Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons

Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to examine how assistance should be applied in variable gait conditions and suggest an approach derived from knowledge of human locomotion mechan...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 8; p. e0231996
Main Authors Nuckols, Richard W., Takahashi, Kota Z., Farris, Dominic J., Mizrachi, Sarai, Riemer, Raziel, Sawicki, Gregory S.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 28.08.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to examine how assistance should be applied in variable gait conditions and suggest an approach derived from knowledge of human locomotion mechanics to establish a 'roadmap' for wearable robot design. We characterized the changes in joint mechanics during walking and running across a range of incline/decline grades and then provide an analysis that informs the development of lower-limb exoskeletons capable of operating across a range of mechanical demands. We hypothesized that the distribution of limb-joint positive mechanical power would shift to the hip for incline walking and running and that the distribution of limb-joint negative mechanical power would shift to the knee for decline walking and running. Eight subjects (6M,2F) completed five walking (1.25 m s-1) trials at -8.53°, -5.71°, 0°, 5.71°, and 8.53° grade and five running (2.25 m s-1) trials at -5.71°, -2.86°, 0°, 2.86°, and 5.71° grade on a treadmill. We calculated time-varying joint moment and power output for the ankle, knee, and hip. For each gait, we examined how individual limb-joints contributed to total limb positive, negative and net power across grades. For both walking and running, changes in grade caused a redistribution of joint mechanical power generation and absorption. From level to incline walking, the ankle's contribution to limb positive power decreased from 44% on the level to 28% at 8.53° uphill grade (p < 0.0001) while the hip's contribution increased from 27% to 52% (p < 0.0001). In running, regardless of the surface gradient, the ankle was consistently the dominant source of lower-limb positive mechanical power (47-55%). In the context of our results, we outline three distinct use-modes that could be emphasized in future lower-limb exoskeleton designs 1) Energy injection: adding positive work into the gait cycle, 2) Energy extraction: removing negative work from the gait cycle, and 3) Energy transfer: extracting energy in one gait phase and then injecting it in another phase (i.e., regenerative braking).
AbstractList Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to examine how assistance should be applied in variable gait conditions and suggest an approach derived from knowledge of human locomotion mechanics to establish a 'roadmap' for wearable robot design. We characterized the changes in joint mechanics during walking and running across a range of incline/decline grades and then provide an analysis that informs the development of lower-limb exoskeletons capable of operating across a range of mechanical demands. We hypothesized that the distribution of limb-joint positive mechanical power would shift to the hip for incline walking and running and that the distribution of limb-joint negative mechanical power would shift to the knee for decline walking and running. Eight subjects (6M,2F) completed five walking (1.25 m s-1) trials at -8.53°, -5.71°, 0°, 5.71°, and 8.53° grade and five running (2.25 m s-1) trials at -5.71°, -2.86°, 0°, 2.86°, and 5.71° grade on a treadmill. We calculated time-varying joint moment and power output for the ankle, knee, and hip. For each gait, we examined how individual limb-joints contributed to total limb positive, negative and net power across grades. For both walking and running, changes in grade caused a redistribution of joint mechanical power generation and absorption. From level to incline walking, the ankle's contribution to limb positive power decreased from 44% on the level to 28% at 8.53° uphill grade (p < 0.0001) while the hip's contribution increased from 27% to 52% (p < 0.0001). In running, regardless of the surface gradient, the ankle was consistently the dominant source of lower-limb positive mechanical power (47-55%). In the context of our results, we outline three distinct use-modes that could be emphasized in future lower-limb exoskeleton designs 1) Energy injection: adding positive work into the gait cycle, 2) Energy extraction: removing negative work from the gait cycle, and 3) Energy transfer: extracting energy in one gait phase and then injecting it in another phase (i.e., regenerative braking).
Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to examine how assistance should be applied in variable gait conditions and suggest an approach derived from knowledge of human locomotion mechanics to establish a ‘roadmap’ for wearable robot design. We characterized the changes in joint mechanics during walking and running across a range of incline/decline grades and then provide an analysis that informs the development of lower-limb exoskeletons capable of operating across a range of mechanical demands. We hypothesized that the distribution of limb-joint positive mechanical power would shift to the hip for incline walking and running and that the distribution of limb-joint negative mechanical power would shift to the knee for decline walking and running. Eight subjects (6M,2F) completed five walking (1.25 m s -1 ) trials at -8.53°, -5.71°, 0°, 5.71°, and 8.53° grade and five running (2.25 m s -1 ) trials at -5.71°, -2.86°, 0°, 2.86°, and 5.71° grade on a treadmill. We calculated time-varying joint moment and power output for the ankle, knee, and hip. For each gait, we examined how individual limb-joints contributed to total limb positive, negative and net power across grades. For both walking and running, changes in grade caused a redistribution of joint mechanical power generation and absorption. From level to incline walking, the ankle’s contribution to limb positive power decreased from 44% on the level to 28% at 8.53° uphill grade ( p < 0.0001) while the hip’s contribution increased from 27% to 52% ( p < 0.0001). In running, regardless of the surface gradient, the ankle was consistently the dominant source of lower-limb positive mechanical power (47–55%). In the context of our results, we outline three distinct use-modes that could be emphasized in future lower-limb exoskeleton designs 1) Energy injection: adding positive work into the gait cycle, 2) Energy extraction: removing negative work from the gait cycle, and 3) Energy transfer: extracting energy in one gait phase and then injecting it in another phase ( i . e ., regenerative braking).
Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to examine how assistance should be applied in variable gait conditions and suggest an approach derived from knowledge of human locomotion mechanics to establish a 'roadmap' for wearable robot design. We characterized the changes in joint mechanics during walking and running across a range of incline/decline grades and then provide an analysis that informs the development of lower-limb exoskeletons capable of operating across a range of mechanical demands. We hypothesized that the distribution of limb-joint positive mechanical power would shift to the hip for incline walking and running and that the distribution of limb-joint negative mechanical power would shift to the knee for decline walking and running. Eight subjects (6M,2F) completed five walking (1.25 m s.sup.-1) trials at -8.53°, -5.71°, 0°, 5.71°, and 8.53° grade and five running (2.25 m s.sup.-1) trials at -5.71°, -2.86°, 0°, 2.86°, and 5.71° grade on a treadmill. We calculated time-varying joint moment and power output for the ankle, knee, and hip. For each gait, we examined how individual limb-joints contributed to total limb positive, negative and net power across grades. For both walking and running, changes in grade caused a redistribution of joint mechanical power generation and absorption. From level to incline walking, the ankle's contribution to limb positive power decreased from 44% on the level to 28% at 8.53° uphill grade (p < 0.0001) while the hip's contribution increased from 27% to 52% (p < 0.0001). In running, regardless of the surface gradient, the ankle was consistently the dominant source of lower-limb positive mechanical power (47-55%). In the context of our results, we outline three distinct use-modes that could be emphasized in future lower-limb exoskeleton designs 1) Energy injection: adding positive work into the gait cycle, 2) Energy extraction: removing negative work from the gait cycle, and 3) Energy transfer: extracting energy in one gait phase and then injecting it in another phase (i.e., regenerative braking).
Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to examine how assistance should be applied in variable gait conditions and suggest an approach derived from knowledge of human locomotion mechanics to establish a 'roadmap' for wearable robot design. We characterized the changes in joint mechanics during walking and running across a range of incline/decline grades and then provide an analysis that informs the development of lower-limb exoskeletons capable of operating across a range of mechanical demands. We hypothesized that the distribution of limb-joint positive mechanical power would shift to the hip for incline walking and running and that the distribution of limb-joint negative mechanical power would shift to the knee for decline walking and running. Eight subjects (6M,2F) completed five walking (1.25 m s-1) trials at -8.53°, -5.71°, 0°, 5.71°, and 8.53° grade and five running (2.25 m s-1) trials at -5.71°, -2.86°, 0°, 2.86°, and 5.71° grade on a treadmill. We calculated time-varying joint moment and power output for the ankle, knee, and hip. For each gait, we examined how individual limb-joints contributed to total limb positive, negative and net power across grades. For both walking and running, changes in grade caused a redistribution of joint mechanical power generation and absorption. From level to incline walking, the ankle's contribution to limb positive power decreased from 44% on the level to 28% at 8.53° uphill grade (p < 0.0001) while the hip's contribution increased from 27% to 52% (p < 0.0001). In running, regardless of the surface gradient, the ankle was consistently the dominant source of lower-limb positive mechanical power (47-55%). In the context of our results, we outline three distinct use-modes that could be emphasized in future lower-limb exoskeleton designs 1) Energy injection: adding positive work into the gait cycle, 2) Energy extraction: removing negative work from the gait cycle, and 3) Energy transfer: extracting energy in one gait phase and then injecting it in another phase (i.e., regenerative braking).Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to examine how assistance should be applied in variable gait conditions and suggest an approach derived from knowledge of human locomotion mechanics to establish a 'roadmap' for wearable robot design. We characterized the changes in joint mechanics during walking and running across a range of incline/decline grades and then provide an analysis that informs the development of lower-limb exoskeletons capable of operating across a range of mechanical demands. We hypothesized that the distribution of limb-joint positive mechanical power would shift to the hip for incline walking and running and that the distribution of limb-joint negative mechanical power would shift to the knee for decline walking and running. Eight subjects (6M,2F) completed five walking (1.25 m s-1) trials at -8.53°, -5.71°, 0°, 5.71°, and 8.53° grade and five running (2.25 m s-1) trials at -5.71°, -2.86°, 0°, 2.86°, and 5.71° grade on a treadmill. We calculated time-varying joint moment and power output for the ankle, knee, and hip. For each gait, we examined how individual limb-joints contributed to total limb positive, negative and net power across grades. For both walking and running, changes in grade caused a redistribution of joint mechanical power generation and absorption. From level to incline walking, the ankle's contribution to limb positive power decreased from 44% on the level to 28% at 8.53° uphill grade (p < 0.0001) while the hip's contribution increased from 27% to 52% (p < 0.0001). In running, regardless of the surface gradient, the ankle was consistently the dominant source of lower-limb positive mechanical power (47-55%). In the context of our results, we outline three distinct use-modes that could be emphasized in future lower-limb exoskeleton designs 1) Energy injection: adding positive work into the gait cycle, 2) Energy extraction: removing negative work from the gait cycle, and 3) Energy transfer: extracting energy in one gait phase and then injecting it in another phase (i.e., regenerative braking).
Audience Academic
Author Farris, Dominic J.
Mizrachi, Sarai
Nuckols, Richard W.
Takahashi, Kota Z.
Sawicki, Gregory S.
Riemer, Raziel
AuthorAffiliation 3 Department of Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter, United Kingdom
1 School of Engineering and Applied Sciences, Harvard University and Wyss Institute, Cambridge, Massachusetts, United States of America
5 School of Mechanical Engineering and Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
4 Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
2 Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
University of Massachusetts Lowell, UNITED STATES
AuthorAffiliation_xml – name: 5 School of Mechanical Engineering and Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
– name: 2 Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
– name: 3 Department of Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter, United Kingdom
– name: 4 Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
– name: 1 School of Engineering and Applied Sciences, Harvard University and Wyss Institute, Cambridge, Massachusetts, United States of America
– name: University of Massachusetts Lowell, UNITED STATES
Author_xml – sequence: 1
  givenname: Richard W.
  orcidid: 0000-0002-6543-2424
  surname: Nuckols
  fullname: Nuckols, Richard W.
– sequence: 2
  givenname: Kota Z.
  surname: Takahashi
  fullname: Takahashi, Kota Z.
– sequence: 3
  givenname: Dominic J.
  surname: Farris
  fullname: Farris, Dominic J.
– sequence: 4
  givenname: Sarai
  surname: Mizrachi
  fullname: Mizrachi, Sarai
– sequence: 5
  givenname: Raziel
  surname: Riemer
  fullname: Riemer, Raziel
– sequence: 6
  givenname: Gregory S.
