Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study
Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks rema...
Saved in:
Published in | PloS one Vol. 8; no. 9; p. e72425 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
09.09.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ∼20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (∼90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52∼0.84; efficiency: 0.50∼0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28∼0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network research. This study also provides important guidance on the choice of network metrics of interest for future applied research in developmental and clinical neuroscience. |
---|---|
AbstractList | Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ∼20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (∼90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52∼0.84; efficiency: 0.50∼0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28∼0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network research. This study also provides important guidance on the choice of network metrics of interest for future applied research in developmental and clinical neuroscience. Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ∼20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (∼90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52∼0.84; efficiency: 0.50∼0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28∼0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network research. This study also provides important guidance on the choice of network metrics of interest for future applied research in developmental and clinical neuroscience.Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ∼20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (∼90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52∼0.84; efficiency: 0.50∼0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28∼0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network research. This study also provides important guidance on the choice of network metrics of interest for future applied research in developmental and clinical neuroscience. Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ~20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (~90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52~0.84; efficiency: 0.50~0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28~0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network research. This study also provides important guidance on the choice of network metrics of interest for future applied research in developmental and clinical neuroscience. Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ∼20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient ( ICC ) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (∼90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52∼0.84; efficiency: 0.50∼0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28∼0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network research. This study also provides important guidance on the choice of network metrics of interest for future applied research in developmental and clinical neuroscience. |
Audience | Academic |
Author | Li, Zhen Zhao, Tengda Zhao, Xiaohu He, Yong Niu, Haijing Liao, Xuhong Shu, Ni Wang, Jinhui |
AuthorAffiliation | 4 Imaging Department, Shanghai TongJi Hospital, TongJi University, Shanghai, China 3 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China 1 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China 2 Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China Indiana University, United States of America |
AuthorAffiliation_xml | – name: 2 Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China – name: 1 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China – name: Indiana University, United States of America – name: 4 Imaging Department, Shanghai TongJi Hospital, TongJi University, Shanghai, China – name: 3 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China |
