CLASSIFICATION OF EEG SIGNAL BY METHODS OF MACHINE LEARNING
Electroencephalogram (EEG) signal of two healthy subjects that was available from literature, was studied using the methods of machine learning, namely, decision trees (DT), multilayer perceptron (MLP), K-nearest neighbours (kNN), and support vector machines (SVM). Since the data were imbalanced, th...
Saved in:
Published in | Applied Computer Science (Lublin) Vol. 16; no. 4; pp. 56 - 63 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
30.12.2020
|
Online Access | Get full text |
ISSN | 1895-3735 2353-6977 |
DOI | 10.35784/acs-2020-29 |
Cover
Abstract | Electroencephalogram (EEG) signal of two healthy subjects that was available from literature, was studied using the methods of machine learning, namely, decision trees (DT), multilayer perceptron (MLP), K-nearest neighbours (kNN), and support vector machines (SVM). Since the data were imbalanced, the appropriate balancing was performed by Kmeans clustering algorithm. The original and balanced data were classified by means of the mentioned above 4 methods. It was found, that SVM showed the best result for the both datasets in terms of accuracy. MLP and kNN produce the comparable results which are almost the same. DT accuracies are the lowest for the given dataset, with 83.82% for the original data and 61.48% for the balanced data. |
---|---|
AbstractList | Electroencephalogram (EEG) signal of two healthy subjects that was available from literature, was studied using the methods of machine learning, namely, decision trees (DT), multilayer perceptron (MLP), K-nearest neighbours (kNN), and support vector machines (SVM). Since the data were imbalanced, the appropriate balancing was performed by Kmeans clustering algorithm. The original and balanced data were classified by means of the mentioned above 4 methods. It was found, that SVM showed the best result for the both datasets in terms of accuracy. MLP and kNN produce the comparable results which are almost the same. DT accuracies are the lowest for the given dataset, with 83.82% for the original data and 61.48% for the balanced data. |
Author | YASNIY, Oleh ALYAMANI, Amina |
Author_xml | – sequence: 1 givenname: Amina surname: ALYAMANI fullname: ALYAMANI, Amina – sequence: 2 givenname: Oleh surname: YASNIY fullname: YASNIY, Oleh |
BookMark | eNotj8tKxDAYRoOMYB1n5wPkAYzm9jcJrmpN20CnBduNq9BLCorOSLPy7Z1RV9_ig8M512hzOB4CQreM3gtQWj4MUyScckq4uUAJFyBIapTaoIRpA0QoAVdoF-M7pZQzZpgwCXrM66zrXOHyrHdtg9sCW1vizpVNVuOnV7y3fdU-d-djn-WVayyubfbSuKa8QZfL8BHD7n-3qC9sn1ekbssTryaTAkMANFdjSk0Ks0wpCGECh1lzJiUdTypSLHKQwOYQuJy11pMeBQ2gZxg5p2KL7v6w03qMcQ2L_1rfPof12zPqf9P9Kd2f0z034geXX0Wx |
Cites_doi | 10.1080/00207140701672995 10.1016/j.jpainsymman.2007.05.009 10.1007/BF00116251 10.1016/j.jksuci.2013.01.001 10.3389/fncom.2017.00103 10.1016/j.neubiorev.2017.02.002 10.1080/00031305.1992.10475879 10.1016/j.ins.2018.09.057 10.1371/journal.pone.0123033 10.5755/j01.eee.18.8.2627 10.1002/9780470511923 10.1016/j.jneumeth.2012.05.017 10.1016/j.burns.2018.04.017 10.1016/j.neucom.2014.08.092 10.1007/BF00994018 10.1126/science.1127647 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.35784/acs-2020-29 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2353-6977 |
EndPage | 63 |
ExternalDocumentID | 10_35784_acs_2020_29 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ OK1 Y2W |
ID | FETCH-LOGICAL-c759-55827b60965d4605339e25d821440b00243f4a451dee24d888c8b30e58d5b2203 |
ISSN | 1895-3735 |
IngestDate | Tue Jul 01 00:33:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c759-55827b60965d4605339e25d821440b00243f4a451dee24d888c8b30e58d5b2203 |
OpenAccessLink | https://ph.pollub.pl/index.php/acs/article/download/3172/2881 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_35784_acs_2020_29 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-30 |
PublicationDateYYYYMMDD | 2020-12-30 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Applied Computer Science (Lublin) |
PublicationYear | 2020 |
References | 53718 53729 53719 53730 53720 53731 53723 53734 53724 53735 53721 53732 53722 53733 53727 53717 53728 53725 53736 53726 53737 |
References_xml | – ident: 53719 doi: 10.1080/00207140701672995 – ident: 53737 doi: 10.1016/j.jpainsymman.2007.05.009 – ident: 53726 – ident: 53730 doi: 10.1007/BF00116251 – ident: 53722 – ident: 53727 doi: 10.1016/j.jksuci.2013.01.001 – ident: 53718 doi: 10.3389/fncom.2017.00103 – ident: 53735 doi: 10.1016/j.neubiorev.2017.02.002 – ident: 53717 doi: 10.1080/00031305.1992.10475879 – ident: 53734 doi: 10.1016/j.ins.2018.09.057 – ident: 53721 doi: 10.1371/journal.pone.0123033 – ident: 53728 doi: 10.5755/j01.eee.18.8.2627 – ident: 53732 doi: 10.1002/9780470511923 – ident: 53736 – ident: 53724 doi: 10.1016/j.jneumeth.2012.05.017 – ident: 53733 – ident: 53731 – ident: 53729 doi: 10.1016/j.burns.2018.04.017 – ident: 53725 doi: 10.1016/j.neucom.2014.08.092 – ident: 53720 doi: 10.1007/BF00994018 – ident: 53723 doi: 10.1126/science.1127647 |
SSID | ssj0002119139 ssib017383067 ssib044730004 |
Score | 2.1301703 |
Snippet | Electroencephalogram (EEG) signal of two healthy subjects that was available from literature, was studied using the methods of machine learning, namely,... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 56 |
Title | CLASSIFICATION OF EEG SIGNAL BY METHODS OF MACHINE LEARNING |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHCB8SXGGPIBTlVG4u8IaVJW0rWoTSVWpPUU1Y4jDlAQ6y789Tw7TudNOwwuUeTGbaz3-nvv2e_9HkLvuDS0abRJWN7kCTPEJFqJNEmN0dpkdC2Nqx2eV2LylX2-4BeDwUmUtXS11cfmz511Jf8jVRgDuboq2X-Q7O5LYQDuQb5wBQnD9V4yHs0KAMNxKAZ2CTxleTY8n565dJ7T1XBeLieLT747-bwYTaZVOZyVxZeqZ5Hq2WeDJ9p3eNj94V27D7dNtYn3C2YrwOlq6kHlR2i-7XGjOK-mKze8-G6_xbsJxGdmhIORDgBVzgF0OgqRY-vHCOU0EXlot9Kjpoi0g0UQyEVkTDvwug3TjmGHOSNkLhP_EmERN9iwb1mpXe4gRC1-fg2zaze7JvkD9JBI2R3Th5Aa8CSTEH5H7PSMOXL-EH46S-3Z7Xyzud2yu9oI_wMfoteLvJbI_Vjuo8chbsBFpwRP0cBunqEnvcRwkNhz9PGmTuDFGINO4E4n8OkKB51wHwSdwL1OvEDLcbkcTZLQICMxkucJ54pILRx_T-OOtynNLeGNcix4qfe-aMvWjGeNtYQ1SimjNE0tVw3XhKT0Jdrb_NzYVwgL0mbWilbLrGVWyTWYAdMKqgHxpcnMAXrfr7_-1dGg1HcJ4vU9nztEj6617w3a2_6-skfg3W31Wy_CvyoDPAA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CLASSIFICATION+OF+EEG+SIGNAL+BY+METHODS+OF+MACHINE+LEARNING&rft.jtitle=Applied+Computer+Science+%28Lublin%29&rft.au=ALYAMANI%2C+Amina&rft.au=YASNIY%2C+Oleh&rft.date=2020-12-30&rft.issn=1895-3735&rft.eissn=2353-6977&rft.volume=16&rft.issue=4&rft.spage=56&rft.epage=63&rft_id=info:doi/10.35784%2Facs-2020-29&rft.externalDBID=n%2Fa&rft.externalDocID=10_35784_acs_2020_29 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1895-3735&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1895-3735&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1895-3735&client=summon |