  surname: Sawicki
  fullname: Sawicki, Gregory S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32857774$$D View this record in MEDLINE/PubMed
BookMark eNqNk11r2zAUhs3oWNts_2BshsHYLpxZkm3ZvRiEso9AR2Fft0KWjh2liuRZctL9-8lNMpJSxtCF5aPnfaVzOOc8OjHWQBQ9R-kUEYreLe3QG66nXQhPU0xQVRWPojNUEZwUOCUnB_vT6Ny5ZZrmpCyKJ9EpwWVOKc3OovUXEAtulHCxbeIN1zfKtDE3Mu4HY8b90N39SrsxC6X1RTyLl1YZn2hYg4476F0Hwqs1xN7G7aAkxBKcas3oqO0G-kSrVR3DrXU3oMFb455GjxuuHTzbfSfRj48fvl9-Tq6uP80vZ1eJoHnpk4ZLzinIQhKcojInouIVz6SUKa_LXGCKK5kiRKkEQuuSYAw0pFhJLktaNGQSvdz6dto6tiuZYzgjJU4pDgWZRPMtIS1fsq5XK97_ZpYrdhewfct475XQwEpck1RWNRIYZRI3pajKhuTjUzOeURG83u9uG-oVSAHG91wfmR6fGLVgrV0zmuVZlZFg8GZn0NtfAzjPVsoJ0JobsMP23UWFUZUG9NU99OHsdlTLQwLKNDbcK0ZTNitIwCjCOFDTB6iwJKyUCP3VqBA_Erw9EgTGw61v-eAcm3_7-v_s9c9j9vUBuwCu_cJZPXgVeuYYfHFY6b8l3jd2AC62gOitcz00TCjPR5-QmtIMpWycon3R2DhFbDdFQZzdE-_9_yn7A_H-IXY
CitedBy_id crossref_primary_10_1155_2022_1987345
crossref_primary_10_1109_TMRB_2023_3240284
crossref_primary_10_1299_mej_23_00547
crossref_primary_10_1016_j_gaitpost_2021_04_040
crossref_primary_10_1080_00140139_2022_2059106
crossref_primary_10_1371_journal_pone_0286521
crossref_primary_10_1371_journal_pone_0278657
crossref_primary_10_1002_smtd_202300771
crossref_primary_10_1097_PXR_0000000000000042
crossref_primary_10_1177_11207000251321765
crossref_primary_10_1017_wtc_2022_29
crossref_primary_10_1038_s41586_024_08157_7
crossref_primary_10_1126_scirobotics_adi8852
crossref_primary_10_1109_TBME_2021_3120716
crossref_primary_10_1016_j_isci_2023_107011
crossref_primary_10_1109_TMECH_2022_3214419
crossref_primary_10_4028_p_S3Ka1K
crossref_primary_10_1109_ACCESS_2023_3299873
crossref_primary_10_1109_TNSRE_2022_3196665
crossref_primary_10_1115_1_4056919
crossref_primary_10_1109_TMRB_2023_3328654
crossref_primary_10_1109_ACCESS_2025_3539452
crossref_primary_10_2478_pjst_2022_0003
crossref_primary_10_1142_S0219876221420123
crossref_primary_10_1016_j_apergo_2023_104050
crossref_primary_10_3389_fbioe_2024_1324587
crossref_primary_10_1126_sciadv_adq0288
crossref_primary_10_1016_j_gaitpost_2024_12_010
crossref_primary_10_1371_journal_pone_0294161
crossref_primary_10_1016_j_gaitpost_2024_01_001
crossref_primary_10_1080_02640414_2024_2440675
crossref_primary_10_1109_LRA_2024_3460415
crossref_primary_10_1007_s40684_022_00472_6
crossref_primary_10_1007_s11055_021_01176_1
crossref_primary_10_1016_j_irbm_2023_100806
crossref_primary_10_1016_j_jbiomech_2022_111083
crossref_primary_10_1109_TMRB_2024_3421547
crossref_primary_10_1038_s41467_024_50038_0
crossref_primary_10_1126_science_abh4007
crossref_primary_10_1098_rsos_231133
crossref_primary_10_1016_j_jbiomech_2023_111688
crossref_primary_10_1126_science_aba9947
crossref_primary_10_1242_jeb_245113
crossref_primary_10_1016_j_medengphy_2023_103997
crossref_primary_10_1016_j_heliyon_2025_e41901
crossref_primary_10_1371_journal_pone_0295465
crossref_primary_10_1371_journal_pone_0302867
crossref_primary_10_1093_iob_obac021
crossref_primary_10_1109_TMECH_2023_3334795
crossref_primary_10_1109_ACCESS_2021_3083810
crossref_primary_10_1109_TMRB_2022_3144025
crossref_primary_10_1109_TBME_2022_3188482
crossref_primary_10_1098_rsif_2022_0024
Cites_doi 10.1016/j.ymssp.2019.03.008
10.1186/s12984-020-00663-9
10.1126/science.aal5054
10.1016/j.jbiomech.2017.07.001
10.1186/s12984-020-00703-4
10.1038/nature14288
10.1016/j.jbiomech.2016.08.004
10.1098/rsif.2011.0182
10.1242/jeb.01555
10.1109/JESTPE.2015.2514079
10.1109/ICRA.2015.7139980
10.1242/jeb.009241
10.1016/j.jbiomech.2008.09.024
10.1249/JES.0000000000000204
10.1186/s12984-017-0235-0
10.1126/scirobotics.aah4416
10.1186/s12984-015-0015-7
10.1098/rsif.2018.0442
10.1097/00003677-200504000-00006
10.1038/s41598-020-60360-4
10.1016/j.jbiomech.2009.09.030
10.1016/j.jbiomech.2012.03.032
10.1152/japplphysiol.01090.2006
10.1126/science.1149860
10.1126/scirobotics.aay9108
10.1016/j.gaitpost.2013.06.012
10.1016/S1095-6433(02)00244-1
10.1109/APEC.2014.6803748
10.1016/j.gaitpost.2013.01.029
10.1098/rsos.180550
10.1007/s00421-014-2955-1
10.1126/scirobotics.aar5438
10.1371/journal.pone.0127635
10.1186/s12984-019-0523-y
10.1016/j.jbiomech.2015.02.006
10.1073/pnas.1107972109
10.1186/s12984-015-0086-5
10.1186/s12984-016-0196-8
10.1186/1743-0003-11-151
10.1016/j.jbiomech.2011.01.030
10.1080/00140137208924416
10.1088/1748-3190/aa50b0
10.1109/ICRA.2014.6907024
10.1242/jeb.066332
10.1016/j.jbiomech.2005.05.005
10.1186/s12984-018-0379-6
10.1016/j.humov.2011.08.005
10.1007/s40279-016-0605-y
10.1016/j.jbiomech.2015.11.022
10.1109/TNSRE.2019.2899753
10.1152/jappl.1963.18.2.367
10.1371/journal.pone.0056137
10.1113/jphysiol.1993.sp019969
10.1109/ICRA.2016.7487194
10.1242/jeb.003970
10.1123/jab.2018-0384
10.1152/japplphysiol.01177.2001
10.1016/j.gaitpost.2016.11.040
10.1242/jeb.038588
10.1016/j.jbiomech.2015.04.023
10.1006/jtbi.1996.0271
10.1186/1743-0003-11-80
10.1242/jeb.017277
10.1152/japplphysiol.00189.2005
10.1186/s12984-018-0410-y
10.1242/jeb.028076
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Nuckols et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Nuckols et al 2020 Nuckols et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Nuckols et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Nuckols et al 2020 Nuckols et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0231996
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Proquest Nursing & Allied Health Source
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
MEDLINE

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Mechanics of walking and running up and downhill: Guiding design of lower-limb exoskeletons
EISSN 1932-6203
ExternalDocumentID 2438207205
oai_doaj_org_article_82b30d9b1c214d2f8c98f35c7584a47c
PMC7454943
A633827122
32857774
10_1371_journal_pone_0231996
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
Israel
Georgia
United Kingdom--UK
United States--US
GeographicLocations_xml – name: United States
– name: Israel
– name: United Kingdom--UK
– name: United States--US
– name: Georgia
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: 27303C0140
– fundername: ;
  grantid: W911QY18C0140
– fundername: ;
  grantid: 2011152
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c758t-fadaa7ed6d3201853c9a9a4ddd0ab85c2729d01177de37b8322e78669dad876f3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:52:07 EST 2021
Wed Aug 27 01:30:06 EDT 2025
Thu Aug 21 18:33:04 EDT 2025
Fri Jul 11 03:38:28 EDT 2025
Fri Jul 25 11:17:10 EDT 2025
Tue Jun 17 21:02:32 EDT 2025
Tue Jun 10 20:34:42 EDT 2025
Fri Jun 27 03:35:36 EDT 2025
Fri Jun 27 04:05:31 EDT 2025
Thu May 22 21:20:27 EDT 2025
Mon Jul 21 05:51:30 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Tue Jul 01 01:27:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c758t-fadaa7ed6d3201853c9a9a4ddd0ab85c2729d01177de37b8322e78669dad876f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-6543-2424
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0231996
PMID 32857774
PQID 2438207205
PQPubID 1436336
PageCount e0231996
ParticipantIDs plos_journals_2438207205
doaj_primary_oai_doaj_org_article_82b30d9b1c214d2f8c98f35c7584a47c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7454943
proquest_miscellaneous_2438692190
proquest_journals_2438207205
gale_infotracmisc_A633827122
gale_infotracacademiconefile_A633827122
gale_incontextgauss_ISR_A633827122
gale_incontextgauss_IOV_A633827122
gale_healthsolutions_A633827122
pubmed_primary_32857774
crossref_citationtrail_10_1371_journal_pone_0231996
crossref_primary_10_1371_journal_pone_0231996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-28
PublicationDateYYYYMMDD 2020-08-28
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References DJ Farris (pone.0231996.ref032) 2012; 109
S Galle (pone.0231996.ref005) 2014; 114
Y Ding (pone.0231996.ref021) 2016; 13
LN Awad (pone.0231996.ref030) 2017; 9
TJ Roberts (pone.0231996.ref058) 2011; 214
GS Sawicki (pone.0231996.ref002) 2020; 17
A Cervera (pone.0231996.ref061) 2016; 4
JR Montgomery (pone.0231996.ref042) 2018; 5
pone.0231996.ref070
RW Nuckols (pone.0231996.ref027) 2020; 10
N Alexander (pone.0231996.ref055) 2017; 61
PC Kao (pone.0231996.ref064) 2010; 43
S Galle (pone.0231996.ref016) 2017; 52
R Margaria (pone.0231996.ref034) 1963; 18
RM Alexander (pone.0231996.ref069) 1997; 184
B Quinlivan (pone.0231996.ref018) 2017; 2
pone.0231996.ref072
CE Mahon (pone.0231996.ref067) 2015; 48
LM Mooney (pone.0231996.ref025) 2014; 11
JR Franz (pone.0231996.ref038) 2014; 39
S Lee (pone.0231996.ref011) 2018; 15
DJ Farris (pone.0231996.ref054) 2012; 9
JR Montgomery (pone.0231996.ref076) 2018; 15
SH Collins (pone.0231996.ref026) 2015
S Galle (pone.0231996.ref013) 2013; 38
JR Koller (pone.0231996.ref066) 2018; 15
TJ Roberts (pone.0231996.ref035) 2005; 208
MP McGuigan (pone.0231996.ref051) 2009; 212
AA Biewener (pone.0231996.ref057) 2000; 28
A Silder (pone.0231996.ref037) 2012; 45
RW Nuckols (pone.0231996.ref010) 2020; 17
RW Nuckols (pone.0231996.ref023) 2020
GS Sawicki (pone.0231996.ref024) 2009; 212
L Xie (pone.0231996.ref071) 2019; 127
KA Witte (pone.0231996.ref012) 2020; 5
P Devita (pone.0231996.ref040) 2008; 41
AE Minetti (pone.0231996.ref033) 2002; 93
SH Collins (pone.0231996.ref073) 2005; 600
ON Beck (pone.0231996.ref001) 2019; 47
pone.0231996.ref014
M Shepertycky (pone.0231996.ref060) 2015; 10
AE Minetti (pone.0231996.ref048) 1993; 472
R Margaria (pone.0231996.ref046) 1968; 25
Y Ding (pone.0231996.ref022) 2018; 3
AN Lay (pone.0231996.ref036) 2006; 39
CZ Zai (pone.0231996.ref049) 2020
M Ishikawa (pone.0231996.ref031) 2005; 99
S Galle (pone.0231996.ref017) 2017; 14
P DeVita (pone.0231996.ref039) 2007; 210
SH Collins (pone.0231996.ref006) 2015; 522
G Vernillo (pone.0231996.ref045) 2017; 47
CT Davies (pone.0231996.ref047) 1972; 15
KL Snyder (pone.0231996.ref059) 2012; 215
KZ Takahashi (pone.0231996.ref029) 2015; 12
JM Donelan (pone.0231996.ref019) 2008; 319
MK MacLean (pone.0231996.ref062) 2019; 35
JR Jeffers (pone.0231996.ref044) 2015; 48
EM McCain (pone.0231996.ref068) 2019; 16
JR Koller (pone.0231996.ref008) 2015; 12
P Malcolm (pone.0231996.ref003) 2013; 8
J Zhang (pone.0231996.ref007) 2017; 356
GS Sawicki (pone.0231996.ref015) 2008; 211
M Qiao (pone.0231996.ref052) 2017; 12
GS Sawicki (pone.0231996.ref063) 2020; 17
AD Segal (pone.0231996.ref074) 2012; 31
NT Pickle (pone.0231996.ref043) 2016; 49
CL Lewis (pone.0231996.ref065) 2011; 44
A Sutrisno (pone.0231996.ref075) 2019; 27
AD Kuo (pone.0231996.ref028) 2005; 33
LM Mooney (pone.0231996.ref004) 2014; 11
RW Nuckols (pone.0231996.ref009) 2020; 10
pone.0231996.ref020
TJ Roberts (pone.0231996.ref056) 2002; 133
N Alexander (pone.0231996.ref041) 2017; 61
DV Lee (pone.0231996.ref050) 2008; 104
M Qiao (pone.0231996.ref053) 2016; 49
References_xml – volume: 127
  start-page: 172
  year: 2019
  ident: pone.0231996.ref071
  article-title: Knee-braced energy harvester: Reclaim energy and assist walking
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2019.03.008
– volume: 17
  start-page: 25
  issue: 1
  year: 2020
  ident: pone.0231996.ref063
  article-title: The exoskeleton expansion: improving walking and running economy
  publication-title: Journal of NeuroEngineering and Rehabilitation
  doi: 10.1186/s12984-020-00663-9
– volume: 356
  start-page: 1280
  issue: 6344
  year: 2017
  ident: pone.0231996.ref007
  article-title: Human-in-the-loop optimization of exoskeleton assistance during walking
  publication-title: Science
  doi: 10.1126/science.aal5054
– year: 2020
