_1163663
crossref_primary_10_1371_journal_pone_0061383
crossref_primary_10_3390_v14122682
crossref_primary_10_3389_fpls_2018_00932
crossref_primary_10_3390_ijms19041241
crossref_primary_10_1186_s12981_017_0144_0
crossref_primary_10_1371_journal_pone_0076502
crossref_primary_10_1186_s12977_022_00591_7
crossref_primary_10_1016_j_immuni_2018_08_002
Cites_doi 10.1128/JVI.01543-07
10.1016/j.gene.2010.08.009
10.1128/JVI.02660-07
10.1086/525281
10.1016/j.jviromet.2010.04.030
10.4049/jimmunol.176.10.6130
10.1084/jem.20041006
10.1128/JVI.00117-10
10.1371/journal.pone.0015639
10.1038/nm.2316
10.1371/journal.pone.0005683
10.1128/JVI.79.21.13239-13249.2005
10.1128/JVI.01827-07
10.1371/journal.pone.0006687
10.1073/pnas.92.15.6971
10.1371/journal.ppat.1000033
10.1038/nature03959
10.1073/pnas.0630530100
10.1126/science.272.5265.1167
10.1128/JVI.02132-08
10.1016/S0140-6736(97)03256-X
10.1128/JVI.00575-06
10.1073/pnas.0802203105
10.1371/journal.ppat.1000274
10.1097/00002030-200309050-00005
10.1371/journal.pone.0012303
10.1371/journal.ppat.1001273
10.1038/35036559
10.1038/nature07746
10.1128/JVI.78.18.10064-10073.2004
10.1128/JVI.80.7.3617-3623.2006
10.1093/molbev/msp289
10.1084/jem.20090365
10.1128/JVI.78.13.7069-7078.2004
10.1128/JVI.01378-10
10.1084/jem.20072457
10.1038/nm.2108
10.1371/journal.ppat.1001123
10.1371/journal.pmed.0030403
10.1371/journal.pbio.0040090
10.1371/journal.pcbi.1000225
10.1084/jem.20080281
10.1128/JVI.01369-07
10.1101/gr.6468307
10.1371/journal.pone.0011345
10.1086/596736
10.1128/JVI.00968-06
10.1371/journal.ppat.1000365
10.1038/35035083
10.1128/JVI.02265-08
10.1038/nm0297-212
10.4049/jimmunol.174.12.7524
10.1128/JVI.02356-07
10.1016/j.it.2006.09.007
10.1128/JVI.79.20.12952-12960.2005
10.1128/JVI.00897-09
10.1128/JVI.79.8.5000-5005.2005
10.1128/JVI.00182-09
10.1073/pnas.1105315108
10.1038/nm1461
10.1086/529206
10.1073/pnas.94.5.1890
10.1084/jem.20041455
10.1038/nm0297-205
10.1128/JCM.43.1.406-413.2005
ContentType Journal Article
Copyright COPYRIGHT 2012 Public Library of Science
2012 Henn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, et al. (2012) Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection. PLoS Pathog 8(3): e1002529. doi:10.1371/journal.ppat.1002529
Henn et al. 2012
Copyright_xml – notice: COPYRIGHT 2012 Public Library of Science
– notice: 2012 Henn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, et al. (2012) Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection. PLoS Pathog 8(3): e1002529. doi:10.1371/journal.ppat.1002529
– notice: Henn et al. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QL
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7T5
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1002529
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Sciences Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Immunology Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList

AIDS and Cancer Research Abstracts

MEDLINE
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
DocumentTitleAlternate Deep Sequencing of HIV-1
EISSN 1553-7374
ExternalDocumentID 1289082096
oai_doaj_org_article_7846f6a69b894bfaae962b545cdfe22c
PMC3297584
2896638341
A304307886
22412369
10_1371_journal_ppat_1002529
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI007245
– fundername: PHS HHS
  grantid: HHSN272200900006C
– fundername: NIAID NIH HHS
  grantid: HHSN272200900018C
– fundername: NIAID NIH HHS
  grantid: P01 AI074415
– fundername: NIAID NIH HHS
  grantid: P01-AI074415
– fundername: NIAID NIH HHS
  grantid: HHSN272200900006C
– fundername: NIAID NIH HHS
  grantid: T32 AI007387
– fundername: NIAID NIH HHS
  grantid: P30 AI060354
– fundername: NIAID NIH HHS
  grantid: T32-AI07245
– fundername: PHS HHS
  grantid: HHSN272200900018C
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PV9
RIG
RZL
WOQ
PMFND
3V.
7QL
7U9
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7T5
7X8
5PM
PUEGO
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c759t-b7c4dc770254e8c2c6dec5d61617e083047896a58a63c10201d64a8abf854bb33
IEDL.DBID DOA
ISSN 1553-7374
1553-7366
IngestDate Sun Oct 01 00:11:19 EDT 2023
Wed Aug 27 01:29:21 EDT 2025
Thu Aug 21 17:38:03 EDT 2025
Fri Jul 11 01:55:59 EDT 2025
Mon Jul 21 11:38:44 EDT 2025
Fri Jul 25 12:16:47 EDT 2025
Tue Jun 17 21:10:48 EDT 2025
Tue Jun 10 20:40:09 EDT 2025
Fri Jun 27 04:09:47 EDT 2025
Fri Jun 27 04:19:15 EDT 2025
Thu Apr 03 07:09:21 EDT 2025
Tue Jul 01 02:54:48 EDT 2025
Thu Apr 24 22:50:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords HIV Infections
HIV-1
Genome, Viral
Genome-Wide Association Study
Oligonucleotide Array Sequence Analysis
Humans
CD8-Positive T-Lymphocytes
Genetic Variation
Genomic Structural Variation
Immune Evasion
Sequence Analysis, RNA
RNA, Viral
Viral Vaccines
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c759t-b7c4dc770254e8c2c6dec5d61617e083047896a58a63c10201d64a8abf854bb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Conceived and designed the experiments: TMA MRH CLB PC NJL KAP ARM MCZ. Performed the experiments: CMM EMR RLE LMG AB YW MC HS AKB TD RN ADG LB MK. Analyzed the data: TMA MRH CLB PC NJL KAP ARM AMB CMM EMR SG MCZ RLE YW HS DT RN QZ TPS SG JZL SKY MA. Contributed reagents/materials/analysis tools: KLA CZ OG CB CH HFG ZLB CJB SB JR JPT KHM ER FP HJ BWB BDW. Wrote the paper: TMA MRH CLB PC NJL KAP ARM MCZ BWB BDW.