Author_xml | – sequence: 1 givenname: Haijing surname: Niu fullname: Niu, Haijing – sequence: 2 givenname: Zhen surname: Li fullname: Li, Zhen – sequence: 3 givenname: Xuhong surname: Liao fullname: Liao, Xuhong – sequence: 4 givenname: Jinhui surname: Wang fullname: Wang, Jinhui – sequence: 5 givenname: Tengda surname: Zhao fullname: Zhao, Tengda – sequence: 6 givenname: Ni surname: Shu fullname: Shu, Ni – sequence: 7 givenname: Xiaohu surname: Zhao fullname: Zhao, Xiaohu – sequence: 8 givenname: Yong surname: He fullname: He, Yong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24039763$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk2Fv0zAQhiM0xLbCP0AQaRKCDy12nDjxPiCViY1KY5PawVfr4titSxoX2wH673HXFDXThFCk2Lo873u5091pdNSYRkbRS4xGmOT4_dK0toF6tA7hEUJ5kibZk-gEM5IMaYLI0cH9ODp1bolQRgpKn0XHSYoIyyk5ico76fxwKn044qmsNZS61n4TGxVfWVgv4i_SWy1crJv4sm2E1yZkjT9aCIEb6X8Z-92dx-Mgdl438-HMg5exuplMZ_HMt9XmefRUQe3ki-4cRF8vP91dfB5e315NLsbXQ5FnhR8qwlRFSEZpSjIocyRKUuRMApUZVkwAUhIXVUYRlgCZgJwhmiicAMrKgkgyiF7vfNe1cbxrj-M4JRijJMM0EJMdURlY8rXVK7AbbkDz-4Cxcw7Wa1FLrmRSpbSQkFYiFVnJAGhJygJTwRgmELw-dNnaciUrIRtvoe6Z9r80esHn5icnOc0pY8HgbWdgzY82NI-vtBOyrqGRpr3_b5JQRgsc0LMH6OPVddQcQgG6USbkFVtTPk7zgmQEhfcgGj1ChaeSKy3CLCkd4j3Bu54gMF7-9nNoneOT2fT_2dtvffbNAbuQUPuFM3W7HTDXB18ddvpvi_dDHIDzHSCscc5KxYUOQxh8Qmm65hjx7cbsm8a3G8O7jQni9IF47_9P2R9sqRlE |
CitedBy_id | crossref_primary_10_1038_s41598_020_57597_4 crossref_primary_10_1117_1_NPh_12_1_015011 crossref_primary_10_1002_brb3_1074 crossref_primary_10_1364_BOE_7_002524 crossref_primary_10_1364_BOE_9_001916 crossref_primary_10_1007_s00521_020_04897_5 crossref_primary_10_1002_brb3_3099 crossref_primary_10_5498_wjp_v14_i10_1547 crossref_primary_10_1016_j_dcn_2018_03_003 crossref_primary_10_1371_journal_pcbi_1005305 crossref_primary_10_1016_j_jad_2017_06_024 crossref_primary_10_1155_2015_248724 crossref_primary_10_3389_fnins_2020_00476 crossref_primary_10_1142_S0129065721500507 crossref_primary_10_1117_1_NPh_6_2_025005 crossref_primary_10_1007_s10462_024_11028_2 crossref_primary_10_1364_BOE_541820 crossref_primary_10_1038_s41598_020_66560_2 crossref_primary_10_1117_1_NPh_6_2_025010 crossref_primary_10_1364_BOE_402047 crossref_primary_10_1016_j_neuroimage_2023_120225 crossref_primary_10_1016_j_bosn_2025_03_001 crossref_primary_10_1089_brain_2014_0313 crossref_primary_10_1038_s41598_017_06340_7 crossref_primary_10_1109_TNSRE_2023_3239913 crossref_primary_10_3390_biomed4040041 crossref_primary_10_1364_BOE_6_002337 crossref_primary_10_1093_scan_nsac020 crossref_primary_10_3389_fped_2024_1400468 crossref_primary_10_3389_fpsyt_2021_704506 crossref_primary_10_1016_j_bspc_2019_101612 crossref_primary_10_1364_BOE_387919 crossref_primary_10_1364_BOE_418921 crossref_primary_10_3389_fnins_2022_803297 crossref_primary_10_3389_fnins_2023_1192674 crossref_primary_10_3390_brainsci11010120 crossref_primary_10_1016_j_brainresbull_2024_111158 crossref_primary_10_1016_j_neulet_2018_06_034 crossref_primary_10_1016_j_cortex_2022_06_009 crossref_primary_10_1109_JBHI_2023_3259069 crossref_primary_10_1016_j_eplepsyres_2016_04_001 crossref_primary_10_1117_1_NPh_6_4_045013 crossref_primary_10_1155_2022_3372217 crossref_primary_10_1117_1_NPh_7_1_015012 crossref_primary_10_1002_hbm_70021 crossref_primary_10_1117_1_JBO_21_12_125006 crossref_primary_10_1117_1_JBO_22_12_126003 crossref_primary_10_1177_1073858413502707 crossref_primary_10_1038_s41598_024_68555_9 crossref_primary_10_1371_journal_pone_0115215 crossref_primary_10_1016_j_medntd_2021_100064 crossref_primary_10_1117_1_JBO_23_5_056006 crossref_primary_10_1016_j_neuroimage_2022_119663 crossref_primary_10_1111_desc_13328 crossref_primary_10_3389_fnhum_2020_00247 crossref_primary_10_1142_S012906572350017X crossref_primary_10_1371_journal_pone_0277989 crossref_primary_10_1364_BOE_491610 crossref_primary_10_3390_brainsci12111562 crossref_primary_10_3389_fnetp_2023_1338864 crossref_primary_10_1117_1_NPh_4_4_041407 crossref_primary_10_3389_fnins_2021_693623 crossref_primary_10_1088_1361_6579_ac184d crossref_primary_10_1002_hbm_26619 crossref_primary_10_3389_fnins_2022_896502 crossref_primary_10_1117_1_NPh_11_4_045006 crossref_primary_10_1259_bjr_20160656 crossref_primary_10_3389_fphys_2018_00067 crossref_primary_10_1016_j_jclepro_2019_117815 crossref_primary_10_1117_1_NPh_9_3_035003 crossref_primary_10_1007_s10548_021_00818_4 crossref_primary_10_3389_fnins_2020_00746 crossref_primary_10_3390_ijerph19010509 crossref_primary_10_1016_j_jagp_2020_02_006 crossref_primary_10_1117_1_NPh_9_4_045010 crossref_primary_10_1117_1_JBO_20_5_050801 crossref_primary_10_3389_fpsyt_2025_1529575 crossref_primary_10_1016_j_neuroimage_2018_07_015 crossref_primary_10_3389_fnins_2017_00392 crossref_primary_10_3389_fnhum_2020_00003 crossref_primary_10_1111_ejn_16629 crossref_primary_10_1016_j_heliyon_2024_e30197 crossref_primary_10_1038_s41598_024_72199_0 |