  ident: pone.0231996.ref049
  article-title: The metabolic power required to support body weight and accelerate body mass changes during walking on uphill and downhill slopes
  publication-title: Journal of Biomechanics
– volume: 61
  start-page: 75
  year: 2017
  ident: pone.0231996.ref055
  article-title: Lower limb joint work and joint work contribution during downhill and uphill walking at different inclinations
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2017.07.001
– volume: 17
  start-page: 75
  issue: 1
  year: 2020
  ident: pone.0231996.ref010
  article-title: Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-020-00703-4
– volume: 522
  start-page: 212
  issue: 7555
  year: 2015
  ident: pone.0231996.ref006
  article-title: Reducing the energy cost of human walking using an unpowered exoskeleton
  publication-title: Nature
  doi: 10.1038/nature14288
– volume: 49
  start-page: 3244
  issue: 14
  year: 2016
  ident: pone.0231996.ref043
  article-title: The functional roles of muscles during sloped walking
  publication-title: Journal of biomechanics
  doi: 10.1016/j.jbiomech.2016.08.004
– volume: 9
  start-page: 110
  issue: 66
  year: 2012
  ident: pone.0231996.ref054
  article-title: The mechanics and energetics of human walking and running: a joint level perspective
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2011.0182
– volume: 600
  start-page: 800
  year: 2005
  ident: pone.0231996.ref073
  article-title: Controlled energy storage and return prosthesis reduces metabolic cost of walking
  publication-title: Power
– volume: 208
  start-page: 1963
  issue: Pt 10
  year: 2005
  ident: pone.0231996.ref035
  article-title: Sources of mechanical power for uphill running in humans
  publication-title: J Exp Biol
  doi: 10.1242/jeb.01555
– volume: 4
  start-page: 293
  issue: 1
  year: 2016
  ident: pone.0231996.ref061
  article-title: Biomechanical Energy Harvesting System With Optimal Cost-of-Harvesting Tracking Algorithm
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
  doi: 10.1109/JESTPE.2015.2514079
– ident: pone.0231996.ref014
  doi: 10.1109/ICRA.2015.7139980
– volume: 211
  start-page: 1402
  issue: Pt 9
  year: 2008
  ident: pone.0231996.ref015
  article-title: Mechanics and energetics of level walking with powered ankle exoskeletons
  publication-title: J Exp Biol
  doi: 10.1242/jeb.009241
– volume: 41
  start-page: 3354
  issue: 16
  year: 2008
  ident: pone.0231996.ref040
  article-title: Muscle work is biased toward energy generation over dissipation in non-level running
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2008.09.024
– volume: 47
  start-page: 237
  issue: 4
  year: 2019
  ident: pone.0231996.ref001
  article-title: Exoskeletons Improve Locomotion Economy by Reducing Active Muscle Volume
  publication-title: Exercise and sport sciences reviews
  doi: 10.1249/JES.0000000000000204
– volume: 14
  start-page: 35
  issue: 1
  year: 2017
  ident: pone.0231996.ref017
  article-title: Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-017-0235-0
– volume: 2
  issue: 2
  year: 2017
  ident: pone.0231996.ref018
  article-title: Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit
  publication-title: Science Robotics
  doi: 10.1126/scirobotics.aah4416
– volume: 12
  start-page: 23
  issue: 1
  year: 2015
  ident: pone.0231996.ref029
  article-title: A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-015-0015-7
– volume: 15
  start-page: 20180442
  issue: 145
  year: 2018
  ident: pone.0231996.ref076
  article-title: Use of a powered ankle–foot prosthesis reduces the metabolic cost of uphill walking and improves leg work symmetry in people with transtibial amputations
  publication-title: Journal of The Royal Society Interface
  doi: 10.1098/rsif.2018.0442
– volume: 33
  start-page: 88
  issue: 2
  year: 2005
  ident: pone.0231996.ref028
  article-title: Energetic consequences of walking like an inverted pendulum: step-to-step transitions
  publication-title: Exerc Sport Sci Rev
  doi: 10.1097/00003677-200504000-00006
– volume: 10
  start-page: 3604
  issue: 1
  year: 2020
  ident: pone.0231996.ref009
  article-title: Ultrasound imaging links soleus muscle neuromechanics and energetics during human walking with elastic ankle exoskeletons
  publication-title: Scientific reports
  doi: 10.1038/s41598-020-60360-4
– volume: 43
  start-page: 203
  issue: 2
  year: 2010
  ident: pone.0231996.ref064
  article-title: Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2009.09.030
– volume: 45
  start-page: 1842
  issue: 10
  year: 2012
  ident: pone.0231996.ref037
  article-title: Predicting the metabolic cost of incline walking from muscle activity and walking mechanics
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2012.03.032
– volume: 104
  start-page: 130
  issue: 1
  year: 2008
  ident: pone.0231996.ref050
  article-title: Compliance, actuation, and work characteristics of the goat foreleg and hindleg during level, uphill, and downhill running
  publication-title: Journal of applied physiology
  doi: 10.1152/japplphysiol.01090.2006
– volume: 319
  start-page: 807
  issue: 5864
  year: 2008
  ident: pone.0231996.ref019
  article-title: Biomechanical energy harvesting: generating electricity during walking with minimal user effort
  publication-title: Science
  doi: 10.1126/science.1149860
– volume: 5
  issue: 40
  year: 2020
  ident: pone.0231996.ref012
  article-title: Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance
  publication-title: Science Robotics
  doi: 10.1126/scirobotics.aay9108
– volume: 9
  issue: 400
  year: 2017
  ident: pone.0231996.ref030
  article-title: A soft robotic exosuit improves walking in patients after stroke
  publication-title: Science translational medicine
– volume: 39
  start-page: 135
  issue: 1
  year: 2014
  ident: pone.0231996.ref038
  article-title: Advanced age and the mechanics of uphill walking: a joint-level, inverse dynamic analysis
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.06.012
– volume: 133
  start-page: 1087
  issue: 4
  year: 2002
  ident: pone.0231996.ref056
  article-title: The integrated function of muscles and tendons during locomotion
  publication-title: Comp Biochem Physiol A Mol Integr Physiol
  doi: 10.1016/S1095-6433(02)00244-1
– ident: pone.0231996.ref070
  doi: 10.1109/APEC.2014.6803748
– volume: 38
  start-page: 495
  issue: 3
  year: 2013
  ident: pone.0231996.ref013
  article-title: Adaptation to walking with an exoskeleton that assists ankle extension
  publication-title: Gait & posture
  doi: 10.1016/j.gaitpost.2013.01.029
– volume: 5
  start-page: 180550
  issue: 8
  year: 2018
  ident: pone.0231996.ref042
  article-title: The contributions of ankle, knee and hip joint work to individual leg work change during uphill and downhill walking over a range of speeds
  publication-title: Royal Society open science
  doi: 10.1098/rsos.180550
– volume: 114
  start-page: 2341
  issue: 11
  year: 2014
  ident: pone.0231996.ref005
  article-title: Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-014-2955-1
– volume: 3
  issue: 15
  year: 2018
  ident: pone.0231996.ref022
  article-title: Human-in-the-loop optimization of hip assistance with a soft exosuit during walking
  publication-title: Science Robotics
  doi: 10.1126/scirobotics.aar5438
– volume: 10
  start-page: e0127635
  issue: 6
  year: 2015
  ident: pone.0231996.ref060
  article-title: Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0127635
– volume: 16
  start-page: 57
  issue: 1
  year: 2019
  ident: pone.0231996.ref068
  article-title: Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-019-0523-y
– volume: 61
  start-page: 75
  year: 2017
  ident: pone.0231996.ref041
  article-title: Lower limb joint work and joint work contribution during downhill and uphill walking at different inclinations
  publication-title: Journal of biomechanics
  doi: 10.1016/j.jbiomech.2017.07.001
– volume: 17
  start-page: 25
  issue: 1
  year: 2020
  ident: pone.0231996.ref002
  article-title: The exoskeleton expansion: improving walking and running economy
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-020-00663-9
– volume: 48
  start-page: 984
  issue: 6
  year: 2015
  ident: pone.0231996.ref067
  article-title: Individual limb mechanical analysis of gait following stroke
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2015.02.006
– volume: 109
  start-page: 977
  issue: 3
  year: 2012
  ident: pone.0231996.ref032
  article-title: Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1107972109
– volume: 12
  start-page: 97
  issue: 1
  year: 2015
  ident: pone.0231996.ref008
  article-title: Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-015-0086-5
– volume: 13
  start-page: 87
  issue: 1
  year: 2016
  ident: pone.0231996.ref021
  article-title: Effect of timing of hip extension assistance during loaded walking with a soft exosuit
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-016-0196-8
– volume: 11
  start-page: 151
  year: 2014
  ident: pone.0231996.ref004
  article-title: Autonomous exoskeleton reduces metabolic cost of human walking
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-11-151
– volume: 44
  start-page: 789
  issue: 5
  year: 2011
  ident: pone.0231996.ref065
  article-title: Invariant hip moment pattern while walking with a robotic hip exoskeleton
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2011.01.030
– volume: 15
  start-page: 121
  issue: 2
  year: 1972
  ident: pone.0231996.ref047
  article-title: Negative (eccentric) work. II. Physiological responses to walking uphill and downhill on a motor-driven treadmill
  publication-title: Ergonomics
  doi: 10.1080/00140137208924416
– volume: 12
  start-page: 016015
  issue: 1
  year: 2017
  ident: pone.0231996.ref052
  article-title: A model for differential leg joint function during human running
  publication-title: Bioinspiration & biomimetics
  doi: 10.1088/1748-3190/aa50b0
– ident: pone.0231996.ref020
  doi: 10.1109/ICRA.2014.6907024
– volume: 215
  start-page: 2283
  issue: 13
  year: 2012
  ident: pone.0231996.ref059
  article-title: The role of elastic energy storage and recovery in downhill and uphill running
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.066332
– volume: 39
  start-page: 1621
  issue: 9
  year: 2006
  ident: pone.0231996.ref036
  article-title: The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2005.05.005
– volume: 15
  start-page: 42
  issue: 1
  year: 2018
  ident: pone.0231996.ref066
  article-title: Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control
  publication-title: Journal of neuroengineering and rehabilitation
  doi: 10.1186/s12984-018-0379-6
– volume: 31
  start-page: 918
  issue: 4
  year: 2012
  ident: pone.0231996.ref074
  article-title: The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation
  publication-title: Human movement science
  doi: 10.1016/j.humov.2011.08.005
– volume: 47
  start-page: 615
  issue: 4
  year: 2017
  ident: pone.0231996.ref045
  article-title: Biomechanics and physiology of uphill and downhill running
  publication-title: Sports Medicine
  doi: 10.1007/s40279-016-0605-y
– volume: 49
  start-page: 66
  issue: 1
  year: 2016
  ident: pone.0231996.ref053
  article-title: Leg joint function during walking acceleration and deceleration
  publication-title: Journal of biomechanics
  doi: 10.1016/j.jbiomech.2015.11.022
– volume: 27
