Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis

Vasculogenesis and angiogenesis are critical processes in fetal circulation and placental vasculature development. Placental mesenchymal stem cells (pMSC) are known to release paracrine factors (some of which are contained within exosomes) that promote angiogenesis and cell migration. The aims of th...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 7; p. e68451
Main Authors Salomon, Carlos, Ryan, Jennifer, Sobrevia, Luis, Kobayashi, Miharu, Ashman, Keith, Mitchell, Murray, Rice, Gregory E
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 08.07.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Vasculogenesis and angiogenesis are critical processes in fetal circulation and placental vasculature development. Placental mesenchymal stem cells (pMSC) are known to release paracrine factors (some of which are contained within exosomes) that promote angiogenesis and cell migration. The aims of this study were: to determine the effects of oxygen tension on the release of exosomes from pMSC; and to establish the effects of pMSC-derived exosomes on the migration and angiogenic tube formation of placental microvascular endothelial cells (hPMEC). pMSC were isolated from placental villi (8-12 weeks of gestation, n = 6) and cultured under an atmosphere of 1%, 3% or 8% O2. Cell-conditioned media were collected and exosomes (exo-pMSC) isolated by differential and buoyant density centrifugation. The dose effect (5-20 µg exosomal protein/ml) of pMSC-derived exosomes on hPMEC migration and tube formation were established using a real-time, live-cell imaging system (Incucyte™). The exosome pellet was resuspended in PBS and protein content was established by mass spectrometry (MS). Protein function and canonical pathways were identified using the PANTHER program and Ingenuity Pathway Analysis, respectively. Exo-pMSC were identified, by electron microscopy, as spherical vesicles, with a typical cup-shape and diameters around of 100 nm and positive for exosome markers: CD63, CD9 and CD81. Under hypoxic conditions (1% and 3% O2) exo-pMSC released increased by 3.3 and 6.7 folds, respectively, when compared to the controls (8% O2; p<0.01). Exo-pMSC increased hPMEC migration by 1.6 fold compared to the control (p<0.05) and increased hPMEC tube formation by 7.2 fold (p<0.05). MS analysis identified 390 different proteins involved in cytoskeleton organization, development, immunomodulatory, and cell-to-cell communication. The data obtained support the hypothesis that pMSC-derived exosomes may contribute to placental vascular adaptation to low oxygen tension under both physiological and pathological conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: CS GR. Performed the experiments: CS JR MK. Analyzed the data: CS LS KA MM GR. Contributed reagents/materials/analysis tools: CS LS MM GR. Wrote the paper: CS GR.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0068451