Cites_doi | 10.1118/1.598943 10.1016/j.neuroimage.2011.10.054 10.1037/11774-000 10.1016/j.neuroimage.2009.05.035 10.1016/S1474-4422(11)70158-2 10.1016/j.jneumeth.2009.11.010 10.2307/3033543 10.1093/cercor/bhi016 10.1016/j.neuroimage.2011.11.028 10.1103/PhysRevLett.87.198701 10.1016/j.neuroimage.2006.10.019 10.1073/pnas.0903641106 10.1093/cercor/bhn256 10.1002/hbm.20022 10.1016/j.neuroimage.2012.02.074 10.1103/PhysRevE.67.026112 10.1016/S0166-2236(97)01132-6 10.1371/journal.pone.0021976 10.1037/0033-2909.86.2.420 10.1097/WCO.0b013e32833aa567 10.1038/30918 10.1371/journal.pone.0032766 10.1259/bjr/96723280 10.1016/j.neuroimage.2009.03.058 10.1073/pnas.0504136102 10.1093/brain/awp089 10.1002/mrm.1910340409 10.1117/1.2814249 10.1523/JNEUROSCI.3874-05.2006 10.1089/brain.2011.0062 10.1016/j.neuroimage.2009.10.003 10.1364/BOE.1.000324 10.1002/sim.4780132310 10.1016/j.neuroimage.2011.03.001 10.1016/j.neuroimage.2010.10.058 10.3389/fnsys.2010.00016 10.1038/nrn3214 10.1371/journal.pone.0045771 10.1103/PhysRevLett.89.208701 10.1006/nimg.2002.1227 10.1371/journal.pcbi.0030017 10.1016/j.neuroimage.2012.02.001 10.1117/1.2804911 10.1007/BF02447083 10.1073/pnas.0601602103 10.1016/j.neuroimage.2011.08.044 10.1016/j.neuroimage.2010.02.080 10.1016/j.neuroimage.2011.08.095 10.1016/S1364-6613(00)01813-1 10.1016/j.mbs.2009.05.002 10.1117/1.3462973 10.1073/pnas.0135058100 10.1093/cercor/bhn102 10.1523/JNEUROSCI.5669-11.2012 10.1016/j.neuroimage.2008.12.048 10.1098/rspb.2005.3354 10.1016/j.neuroimage.2004.07.011 10.1006/nimg.1997.0315 10.1007/s10439-009-9763-5 10.1117/1.3561687 10.1140/epjb/e2003-00095-5 10.1109/72.761722 10.1016/j.neuroimage.2012.06.011 10.1038/nrn2575 10.1016/j.neuroimage.2010.12.007 10.3389/fninf.2010.00117 10.1523/JNEUROSCI.5618-09.2010 10.1016/j.neuroimage.2011.01.043 10.1371/journal.pbio.0060159 10.1006/nimg.2000.0657 10.1371/journal.pone.0000597 10.1002/sim.1253 10.1371/journal.pone.0005226 10.1126/science.929199 10.1126/science.1065103 10.1117/1.2754714 10.1093/cercor/bhl149 10.1016/j.neuroimage.2011.08.094 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Public Library of Science 2013 Niu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2013 Niu et al 2013 Niu et al |
Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Niu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2013 Niu et al 2013 Niu et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0072425 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ - The Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Test-Retest Reliability of fNIRS Brain Networks |
EISSN | 1932-6203 |
ExternalDocumentID | 1431102516 oai_doaj_org_article_fe2d468ea4dc4c5b9aa6b3b816c9913a PMC3767699 3067329841 A478353078 24039763 10_1371_journal_pone_0072425 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Beijing China China |
GeographicLocations_xml | – name: China – name: Beijing China |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. BBORY CGR CUY CVF ECM EIF NPM PV9 RZL PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c758t-f39fd33566435ab70cb3879ea6e51f9ca0fe18d5601eaa5ca79062f12a05b83e3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:14:09 EST 2021 Wed Aug 27 01:21:01 EDT 2025 Thu Aug 21 18:29:58 EDT 2025 Fri Jul 11 06:31:25 EDT 2025 Fri Jul 25 10:18:30 EDT 2025 Tue Jun 17 21:17:48 EDT 2025 Tue Jun 10 20:23:59 EDT 2025 Fri Jun 27 04:58:26 EDT 2025 Fri Jun 27 04:40:54 EDT 2025 Thu May 22 21:16:05 EDT 2025 Wed Feb 19 02:31:15 EST 2025 Tue Jul 01 02:37:26 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c758t-f39fd33566435ab70cb3879ea6e51f9ca0fe18d5601eaa5ca79062f12a05b83e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: Dr. YH is an Editor of PLOS ONE journal. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials. Conceived and designed the experiments: HJN YH. Performed the experiments: HJN TDZ. Analyzed the data: ZL HJN. Contributed reagents/materials/analysis tools: XHL JHW NS XHZ YH. Wrote the paper: HJN. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0072425 |
PMID | 24039763 |
PQID | 1431102516 |
PQPubID | 1436336 |
PageCount | e72425 |
ParticipantIDs | plos_journals_1431102516 doaj_primary_oai_doaj_org_article_fe2d468ea4dc4c5b9aa6b3b816c9913a pubmedcentral_primary_oai_pubmedcentral_nih_gov_3767699 proquest_miscellaneous_1433269681 proquest_journals_1431102516 gale_infotracmisc_A478353078 gale_infotracacademiconefile_A478353078 gale_incontextgauss_ISR_A478353078 gale_incontextgauss_IOV_A478353078 gale_healthsolutions_A478353078 pubmed_primary_24039763 crossref_citationtrail_10_1371_journal_pone_0072425 crossref_primary_10_1371_journal_pone_0072425 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-09 |