OpenAccessLink https://doaj.org/article/7846f6a69b894bfaae962b545cdfe22c
PMID 22412369
PQID 1289082096
PQPubID 1436335
ParticipantIDs plos_journals_1289082096
doaj_primary_oai_doaj_org_article_7846f6a69b894bfaae962b545cdfe22c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3297584
proquest_miscellaneous_927990241
proquest_miscellaneous_1017965462
proquest_journals_1289082096
gale_infotracmisc_A304307886
gale_infotracacademiconefile_A304307886
gale_incontextgauss_ISR_A304307886
gale_incontextgauss_ISN_A304307886
pubmed_primary_22412369
crossref_citationtrail_10_1371_journal_ppat_1002529
crossref_primary_10_1371_journal_ppat_1002529
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2012
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References AM Tsibris (ref22) 2009; 4
C Hedskog (ref21) 2010; 5
W Fischer (ref51) 2007; 13
H Streeck (ref38) 2008; 205
TM Allen (ref37) 2005; 79
JF Salazar-Gonzalez (ref16) 2008; 82
M Altfeld (ref43) 2005; 79
S Santra (ref50) 2010; 16
D Kwiatkowski (ref4) 1997; 350
W Fischer (ref26) 2010; 5
H Streeck (ref44) 2009; 83
JM Carlson (ref53) 2008; 4
V Dahirel (ref56) 2011; 108
BB Simen (ref18) 2009; 199
J Mellors (ref47) 1996; 272
TC Friedrich (ref48) 2004; 78
M Rolland (ref64) 2011; 17
C Wang (ref20) 2007; 17
P Borrow (ref8) 1997; 3
A Schneidewind (ref54) 2008; 82
Y Mitsuya (ref27) 2008; 82
P Zimbwa (ref36) 2006; 81
B Asquith (ref65) 2006; 4
Y Liu (ref14) 2006; 80
BF Keele (ref30) 2008; 105
ZL Brumme (ref41) 2009; 4
D Altshuler (ref28) 2000; 407
TM Love (ref24) 2010; 84
MA Brockman (ref52) 2007; 81
TM Allen (ref35) 2004; 78
M Altfeld (ref55) 2006; 27
MR Jordan (ref61) 2010; 168
BN Bimber (ref25) 2010; 84
J Martinez-Picado (ref11) 2006; 80
T Miura (ref13) 2009; 83
MS Bennett (ref49) 2008; 197
S Alizon (ref60) 2010; 6
M Negroni (ref63) 1995; 92
A Leslie (ref57) 2005; 201
DR Chopera (ref59) 2008; 4
G Ferrari (ref46) 2011; 7
J Timm (ref3) 2004; 200
GS Gottlieb (ref31) 2008; 197
MR Abrahams (ref32) 2009; 83
PA Goepfert (ref58) 2008; 205
EW Fiebig (ref29) 2003; 17
Y Kawashima (ref42) 2009; 458
AF Poon (ref19) 2010; 27
TM Allen (ref1) 2000; 407
PJ Goulder (ref2) 1997; 3
TM Allen (ref5) 2005; 79
DD Richman (ref9) 2003; 100
RM Troyer (ref12) 2009; 5
BN Bimber (ref23) 2009; 83
EL Turnbull (ref40) 2006; 176
DA Price (ref6) 1997; 94
N Goonetilleke (ref7) 2009; 206
S Palmer (ref15) 2005; 43
A Schneidewind (ref10) 2007; 81
Y Liu (ref34) 2011; 6
M Margulies (ref17) 2005; 437
RP Smyth (ref62) 2010; 469
ME Feeney (ref39) 2005; 174
M Altfeld (ref45) 2006; 3
RE Haaland (ref33) 2009; 5
15635002 - J Clin Microbiol. 2005 Jan;43(1):406-13
17187074 - Nat Med. 2007 Jan;13(1):100-6
12644702 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4144-9
12960819 - AIDS. 2003 Sep 5;17(13):1871-9
15781581 - J Exp Med. 2005 Mar 21;201(6):891-902
17600086 - Genome Res. 2007 Aug;17(8):1195-201
18184090 - J Infect Dis. 2008 Feb 1;197(3):390-7
9018241 - Nat Med. 1997 Feb;3(2):212-7
19193811 - J Virol. 2009 Apr;83(8):3556-67
18419538 - J Infect Dis. 2008 Apr 1;197(7):1011-5
15331739 - J Virol. 2004 Sep;78(18):10064-73
18256145 - J Virol. 2008 Apr;82(8):3952-70
15944251 - J Immunol. 2005 Jun 15;174(12):7524-30
20628644 - PLoS One. 2010;5(7):e11345
9018240 - Nat Med. 1997 Feb;3(2):205-11
9400530 - Lancet. 1997 Dec 6;350(9092):1696-701
20173754 - Nat Med. 2010 Mar;16(3):324-8
16515366 - PLoS Biol. 2006 Apr;4(4):e90
18625749 - J Exp Med. 2008 Aug 4;205(8):1789-96
16670322 - J Immunol. 2006 May 15;176(10):6130-46
19242411 - Nature. 2009 Apr 2;458(7238):641-5
19165325 - PLoS Pathog. 2009 Jan;5(1):e1000274
19515775 - J Virol. 2009 Aug;83(16):8247-53
7542781 - Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6971-5
17108020 - J Virol. 2007 Feb;81(4):2031-8
18490657 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7552-7
19955476 - Mol Biol Evol. 2010 Apr;27(4):819-32
21358627 - Nat Med. 2011 Mar;17(3):366-71
15194783 - J Virol. 2004 Jul;78(13):7069-78
19343217 - PLoS Pathog. 2009 Apr;5(4):e1000365
16997629 - Trends Immunol. 2006 Nov;27(11):504-10
20808830 - PLoS One. 2010;5(8):e12303
19023406 - PLoS Comput Biol. 2008 Nov;4(11):e1000225
20941398 - PLoS Pathog. 2010;6(9):e1001123
20844037 - J Virol. 2010 Nov;84(22):12087-92
21347345 - PLoS Pathog. 2011;7(2):e1001273
20335256 - J Virol. 2010 Jun;84(11):5802-14
18715933 - J Virol. 2008 Nov;82(21):10747-55
8638160 - Science. 1996 May 24;272(5265):1167-70
16188997 - J Virol. 2005 Oct;79(20):12952-60
16973556 - J Virol. 2006 Oct;80(19):9519-29
16056220 - Nature. 2005 Sep 15;437(7057):376-80
18369479 - PLoS Pathog. 2008 Mar;4(3):e1000033
21283794 - PLoS One. 2011;6(1):e15639
16227247 - J Virol. 2005 Nov;79(21):13239-49
19479085 - PLoS One. 2009;4(5):e5683
16537629 - J Virol. 2006 Apr;80(7):3617-23
19458000 - J Virol. 2009 Aug;83(15):7641-8
19116253 - J Virol. 2009 Mar;83(6):2743-55
11014195 - Nature. 2000 Sep 21;407(6802):386-90
15611288 - J Exp Med. 2004 Dec 20;200(12):1593-604
15795285 - J Virol. 2005 Apr;79(8):5000-5
21690407 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11530-5
20451557 - J Virol Methods. 2010 Sep;168(1-2):114-20
19487423 - J Exp Med. 2009 Jun 8;206(6):1253-72
17804494 - J Virol. 2007 Nov;81(22):12382-93
18385228 - J Virol. 2008 Jun;82(11):5594-605
20833233 - Gene. 2010 Dec 1;469(1-2):45-51
18426987 - J Exp Med. 2008 May 12;205(5):1009-17
17076553 - PLoS Med. 2006 Oct;3(10):e403
17728232 - J Virol. 2007 Nov;81(22):12608-18
19690614 - PLoS One. 2009;4(8):e6687
11029002 - Nature. 2000 Sep 28;407(6803):513-6
9050875 - Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1890-5
19210162 - J Infect Dis. 2009 Mar 1;199(5):693-701
References_xml – volume: 81
  start-page: 12382
  year: 2007
  ident: ref10
  article-title: Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication.
  publication-title: J Virol
  doi: 10.1128/JVI.01543-07
– volume: 469
  start-page: 45
  year: 2010
  ident: ref62
  article-title: Reducing chimera formation during PCR amplification to ensure accurate genotyping.
  publication-title: Gene
  doi: 10.1016/j.gene.2010.08.009
– volume: 82
  start-page: 3952
  year: 2008
  ident: ref16
  article-title: Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing.
  publication-title: J Virol
  doi: 10.1128/JVI.02660-07
– volume: 197
  start-page: 390
  year: 2008
  ident: ref49
  article-title: Cross-clade detection of HIV-1-specific cytotoxic T lymphocytes does not reflect cross-clade antiviral activity.
  publication-title: J Infect Dis
  doi: 10.1086/525281
– volume: 168
  start-page: 114
  year: 2010
  ident: ref61
  article-title: Comparison of standard PCR/cloning to single genome sequencing for analysis of HIV-1 populations.
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2010.04.030
– volume: 176
  start-page: 6130
  year: 2006
  ident: ref40
  article-title: HIV-1 epitope-specific CD8+ T cell responses strongly associated with delayed disease progression cross-recognize epitope variants efficiently.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.10.6130
– volume: 200
  start-page: 1593
  year: 2004
  ident: ref3
  article-title: CD8 epitope escape and reversion in acute HCV infection.
  publication-title: J Exp Med
  doi: 10.1084/jem.20041006
– volume: 84
  start-page: 5802
  year: 2010
  ident: ref24
  article-title: Mathematical Modeling of Ultradeep Sequencing Data Reveals That Acute CD8+ T-Lymphocyte Responses Exert Strong Selective Pressure in Simian Immunodeficiency Virus-Infected Macaques, but Still Fail to Clear Founder Epitope Sequences.
  publication-title: J Virol
  doi: 10.1128/JVI.00117-10
– volume: 6
  start-page: e15639
  year: 2011
  ident: ref34
  article-title: Dynamics of viral evolution and CTL responses in HIV-1 infection.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015639
– volume: 17
  start-page: 366
  year: 2011
  ident: ref64
  article-title: Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial.
  publication-title: Nat Med
  doi: 10.1038/nm.2316
– volume: 4
  start-page: e5683
  year: 2009
  ident: ref22
  article-title: Quantitative deep sequencing reveals dynamic HIV-1 escape and large population shifts during CCR5 antagonist therapy in vivo.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005683
– volume: 79
  start-page: 13239
  year: 2005
  ident: ref5
  article-title: Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution.
  publication-title: J Virol
  doi: 10.1128/JVI.79.21.13239-13249.2005
– volume: 82
  start-page: 10747
  year: 2008
  ident: ref27
  article-title: Minority human immunodeficiency virus type 1 variants in antiretroviral-naive persons with reverse transcriptase codon 215 revertant mutations.
  publication-title: J Virol
  doi: 10.1128/JVI.01827-07
– volume: 4
  start-page: e6687
  year: 2009
  ident: ref41
  article-title: HLA-associated immune escape pathways in HIV-1 subtype B Gag, Pol and Nef proteins.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006687
– volume: 92
  start-page: 6971
  year: 1995
  ident: ref63
  article-title: Homologous recombination promoted by reverse transcriptase during copying of two distinct RNA templates.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.92.15.6971
– volume: 4
  start-page: e1000033
  year: 2008
  ident: ref59
  article-title: Transmission of HIV-1 CTL escape variants provides HLA mis-matched recipients with a survival advantage.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000033
– volume: 437
  start-page: 376
  year: 2005
  ident: ref17
  article-title: Genome sequencing in microfabricated high-density picolitre reactors.
  publication-title: Nature
  doi: 10.1038/nature03959
– volume: 100
  start-page: 4144
  year: 2003
  ident: ref9
  article-title: Rapid evolution of the neutralizing antibody response to HIV type 1 infection.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0630530100
– volume: 272
  start-page: 1167
  year: 1996
  ident: ref47
  article-title: Prognosis in HIV-1 infection predicted by the quantity of virus in plasma.
  publication-title: Science
  doi: 10.1126/science.272.5265.1167
– volume: 83
  start-page: 3556
  year: 2009
  ident: ref32
  article-title: Quantitating the multiplicity of infection with human immunodeficiency virus type 1 subtype C reveals a non-poisson distribution of transmitted variants.
  publication-title: J Virol
  doi: 10.1128/JVI.02132-08
– volume: 350
  start-page: 1696
  year: 1997
  ident: ref4
  article-title: Development of a malaria vaccine.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(97)03256-X
– volume: 80
  start-page: 9519
  year: 2006
  ident: ref14
  article-title: Selection on the human immunodeficiency virus type 1 proteome following primary infection.
  publication-title: J Virol
  doi: 10.1128/JVI.00575-06
– volume: 105
  start-page: 7552
  year: 2008
  ident: ref30
  article-title: Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0802203105
– volume: 5
  start-page: e1000274
  year: 2009
  ident: ref33
  article-title: Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000274
– volume: 17
  start-page: 1871
  year: 2003
  ident: ref29
  article-title: Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection.
  publication-title: Aids
  doi: 10.1097/00002030-200309050-00005
– volume: 5
  start-page: e12303
  year: 2010
  ident: ref26
  article-title: Transmission of single HIV-1 genomes and dynamics of early immune escape revealed by ultra-deep sequencing.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012303
– volume: 7
  start-page: e1001273
  year: 2011
  ident: ref46
  article-title: Relationship between functional profile of HIV-1 specific CD8 T cells and epitope variability with the selection of escape mutants in acute HIV-1 infection.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1001273
– volume: 407
  start-page: 386
  year: 2000
  ident: ref1
  article-title: Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia.
  publication-title: Nature
  doi: 10.1038/35036559
– volume: 458
  start-page: 641
  year: 2009
  ident: ref42
  article-title: Adaptation of HIV-1 to human leukocyte antigen class I.
  publication-title: Nature
  doi: 10.1038/nature07746
– volume: 78
  start-page: 10064
  year: 2004
  ident: ref48
  article-title: Consequences of cytotoxic T-lymphocyte escape: common escape mutations in simian immunodeficiency virus are poorly recognized in naive hosts.
  publication-title: J Virol
  doi: 10.1128/JVI.78.18.10064-10073.2004
– volume: 80
  start-page: 3617
  year: 2006
  ident: ref11
  article-title: Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1.
  publication-title: J Virol
  doi: 10.1128/JVI.80.7.3617-3623.2006
– volume: 27
  start-page: 819
  year: 2010
  ident: ref19
  article-title: Phylogenetic analysis of population-based and deep sequencing data to identify coevolving sites in the nef gene of HIV-1.
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msp289
– volume: 206
  start-page: 1253
  year: 2009
  ident: ref7
  article-title: The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection.
  publication-title: J Exp Med
  doi: 10.1084/jem.20090365
– volume: 78
  start-page: 7069
  year: 2004
  ident: ref35
  article-title: Selection, transmission, and reversion of an antigen-processing cytotoxic T-lymphocyte escape mutation in human immunodeficiency virus type 1 infection.
  publication-title: J Virol
  doi: 10.1128/JVI.78.13.7069-7078.2004
– volume: 84
  start-page: 12087
  year: 2010
  ident: ref25
  article-title: Whole genome characterization of HIV/SIV intra-host diversity by ultra-deep pyrosequencing.
  publication-title: J Virol
  doi: 10.1128/JVI.01378-10
– volume: 205
  start-page: 1009
  year: 2008
  ident: ref58
  article-title: Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients.
  publication-title: J Exp Med
  doi: 10.1084/jem.20072457
– volume: 16
  start-page: 324
  year: 2010
  ident: ref50
  article-title: Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys.
  publication-title: Nat Med
  doi: 10.1038/nm.2108
– volume: 6
  start-page: e1001123
  year: 2010
  ident: ref60
  article-title: Phylogenetic approach reveals that virus genotype largely determines HIV set-point viral load.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1001123
– volume: 3
  start-page: e403
  year: 2006
  ident: ref45
  article-title: HLA Alleles Associated with Delayed Progression to AIDS Contribute Strongly to the Initial CD8(+) T Cell Response against HIV-1.
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0030403
– volume: 4
  start-page: e90
  year: 2006
  ident: ref65
  article-title: Inefficient cytotoxic T lymphocyte-mediated killing of HIV-1-infected cells in vivo.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040090
– volume: 4
  start-page: e1000225
  year: 2008
  ident: ref53
  article-title: Phylogenetic dependency networks: inferring patterns of CTL escape and codon covariation in HIV-1 Gag.
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000225
– volume: 205
  start-page: 1789
  year: 2008
  ident: ref38
  article-title: Immune-driven recombination and loss of control after HIV superinfection.
  publication-title: J Exp Med
  doi: 10.1084/jem.20080281
– volume: 81
  start-page: 12608
  year: 2007
  ident: ref52
  article-title: Escape and compensation from early HLA-B57-mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus type 1 Gag alter capsid interactions with cyclophilin A.
  publication-title: J Virol
  doi: 10.1128/JVI.01369-07
– volume: 17
  start-page: 1195
  year: 2007
  ident: ref20
  article-title: Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance.
  publication-title: Genome Res
  doi: 10.1101/gr.6468307
– volume: 5
  start-page: e11345
  year: 2010
  ident: ref21
  article-title: Dynamics of HIV-1 quasispecies during antiviral treatment dissected using ultra-deep pyrosequencing.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011345
– volume: 199
  start-page: 693
  year: 2009
  ident: ref18
  article-title: Low-abundance drug-resistant viral variants in chronically HIV-infected, antiretroviral treatment-naive patients significantly impact treatment outcomes.
  publication-title: J Infect Dis
  doi: 10.1086/596736
– volume: 81
  start-page: 2031
  year: 2006
  ident: ref36
  article-title: Precise Identification Of An Hiv-1 Antigen Processing Mutant.
  publication-title: J Virol
  doi: 10.1128/JVI.00968-06
– volume: 5
  start-page: e1000365
  year: 2009
  ident: ref12
  article-title: Variable fitness impact of HIV-1 escape mutations to cytotoxic T lymphocyte (CTL) response.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000365
– volume: 407
  start-page: 513
  year: 2000
  ident: ref28
  article-title: An SNP map of the human genome generated by reduced representation shotgun sequencing.
  publication-title: Nature
  doi: 10.1038/35035083
– volume: 83
  start-page: 2743
  year: 2009
  ident: ref13
  article-title: HLA-B57/B*5801 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte [corrected] recognition.
  publication-title: J Virol
  doi: 10.1128/JVI.02265-08
– volume: 3
  start-page: 212
  year: 1997
  ident: ref2
  article-title: Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS.
  publication-title: Nat Med
  doi: 10.1038/nm0297-212
– volume: 174
  start-page: 7524
  year: 2005
  ident: ref39
  article-title: HIV-1 viral escape in infancy followed by emergence of a variant-specific CTL response.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.174.12.7524
– volume: 82
  start-page: 5594
  year: 2008
  ident: ref54
  article-title: Structural and functional constraints limit options for cytotoxic T-lymphocyte escape in the immunodominant HLA-B27-restricted epitope in human immunodeficiency virus type 1 capsid.
  publication-title: J Virol
  doi: 10.1128/JVI.02356-07
– volume: 27
  start-page: 504
  year: 2006
  ident: ref55
  article-title: Hitting HIV where it hurts: an alternative approach to HIV vaccine design.
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2006.09.007
– volume: 79
  start-page: 12952
  year: 2005
  ident: ref37
  article-title: De novo generation of escape variant-specific CD8+ T-cell responses following cytotoxic T-lymphocyte escape in chronic human immunodeficiency virus type 1 infection.
  publication-title: J Virol
  doi: 10.1128/JVI.79.20.12952-12960.2005
– volume: 83
  start-page: 8247
  year: 2009
  ident: ref23
  article-title: Ultradeep pyrosequencing detects complex patterns of CD8+ T-lymphocyte escape in simian immunodeficiency virus-infected macaques.
  publication-title: J Virol
  doi: 10.1128/JVI.00897-09
– volume: 79
  start-page: 5000
  year: 2005
  ident: ref43
  article-title: The majority of currently circulating human immunodeficiency virus type 1 clade B viruses fail to prime cytotoxic T-lymphocyte responses against an otherwise immunodominant HLA-A2-restricted epitope: implications for vaccine design.
  publication-title: J Virol
  doi: 10.1128/JVI.79.8.5000-5005.2005
– volume: 83
  start-page: 7641
  year: 2009
  ident: ref44
  article-title: Human immunodeficiency virus type 1-specific CD8+ T-cell responses during primary infection are major determinants of the viral set point and loss of CD4+ T cells.
  publication-title: J Virol
  doi: 10.1128/JVI.00182-09
– volume: 108
  start-page: 11530
  year: 2011
  ident: ref56
  article-title: From the Cover: Coordinate linkage of HIV evolution reveals regions of immunological vulnerability.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1105315108
– volume: 13
  start-page: 100
  year: 2007
  ident: ref51
  article-title: Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants.
  publication-title: Nat Med
  doi: 10.1038/nm1461
– volume: 197
  start-page: 1011
  year: 2008
  ident: ref31
  article-title: HIV-1 variation before seroconversion in men who have sex with men: analysis of acute/early HIV infection in the multicenter AIDS cohort study.
  publication-title: J Infect Dis
  doi: 10.1086/529206
– volume: 94
  start-page: 1890
  year: 1997
  ident: ref6
  article-title: Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.5.1890
– volume: 201
  start-page: 891
  year: 2005
  ident: ref57
  article-title: Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA.
  publication-title: J Exp Med
  doi: 10.1084/jem.20041455
– volume: 3
  start-page: 205
  year: 1997
  ident: ref8
  article-title: Antiviral pressure exerted By HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus.
  publication-title: Nat Med
  doi: 10.1038/nm0297-205
– volume: 43
  start-page: 406
  year: 2005
  ident: ref15
  article-title: Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis.
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.43.1.406-413.2005
– reference: 20844037 - J Virol. 2010 Nov;84(22):12087-92
– reference: 17600086 - Genome Res. 2007 Aug;17(8):1195-201
– reference: 18490657 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7552-7
– reference: 19458000 - J Virol. 2009 Aug;83(15):7641-8
– reference: 9018241 - Nat Med. 1997 Feb;3(2):212-7
– reference: 7542781 - Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6971-5
– reference: 21283794 - PLoS One. 2011;6(1):e15639
– reference: 16515366 - PLoS Biol. 2006 Apr;4(4):e90
– reference: 19479085 - PLoS One. 2009;4(5):e5683
– reference: 11014195 - Nature. 2000 Sep 21;407(6802):386-90
– reference: 15611288 - J Exp Med. 2004 Dec 20;200(12):1593-604
– reference: 18385228 - J Virol. 2008 Jun;82(11):5594-605
– reference: 16227247 - J Virol. 2005 Nov;79(21):13239-49
– reference: 19242411 - Nature. 2009 Apr 2;458(7238):641-5
– reference: 17076553 - PLoS Med. 2006 Oct;3(10):e403
– reference: 18419538 - J Infect Dis. 2008 Apr 1;197(7):1011-5
– reference: 17728232 - J Virol. 2007 Nov;81(22):12608-18
– reference: 21358627 - Nat Med. 2011 Mar;17(3):366-71
– reference: 20808830 - PLoS One. 2010;5(8):e12303
– reference: 8638160 - Science. 1996 May 24;272(5265):1167-70
– reference: 16188997 - J Virol. 2005 Oct;79(20):12952-60
– reference: 18184090 - J Infect Dis. 2008 Feb 1;197(3):390-7
– reference: 15635002 - J Clin Microbiol. 2005 Jan;43(1):406-13
– reference: 18426987 - J Exp Med. 2008 May 12;205(5):1009-17
– reference: 19023406 - PLoS Comput Biol. 2008 Nov;4(11):e1000225
– reference: 19193811 - J Virol. 2009 Apr;83(8):3556-67
– reference: 17804494 - J Virol. 2007 Nov;81(22):12382-93
– reference: 19210162 - J Infect Dis. 2009 Mar 1;199(5):693-701
– reference: 9400530 - Lancet. 1997 Dec 6;350(9092):1696-701
– reference: 16670322 - J Immunol. 2006 May 15;176(10):6130-46
– reference: 19165325 - PLoS Pathog. 2009 Jan;5(1):e1000274
– reference: 16973556 - J Virol. 2006 Oct;80(19):9519-29
– reference: 16997629 - Trends Immunol. 2006 Nov;27(11):504-10
– reference: 21690407 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11530-5
– reference: 16056220 - Nature. 2005 Sep 15;437(7057):376-80
– reference: 15331739 - J Virol. 2004 Sep;78(18):10064-73
– reference: 20335256 - J Virol. 2010 Jun;84(11):5802-14
– reference: 15795285 - J Virol. 2005 Apr;79(8):5000-5
– reference: 20451557 - J Virol Methods. 2010 Sep;168(1-2):114-20
– reference: 18256145 - J Virol. 2008 Apr;82(8):3952-70
– reference: 19955476 - Mol Biol Evol. 2010 Apr;27(4):819-32
– reference: 20628644 - PLoS One. 2010;5(7):e11345
– reference: 17187074 - Nat Med. 2007 Jan;13(1):100-6
– reference: 19487423 - J Exp Med. 2009 Jun 8;206(6):1253-72
– reference: 20833233 - Gene. 2010 Dec 1;469(1-2):45-51
– reference: 12644702 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4144-9
– reference: 9018240 - Nat Med. 1997 Feb;3(2):205-11
– reference: 20941398 - PLoS Pathog. 2010;6(9):e1001123
– reference: 15944251 - J Immunol. 2005 Jun 15;174(12):7524-30
– reference: 15194783 - J Virol. 2004 Jul;78(13):7069-78
– reference: 20173754 - Nat Med. 2010 Mar;16(3):324-8
– reference: 9050875 - Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1890-5
– reference: 19116253 - J Virol. 2009 Mar;83(6):2743-55
– reference: 16537629 - J Virol. 2006 Apr;80(7):3617-23
– reference: 17108020 - J Virol. 2007 Feb;81(4):2031-8
– reference: 21347345 - PLoS Pathog. 2011;7(2):e1001273
– reference: 18715933 - J Virol. 2008 Nov;82(21):10747-55
– reference: 19515775 - J Virol. 2009 Aug;83(16):8247-53
– reference: 19690614 - PLoS One. 2009;4(8):e6687
– reference: 18369479 - PLoS Pathog. 2008 Mar;4(3):e1000033
– reference: 12960819 - AIDS. 2003 Sep 5;17(13):1871-9
– reference: 19343217 - PLoS Pathog. 2009 Apr;5(4):e1000365
– reference: 15781581 - J Exp Med. 2005 Mar 21;201(6):891-902
– reference: 18625749 - J Exp Med. 2008 Aug 4;205(8):1789-96
– reference: 11029002 - Nature. 2000 Sep 28;407(6803):513-6
SSID ssj0041316
Score 2.5079706
Snippet Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to...
  Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1002529
SubjectTerms Adaptations
Algorithms
Biology
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
Data processing
DNA sequencing
Epitopes
Evolution
Genetic aspects
Genetic Variation
Genome, Viral - genetics
Genome-Wide Association Study
Genomes
Genomic Structural Variation
Genomics
Health aspects
Histocompatibility antigen HLA
HIV (Viruses)
HIV Infections - immunology
HIV Infections - prevention & control
HIV Infections - virology
HIV-1 - genetics
HIV-1 - immunology
HIV-1 - pathogenicity
Human immunodeficiency virus 1
Humans
Immune Evasion - genetics
Immune Evasion - immunology
Immune response
Immune system
Immunity
Immunology
Infection
Infections
Lymphocytes T
Medicine
Mutation
Nucleotide sequencing
Oligonucleotide Array Sequence Analysis
Pathogens
Physiological aspects
Replication
Reversion
RNA, Viral - analysis
Sequence Analysis, RNA
Vaccines
Viral genetics
Viral Vaccines - immunology
Viremia
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXxPcCAxmExJNZ82U7T6gwRou0PXR09C2yHWdM2pLQtEg88a9z57gZQRu8VfElas539u_iu98R8jrlqjRmrFlRxglLhDFMqjBjvIDtdhxqWbqsysMjPl0kn5fp0n9wa31a5XZNdAt1URv8Rr4X4okYbFcZf9d8Z9g1Ck9XfQuNm-QWUpdh8CWWfcAF67NrfYqtcZiIOfelc7EI9_xMvW0atXY0pKkDmZdbk2Pw79fpUXNet1eB0L9zKf_YnA7ukbseVdJJZwb3yQ1bPSC3uz6TPx-SX1-xCy79ZKv6wtJ9axt63KVQw8ZF65JOZycspHP7A2BjSwET0pmrnsQxR4FMD8-qekVPILLGxBm6aOoKZC42laXzbQ4SXNp3VY90YjZreIZP9KoekcXBxy8fpsx3XmBGpNmaaWGSwgiBpfJWmsjwwpq04BgMWQBtSOmTcZVKxWMDEGUcFjxRUulSponWcfyYjKq6sjuE6iRT0ihZIksPxMDawi-uwlIrBVAzDki8VXpuPC05dsc4z91Zm4DwpNNhjlOV-6kKCOvvajpajv_Iv8f57GWRVNtdqFenuffRXAAWK7nimZZZokulbMYjDRDTFKWNIhOQV2gNOdJmVJiXc6o2bZvPjo_ySYzcaUJKfq3QfCD0xguVNbysUb4WAlSGdFwDyd2BJDi_GQzvoGVu37nNL90E7txa69XDL_thfCjm2lW23rS5W6Sxxi0KCL1GJosEwBhAfwF50tl_r1rEhFHMQeVi4BkD3Q9HqrNvjtg8xjJvmTz99z9_Ru6AwUVdIuAuGa1XG_sckOFav3Du_xtf12IB
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKIiQuiHcXCjIIiVOqzct2DggVRLVFag_AQm-W7dhtpd0kbBJET_x1ZhJvRNCuuHCL7LGljMfjz_LMN4S8Splyxsx0kLs4CRJuTCBUmAUsh-N2FmrhuqjK0zM2XyQfz9PzPbKp2eoVWG-92mE9qcV6efjz-_Vb2PBvuqoNPNwMOqwq1XSUommU3SA34WziWMzhNBneFcBjd8VQsVhOwGPGfDLdrllGh1XH6T947km1LOttsPTv6Mo_jqvju-SOx5n0qDeMe2TPFvfJrb7y5PUD8usb1sWlyNC6sjS3tqI-qBqOMlo6Oj_5GoQU-Z1ATxRQIu3zKbHPIikyXV0V5Zr-gLs2htLQtioLkFm1haVDVBI09XmQVJm2gTl86FfxkCyOP3x5Pw98LYbA8DRrAs1NkhvOMXneChMZlluT5gyvRxZgHJL8ZEylQrHYAGiZhTlLlFDaiTTROo4fkUlRFnafUJ1kShglHPL2wK1YW_hiKnRaKQCf8ZTEG6VL44nKsV7GUnavbxwuLL0OJS6V9Es1JcEwquqJOv4h_w7Xc5BFmu2uoVxfSL9rJQd05phimRZZop1SNmORBtBpcmejyEzJS7QGiUQaBUbqXKi2ruXJ5zN5FCObGheC7RT6NBJ67YVcCT9rlM-OAJUhQddI8mAkCe7AjLr30TI3_1zLEJ-SAedlOHJjrdu7XwzdOClG3xW2bGvZuW3MeoumhO6QySIOwAb23JQ87u1_UC2ixChmoHI-2hkj3Y97iqvLjuo8xsRvkTz5H4v1lNwGs4z6AMIDMmnWrX0GiLLRzzsn8Rv8GHcJ
  priority: 102
  providerName: Scholars Portal
Title Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection
URI https://www.ncbi.nlm.nih.gov/pubmed/22412369
https://www.proquest.com/docview/1289082096
https://www.proquest.com/docview/1017965462
https://www.proquest.com/docview/927990241
https://pubmed.ncbi.nlm.nih.gov/PMC3297584
https://doaj.org/article/7846f6a69b894bfaae962b545cdfe22c
http://dx.doi.org/10.1371/journal.ppat.1002529
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZbxmAvY7-btQvaGOzJa2zZkvzYjpZ00DC6dcubkGS5KzS2aeJBn_av785SvHq09GUvIVhng07nu-_w3XeEvM-4Lq2dmqgoWRqlwtpI6jiPeAHhdhobWXZVlcdzPjtNPy-yxbVRX1gT5umBveJ2BQTIkmueG5mnptTa5TwxEPdtUbokseh9IeZtkinvg8Ezd0NPcShOJBjnoWmOiXg3nNHHptHrjoA06-Dl36DUcff3HnrUXNSrm-Dnv1WU18LS4RPyOOBJuuf38ZTcc9Uz8tBPmLx6Tn7_wPm3FJlYl44WzjU0FE9DyKJ1SWdH36OYIo8T2CEFNEh93ySuOSQ_psvzqr6kvyCnxpIZ2jZ1BTLLtnK0rz6CS77fkWrbruEZocSrekFODw--fZpFYeZCZEWWryMjbFpYIbBJ3kmbWF44mxUc0yAHcA3JfHKuM6k5swBOpnHBUy21KWWWGsPYSzKq6sptEWrSXEurZYn8PJD9Ggf_uI5LozWATDYmbKN0ZQMhOc7FuFDdVzYBiYnXocKjUuGoxiTq72o8Iccd8vt4nr0s0ml3F8DIVDAydZeRjck7tAaFhBkVVuSc6Xa1Ukdf52qPIWuakJLfKnQyEPoQhMoaNmt16IIAlSER10ByZyAJr70dLG-hZW72vFIxfjIGPJfjnRtrvXn5bb-MD8Uqu8rV7Up17hm725IxobfI5IkAAAO4b0xeefvvVYtoMGEcVC4Gb8ZA98OV6vxnR2nOsMFbpq__x2Ftk0dglokvFNwho_Vl694AclybCbkvFmJCHuwfzL-cTDqXAb_HqfwDF7Jwkg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguiHcDBRYE4mQav3bXB4QCoSS0ySFt2tzM7npdKrW2iRNQT_wjfiMzazvFqIVTb5Z3bNmz45lvvTPfEPIyZDLVuqucJPUDJ-BaO0K6kcMSCLddV4nUZlWOxmwwDT7Pwtka-dXUwmBaZeMTraNOco3_yLdc3BGDcBWxd8U3B7tG4e5q00KjMosdc_YDlmzl22Ef5veV521_3P8wcOquAo7mYbRwFNdBojnHMnAjtKdZYnSYMAT6BgAJ0tVETIZCMl9D-O26CQukkCoVYaAU_gAFl38NAm8XUwj5bLXAg3hgW61iKx6H-4zVpXo-d7dqy3hTFHJhaU9DC2rPQ6HtGLCKC-vFSV5eBHr_zt38Ixhu3ya3ahRLe5XZ3SFrJrtLrld9Lc_ukZ-H2HWXfjJZfmpo35iC7lUp2xAoaZ7SwfDAcenEfAeYWlLAoHRoqzVxzFIu09Fxls_pAazkMVGHTos8A5nTZWbopMl5glN9W2VJe3q5gHvUiWXZfTK9kjl5QNazPDMbhKogkkJLkSIrEKy5lYEjJt1USQnQ1u8Qv1F6rGsadOzGcRLbvT0Oy6FKhzFOVVxPVYc4q6uKigbkP_LvcT5XskjibU_k86O49gkxB-yXMskiJaJApVKaiHkKIK1OUuN5ukNeoDXESNORYR7QkVyWZTzcG8c9H7nauBDsUqFJS-h1LZTm8LJa1rUXoDKk_2pJbrYkwdno1vAGWmbzzmV8_lnClY21Xjz8fDWMN8XcvszkyzK2QQFr6rwOoZfIRB4H2ARos0MeVva_Ui1iUM9noHLe-jJaum-PZMdfLZG6j2XlInj07yd_Rm4M9ke78e5wvPOY3ATj86okxE2yvpgvzRNApQv11LoCSr5cte_5DWylneQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIhAviO8VBhgE4im0-bKTB4QKpbSMVahjo2_GdpwxaUtC04L2xP_FX8edk3QEbfC0tyq-RM35fPdzfPc7Qp6GTKZa95WTpH7gBFxrJ5Ju7LAEwm3fVVFqsyp3pmy8F7yfh_MN8quphcG0ysYnWked5Bq_kfdcPBGDcBWzXlqnRXwcjl4V3xzsIIUnrU07jcpEts3JD9i-lS8nQ5jrZ543evvpzdipOww4mofx0lFcB4nmHEvCTaQ9zRKjw4Qh6DcATpC6JmYyjCTzNYTivpuwQEZSpVEYKIUfQ8H9X-I-hE1YS3y-3uxBbLBtV7Etj8N9xuqyPZ-7vdpKXhSFXFoK1NAC3NOwaLsHrGNEpzjKy7MA8N95nH8ExtF1cq1GtHRQmeANsmGym-Ry1ePy5Bb5-Rk78NJ3JsuPDR0aU9DdKn0bgibNUzqe7DsunZnvAFlLCniUTmzlJo5Z-mW6c5jlC7oPu3pM2qF7RZ6BzPEqM3TW5D_BpaGtuKQDvVrCM-oks-w22buQOblDOlmemU1CVRDLSMsoRYYg2H8rA7-YdFMlJcBcv0v8RulC15To2JnjSNhzPg5bo0qHAqdK1FPVJc76rqKiBPmP_Gucz7UsEnrbC_niQNT-QXDAgSmTLFZRHKhUShMzTwG81UlqPE93yRO0BoGUHRka_4FclaWY7E7FwEfeNh5F7FyhWUvoeS2U5vCyWtZ1GKAypAJrSW61JMHx6NbwJlpm886lOF2icGdjrWcPP14P40Mxzy8z-aoUNkBgfZ3XJfQcmdjjAKEAeXbJ3cr-16pFPOr5DFTOWyujpfv2SHb41ZKq-1hiHgX3_v3PH5Er4HXEh8l0-z65CrbnVfmIW6SzXKzMAwCoS_XQegJKvly06_kN_xqiGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole+genome+deep+sequencing+of+HIV-1+reveals+the+impact+of+early+minor+variants+upon+immune+recognition+during+acute+infection&rft.jtitle=PLoS+pathogens&rft.au=Matthew+R+Henn&rft.au=Christian+L+Boutwell&rft.au=Patrick+Charlebois&rft.au=Niall+J+Lennon&rft.date=2012-03-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=8&rft.issue=3&rft.spage=e1002529&rft_id=info:doi/10.1371%2Fjournal.ppat.1002529&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7846f6a69b894bfaae962b545cdfe22c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon