Aging Is Accompanied by a Blunted Muscle Protein Synthetic Response to Protein Ingestion
Progressive loss of skeletal muscle mass with aging (sarcopenia) forms a global health concern. It has been suggested that an impaired capacity to increase muscle protein synthesis rates in response to protein intake is a key contributor to sarcopenia. We assessed whether differences in post-absorpt...
Saved in:
Published in | PloS one Vol. 10; no. 11; p. e0140903 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
04.11.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Progressive loss of skeletal muscle mass with aging (sarcopenia) forms a global health concern. It has been suggested that an impaired capacity to increase muscle protein synthesis rates in response to protein intake is a key contributor to sarcopenia. We assessed whether differences in post-absorptive and/or post-prandial muscle protein synthesis rates exist between large cohorts of healthy young and older men.
We performed a cross-sectional, retrospective study comparing in vivo post-absorptive muscle protein synthesis rates determined with stable isotope methodologies between 34 healthy young (22±1 y) and 72 older (75±1 y) men, and post-prandial muscle protein synthesis rates between 35 healthy young (22±1 y) and 40 older (74±1 y) men.
Post-absorptive muscle protein synthesis rates did not differ significantly between the young and older group. Post-prandial muscle protein synthesis rates were 16% lower in the older subjects when compared with the young. Muscle protein synthesis rates were >3 fold more responsive to dietary protein ingestion in the young. Irrespective of age, there was a strong negative correlation between post-absorptive muscle protein synthesis rates and the increase in muscle protein synthesis rate following protein ingestion.
Aging is associated with the development of muscle anabolic inflexibility which represents a key physiological mechanism underpinning sarcopenia. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: BTW SHG BP RK BBLG LBV LJCvL. Performed the experiments: BTW SHG BP RK BBLG LBV LJCvL. Analyzed the data: BTW SHG LJCvL. Contributed reagents/materials/analysis tools: BTW SHG BP RK LJCvL. Wrote the paper: BTW SHG BP RK BBLG LBV LJCvL. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0140903 |