PublicationDateYYYYMMDD | 2013-09-09 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2013 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | MJ Lowe (ref69) 1998; 7 E Bullmore (ref1) 2009; 10 ref15 Y He (ref46) 2009; 4 S Kohno (ref48) 2007; 12 E Kirilina (ref60) 2012; 61 SJ Payne (ref66) 2009; 37 M Pievani (ref14) 2011; 10 H Zhang (ref24) 2011; 55 U Braun (ref53) 2012; 59 MD Fox (ref29) 2005; 102 H Niu (ref77) 2011; 16 MD Greicius (ref68) 2003; 100 G Strangman (ref61) 2002; 17 Y-J Zhang (ref67) 2010; 15 S Achard (ref38) 2007; 3 X Liang (ref55) 2012; 7 ref42 A Hyvarinen (ref49) 1999; 10 V Toronov (ref63) 2000; 27 S Maslov (ref33) 2002; 296 E Bullmore (ref2) 2012; 13 B Biswal (ref27) 1995; 34 V Rousson (ref43) 2002; 21 Q Zhang (ref74) 2009; 45 C-M Lu (ref20) 2010; 186 MEJ Newman (ref37) 2002; 89 JV Stone (ref47) 2002; 6 CF Linton (ref39) 1977; 40 DJ Watts (ref31) 1998; 393 QK Telesford (ref56) 2010; 4 RJ Cooper (ref70) 2012; 59 SG Diamond (ref64) 2009; 220 H Obrig (ref65) 2000; 12 DR Leff (ref76) 2011; 54 M Rubinov (ref4) 2010; 52 A Zalesky (ref58) 2012; 60 RB Saager (ref72) 2011; 55 V Latora (ref32) 2003; 32 J-H Wang (ref52) 2011; 6 Y He (ref3) 2010; 23 F Jobsis (ref17) 1977; 198 MP Sampat (ref41) 2006; 79 J Kong (ref45) 2007; 34 L Gagnon (ref75) 2012; 59 V Latora (ref30) 2001; 87 G Gong (ref6) 2009; 19 MEJ Newman (ref35) 2006; 103 VG van de Ven (ref50) 2004; 22 L Gagnon (ref59) 2012; 59 H Niu (ref12) 2012; 7 Z Shehzad (ref51) 2009; 19 P Hagmann (ref7) 2008; 6 A Villringer (ref18) 1997; 20 R Müller (ref44) 1994; 13 Y Hoshi (ref78) 2007; 12 DS Bassett (ref13) 2009; 106 P Hagmann (ref8) 2007; 2 CJ Chu (ref57) 2012; 32 S Achard (ref9) 2006; 26 DA Boas (ref62) 2004; 23 M Cope (ref26) 1988; 26 S Sasai (ref28) 2012; 63 F Homae (ref19) 2010; 30 RC Mesquita (ref21) 2010; 1 ref22 L Deuker (ref54) 2009; 47 BR White (ref23) 2009; 47 Y He (ref5) 2007; 17 Y He (ref10) 2009; 132 MD Humphries (ref34) 2006; 273 M Xia (ref16) 2011; 1 R Salvador (ref11) 2005; 15 L Gagnon (ref71) 2011; 56 Q Zhang (ref73) 2007; 12 E Ravasz (ref36) 2003; 67 PE Shrout (ref40) 1979; 86 H Zhang (ref25) 2010; 51 |
References_xml | – volume: 27 start-page: 801 year: 2000 ident: ref63 article-title: Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping publication-title: Medical physics doi: 10.1118/1.598943 – volume: 59 start-page: 3933 year: 2012 ident: ref59 article-title: Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.054 – ident: ref42 doi: 10.1037/11774-000 – volume: 47 start-page: 1460 year: 2009 ident: ref54 article-title: Reproducibility of graph metrics of human brain functional networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.035 – volume: 10 start-page: 829 year: 2011 ident: ref14 article-title: Functional network disruption in the degenerative dementias publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(11)70158-2 – volume: 186 start-page: 242 year: 2010 ident: ref20 article-title: Use of fNIRS to assess resting state functional connectivity publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2009.11.010 – volume: 40 start-page: 35 year: 1977 ident: ref39 article-title: A Set of Measures of Centrality Based on Betweenness publication-title: Sociometry doi: 10.2307/3033543 – volume: 15 start-page: 1332 year: 2005 ident: ref11 article-title: Neurophysiological Architecture of Functional Magnetic Resonance Images of Human Brain publication-title: Cerebral Cortex doi: 10.1093/cercor/bhi016 – volume: 59 start-page: 3128 year: 2012 ident: ref70 article-title: The utility of near-infrared spectroscopy in the regression of low-frequency physiological noise from functional magnetic resonance imaging data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.028 – volume: 87 start-page: 198701 year: 2001 ident: ref30 article-title: Efficient Behavior of Small-World Networks publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.87.198701 – volume: 34 start-page: 1171 year: 2007 ident: ref45 article-title: Test–retest study of fMRI signal change evoked by electroacupuncture stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.10.019 – volume: 106 start-page: 11747 year: 2009 ident: ref13 article-title: Cognitive fitness of cost-efficient brain functional networks publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0903641106 – volume: 19 start-page: 2209 year: 2009 ident: ref51 article-title: The Resting Brain: Unconstrained yet Reliable publication-title: Cerebral Cortex doi: 10.1093/cercor/bhn256 – volume: 22 start-page: 165 