CLASSIFICATION OF EEG SIGNAL BY METHODS OF MACHINE LEARNING

Electroencephalogram (EEG) signal of two healthy subjects that was available from literature, was studied using the methods of machine learning, namely, decision trees (DT), multilayer perceptron (MLP), K-nearest neighbours (kNN), and support vector machines (SVM). Since the data were imbalanced, th...

Full description

Saved in:
Bibliographic Details
Published inApplied Computer Science (Lublin) Vol. 16; no. 4; pp. 56 - 63
Main Authors ALYAMANI, Amina, YASNIY, Oleh
Format Journal Article
LanguageEnglish
Published 30.12.2020
Online AccessGet full text
ISSN1895-3735
2353-6977
DOI10.35784/acs-2020-29

Cover

Abstract Electroencephalogram (EEG) signal of two healthy subjects that was available from literature, was studied using the methods of machine learning, namely, decision trees (DT), multilayer perceptron (MLP), K-nearest neighbours (kNN), and support vector machines (SVM). Since the data were imbalanced, the appropriate balancing was performed by Kmeans clustering algorithm. The original and balanced data were classified by means of the mentioned above 4 methods. It was found, that SVM showed the best result for the both datasets in terms of accuracy. MLP and kNN produce the comparable results which are almost the same. DT accuracies are the lowest for the given dataset, with 83.82% for the original data and 61.48% for the balanced data.
AbstractList Electroencephalogram (EEG) signal of two healthy subjects that was available from literature, was studied using the methods of machine learning, namely, decision trees (DT), multilayer perceptron (MLP), K-nearest neighbours (kNN), and support vector machines (SVM). Since the data were imbalanced, the appropriate balancing was performed by Kmeans clustering algorithm. The original and balanced data were classified by means of the mentioned above 4 methods. It was found, that SVM showed the best result for the both datasets in terms of accuracy. MLP and kNN produce the comparable results which are almost the same. DT accuracies are the lowest for the given dataset, with 83.82% for the original data and 61.48% for the balanced data.
Author YASNIY, Oleh
ALYAMANI, Amina
Author_xml – sequence: 1
  givenname: Amina
  surname: ALYAMANI
  fullname: ALYAMANI, Amina
– sequence: 2
  givenname: Oleh
  surname: YASNIY
  fullname: YASNIY, Oleh
BookMark eNotj8tKxDAYRoOMYB1n5wPkAYzm9jcJrmpN20CnBduNq9BLCorOSLPy7Z1RV9_ig8M512hzOB4CQreM3gtQWj4MUyScckq4uUAJFyBIapTaoIRpA0QoAVdoF-M7pZQzZpgwCXrM66zrXOHyrHdtg9sCW1vizpVNVuOnV7y3fdU-d-djn-WVayyubfbSuKa8QZfL8BHD7n-3qC9sn1ekbssTryaTAkMANFdjSk0Ks0wpCGECh1lzJiUdTypSLHKQwOYQuJy11pMeBQ2gZxg5p2KL7v6w03qMcQ2L_1rfPof12zPqf9P9Kd2f0z034geXX0Wx
Cites_doi 10.1080/00207140701672995
10.1016/j.jpainsymman.2007.05.009
10.1007/BF00116251
10.1016/j.jksuci.2013.01.001
10.3389/fncom.2017.00103
10.1016/j.neubiorev.2017.02.002
10.1080/00031305.1992.10475879
10.1016/j.ins.2018.09.057
10.1371/journal.pone.0123033
10.5755/j01.eee.18.8.2627
10.1002/9780470511923
10.1016/j.jneumeth.2012.05.017
10.1016/j.burns.2018.04.017
10.1016/j.neucom.2014.08.092
10.1007/BF00994018
10.1126/science.1127647
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.35784/acs-2020-29
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2353-6977
EndPage 63
ExternalDocumentID 10_35784_acs_2020_29
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
OK1
Y2W
ID FETCH-LOGICAL-c759-55827b60965d4605339e25d821440b00243f4a451dee24d888c8b30e58d5b2203
ISSN 1895-3735
IngestDate Tue Jul 01 00:33:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c759-55827b60965d4605339e25d821440b00243f4a451dee24d888c8b30e58d5b2203
OpenAccessLink https://ph.pollub.pl/index.php/acs/article/download/3172/2881
PageCount 8
ParticipantIDs crossref_primary_10_35784_acs_2020_29
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-30
PublicationDateYYYYMMDD 2020-12-30
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-30
  day: 30
PublicationDecade 2020
PublicationTitle Applied Computer Science (Lublin)
PublicationYear 2020
References 53718
53729
53719
53730
53720
53731
53723
53734
53724
53735
53721
53732
53722
53733
53727
53717
53728
53725
53736
53726
53737
References_xml – ident: 53719
  doi: 10.1080/00207140701672995
– ident: 53737
  doi: 10.1016/j.jpainsymman.2007.05.009
– ident: 53726
– ident: 53730
  doi: 10.1007/BF00116251
– ident: 53722
– ident: 53727
  doi: 10.1016/j.jksuci.2013.01.001
– ident: 53718
  doi: 10.3389/fncom.2017.00103
– ident: 53735
  doi: 10.1016/j.neubiorev.2017.02.002
– ident: 53717
  doi: 10.1080/00031305.1992.10475879
– ident: 53734
  doi: 10.1016/j.ins.2018.09.057
– ident: 53721
  doi: 10.1371/journal.pone.0123033
– ident: 53728
  doi: 10.5755/j01.eee.18.8.2627
– ident: 53732
  doi: 10.1002/9780470511923
– ident: 53736
– ident: 53724
  doi: 10.1016/j.jneumeth.2012.05.017
– ident: 53733
– ident: 53731
– ident: 53729
  doi: 10.1016/j.burns.2018.04.017
– ident: 53725
  doi: 10.1016/j.neucom.2014.08.092
– ident: 53720
  doi: 10.1007/BF00994018
– ident: 53723
  doi: 10.1126/science.1127647
SSID ssj0002119139
ssib017383067
ssib044730004
Score 2.1301703
Snippet Electroencephalogram (EEG) signal of two healthy subjects that was available from literature, was studied using the methods of machine learning, namely,...
SourceID crossref
SourceType Index Database
StartPage 56
Title CLASSIFICATION OF EEG SIGNAL BY METHODS OF MACHINE LEARNING
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHCB8SXGGPIBTlVG4u8IaVJW0rWoTSVWpPUU1Y4jDlAQ6y789Tw7TudNOwwuUeTGbaz3-nvv2e_9HkLvuDS0abRJWN7kCTPEJFqJNEmN0dpkdC2Nqx2eV2LylX2-4BeDwUmUtXS11cfmz511Jf8jVRgDuboq2X-Q7O5LYQDuQb5wBQnD9V4yHs0KAMNxKAZ2CTxleTY8n565dJ7T1XBeLieLT747-bwYTaZVOZyVxZeqZ5Hq2WeDJ9p3eNj94V27D7dNtYn3C2YrwOlq6kHlR2i-7XGjOK-mKze8-G6_xbsJxGdmhIORDgBVzgF0OgqRY-vHCOU0EXlot9Kjpoi0g0UQyEVkTDvwug3TjmGHOSNkLhP_EmERN9iwb1mpXe4gRC1-fg2zaze7JvkD9JBI2R3Th5Aa8CSTEH5H7PSMOXL-EH46S-3Z7Xyzud2yu9oI_wMfoteLvJbI_Vjuo8chbsBFpwRP0cBunqEnvcRwkNhz9PGmTuDFGINO4E4n8OkKB51wHwSdwL1OvEDLcbkcTZLQICMxkucJ54pILRx_T-OOtynNLeGNcix4qfe-aMvWjGeNtYQ1SimjNE0tVw3XhKT0Jdrb_NzYVwgL0mbWilbLrGVWyTWYAdMKqgHxpcnMAXrfr7_-1dGg1HcJ4vU9nztEj6617w3a2_6-skfg3W31Wy_CvyoDPAA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CLASSIFICATION+OF+EEG+SIGNAL+BY+METHODS+OF+MACHINE+LEARNING&rft.jtitle=Applied+Computer+Science+%28Lublin%29&rft.au=ALYAMANI%2C+Amina&rft.au=YASNIY%2C+Oleh&rft.date=2020-12-30&rft.issn=1895-3735&rft.eissn=2353-6977&rft.volume=16&rft.issue=4&rft.spage=56&rft.epage=63&rft_id=info:doi/10.35784%2Facs-2020-29&rft.externalDBID=n%2Fa&rft.externalDocID=10_35784_acs_2020_29
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1895-3735&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1895-3735&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1895-3735&client=summon