Lipschitz Type Inequalities for an Integral Transform of Positive Operators With Applications

We introduce the following integral transform: \[ D^{(\mu)}(T) := -\int_{0}^{\infty} (\lambda+T)^{-1} d\mu(\lambda), \quad t > 0, \] where \(\mu\) is a positive measure on \((0,\infty)\) and the integral is assumed to exist for \(T\) as a positive operator on a complex Hilbert space \(H\). In thi...

Full description

Saved in:
Bibliographic Details
Published inSarajevo journal of mathematics Vol. 20; no. 2; pp. 263 - 280
Main Author Sever Dragomir, Silvestru
Format Journal Article
LanguageEnglish
Published 14.04.2025
Online AccessGet full text
ISSN1840-0655
2233-1964
DOI10.5644/SJM.20.02.09

Cover

Loading…
Abstract We introduce the following integral transform: \[ D^{(\mu)}(T) := -\int_{0}^{\infty} (\lambda+T)^{-1} d\mu(\lambda), \quad t > 0, \] where \(\mu\) is a positive measure on \((0,\infty)\) and the integral is assumed to exist for \(T\) as a positive operator on a complex Hilbert space \(H\). In this paper, we show, among other results, that if \( A \geq m_1 > 0 \) and \( B \geq m_2 > 0 \), then: \[ \| D^{(\mu)}(B) - D^{(\mu)}(A) \| \leq \| B - A \|_{[m_1,m_2]} D^{(\mu)}(\cdot), \] where \( D^{(\mu)}(\cdot) \) is a function of \( t \), and \( [m_1,m_2]D^{(\mu)}(\cdot) \) is its divided difference. If \( f: [0,\infty) \to \mathbb{R} \) is an operator monotone function with \( f(0) = 0 \), then: \[ \| f(A)A^{-1} - f(B)B^{-1} \| \leq \| B - A \|_{[m_1,m_2]} f(\cdot)(\cdot)^{-1}. \] Similar inequalities for operator convex functions and some particular examples of interest are also given.
AbstractList We introduce the following integral transform: \[ D^{(\mu)}(T) := -\int_{0}^{\infty} (\lambda+T)^{-1} d\mu(\lambda), \quad t > 0, \] where \(\mu\) is a positive measure on \((0,\infty)\) and the integral is assumed to exist for \(T\) as a positive operator on a complex Hilbert space \(H\). In this paper, we show, among other results, that if \( A \geq m_1 > 0 \) and \( B \geq m_2 > 0 \), then: \[ \| D^{(\mu)}(B) - D^{(\mu)}(A) \| \leq \| B - A \|_{[m_1,m_2]} D^{(\mu)}(\cdot), \] where \( D^{(\mu)}(\cdot) \) is a function of \( t \), and \( [m_1,m_2]D^{(\mu)}(\cdot) \) is its divided difference. If \( f: [0,\infty) \to \mathbb{R} \) is an operator monotone function with \( f(0) = 0 \), then: \[ \| f(A)A^{-1} - f(B)B^{-1} \| \leq \| B - A \|_{[m_1,m_2]} f(\cdot)(\cdot)^{-1}. \] Similar inequalities for operator convex functions and some particular examples of interest are also given.
Author Sever Dragomir, Silvestru
Author_xml – sequence: 1
  givenname: Silvestru
  surname: Sever Dragomir
  fullname: Sever Dragomir, Silvestru
BookMark eNotkN9KwzAchYNMcJve-QB5AFt_TdKkuRzDP5PJBAteSUjTxEW6piZVmE9vRa8OfBwOh2-BZn3oLUKXBeQlZ-z6-eExJ5ADyUGeoDkhlGaF5GyG5kXFIANelmdokdI7AKeVKOfodeuHZPZ-_Mb1cbB409uPT9350duEXYhY9xMb7VvUHa6j7tMEDzg4_BTS1PqyeDfYqMcQE37x4x6vhqHzRo8-9OkcnTrdJXvxn0tU397U6_tsu7vbrFfbzIhSZs410z0hTdWYtgKjOS9owyiDlmjL29ZaJoW2gppGlK0WRjeSC95I5ozghC7R1d-siSGlaJ0aoj_oeFQFqF8zajKjCCggCiT9ASkKWpc
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.5644/SJM.20.02.09
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2233-1964
EndPage 280
ExternalDocumentID 10_5644_SJM_20_02_09
GroupedDBID AAYXX
ACIPV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBS
EJD
FRJ
OK1
TR2
ID FETCH-LOGICAL-c759-ffb18479c8bcd80ca6613b4340d2ae6ddee497ae73cb75da7cab9676b94fc7623
ISSN 1840-0655
IngestDate Tue Jul 01 04:55:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c759-ffb18479c8bcd80ca6613b4340d2ae6ddee497ae73cb75da7cab9676b94fc7623
OpenAccessLink https://sjm.ba/index.php/sjm/article/download/523/496
PageCount 18
ParticipantIDs crossref_primary_10_5644_SJM_20_02_09
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-14
PublicationDateYYYYMMDD 2025-04-14
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-14
  day: 14
PublicationDecade 2020
PublicationTitle Sarajevo journal of mathematics
PublicationYear 2025
SSID ssj0063875
Score 2.2888188
Snippet We introduce the following integral transform: \[ D^{(\mu)}(T) := -\int_{0}^{\infty} (\lambda+T)^{-1} d\mu(\lambda), \quad t > 0, \] where \(\mu\) is a...
SourceID crossref
SourceType Index Database
StartPage 263
Title Lipschitz Type Inequalities for an Integral Transform of Positive Operators With Applications
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Ji9swFIBFmV7aw9CVTjd0aE_BqSPbWo6lCyE07WEykEsxkiyHlMlCks4hv37ek2xHhBzSXkwwUYL1yW_RW0TIB660ZLmziRk4cFC4Mok0okhkbdVAiVQ5nzw-_smHN_loWkwPZ7b66pKd6dv9ybqS_6EK94ArVsn-A9nuR-EGfAa-cAXCcD2L8Y_5eotxgH0P3Ul4112okQTvt8mO9Dt-M1-E31qoIettG3KGfq2dj7NjGizGb6Jwdmy24r7xH3e3ihtNLLqGr51Zfu1gCntfN3q2WszDgV7zW-zjsfkb7y6wAgMloaqzEYgS0z95aKXbd_4eWBRZgo28YinK0mi1sFgkNgIsaFcWzm06FtwFmGUYOh6NwWX3TVTVQUG1QfkjvdVlE4Ifg-NLGF2ytExZiRWdDxk4Dqx1soNuBmHjWy93TxVKIXD0p_i_IyMlsjYmT8hl4ybQz4H5U_LALZ-Rx-PDlD8nvzv6FOnTmD4F0FQvaUufdvTpqqYtfdrRp0ifxvRfkMn3b5Mvw6Q5LCOxolBJXRt4KKGsNLaSqdVgd2Umz_K0YtpxUGIuV0I7kVl4FSstrDaKC25UXltQiNlLcrFcLd0rQo02MqsLYWpt8kI6lVYV5yjca6MHUlyRj-3klOvQEqU8heD1md97Qx4dVt5bcgFr0r0DS29n3nt494d8V80
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipschitz+Type+Inequalities+for+an+Integral+Transform+of+Positive+Operators+With+Applications&rft.jtitle=Sarajevo+journal+of+mathematics&rft.au=Sever+Dragomir%2C+Silvestru&rft.date=2025-04-14&rft.issn=1840-0655&rft.eissn=2233-1964&rft.volume=20&rft.issue=2&rft.spage=263&rft.epage=280&rft_id=info:doi/10.5644%2FSJM.20.02.09&rft.externalDBID=n%2Fa&rft.externalDocID=10_5644_SJM_20_02_09
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1840-0655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1840-0655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1840-0655&client=summon