year: 2004 ident: ref50 article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest publication-title: Human Brain Mapping doi: 10.1002/hbm.20022 – volume: 61 start-page: 70 year: 2012 ident: ref60 article-title: The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.02.074 – volume: 67 start-page: 026112 year: 2003 ident: ref36 article-title: Hierarchical organization in complex networks publication-title: Physical Review E doi: 10.1103/PhysRevE.67.026112 – volume: 20 start-page: 435 year: 1997 ident: ref18 article-title: Non-invasive optical spectroscopy and imaging of human brain function publication-title: Trends in Neurosciences doi: 10.1016/S0166-2236(97)01132-6 – volume: 6 start-page: e21976 year: 2011 ident: ref52 article-title: Graph Theoretical Analysis of Functional Brain Networks: Test-Retest Evaluation on Short- and Long-Term Resting-State Functional MRI Data publication-title: PLoS ONE doi: 10.1371/journal.pone.0021976 – volume: 86 start-page: 420 year: 1979 ident: ref40 article-title: Intraclass correlations: Uses in assessing rater reliability publication-title: Psychological Bulletin doi: 10.1037/0033-2909.86.2.420 – volume: 23 start-page: 341 year: 2010 ident: ref3 article-title: Graph theoretical modeling of brain connectivity publication-title: Current Opinion in Neurology doi: 10.1097/WCO.0b013e32833aa567 – volume: 393 start-page: 440 year: 1998 ident: ref31 article-title: Collective dynamics of /`small-world/' networks publication-title: Nature doi: 10.1038/30918 – volume: 7 start-page: e32766 year: 2012 ident: ref55 article-title: Effects of Different Correlation Metrics and Preprocessing Factors on Small-World Brain Functional Networks: A Resting-State Functional MRI Study publication-title: PLoS ONE doi: 10.1371/journal.pone.0032766 – volume: 79 start-page: S134 year: 2006 ident: ref41 article-title: The reliability of measuring physical characteristics of spiculated masses on mammography publication-title: British Journal of Radiology doi: 10.1259/bjr/96723280 – volume: 47 start-page: 148 year: 2009 ident: ref23 article-title: Resting-state functional connectivity in the human brain revealed with diffuse optical tomography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.03.058 – volume: 102 start-page: 9673 year: 2005 ident: ref29 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0504136102 – volume: 132 start-page: 3366 year: 2009 ident: ref10 article-title: Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load publication-title: Brain doi: 10.1093/brain/awp089 – volume: 34 start-page: 537 year: 1995 ident: ref27 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.1910340409 – volume: 12 start-page: 062111 year: 2007 ident: ref48 article-title: Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis publication-title: Journal of Biomedical Optics doi: 10.1117/1.2814249 – volume: 26 start-page: 63 year: 2006 ident: ref9 article-title: A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.3874-05.2006 – volume: 1 start-page: 349 year: 2011 ident: ref16 article-title: Magnetic Resonance Imaging and Graph Theoretical Analysis of Complex Brain Networks in Neuropsychiatric Disorders publication-title: Brain connectivity doi: 10.1089/brain.2011.0062 – volume: 52 start-page: 1059 year: 2010 ident: ref4 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 1 start-page: 324 year: 2010 ident: ref21 article-title: Resting state functional connectivity of the whole head with near-infrared spectroscopy publication-title: Biomed Opt Express doi: 10.1364/BOE.1.000324 – volume: 13 start-page: 2465 year: 1994 ident: ref44 article-title: A critical discussion of intraclass correlation coefficients publication-title: Statistics in medicine doi: 10.1002/sim.4780132310 – volume: 56 start-page: 1362 year: 2011 ident: ref71 article-title: Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.001 – volume: 54 start-page: 2922 year: 2011 ident: ref76 article-title: Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.058 – ident: ref15 doi: 10.3389/fnsys.2010.00016 – volume: 13 start-page: 336 year: 2012 ident: ref2 article-title: The economy of brain network organization publication-title: Nat Rev Neurosci doi: 10.1038/nrn3214 – volume: 7 start-page: e45771 year: 2012 ident: ref12 article-title: Revealing Topological Organization of Human Brain Functional Networks with Resting-State Functional near Infrared Spectroscopy publication-title: PLoS ONE doi: 10.1371/journal.pone.0045771 – volume: 89 start-page: 208701 year: 2002 ident: ref37 article-title: Assortative Mixing in Networks publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.89.208701 – volume: 17 start-page: 719 year: 2002 ident: ref61 article-title: A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation publication-title: NeuroImage doi: 10.1006/nimg.2002.1227 – volume: 3 start-page: e17 year: 2007 ident: ref38 article-title: Efficiency and Cost of Economical Brain Functional Networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030017 – volume: 60 start-page: 2096 year: 2012 ident: ref58 article-title: On the use of correlation as a measure of network connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.02.001 – volume: 12 start-page: 062106 year: 2007 ident: ref78 article-title: Functional near-infrared spectroscopy: current status and future prospects publication-title: Journal of Biomedical Optics doi: 10.1117/1.2804911 – volume: 26 start-page: 289 year: 1988 ident: ref26 article-title: System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination publication-title: Medical and Biological Engineering and Computing doi: 10.1007/BF02447083 – volume: 103 start-page: 8577 year: 2006 ident: ref35 article-title: Modularity and community structure in networks publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0601602103 – volume: 59 start-page: 1404 year: 2012 ident: ref53 article-title: Test–retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.044 – volume: 51 start-page: 1150 year: 2010 ident: ref25 article-title: Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.02.080 – volume: 59 start-page: 2518 year: 2012 ident: ref75 article-title: Short separation channel location impacts the performance of short channel regression in NIRS publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.095 – volume: 6 start-page: 59 year: 2002 ident: ref47 article-title: Independent component analysis: an introduction publication-title: Trends in Cognitive Sciences doi: 10.1016/S1364-6613(00)01813-1 – volume: 220 start-page: 102 year: 2009 ident: ref64 article-title: A cerebrovascular response model for functional neuroimaging including dynamic cerebral autoregulation publication-title: Mathematical Biosciences doi: 10.1016/j.mbs.2009.05.002 – volume: 15 start-page: 047003 year: 2010 ident: ref67 article-title: Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy publication-title: Journal of Biomedical Optics doi: 10.1117/1.3462973 – volume: 100 start-page: 253 year: 2003 ident: ref68 article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0135058100 – volume: 19 start-page: 524 year: 2009 ident: ref6 article-title: Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using In Vivo Diffusion Tensor Imaging Tractography publication-title: Cerebral Cortex doi: 10.1093/cercor/bhn102 – volume: 32 start-page: 2703 year: 2012 ident: ref57 article-title: Emergence of Stable Functional Networks in Long-Term Human Electroencephalography publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.5669-11.2012 – volume: 45 start-page: 788 year: 2009 ident: ref74 article-title: Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: How well and when does it work? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.048 – volume: 273 start-page: 503 year: 2006 ident: ref34 article-title: The brainstem reticular formation is a small-world, not scale-free, network publication-title: Proceedings of the Royal Society B: Biological Sciences doi: 10.1098/rspb.2005.3354 – volume: 23 start-page: S275 year: 2004 ident: ref62 article-title: Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.011 – volume: 7 start-page: 119 year: 1998 ident: ref69 article-title: Functional Connectivity in Single and Multislice Echoplanar Imaging Using Resting-State Fluctuations publication-title: NeuroImage doi: 10.1006/nimg.1997.0315 – volume: 37 start-page: 2288 year: 2009 ident: ref66 article-title: Effects of Autoregulation and CO2 Reactivity on Cerebral Oxygen Transport publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-009-9763-5 – volume: 16 start-page: 046006 year: 2011 ident: ref77 article-title: Resting-state functional connectivity assessed with two diffuse optical tomographic systems publication-title: Journal of Biomedical Optics doi: 10.1117/1.3561687 – volume: 32 start-page: 249 year: 2003 ident: ref32 article-title: Economic small-world behavior in weighted networks publication-title: The European Physical Journal B – Condensed Matter and Complex Systems doi: 10.1140/epjb/e2003-00095-5 – volume: 10 start-page: 626 year: 1999 ident: ref49 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: Neural Networks, IEEE Transactions on doi: 10.1109/72.761722 – volume: 63 start-page: 179 year: 2012 ident: ref28 article-title: A NIRS–fMRI study of resting state network publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.011 – volume: 10 start-page: 186 year: 2009 ident: ref1 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat Rev Neurosci doi: 10.1038/nrn2575 – volume: 55 start-page: 607 year: 2011 ident: ref24 article-title: Test–retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.007 – volume: 4 start-page: 1 year: 2010 ident: ref56 article-title: Reproducibility of graph metrics in fMRI networks publication-title: Frontiers in NEUROINFORMATICS doi: 10.3389/fninf.2010.00117 – volume: 30 start-page: 4877 year: 2010 ident: ref19 article-title: Development of Global Cortical Networks in Early Infancy publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.5618-09.2010 – volume: 55 start-page: 1679 year: 2011 ident: ref72 article-title: Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.043 – volume: 6 start-page: e159 year: 2008 ident: ref7 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS biology doi: 10.1371/journal.pbio.0060159 – volume: 12 start-page: 623 year: 2000 ident: ref65 article-title: Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults publication-title: NeuroImage doi: 10.1006/nimg.2000.0657 – volume: 2 start-page: e597 year: 2007 ident: ref8 article-title: Mapping Human Whole-Brain Structural Networks with Diffusion MRI publication-title: PLoS ONE doi: 10.1371/journal.pone.0000597 – volume: 21 start-page: 3431 year: 2002 ident: ref43 article-title: Assessing intrarater, interrater and test–retest reliability of continuous measurements publication-title: Statistics in medicine doi: 10.1002/sim.1253 – volume: 4 start-page: e5226 year: 2009 ident: ref46 article-title: Uncovering Intrinsic Modular Organization of Spontaneous Brain Activity in Humans publication-title: PLoS ONE doi: 10.1371/journal.pone.0005226 – volume: 198 start-page: 1264 year: 1977 ident: ref17 article-title: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters publication-title: Science doi: 10.1126/science.929199 – volume: 296 start-page: 910 year: 2002 ident: ref33 article-title: Specificity and Stability in Topology of Protein Networks publication-title: Science doi: 10.1126/science.1065103 – volume: 12 start-page: 044014 year: 2007 ident: ref73 article-title: Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study publication-title: Journal of Biomedical Optics doi: 10.1117/1.2754714 – volume: 17 start-page: 2407 year: 2007 ident: ref5 article-title: Small-World Anatomical Networks in the Human Brain Revealed by Cortical Thickness from MRI publication-title: Cerebral Cortex doi: 10.1093/cercor/bhl149 – ident: ref22 doi: 10.1016/j.neuroimage.2011.08.094 |
SSID | ssj0053866 |
Score | 2.4171765 |
Snippet | Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e72425 |
SubjectTerms | Adult Algorithms Area Under Curve Brain Brain Mapping Brain research Cerebral Cortex - physiology Clustering Cognition & reasoning Computing time Correlation Correlation analysis Correlation coefficient Correlation coefficients Efficiency Feasibility studies Female Graph theory Hemoglobin Hemoglobins Humans I.R. radiation Infrared spectra Infrared spectroscopy Laboratories Male Medical imaging Models, Biological Monte Carlo simulation Near infrared radiation Near infrared spectroscopy Nerve Net - physiology Nervous system Network reliability Networks Neural networks Neurosciences NMR Nuclear magnetic resonance Optics Principal Component Analysis Reproducibility of Results Rest - physiology Sensors Spectroscopy, Near-Infrared Spectrum analysis Theoretical analysis Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ - The Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBFgxCAg6hmzhxEm4FUbVIFKkP1FtkO-Oy0pKsNruH_ntmbG-0QZXKgWs8iZJ52J-dmW8Ye1uJyk4BdCwFQJylWsdlU6rYJqLBAEssTKl2-PupPL7Mvl3lV1utvignzNMDe8UdWEibTJagssZkJteVUlILXSbSILQRDhrhmrfZTPk5GKNYylAoJ4rkINjl46JrwZFlZ9Qae2shcnz9w6w8Wcy7_jbI-Xfm5NZSdPSQPQgYkh_6d99h96B9xHZClPb8faCS_vCY6Qt8brykw9UVX8J85lm5b3hnuaOq5r-po5bp-azltMT5k0GuqXEEb32KeP-JK04tPHCVi10BErenJ2fn3FHTPmGXR18vvhzHoatCbHBvsIotWqcRAmEcIiWli6nRoiwqUBLyxFZGTS0kZUM7NVAqN6ogKmObpGqa61KAeMomLepxl_EiA6XRvkqAzXQhlOOjs_SvsUl1ARETGxXXJlCOU-eLee3-oxW49fAaq8kwdTBMxOLhroWn3LhD_jNZb5Alwmx3Ad2oDm5U3-VGEXtFtq999ekQ9vVhRkdjOBGWEXvjJIg0o6WsnGu17vv65MfPfxA6PxsJvQtCtkN1GBUqIfCbiIxrJLk3ksTQN6PhXfLUjVZ63McJhHMIWSXeufHe24dfD8P0UMq0a6FbOxlE9JUsk4g9884-aJa4GxG-iogVozAYqX480s5-Oc5yIg2SVfX8f9jqBbufuqYklOy3xyar5Rr2ERqu9Es3C_wB0KNlGA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg6mSZx1Ei5oi1hapC7StkV7s2zHbitVydLsHvrvmXG8oUEVcI3HUTLjeXg8_oaQNyUvXWytZoJby7JUa1ZUhWIu4RUoWOJsjHeHD2di_yT7thgvQsKtDWWVG5voDXXVGMyR74JfB08F3lh8Wv5k2DUKT1dDC43b5A5Cl2FJV77oN1ygy0KE63I8T3aDdD4sm9p6yOwMG2Rfc0cetb-3zaPlRdPeFHj-WT95zSFN75N7IZKkk070W-SWrR-QraCrLX0XAKXfPyT6GN7L5phiXVGsQe6wua9o4-hXBKymh9hXy7T0vKZTcHRdfpDuYfsIOusKxduPdAKTWyyTZj5EpW52MD-iWIl49YicTL8cf95nobcCM7BDWDEHMqo4h2AO4iWl89hoXuSlVcKOE1caFTubFBXu16xSY6NyBDR2SarisS645Y_JqAY-bhOaZ1ZpkLLi1mU658qj0jk8caxSnduI8A2LpQnA49j_4kL607QcNiAdxyQKRgbBRIT1s5Yd8MY_6PdQej0twmb7B83lqQxaKJ1Nq0wUVmWVycxYl0oJzXWRCANxMlcReYmyl90d1F755STDBBmYwyIirz0FQmfUWJtzqtZtKw--__gPoqP5gOhtIHINsMOocB8C_gkhuQaUOwNKMABmMLyNK3XDlVb-VhWYuVm9Nw-_6ofxpVhvV9tm7Wkgri9FkUTkSbfYe84igiMEsTwi-UANBqwfjtTnZx65HKGDRFk-_ftnPSN3U990BIv5dshodbm2zyH0W-kXXr9_AdUPWd0 priority: 102 providerName: ProQuest |
Title | Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24039763 https://www.proquest.com/docview/1431102516 https://www.proquest.com/docview/1433269681 https://pubmed.ncbi.nlm.nih.gov/PMC3767699 https://doaj.org/article/fe2d468ea4dc4c5b9aa6b3b816c9913a http://dx.doi.org/10.1371/journal.pone.0072425 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa27oUXxPi1wCgGIQEPmZo6tRMkhNqp3YbUgroV7S2yE3tMqpLStBJ94W_nznEjgjrBix_ic5Tc-ezP9vk7Qt7ELDYdrZXPmdZ-2FXKj7JI-iZgGThYYHQH7w6PJ_x8Fn6-7l3vkW3OVqfAcufSDvNJzZbzk58_Np_A4T_arA0i2DY6WRS5tlTY0A_3yQHMTQJddRzW5wrg3Zy7C3R3tWxMUJbHvx6tW4t5Ue6Con9HVP4xRY0ekPsOW9J-1RkOyZ7OH5JD570lfecopt8_IuoK3utPcdN1RTEquWLr3tDC0DOksKZjzLSVlvQ2pyOY-qodQzrAhBJ0UoWOlx9oHxqXGDjtW9BKzeRiekkxNnHzmMxGw6vTc99lW_BTWDOsfANWyxgDeAcISirRSRWLRKwl173AxKnsGB1EGa7gtJS9VAqkODZBV3Z6KmKaPSGtHPR4RKgItVRgd8m0CZVg0vLUGTyDzLpKaI-wrYqT1FGRY0aMeWLP1wQsSSqNJWiYxBnGI37dalFRcfxDfoDWq2WRSNs-KJY3ifPLxOhuFvJIyzBLw7SnYim5YioKeArImUmPvETbJ9Wt1Ho4SPohbpnBABl55LWVQDKNHKN1buS6LJOLL9_-Q-hy2hB664RMAepIpbshAf-EJF0NyeOGJAwJaaP6CHvqVislrO8YwDyAshxabnvv7upXdTW-FCPwcl2srQwg_ZhHgUeeVp291ixyOgKsZR4RDTdoqL5Zk99-t1zmSCbE4_jZ3V_8nNzr2hQkGNp3TFqr5Vq_ACC4Um2yL64FlNFpgOXorE0OBsPJ12nbbq20re9j-Wv4G8Q1ZEs |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeYAXxLgtMJhBIOAhLIlzRUKoA0rL1iJ1HepbsB17TJqSsrRC_VP8Rs5xLixoAl72Gh9bzvG52T7-DiFPE5ZoRylhh0wp2_eEsOMs5rZ2WQYK5mrl4Nvh8SQcHvmf5sF8g_xs3sJgWmVjE42hzgqJZ-S74NfBU4E3Dt8uvttYNQpvV5sSGpVY7Kv1D9iylW9G72F9n3ne4MPs3dCuqwrYEmLjpa1hdhljEMZApMBF5EjB4ihRPFSBqxPJHa3cOMOdiuI8kDxCKF_tetwJRMwUg3GvkKswHQc1Kpq3GzywHWFYP89jkbtbS8OrRZErA9HtY0Huc-7PVAlofUFvcVqUFwW6f-ZrnnOAg5vkRh250n4laptkQ-W3yGZtG0r6ogawfnmbiBmMa0_xSHdJMee5wgJf00LTjwiQTcdYx0uW9CSnA3Cs1Xkk3cNyFXRSJaaXr2kfOpeYlm2bkJjqyWh6SDHzcX2HHF0K1--SXg583CI08hUXIFWcKe2LiHGDgqfxhjPzRKQswhoWp7IGOsd6G6epub2LYMNTcSzFhUnrhbGI3fZaVEAf_6Dfw9VraRGm23wozo7TWutTrbzMD2PF_Uz6MhAJ56FgInZDCXE54xbZwbVPqzevrbFJ-z4eyIH5jS3yxFAgVEeOuUDHfFWW6ejzl_8gOpx2iJ7XRLoAdkhev7-Af0IIsA7ldocSDI7sNG-hpDZcKdPfqgk9G-m9uPlx24yDYn5froqVoYF9RBLGrkXuVcLechYRIyFoZhaJOmrQYX23JT_5ZpDSEaooTJL7f5_WDrk2nI0P0oPRZP8Bue6ZgieYSLhNesuzlXoIYedSPDK6TsnXyzYuvwA-KJbi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wGAGgYCHrE2cTySENkZZGSuo21Dfgu3YY9KUlKUV6r_GX8ed44QFTcDLXuuzlZ7vy_bd7wh5mrJUD5QSbsSUcgNfCDfJE-5qj-WgYJ5WA6wd3h9Hu0fBh2k4XSE_m1oYTKtsbKIx1Hkp8Y68D34dPBV446ivbVrE553hm9l3FztI4Utr006jFpE9tfwBx7fq9WgH9vqZ7w_fHb7ddW2HAVdCnDx3NXxpzhiENBA1cBEPpGBJnCoeqdDTqeQDrbwkx1OL4jyUPEZYX-35fBCKhCkG614hV2MWeqhj8bQ97IEdiSJbqsdir28lY3NWFsrAdQfYnPucKzQdA1q_0JudltVFQe-fuZvnnOHwJrlho1i6VYvdKllRxS2yau1ERV9YMOuXt4k4hHXdCV7vzinmP9e44EtaavoewbLpPvb0khU9KegQnGx9N0m3sXUFHddJ6tUrugWTK0zRdk14TPV4NDmgmAW5vEOOLoXrd0mvAD6uERoHiguQMM6UDkTMuEHE0_jamfsiVg5hDYszaUHPsffGaWZe8mI4_NQcy3BjMrsxDnHbWbMa9OMf9Nu4ey0tQnabH8qz48xagEwrPw-iRPEgl4EMRcp5JJhIvEhCjM64QzZw77O6_rU1PNlWgJdzYIoThzwxFAjbUaACHPNFVWWjT1_-g-hg0iF6bol0CeyQ3NZiwH9COLAO5XqHEoyP7AyvoaQ2XKmy32oKMxvpvXj4cTuMi2KuX6HKhaGBM0UaJZ5D7tXC3nIW0SMhgGYOiTtq0GF9d6Q4-WZQ0xG2KErT-3__rA1yDcxK9nE03ntArvum9wnmFK6T3vxsoR5CBDoXj4yqU_L1sm3LL03Nmxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Test-Retest+Reliability+of+Graph+Metrics+in+Functional+Brain+Networks%3A+A+Resting-State+fNIRS+Study&rft.jtitle=PloS+one&rft.au=Niu%2C+Haijing&rft.au=Li%2C+Zhen&rft.au=Liao%2C+Xuhong&rft.au=Wang%2C+Jinhui&rft.date=2013-09-09&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=8&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pone.0072425&rft.externalDocID=1431102516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |