Detection of overdose and underdose prescriptions-An unsupervised machine learning approach
Overdose prescription errors sometimes cause serious life-threatening adverse drug events, while underdose errors lead to diminished therapeutic effects. Therefore, it is important to detect and prevent these errors. In the present study, we used the one-class support vector machine (OCSVM), one of...
Saved in:
Published in | PloS one Vol. 16; no. 11; p. e0260315 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
19.11.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Overdose prescription errors sometimes cause serious life-threatening adverse drug events, while underdose errors lead to diminished therapeutic effects. Therefore, it is important to detect and prevent these errors. In the present study, we used the one-class support vector machine (OCSVM), one of the most common unsupervised machine learning algorithms for anomaly detection, to identify overdose and underdose prescriptions. We extracted prescription data from electronic health records in Kyushu University Hospital between January 1, 2014 and December 31, 2019. We constructed an OCSVM model for each of the 21 candidate drugs using three features: age, weight, and dose. Clinical overdose and underdose prescriptions, which were identified and rectified by pharmacists before administration, were collected. Synthetic overdose and underdose prescriptions were created using the maximum and minimum doses, defined by drug labels or the UpToDate database. We applied these prescription data to the OCSVM model and evaluated its detection performance. We also performed comparative analysis with other unsupervised outlier detection algorithms (local outlier factor, isolation forest, and robust covariance). Twenty-seven out of 31 clinical overdose and underdose prescriptions (87.1%) were detected as abnormal by the model. The constructed OCSVM models showed high performance for detecting synthetic overdose prescriptions (precision 0.986, recall 0.964, and F-measure 0.973) and synthetic underdose prescriptions (precision 0.980, recall 0.794, and F-measure 0.839). In comparative analysis, OCSVM showed the best performance. Our models detected the majority of clinical overdose and underdose prescriptions and demonstrated high performance in synthetic data analysis. OCSVM models, constructed using features such as age, weight, and dose, are useful for detecting overdose and underdose prescriptions. |
---|---|
AbstractList | Overdose prescription errors sometimes cause serious life-threatening adverse drug events, while underdose errors lead to diminished therapeutic effects. Therefore, it is important to detect and prevent these errors. In the present study, we used the one-class support vector machine (OCSVM), one of the most common unsupervised machine learning algorithms for anomaly detection, to identify overdose and underdose prescriptions. We extracted prescription data from electronic health records in Kyushu University Hospital between January 1, 2014 and December 31, 2019. We constructed an OCSVM model for each of the 21 candidate drugs using three features: age, weight, and dose. Clinical overdose and underdose prescriptions, which were identified and rectified by pharmacists before administration, were collected. Synthetic overdose and underdose prescriptions were created using the maximum and minimum doses, defined by drug labels or the UpToDate database. We applied these prescription data to the OCSVM model and evaluated its detection performance. We also performed comparative analysis with other unsupervised outlier detection algorithms (local outlier factor, isolation forest, and robust covariance). Twenty-seven out of 31 clinical overdose and underdose prescriptions (87.1%) were detected as abnormal by the model. The constructed OCSVM models showed high performance for detecting synthetic overdose prescriptions (precision 0.986, recall 0.964, and F-measure 0.973) and synthetic underdose prescriptions (precision 0.980, recall 0.794, and F-measure 0.839). In comparative analysis, OCSVM showed the best performance. Our models detected the majority of clinical overdose and underdose prescriptions and demonstrated high performance in synthetic data analysis. OCSVM models, constructed using features such as age, weight, and dose, are useful for detecting overdose and underdose prescriptions. |
Audience | Academic |
Author | Watanabe, Hiroyuki Muraoka, Kayoko Egashira, Nobuaki Kanaya, Akiko Ieiri, Ichiro Nagata, Kenichiro Tsuji, Toshikazu Suetsugu, Kimitaka |
AuthorAffiliation | Frederick National Laboratory for Cancer Research, UNITED STATES 2 Department of Pharmacy, Fukuoka Tokushukai Hospital, Fukuoka, Japan 1 Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan |
AuthorAffiliation_xml | – name: 2 Department of Pharmacy, Fukuoka Tokushukai Hospital, Fukuoka, Japan – name: Frederick National Laboratory for Cancer Research, UNITED STATES – name: 1 Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan |
Author_xml | – sequence: 1 givenname: Kenichiro orcidid: 0000-0001-5012-3488 surname: Nagata fullname: Nagata, Kenichiro organization: Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan – sequence: 2 givenname: Toshikazu surname: Tsuji fullname: Tsuji, Toshikazu organization: Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan – sequence: 3 givenname: Kimitaka surname: Suetsugu fullname: Suetsugu, Kimitaka organization: Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan – sequence: 4 givenname: Kayoko surname: Muraoka fullname: Muraoka, Kayoko organization: Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan – sequence: 5 givenname: Hiroyuki surname: Watanabe fullname: Watanabe, Hiroyuki organization: Department of Pharmacy, Fukuoka Tokushukai Hospital, Fukuoka, Japan – sequence: 6 givenname: Akiko surname: Kanaya fullname: Kanaya, Akiko organization: Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan – sequence: 7 givenname: Nobuaki orcidid: 0000-0002-3673-6824 surname: Egashira fullname: Egashira, Nobuaki organization: Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan – sequence: 8 givenname: Ichiro surname: Ieiri fullname: Ieiri, Ichiro organization: Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34797894$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk0uL2zAQx03Z0n2036C0hkJpD0n1sGT7UgjbV2Bhoa9LD0KWRomCI3klO7TfvvLGuyRlD8UHW6Pf_y_PaOY8O3HeQZY9x2iOaYnfbfwQnGznXQrPEeGIYvYoO8M1JTNOED05-D7NzmPcIMRoxfmT7JQWZV1WdXGW_foAPajeepd7k_sdBO0j5NLpfHB6WnUBogq2G7E4W7i0FYcOws5G0PlWqrV1kLcgg7NulcuuCz4Fn2aPjWwjPJveF9mPTx-_X36ZXV1_Xl4urmaqZFU_MwUyEukCaoIlAcaNZIAJoNJoSStW17SRTQGMSklKroAh0nAJqpE0pcHpRfZy79u1PoqpLlGQpGQlZWwklntCe7kRXbBbGf4IL624DfiwEjL0VrUgEC0MriggoKRgpGkMr3WNDdFEU01w8no_nTY0W9AKXB9ke2R6vOPsWqz8TlQcFRRVyeDNZBD8zQCxF1sbFbStdOCH9N8cIVLRomIJffUP-nB2E7WSKQHrjE_nqtFULHhFcbppOlLzB6j0aNhalZrI2BQ_Erw9EiSmh9_9Sg4xiuW3r__PXv88Zl8fsGuQbb-Ovh1uu-sYLPagCj7GAOa-yBiJcQbuqiHGGRDTDCTZi8MLuhfdNT39CyqUBK4 |
CitedBy_id | crossref_primary_10_1016_j_rcsop_2023_100346 crossref_primary_10_2345_1943_5967_56_2_58 crossref_primary_10_1136_ejhpharm_2024_004126 crossref_primary_10_1016_j_ijmedinf_2023_105246 crossref_primary_10_2345_0899_8205_56_2_58 crossref_primary_10_1016_j_amepre_2023_11_024 crossref_primary_10_1038_s41746_022_00703_9 crossref_primary_10_1016_j_ijmedinf_2022_104983 crossref_primary_10_1080_10903127_2022_2137745 crossref_primary_10_1136_ejhpharm_2023_003857 crossref_primary_10_1016_j_compbiomed_2024_108702 |
Cites_doi | 10.1001/jama.280.15.1311 10.1162/089976601750264965 10.7717/peerj.453 10.2146/ajhp090181 10.1109/MCSE.2007.55 10.1136/bmjopen-2017-019101 10.4338/ACI-2013-08-RA-0057 10.1001/jama.2019.11710 10.1093/jamia/ocaa154 10.1093/jamia/ocw171 10.1016/j.ijmedinf.2017.05.011 10.1093/ajhp/60.17.1750 10.1016/j.ijmedinf.2014.08.006 10.1001/jama.293.10.1223 10.2471/BLT.17.198002 10.1371/journal.pone.0152173 10.1197/jamia.M2170 10.1145/335191.335388 10.1093/jamia/ocx115 10.1136/jamia.1999.00660313 10.1097/01.NPR.0000769780.52757.f4 10.1080/00401706.1999.10485670 10.1136/amiajnl-2012-001089 10.1377/hlthaff.2010.1111 10.1109/JBHI.2018.2828028 10.1197/jamia.M1809 10.1136/amiajnl-2013-002008 10.1093/jamia/ocz135 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Nagata et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Nagata et al 2021 Nagata et al |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Nagata et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Nagata et al 2021 Nagata et al |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PIMPY PQEST PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0260315 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Opposing Viewpoints Resource Center Science In Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing and Allied Health Journals Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Complete (ProQuest Database) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic Technology Collection Technology Research Database Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Detection of overdose and underdose prescriptions using unsupervised machine learning |
EISSN | 1932-6203 |
Editor | Lu, Pinyi |
Editor_xml | – sequence: 1 givenname: Pinyi surname: Lu fullname: Lu, Pinyi |
EndPage | e0260315 |
ExternalDocumentID | 2599573556 oai_doaj_org_article_034f183e0e32452bbf69d91f2d2d3d21 A683178936 10_1371_journal_pone_0260315 34797894 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: ; grantid: JP18K14984 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BBORY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF D1I D1J D1K DIK DU5 E3Z EAP EAS EBD ECM EIF EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ NPM O5R O5S OK1 P2P P62 PATMY PDBOC PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RIG RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM AAYXX AFPKN CITATION 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PQEST PQUKI RC3 7X8 5PM - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c758t-f40fa0d4e921a2e56fa5e12e07fda385993bab4e53aa276ce502b6aecba379763 |
IEDL.DBID | RPM |
ISSN | 1932-6203 |
IngestDate | Sun Dec 05 00:11:23 EST 2021 Tue Oct 22 15:11:38 EDT 2024 Tue Sep 17 21:14:10 EDT 2024 Fri Oct 25 02:45:36 EDT 2024 Thu Oct 10 20:55:18 EDT 2024 Thu Feb 22 23:43:45 EST 2024 Fri Feb 02 04:15:18 EST 2024 Thu Aug 01 20:08:55 EDT 2024 Thu Aug 01 19:34:26 EDT 2024 Tue Aug 20 22:12:26 EDT 2024 Fri Aug 23 00:52:07 EDT 2024 Wed Oct 16 00:43:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c758t-f40fa0d4e921a2e56fa5e12e07fda385993bab4e53aa276ce502b6aecba379763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-3673-6824 0000-0001-5012-3488 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604308/ |
PMID | 34797894 |
PQID | 2599573556 |
PQPubID | 1436336 |
PageCount | e0260315 |
ParticipantIDs | plos_journals_2599573556 doaj_primary_oai_doaj_org_article_034f183e0e32452bbf69d91f2d2d3d21 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8604308 proquest_miscellaneous_2600283485 proquest_journals_2599573556 gale_infotracmisc_A683178936 gale_infotracacademiconefile_A683178936 gale_incontextgauss_ISR_A683178936 gale_incontextgauss_IOV_A683178936 gale_healthsolutions_A683178936 crossref_primary_10_1371_journal_pone_0260315 pubmed_primary_34797894 |
PublicationCentury | 2000 |
PublicationDate | 2021-11-19 |
PublicationDateYYYYMMDD | 2021-11-19 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | AX Garg (pone.0260315.ref007) 2005; 293 KC Nanji (pone.0260315.ref014) 2018; 25 S Phansalkar (pone.0260315.ref018) 2013; 20 M Goldstein (pone.0260315.ref020) 2016; 11 J Lee (pone.0260315.ref013) 2014; 83 A Sheikh (pone.0260315.ref003) 2017; 95 AE Carroll (pone.0260315.ref019) 2019; 322 AS Kesselheim (pone.0260315.ref017) 2011; 30 F Pedregosa (pone.0260315.ref030) 2011; 12 JJ Cash (pone.0260315.ref016) 2009; 66 GJ Kuperman (pone.0260315.ref008) 2007; 14 FT Liu (pone.0260315.ref034) 2012; 6 JD Hunter (pone.0260315.ref031) 2007; 9 pone.0260315.ref001 HDPD Santos (pone.0260315.ref025) 2019; 23 H van der Sijs (pone.0260315.ref015) 2006; 13 pone.0260315.ref026 GA Assiri (pone.0260315.ref002) 2018; 8 pone.0260315.ref028 GD Schiff (pone.0260315.ref022) 2017; 24 DW Bates (pone.0260315.ref009) 1999; 6 N Page (pone.0260315.ref011) 2017; 105 pone.0260315.ref021 G Segal (pone.0260315.ref023) 2019; 26 GJ Kuperman (pone.0260315.ref010) 2001; 27 AD Woods (pone.0260315.ref012) 2014; 21 B Schölkopf (pone.0260315.ref029) 2001; 13 MM Breunig (pone.0260315.ref033) 2000; 29 PJ Rousseeuw (pone.0260315.ref035) 1999; 41 P Kanjanarat (pone.0260315.ref004) 2003; 60 S Van Der Walt (pone.0260315.ref032) 2014; 2 ES Kirkendall (pone.0260315.ref005) 2014; 5 R Rozenblum (pone.0260315.ref024) 2020; 46 DW Bates (pone.0260315.ref006) 1998; 280 J Corny (pone.0260315.ref027) 2020; 27 |
References_xml | – volume: 280 start-page: 1311 issue: 15 year: 1998 ident: pone.0260315.ref006 article-title: Effect of computerized physician order entry and a team intervention on prevention of serious medication errors publication-title: JAMA doi: 10.1001/jama.280.15.1311 contributor: fullname: DW Bates – volume: 13 start-page: 1443 issue: 7 year: 2001 ident: pone.0260315.ref029 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput doi: 10.1162/089976601750264965 contributor: fullname: B Schölkopf – volume: 2 start-page: e453 year: 2014 ident: pone.0260315.ref032 article-title: scikit-image: image processing in Python publication-title: PeerJ doi: 10.7717/peerj.453 contributor: fullname: S Van Der Walt – volume: 66 start-page: 2098 issue: 23 year: 2009 ident: pone.0260315.ref016 article-title: Alert fatigue publication-title: Am J Health Syst Pharm doi: 10.2146/ajhp090181 contributor: fullname: JJ Cash – ident: pone.0260315.ref001 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: pone.0260315.ref031 article-title: Matplotlib: A 2D graphics environment publication-title: Comput Sci Eng doi: 10.1109/MCSE.2007.55 contributor: fullname: JD Hunter – volume: 8 start-page: e019101 issue: 5 year: 2018 ident: pone.0260315.ref002 article-title: What is the epidemiology of medication errors, error-related adverse events and risk factors for errors in adults managed in community care contexts? A systematic review of the international literature publication-title: BMJ Open doi: 10.1136/bmjopen-2017-019101 contributor: fullname: GA Assiri – volume: 5 start-page: 25 issue: 1 year: 2014 ident: pone.0260315.ref005 article-title: Analysis of electronic