  start-page: 487
  issue: 3
  year: 2019
  ident: pone.0231996.ref075
  article-title: Enhancing mobility with quasi-passive variable stiffness exoskeletons
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2019.2899753
– volume: 18
  start-page: 367
  year: 1963
  ident: pone.0231996.ref034
  article-title: Energy cost of running
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1963.18.2.367
– volume: 8
  start-page: e56137
  issue: 2
  year: 2013
  ident: pone.0231996.ref003
  article-title: A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking
  publication-title: PloS one
  doi: 10.1371/journal.pone.0056137
– year: 2015
  ident: pone.0231996.ref026
  article-title: Reducing the energy cost of human walking using an unpowered exoskeleton
  publication-title: Nature
– volume: 25
  start-page: 339
  issue: 4
  year: 1968
  ident: pone.0231996.ref046
  article-title: Positive and negative work performances and their efficiencies in human locomotion
  publication-title: Internationale Zeitschrift fur angewandte Physiologie, einschliesslich Arbeitsphysiologie
– volume: 472
  start-page: 725
  year: 1993
  ident: pone.0231996.ref048
  article-title: Mechanical determinants of gradient walking energetics in man
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1993.sp019969
– year: 2020
  ident: pone.0231996.ref023
  article-title: Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds
  publication-title: Review at Journal of Neuroengineering and Rehabilitation
– ident: pone.0231996.ref072
  doi: 10.1109/ICRA.2016.7487194
– volume: 210
  start-page: 3361
  issue: Pt 19
  year: 2007
  ident: pone.0231996.ref039
  article-title: Muscles do more positive than negative work in human locomotion
  publication-title: The Journal of experimental biology
  doi: 10.1242/jeb.003970
– volume: 35
  start-page: 320
  issue: 5
  year: 2019
  ident: pone.0231996.ref062
  article-title: Energetics of Walking With a Robotic Knee Exoskeleton
  publication-title: Journal of applied biomechanics
  doi: 10.1123/jab.2018-0384
– volume: 93
  start-page: 1039
  issue: 3
  year: 2002
  ident: pone.0231996.ref033
  article-title: Energy cost of walking and running at extreme uphill and downhill slopes
  publication-title: Journal of applied physiology (Bethesda, Md: 1985)
  doi: 10.1152/japplphysiol.01177.2001
– volume: 52
  start-page: 183
  year: 2017
  ident: pone.0231996.ref016
  article-title: Exoskeleton plantarflexion assistance for elderly
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.11.040
– volume: 214
  start-page: 353
  issue: Pt 3
  year: 2011
  ident: pone.0231996.ref058
  article-title: Flexible mechanisms: the diverse roles of biological springs in vertebrate movement
  publication-title: J Exp Biol
  doi: 10.1242/jeb.038588
– volume: 48
  start-page: 2919
  issue: 11
  year: 2015
  ident: pone.0231996.ref044
  article-title: The correlation between metabolic and individual leg mechanical power during walking at different slopes and velocities
  publication-title: Journal of biomechanics
  doi: 10.1016/j.jbiomech.2015.04.023
– volume: 184
  start-page: 253
  issue: 3
  year: 1997
  ident: pone.0231996.ref069
  article-title: Optimum muscle design for oscillatory movements
  publication-title: Journal of theoretical Biology
  doi: 10.1006/jtbi.1996.0271
– volume: 11
  start-page: 80
  year: 2014
  ident: pone.0231996.ref025
  article-title: Autonomous exoskeleton reduces metabolic cost of human walking during load carriage
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-11-80
– volume: 212
  start-page: 32
  issue: Pt 1
  year: 2009
  ident: pone.0231996.ref024
  article-title: Mechanics and energetics of incline walking with robotic ankle exoskeletons
  publication-title: J Exp Biol
  doi: 10.1242/jeb.017277
– volume: 99
  start-page: 603
  issue: 2
  year: 2005
  ident: pone.0231996.ref031
  article-title: Muscle-tendon interaction and elastic energy usage in human walking
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/japplphysiol.00189.2005
– volume: 10
  start-page: 3604
  issue: 1
  year: 2020
  ident: pone.0231996.ref027
  article-title: Ultrasound imaging links soleus muscle neuromechanics and energetics during human walking with elastic ankle exoskeletons
  publication-title: Scientific reports
  doi: 10.1038/s41598-020-60360-4
– volume: 28
  start-page: 99
  issue: 3
  year: 2000
  ident: pone.0231996.ref057
  article-title: Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective
  publication-title: Exerc Sport Sci Rev
– volume: 15
  start-page: 66
  issue: 1
  year: 2018
  ident: pone.0231996.ref011
  article-title: Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking
  publication-title: Journal of neuroengineering and rehabilitation
  doi: 10.1186/s12984-018-0410-y
– volume: 212
  start-page: 2092
  issue: 13
  year: 2009
  ident: pone.0231996.ref051
  article-title: Dynamics of goat distal hind limb muscle–tendon function in response to locomotor grade
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.028076
SSID ssj0053866
Score 2.551392
Snippet Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0231996
SubjectTerms Adult
Ankle
Ankle - physiology
Ankle Joint - physiology
Artificial legs
Biology and Life Sciences
Biomechanical Phenomena
Biomechanics
Braking
Clinical trials
Electric power generation
Energy
Energy transfer
Exoskeleton
Exoskeleton Device - trends
Exoskeletons
Female
Fitness equipment
Gait
Gait - physiology
Gait Analysis - methods
Health aspects
Hip
Hip - physiology
Hip Joint - physiology
Humans
Industrial engineering
Joints (anatomy)
Kinematics
Knee
Knee - physiology
Knee Joint - physiology
Laboratories
Locomotion
Lower Extremity - physiology
Male
Mechanical properties
Mechanics
Mechanics (physics)
Medicine and Health Sciences
Metabolism
Muscle, Skeletal - physiology
Physiological aspects
Physiological research
Physiology
Regenerative braking
Robotics
Robotics - instrumentation
Running
Running - physiology
Treadmills
Velocity
Walking
Walking - physiology
Wearable technology
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nj5UwEG_MO3kxrl-LrlqNiXpgF0ppwdvTuFlNVhN1zd5IacuKIpAF1D_fGejDh9lkPXjkdSC8mel80JnfEPIEMoAwTkLh61jHPi_ixFcyxxIo9LDacjGi8x-_E0cn_O1pfLo16gtrwiZ44IlxBwnLo8CkeahZyA0rEp0mRRRriHO54lKj9QWft0mmJhsMu1gI1ygXyfDAyWW_bWq7j4hnKYL0bzmiEa9_tsqrtmq6i0LOvysnt1zR4XVyzcWQdD29-w65YusbZMft0o4-c1DSz2-SH8cWO3tL3dGmoD9VhR_GqaoNPR_GWUV0aMdLA8k4ngu8oGv6tSnr3q-wmoi2f3oxad_Qs6E0lpqx6gOfWOGMNb8qv-fU_mq6b-DDIJbsbpGTw9efXh35btKCj3zs_UIZpaQ1wkQQEIAH16lKFTfGBCpPYs0gBDeIHieNjWSOVsBKYHFqlAFzWkS3yaoG3u4SChFTDiEJZHFCc81NHigEsctTkYhAmsQj0YbtmXYw5DgNo8rGszUJ6cjExQyFlTlhecSf72onGI5L6F-iRGdaBNEefwDVypxqZZeplkceoj5kU0fqbAqytYC8nsmQMY88HikQSKPGSp0zNXRd9ub9538g-vhhQfTUERUNsEMr1x0B_wkBuhaUewtKMAd6sbyL2rvhSpcxPOoNJAtiuHOj0RcvP5qX8aFYfVfbZphoRAq-LfDInWkDzJyNWBJLyCE8IhdbY8H65UpdfhlxzCWPecqju_9DVvfIVYZfQgKw-8keWfXng70P4WKfPxgtw2-zy2f9
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCCGF8LDDAICXjIljhOnPCCCmIaSAMJGOpb5NhOKYQkNA3w53PnuNmCJuCx9SVq73xf9t3vCHkEGUAYp2Hiq1jFPi_j1JeiwBIo9LDK8MSi8x-_TY5O-JtFvHAHbp0rq9zaRGuodaPwjPyA4Y1VIFgQP2-_-zg1Cm9X3QiNi-QSQpdhSZdYjAkX6HKSuHa5SIQHTjr7bVObfcQ9yxCq_4w7sqj9o22etVXTnRd4_lk_ecYhHV4lV1wkSeeD6HfIBVNfIztOVzv6xAFKP71Ofhwb7O9dqY42Jf0pKzwep7LWdN3biUW0b-1HDSk53g48o3P6pVnVG7_CmiLannZk0k1Dl_1KG6pt7Qe-scJJa361-lZQ86vpvoIng4iyu0FODl99fHnku3kLvoKsYeOXUkspjE50BGEB-HGVyUxyrXUgizRWDAJxjRhyQptIFGgLjAAWZ1pqMKpldJPMauDtLqEQNxUQmEAulyiuuC4CiVB2RZakSSB06pFoy_ZcOTBynIlR5faGTUBSMnAxR2HlTlge8cen2gGM4x_0L1CiIy1CadsvmvUyd5qZp6yIAp0VoWIh16xMVZaWUYws4ZIL5ZH7uB_yoS91NAj5PIHsnomQMY88tBQIp1Fjvc5S9l2Xv3736T-IPryfED12RGUD7FDS9UjAf0KYrgnl3oQSjIKaLO_i7t1ypctP1Qee3O7o85cfjMv4UqzBq03TDzRJBh4u8MitQQFGzkYsjQVkEh4RE9WYsH66Uq8-WzRzwWOe8ej233_WHXKZ4UlHAHY93SOzzbo3dyEc3BT3rM7_BuJtX6g
  priority: 102
  providerName: ProQuest
Title Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons
URI https://www.ncbi.nlm.nih.gov/pubmed/32857774
https://www.proquest.com/docview/2438207205
https://www.proquest.com/docview/2438692190
https://pubmed.ncbi.nlm.nih.gov/PMC7454943
https://doaj.org/article/82b30d9b1c214d2f8c98f35c7584a47c
http://dx.doi.org/10.1371/journal.pone.0231996
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYBSDkICHVInjxAkSQt3UMpA60KBob5FjJ6UQktI0MF7427lz00BQEXux1Prsqmffl33-HSGPIAJw_dANbOUr3-aZH9pSJJgChRZWpTww6PyT0-Bkyl-f--c7ZFOztWFgtTW0w3pS02U-uPj64wUI_HNTtUG4m0GDRVmkA8QzAx9-l-yBbRIoqhPe3iuAdJvbS_Ra7IA5XvOY7l-zdIyVwfRvNXdvkZfVNrf07-zKP8zV-Bq52viZdLjeGPtkJy2uk_1Gkiv6pIGbfnqDfJuk-Pp3ripaZvS7zPHwnMpC02Vt6hnRemE-agjY8e7gGR3ST-W8WNk5ZhzRxe_3mnRV0lk91ynVJjMEZ8yxDpudz78kNL0oq89g58DfrG6S6Xj0_vjEbqox2ApiipWdSS2lSHWgPXAawMqrSEaSa60dmYS-YuCma0SYEzr1RIKaIhXA7khLDSo3826RXgG8PSAUvKoE3BaI9ALFFdeJIxHoLomCMHCEDi3ibdgeqwaqHCtm5LG5fxMQsqy5GONixc1iWcRuRy3WUB3_oT_CFW1pEWjbfFEuZ3Ejt3HIEs_RUeIq5nLNslBFYeb5yBIuuVAWuY_7IV6_Wm3VRTwMIPZnwmXMIg8NBYJtFJjNM5N1VcWv3ny4BNG7sw7R44YoK4EdSjYvKOA_IYhXh_KwQwkqQ3W6D3D3brhSxQyvgx3BHB9Gbnb09u4HbTdOihl6RVrWa5ogAvvnWOT2WgBaznos9AXEGRYRHdHosL7bU8w_GqxzwX0ece_OJX73LrnC8DDEAdUfHpLealmn98BjXCV9sivOBbThsYvt-GWf7B2NTt-e9c0ZTN8oCWx_jn4BEDlvzA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcIALorxqKHRBIODg1s9dGwmh8KgS2hQJ2io3s961Q8DYJo4J_Cl-IzN-tUYVcOkx2bGVzM5zd-YbQh5CBmC6nsl06UpXd2LX0wUPsQQKPayMHFah808O2OjIeTt1p2vkV9sLg2WVrU2sDLXKJJ6R71h4Y2Vwy3Bf5N90nBqFt6vtCI1aLPainytI2Yrn49ewv48sa_fN4auR3kwV0CXExks9FkoIHimmbHB-4K2kL3zhKKUMEXqutCDcVIiUxlVk8xAlPuIeY74SCkxHbMN7L5CL4HgN1Cg-7RI8sB2MNe15Njd3GmnYzrM02kacNR9HA5xyf9WUgM4XDPIkK84KdP-s1zzlAHevkitN5EqHtaitk7UovUbWG9tQ0CcNgPXT6-T7JMJ-4rksaBbTlUjwOJ6KVNFFWU1IomVefVTZKsXbiGd0SD9n83SpJ1jDRPOTDlC6zOisnKuIqqrWBN-Y4GQ3PZl_DWn0Iyu-gOeECLa4QY7OZSdukkEKvN0gFOK0EAIhyB2ZdKSjQkMgdF7oM48ZXHkasVu2B7IBP8cZHElQ3ehxSIJqLga4WUGzWRrRu6fyGvzjH_QvcUc7WoTurr7IFrOgsQSBZ4W2ofzQlJbpKCv2pO_FtosscYTDpUa2UB6Cug-2M0DBkNmgAdy0LI08qCgQviPF-qCZKIsiGL87_g-iD-97RI8bojgDdkjR9GTAf0JYsB7lZo8SjJDsLW-g9LZcKYITdYUnW4k-e_l-t4wvxZq_NMrKmob54FENjdyqFaDjrG15LofMRSO8pxo91vdX0vmnCj2dO67jO_btv_-sLXJpdDjZD_bHB3t3yGULT1kM8CneJhksF2V0F0LRZXiv0n9KPp63wfkNAZGdLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VICEuiPKqodAFgYCDGz93bSSEAiVqKC2IUpSbWe_aIWBsE8cE_hq_jhm_WqMKuPSY7NhKZue5O_MNIfchAzBdz2S6dKWrO7Hr6YKHWAKFHlZGDqvQ-fcP2O6R82rqTtfIr7YXBssqW5tYGWqVSTwjH1p4Y2Vwy3CHcVMW8XZn_Cz_puMEKbxpbcdp1CKyF_1cQfpWPJ3swF4_sKzxy_cvdvVmwoAuIU5e6rFQQvBIMWWDIwTPJX3hC0cpZYjQc6UFoadC1DSuIpuHKP0R9xjzlVBgRmIb3nuOnOe2a6KO8WmX7IEdYaxp1bO5OWwkYzvP0mgbMdd8HBNwwhVWEwM6vzDIk6w4Lej9s3bzhDMcXyaXmiiWjmqxWydrUXqFrDd2oqCPGjDrx1fJ9_0Ie4vnsqBZTFciwaN5KlJFF2U1LYmWefVRZasUbyae0BH9nM3TpZ5gPRPNj7tB6TKjs3KuIqqquhN8Y4JT3vRk_jWk0Y-s-AJeFKLZ4ho5OpOduE4GKfB2g1CI2UIIiiCPZNKRjgoNgTB6oc88ZnDlacRu2R7IBggd53EkQXW7xyEhqrkY4GYFzWZpRO-eymsgkH_QP8cd7WgRxrv6IlvMgsYqBJ4V2obyQ1NapqOs2JO-F9sussQRDpca2UJ5COqe2M4YBSNmgzZw07I0cq-iQCiPFJViJsqiCCZvPvwH0eG7HtHDhijOgB1SNP0Z8J8QIqxHudmjBIMke8sbKL0tV4rgWHXhyVaiT1--2y3jS7H-L42ysqZhPnhXQyM3agXoOGtbnsshi9EI76lGj_X9lXT-qUJS547r-I598-8_a4tcAFMTvJ4c7N0iFy08cDHAvXibZLBclNFtiEqX4Z1K_Sn5eNb25jdU5aFj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanics+of+walking+and+running+up+and+downhill%3A+A+joint-level+perspective+to+guide+design+of+lower-limb+exoskeletons&rft.jtitle=PloS+one&rft.au=Nuckols%2C+Richard+W&rft.au=Takahashi%2C+Kota+Z&rft.au=Farris%2C+Dominic+J&rft.au=Mizrachi%2C+Sarai&rft.date=2020-08-28&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=8&rft.spage=e0231996&rft_id=info:doi/10.1371%2Fjournal.pone.0231996&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon