Lipschitz Type Inequalities for an Integral Transform of Positive Operators With Applications
We introduce the following integral transform: \[ D^{(\mu)}(T) := -\int_{0}^{\infty} (\lambda+T)^{-1} d\mu(\lambda), \quad t > 0, \] where \(\mu\) is a positive measure on \((0,\infty)\) and the integral is assumed to exist for \(T\) as a positive operator on a complex Hilbert space \(H\). In thi...
Saved in:
Published in | Sarajevo journal of mathematics Vol. 20; no. 2; pp. 263 - 280 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
14.04.2025
|
Online Access | Get full text |
ISSN | 1840-0655 2233-1964 |
DOI | 10.5644/SJM.20.02.09 |
Cover
Loading…
Abstract | We introduce the following integral transform: \[ D^{(\mu)}(T) := -\int_{0}^{\infty} (\lambda+T)^{-1} d\mu(\lambda), \quad t > 0, \] where \(\mu\) is a positive measure on \((0,\infty)\) and the integral is assumed to exist for \(T\) as a positive operator on a complex Hilbert space \(H\). In this paper, we show, among other results, that if \( A \geq m_1 > 0 \) and \( B \geq m_2 > 0 \), then: \[ \| D^{(\mu)}(B) - D^{(\mu)}(A) \| \leq \| B - A \|_{[m_1,m_2]} D^{(\mu)}(\cdot), \] where \( D^{(\mu)}(\cdot) \) is a function of \( t \), and \( [m_1,m_2]D^{(\mu)}(\cdot) \) is its divided difference. If \( f: [0,\infty) \to \mathbb{R} \) is an operator monotone function with \( f(0) = 0 \), then: \[ \| f(A)A^{-1} - f(B)B^{-1} \| \leq \| B - A \|_{[m_1,m_2]} f(\cdot)(\cdot)^{-1}. \] Similar inequalities for operator convex functions and some particular examples of interest are also given. |
---|---|
AbstractList | We introduce the following integral transform: \[ D^{(\mu)}(T) := -\int_{0}^{\infty} (\lambda+T)^{-1} d\mu(\lambda), \quad t > 0, \] where \(\mu\) is a positive measure on \((0,\infty)\) and the integral is assumed to exist for \(T\) as a positive operator on a complex Hilbert space \(H\). In this paper, we show, among other results, that if \( A \geq m_1 > 0 \) and \( B \geq m_2 > 0 \), then: \[ \| D^{(\mu)}(B) - D^{(\mu)}(A) \| \leq \| B - A \|_{[m_1,m_2]} D^{(\mu)}(\cdot), \] where \( D^{(\mu)}(\cdot) \) is a function of \( t \), and \( [m_1,m_2]D^{(\mu)}(\cdot) \) is its divided difference. If \( f: [0,\infty) \to \mathbb{R} \) is an operator monotone function with \( f(0) = 0 \), then: \[ \| f(A)A^{-1} - f(B)B^{-1} \| \leq \| B - A \|_{[m_1,m_2]} f(\cdot)(\cdot)^{-1}. \] Similar inequalities for operator convex functions and some particular examples of interest are also given. |
Author | Sever Dragomir, Silvestru |
Author_xml | – sequence: 1 givenname: Silvestru surname: Sever Dragomir fullname: Sever Dragomir, Silvestru |
BookMark | eNotkN9KwzAchYNMcJve-QB5AFt_TdKkuRzDP5PJBAteSUjTxEW6piZVmE9vRa8OfBwOh2-BZn3oLUKXBeQlZ-z6-eExJ5ADyUGeoDkhlGaF5GyG5kXFIANelmdokdI7AKeVKOfodeuHZPZ-_Mb1cbB409uPT9350duEXYhY9xMb7VvUHa6j7tMEDzg4_BTS1PqyeDfYqMcQE37x4x6vhqHzRo8-9OkcnTrdJXvxn0tU397U6_tsu7vbrFfbzIhSZs410z0hTdWYtgKjOS9owyiDlmjL29ZaJoW2gppGlK0WRjeSC95I5ozghC7R1d-siSGlaJ0aoj_oeFQFqF8zajKjCCggCiT9ASkKWpc |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.5644/SJM.20.02.09 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2233-1964 |
EndPage | 280 |
ExternalDocumentID | 10_5644_SJM_20_02_09 |
GroupedDBID | AAYXX ACIPV ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBS EJD FRJ OK1 TR2 |
ID | FETCH-LOGICAL-c759-ffb18479c8bcd80ca6613b4340d2ae6ddee497ae73cb75da7cab9676b94fc7623 |
ISSN | 1840-0655 |
IngestDate | Tue Jul 01 04:55:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c759-ffb18479c8bcd80ca6613b4340d2ae6ddee497ae73cb75da7cab9676b94fc7623 |
OpenAccessLink | https://sjm.ba/index.php/sjm/article/download/523/496 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_5644_SJM_20_02_09 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-14 |
PublicationDateYYYYMMDD | 2025-04-14 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Sarajevo journal of mathematics |
PublicationYear | 2025 |
SSID | ssj0063875 |
Score | 2.2888188 |
Snippet | We introduce the following integral transform: \[ D^{(\mu)}(T) := -\int_{0}^{\infty} (\lambda+T)^{-1} d\mu(\lambda), \quad t > 0, \] where \(\mu\) is a... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 263 |
Title | Lipschitz Type Inequalities for an Integral Transform of Positive Operators With Applications |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Ji9swFIBFmV7aw9CVTjd0aE_BqSPbWo6lCyE07WEykEsxkiyHlMlCks4hv37ek2xHhBzSXkwwUYL1yW_RW0TIB660ZLmziRk4cFC4Mok0okhkbdVAiVQ5nzw-_smHN_loWkwPZ7b66pKd6dv9ybqS_6EK94ArVsn-A9nuR-EGfAa-cAXCcD2L8Y_5eotxgH0P3Ul4112okQTvt8mO9Dt-M1-E31qoIettG3KGfq2dj7NjGizGb6Jwdmy24r7xH3e3ihtNLLqGr51Zfu1gCntfN3q2WszDgV7zW-zjsfkb7y6wAgMloaqzEYgS0z95aKXbd_4eWBRZgo28YinK0mi1sFgkNgIsaFcWzm06FtwFmGUYOh6NwWX3TVTVQUG1QfkjvdVlE4Ifg-NLGF2ytExZiRWdDxk4Dqx1soNuBmHjWy93TxVKIXD0p_i_IyMlsjYmT8hl4ybQz4H5U_LALZ-Rx-PDlD8nvzv6FOnTmD4F0FQvaUufdvTpqqYtfdrRp0ifxvRfkMn3b5Mvw6Q5LCOxolBJXRt4KKGsNLaSqdVgd2Umz_K0YtpxUGIuV0I7kVl4FSstrDaKC25UXltQiNlLcrFcLd0rQo02MqsLYWpt8kI6lVYV5yjca6MHUlyRj-3klOvQEqU8heD1md97Qx4dVt5bcgFr0r0DS29n3nt494d8V80 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipschitz+Type+Inequalities+for+an+Integral+Transform+of+Positive+Operators+With+Applications&rft.jtitle=Sarajevo+journal+of+mathematics&rft.au=Sever+Dragomir%2C+Silvestru&rft.date=2025-04-14&rft.issn=1840-0655&rft.eissn=2233-1964&rft.volume=20&rft.issue=2&rft.spage=263&rft.epage=280&rft_id=info:doi/10.5644%2FSJM.20.02.09&rft.externalDBID=n%2Fa&rft.externalDocID=10_5644_SJM_20_02_09 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1840-0655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1840-0655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1840-0655&client=summon |