medication orders with large overdoses publication-title: Appl Clin Inform doi: 10.4338/ACI-2013-08-RA-0057 contributor: fullname: ES Kirkendall – volume: 322 start-page: 601 issue: 7 year: 2019 ident: pone.0260315.ref019 article-title: Averting alert fatigue to prevent adverse drug reactions publication-title: JAMA doi: 10.1001/jama.2019.11710 contributor: fullname: AE Carroll – ident: pone.0260315.ref026 – volume: 27 start-page: 1688 issue: 11 year: 2020 ident: pone.0260315.ref027 article-title: A machine learning-based clinical decision support system to identify prescriptions with a high risk of medication error publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocaa154 contributor: fullname: J Corny – volume: 24 start-page: 281 issue: 2 year: 2017 ident: pone.0260315.ref022 article-title: Screening for medication errors using an outlier detection system publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocw171 contributor: fullname: GD Schiff – volume: 105 start-page: 22 year: 2017 ident: pone.0260315.ref011 article-title: A systematic review of the effectiveness of interruptive medication prescribing alerts in hospital CPOE systems to change prescriber behavior and improve patient safety publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2017.05.011 contributor: fullname: N Page – volume: 60 start-page: 1750 issue: 17 year: 2003 ident: pone.0260315.ref004 article-title: Nature of preventable adverse drug events in hospitals: a literature review publication-title: Am J Health Syst Pharm doi: 10.1093/ajhp/60.17.1750 contributor: fullname: P Kanjanarat – volume: 83 start-page: 929 issue: 12 year: 2014 ident: pone.0260315.ref013 article-title: Impact of a clinical decision support system for high-alert medications on the prevention of prescription errors publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2014.08.006 contributor: fullname: J Lee – volume: 293 start-page: 1223 year: 2005 ident: pone.0260315.ref007 article-title: Effects of computerized clinical decision support systems on practitioner performance and patient outcomes publication-title: JAMA doi: 10.1001/jama.293.10.1223 contributor: fullname: AX Garg – volume: 95 start-page: 546 issue: 8 year: 2017 ident: pone.0260315.ref003 article-title: The third global patient safety challenge: tackling medication-related harm publication-title: Bull World Health Organ doi: 10.2471/BLT.17.198002 contributor: fullname: A Sheikh – volume: 11 start-page: e0152173 issue: 4 year: 2016 ident: pone.0260315.ref020 article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data publication-title: PLoS One doi: 10.1371/journal.pone.0152173 contributor: fullname: M Goldstein – volume: 14 start-page: 29 issue: 1 year: 2007 ident: pone.0260315.ref008 article-title: Medication-related clinical decision support in computerized provider order entry systems: a review publication-title: J Am Med Inform Assoc doi: 10.1197/jamia.M2170 contributor: fullname: GJ Kuperman – volume: 29 start-page: 93 issue: 2 year: 2000 ident: pone.0260315.ref033 article-title: LOF: Identifying density-based local outliers publication-title: Sigmod Record doi: 10.1145/335191.335388 contributor: fullname: MM Breunig – volume: 25 start-page: 476 issue: 5 year: 2018 ident: pone.0260315.ref014 article-title: Medication-related clinical decision support alert overrides in inpatients publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocx115 contributor: fullname: KC Nanji – volume: 6 start-page: 313 issue: 4 year: 1999 ident: pone.0260315.ref009 article-title: The impact of computerized physician order entry on medication error prevention publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.1999.00660313 contributor: fullname: DW Bates – volume: 6 issue: 1 year: 2012 ident: pone.0260315.ref034 article-title: Isolation-based anomaly detection publication-title: ACM Trans Knowl Discov Data contributor: fullname: FT Liu – ident: pone.0260315.ref021 – volume: 12 start-page: 2825 year: 2011 ident: pone.0260315.ref030 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res contributor: fullname: F Pedregosa – ident: pone.0260315.ref028 doi: 10.1097/01.NPR.0000769780.52757.f4 – volume: 41 start-page: 212 issue: 3 year: 1999 ident: pone.0260315.ref035 article-title: A fast algorithm for the minimum covariance determinant estimator publication-title: Technometrics doi: 10.1080/00401706.1999.10485670 contributor: fullname: PJ Rousseeuw – volume: 20 start-page: 489 issue: 3 year: 2013 ident: pone.0260315.ref018 article-title: Drug-drug interactions that should be non-interruptive in order to reduce alert fatigue in electronic health records publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2012-001089 contributor: fullname: S Phansalkar – volume: 30 start-page: 2310 issue: 12 year: 2011 ident: pone.0260315.ref017 article-title: Clinical decision support systems could be modified to reduce ’alert fatigue’ while still minimizing the risk of litigation publication-title: Health Aff (Millwood) doi: 10.1377/hlthaff.2010.1111 contributor: fullname: AS Kesselheim – volume: 46 start-page: 3 issue: 1 year: 2020 ident: pone.0260315.ref024 article-title: Using a machine learning system to identify and prevent medication prescribing errors: a clinical and cost analysis evaluation publication-title: Jt Comm J Qual Patient Saf contributor: fullname: R Rozenblum – volume: 23 start-page: 874 issue: 2 year: 2019 ident: pone.0260315.ref025 article-title: DDC-Outlier: Preventing medication errors using unsupervised learning publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2828028 contributor: fullname: HDPD Santos – volume: 27 start-page: 509 issue: 10 year: 2001 ident: pone.0260315.ref010 article-title: Patient safety and computerized medication ordering at Brigham and Women’s Hospital publication-title: Jt Comm J Qual Improv contributor: fullname: GJ Kuperman – volume: 13 start-page: 138 issue: 2 year: 2006 ident: pone.0260315.ref015 article-title: Overriding of drug safety alerts in computerized physician order entry publication-title: J Am Med Inform Assoc doi: 10.1197/jamia.M1809 contributor: fullname: H van der Sijs – volume: 21 start-page: 569 issue: 3 year: 2014 ident: pone.0260315.ref012 article-title: Clinical decision support for atypical orders: detection and warning of atypical medication orders submitted to a computerized provider order entry system publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2013-002008 contributor: fullname: AD Woods – volume: 26 start-page: 1560 issue: 12 year: 2019 ident: pone.0260315.ref023 article-title: Reducing drug prescription errors and adverse drug events by application of a probabilistic, machine-learning based clinical decision support system in an inpatient setting publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocz135 contributor: fullname: G Segal |
SSID | ssj0053866 |
Score | 2.4997306 |
Snippet | Overdose prescription errors sometimes cause serious life-threatening adverse drug events, while underdose errors lead to diminished therapeutic effects.... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0260315 |
SubjectTerms | Adolescent Adult Aged Aged, 80 and over Algorithms Analysis Anomalies Biology and Life Sciences Child, Preschool Clinical medicine Comparative analysis Computer and Information Sciences Data Analysis Data Collection - statistics & numerical data Data Management - statistics & numerical data Databases, Factual - statistics & numerical data Drug development Drug dosages Drug Overdose - diagnosis Drug stores Drugs Electronic health records Electronic Health Records - statistics & numerical data Electronic medical records Errors Humans Infant Influence Lagrange multiplier Learning algorithms Machine learning Medical errors Medicine and Health Sciences Mental Recall Middle Aged Modelling Outliers (statistics) Overdose Pediatrics Performance evaluation Pharmaceuticals Pharmacy Physical Sciences Prescription drugs Prescription Drugs - adverse effects Prescription writing Prescriptions - statistics & numerical data Recall Research and Analysis Methods Software services Support Vector Machine - statistics & numerical data Support vector machines Unsupervised learning Unsupervised Machine Learning - statistics & numerical data Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquhLRiEBBzSJrZjJ8flURUkQAKKekGRHdsFCZIV2b33R_AL-SXMxE60QZXgwGm1O7OveTgzyjffEPKIWdVAIZxDk-NYKpjmqVaFT3PHZWl8ww3D4eQ3b-XJqXh9VpxtrfpCTFigBw6GO8q48BB2LnMcbxIa42Vlq9wzyyy3LDQ-WTU2U-EMhiyWMg7KcZUfRb8crrrWHSKLFsc1uFsXooGvfzqVF6tvXX9ZyfkncnLrUnR8nVyLNSRdht--Q6649gbZiVna0yeRSvrpTfL5hVsPWKuWdp4iWtN2vaO6tRSHx8IzhMKOZ0f_6-LnsgVhv1nhKdI7S78PeEtH44KJczrykN8ip8cvPz4_SeNChbSBtmCdepF5nVnhKpZr5grpdeFy5jLlreZlAbWK0Ua4gmvNlGxckTEjtWuM5grqFn6bLFow4S6h2pvGZ8KISgtRwYPCVVbe20aKkhmVkHS0br0KvBn1cPNMQb8RzFSjN-rojYQ8QxdMush6PbwAsVDHWKj_FgsJuY8OrMMI6ZS79VKWUCZBZSYT8nDQQOaLFqE153rT9_Wrd5_-QenD-5nS46jkOwiFRsdxBvhPyKg109yfaUL-NjPxLobbaJW-ZsgBp6AOxHeOIXi5-MEkxg9FuFzrug3oyGEHlSjBrndCxE6WxdFh-GKREDWL5Znp55L265eBeLyUyBBX3v0fvtojVxnCgxBRWe2TxfrHxh1Afbc294ZU_g3A21B0 priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZge-GCKK8GCgSEBBzSJrZjJye0hVYFiYIKRb0gy47tBQmS0Oze-RH8Qn4JM4mzNKhCnFbZmX1kXh7HM98Q8phaWUEinMEmx9GEU80SLXOfZI6JwviKGYrNyW-OxOEJf32an4YHbl0oqxxjYh-obVPhM_JdishYElZH8bz9nuDUKDxdDSM0LpMNCjsFOiMbe_tH747HWAzeLERomGMy2w362Wmb2u0gmhbDcbjnFqQet38dnWft16a7KPX8u4Ly3JJ0cI1cDblkPB-Uv0kuufo62Qze2sVPA6T0sxvk00u37Guu6rjxMVZt2qZzsa5tjE1kwxWWxI4xpPv14-e8BmK3ajGadM7G3_q6SxeHQROLeMQjv0lODvY_vDhMwmCFpILtwTLxPPU6tdyVNNPU5cLr3GXUpdJbzQqQNDPacJczrakUlctTaoR2ldFMQv7CbpFZDSLcIrH2pvIpN7zUnJfwInGklfe2ErygRkYkGaWr2gE_Q_WHaBL2HYOYFGpDBW1EZA9VsOZF9Ov-jeZsoYIzqZRxD6HIpY7hwbExXpS2zDy11DJLs4g8QAWqoZV07cNqLgpIlyBDExF51HMgAkaNJTYLveo69ertx_9gen88YXoSmHwDplDp0NYA94TIWhPO7Qkn-HE1IW-huY1S6dQfi4dPjiZ4MfnhmoxfimVztWtWwCP6WVS8ALneHix2LVlsIYYf5hGRE1ueiH5Kqb987gHIC4FIccWdf_-tu-QKxQIgrJkst8lsebZy9yCDW5r7wU1_A-AtSco priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZW5cIFsby2ywIBIQGHVInt2MkBofJYLUiABBTtBVl2bBekJSlNK8GNH8Ev5JcwkzgRQUXiwKlqZ9yq83DG8jffEHKXWllCIZzCIcfRmFPNYi0zH6eOidz4khmKzckvX4mTBX9xmp3ukX5mazBgs_Noh_OkFuuz2dcv3x5Bwj9spzbItF80W9WVmyFHFsOu83MUqbkQzMeHewXIbiFCA93fVo4eUC2P_7BbT1ZndbOrFP0TUfnbI-r4IrkQasto3gXDPtlz1SWyH7K3ie4HiukHl8mHp27TYrCqqPYRojht3bhIVzbCprLuHUJk-z2l-fn9x7wCYbNd4e7SOBt9bnGYLgqDJ5ZRz09-hSyOn717chKHQQtxCceFTex54nViuStoqqnLhNeZS6lLpLea5RnUMEYb7jKmNZWidFlCjdCuNJpJqGfYVTKpwIQHJNLelD7hhhea8wJeJI648t6WgufUyCmJe-uqVcenodpLNQnnkM5MCr2hgjem5DG6YNBFNuz2g3q9VCG5VMK4h63JJY7hRbIxXhS2SD211DJL0ym5hQ5UXWvpkNNqLnIon6BiE1Nyp9VARowKITdLvW0a9fz1-39QevtmpHQvKPkaQqHUoc0B_hMybY00j0aakNflSHyA4dZbpVEUueEk1Ie4sg_B3eLbgxi_FGF0lau3oCPa2VQ8B7te6yJ2sCy2FMMP8ymRo1gemX4sqT59bAnJc4HMcfnh__DVdXKeImwIkZbFEZls1lt3A-q-jbnZpvIvZBRa8A priority: 102 providerName: Scholars Portal |
Title | Detection of overdose and underdose prescriptions-An unsupervised machine learning approach |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34797894 https://www.proquest.com/docview/2599573556 https://search.proquest.com/docview/2600283485 https://pubmed.ncbi.nlm.nih.gov/PMC8604308 https://doaj.org/article/034f183e0e32452bbf69d91f2d2d3d21 http://dx.doi.org/10.1371/journal.pone.0260315 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLe2cuGCGP9WGCUgJOCQNrEdOzl2pWUgdUyDoV5QZCd2mbQm1dJeER-CT8gn4b3EqQjaAXFx1fglat6_PDe_9zMhL2kuMyiEQ1jkGOpzqpivZGT90DARa5sxTbE5eX4qTi74h0W02CNR2wtTg_YzfTksrlbD4vJbja1cr7JRixMbnc0nsUCmqni0T_bBQdslepN-IYCFcD1yTIYjZ5LhuizMEAm0WIi71WADpYwT3nkc1az9u9zcW1-V1U2F59_4yT8eSLO75I6rJL1x84sPyJ4p7pEDF6uV99oRSr-5T76-NZsacVV4pfUQs5mXlfFUkXvYQtZ8Q0Bsm0GqXz9-jguYrLZrzCWVyb1Vjbo0nttmYum1bOQPyMVs-nly4rttFfwMFgcb3_LAqiDnJqGhoiYSVkUmpCaQNlcsjqBi0UpzEzGlqBSZiQKqhTKZVgyUJthD0itAm4fEU1ZnNuCaJ4rzBD4kbmhlbZ4JHlMt-8RvtZuuG_aMtH6FJmHV0agpRcOkzjB9cowm2Mki93V9oLxeps4D0oBxC4nIBIbha2OtrUjyJLQ0pznLadgnz9CAadNIuovgdCxiKJagPhN98qKWQP6LAgE2S7WtqvT9xy__IPTpvCP0ygnZElwhU66pAe4JebU6kkcdSYjirDN9iO7WaqVKKTLBSagG8czWBW-efr6bxosiaK4w5RZkRL0TFY9Br48aj91ptvX_PpEdX-6ovjsD0VjTj7voe_zfZz4htykigxBMmRyR3uZ6a55CabfRAwjohYQxnoQ4zt4NyK3j6enZ-aD-swTGOY9x_D4d1GH_G7LeWIY |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12070,12237,12779,21402,24332,27938,27939,31733,31734,33280,33281,33387,33388,33758,33759,43324,43593,43614,43819,53806,53808,74081,74350,74371,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgOcAFUV4NFBoQEnBIm9iOnZzQ8qi20BYJWrSXKrJje0GCZGl27_wIfiG_hJnECQ2qEKdVdmYfmZfH8cw3hDyhRpaQCCewybE04lSxSMnURYllItOuZJpic_LhkZid8LfzdO4fuDW-rLKPiW2gNnWJz8h3KSJjSVgdxYvl9winRuHpqh-hcZlcQRwuxM6X82HDBb4shG-XYzLZ9drZWdaV3UEsLYbDcM8tRy1q_xCbJ8uvdXNR4vl3_eS5BWnvBrnuM8lw2ql-g1yy1U2y4X21CZ95QOnnt8jpa7tqK66qsHYh1myaurGhqkyILWTdFRbE9hGk-fXj57QCYrNeYixprAm_tVWXNvRjJhZhj0Z-m5zsvTl-NYv8WIWohM3BKnI8dio23OY0UdSmwqnUJtTG0hnFMpAz00pzmzKlqBSlTWOqhbKlVkxC9sLukEkFItwkoXK6dDHXPFec5_AicaCVc6YUPKNaBiTqpVssO_SMoj1Ck7Dr6MRUoDYKr42AvEQVDLyIfd2-UZ8tCu9KRcy4g0BkY8vw2FhrJ3KTJ44aapihSUC2UYFF10g6eHAxFRkkS5CfiYA8bjkQ_6LCApuFWjdNsf_-038wffwwYnrqmVwNplAq39QA94S4WiPOrREneHE5Im-iufVSaYo_9g6f7E3wYvKjgYxfikVzla3XwCPaSVQ8A7ne7Sx2kCw2EMMP84DIkS2PRD-mVF8-t_DjmUCcuOzev__WNrk6Oz48KA72j97dJ9colgJh9WS-RSars7V9ALncSj9sHfY3FmdLVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELegkxAviPFvHYMFhAQ8ZE1sx06eUMdWbfwp02DTXlBkx3aHBElZ2nc-BJ-QT8Jd4pQFTYinKvW1ac5353P9u98R8owaWUAiHMMmx9KQU8VCJRMXxpaJVLuCaYrFye-n4uCEvzlLzjz-qfawyi4mNoHaVAX-Rz6iyIwlYXUUI-dhEUd7k1fz7yF2kMKTVt9O4zpZkxysakDWdvenR8ddXAbPFsIXzzEZj_xc7cyr0u4gsxbD1riXFqeGw38VqQfzr1V9VRr6N5ry0vI0uU1u-bwyGLeGsE6u2fIOWfeeWwcvPL30y7vk855dNPirMqhcgAhOU9U2UKUJsKCsvUJ4bBdP6l8_fo5LGKyXc4wstTXBtwaDaQPfdGIWdNzk98jJZP_T64PQN1kIC9gqLELHI6ciw21GY0VtIpxKbExtJJ1RLAWtM600twlTikpR2CSiWihbaMUk5DLsPhmUoMINEiinCxdxzTPFeQYvEttbOWcKwVOq5ZCEnXbzeculkTcHahL2IK2acpyN3M_GkOziFKxkkQm7eaO6mOXesfKIcQdhyUaW4SGy1k5kJosdNdQwQ-Mh2cYJzNuy0pU_52ORQuoE2ZoYkqeNBLJhlGhXM7Ws6_zww-l_CH087gk990KuAlMolC9xgGdClq2e5FZPEny66A1voLl1WqnzP9YPn-xM8OrhJ6th_FKE0JW2WoKMaPpS8RT0-qC12JVmsZwYbsyHRPZsuaf6_kj55bwhI08Fssalm__-WdvkBnhr_u5w-vYhuUkRF4RQymyLDBYXS_sIEruFfuw99jdEUVD4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+overdose+and+underdose+prescriptions%E2%80%94An+unsupervised+machine+learning+approach&rft.jtitle=PloS+one&rft.au=Kenichiro+Nagata&rft.au=Toshikazu+Tsuji&rft.au=Kimitaka+Suetsugu&rft.au=Kayoko+Muraoka&rft.date=2021-11-19&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=16&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0260315&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_034f183e0e32452bbf69d91f2d2d3d21 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |