How does the CNS control arm reaching movements? Introducing a hierarchical nonlinear predictive control organization based on the idea of muscle synergies
In this study, we introduce a hierarchical and modular computational model to explain how the CNS (Central Nervous System) controls arm reaching movement (ARM) in the frontal plane and under different conditions. The proposed hierarchical organization was established at three levels: 1) motor planni...
Saved in:
Published in | PloS one Vol. 15; no. 2; p. e0228726 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
05.02.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0228726 |
Cover
Abstract | In this study, we introduce a hierarchical and modular computational model to explain how the CNS (Central Nervous System) controls arm reaching movement (ARM) in the frontal plane and under different conditions. The proposed hierarchical organization was established at three levels: 1) motor planning, 2) command production, and 3) motor execution. Since in this work we are not discussing motion learning, no learning procedure was considered in the model. Previous models mainly assume that the motor planning level produces the desired trajectories of the joints and feeds it to the next level to be tracked. In the proposed model, the motion control is described based on a regulatory control policy, that is, the output of the motor planning level is a step function defining the initial and final desired position of the hand. For the command production level, a nonlinear predictive model was developed to explain how the time-invariant muscle synergies (MSs) are recruited. We used the same computational model to explain the arm reaching motion for a combined ARM task. The combined ARM is defined as two successive ARM such that it starts from point A and reaches to point C via point B. To develop the model, kinematic and kinetic data from six subjects were recorded and analyzed during ARM task performance. The subjects used a robotic manipulator while moving their hand in the frontal plane. The EMG data of 15 muscles were also recorded. The MSs used in the model were extracted from the recorded EMG data. The proposed model explains two aspects of the motor control system by a novel computational approach: 1) the CNS reduces the dimension of the control space using the notion of MSs and thereby, avoids immense computational loads; 2) at the level of motor planning, the CNS generates the desired position of the hand at the starting, via and the final points, and this amounts to a regulatory and non-tracking structure. |
---|---|
AbstractList | In this study, we introduce a hierarchical and modular computational model to explain how the CNS (Central Nervous System) controls arm reaching movement (ARM) in the frontal plane and under different conditions. The proposed hierarchical organization was established at three levels: 1) motor planning, 2) command production, and 3) motor execution. Since in this work we are not discussing motion learning, no learning procedure was considered in the model. Previous models mainly assume that the motor planning level produces the desired trajectories of the joints and feeds it to the next level to be tracked. In the proposed model, the motion control is described based on a regulatory control policy, that is, the output of the motor planning level is a step function defining the initial and final desired position of the hand. For the command production level, a nonlinear predictive model was developed to explain how the time-invariant muscle synergies (MSs) are recruited. We used the same computational model to explain the arm reaching motion for a combined ARM task. The combined ARM is defined as two successive ARM such that it starts from point A and reaches to point C via point B. To develop the model, kinematic and kinetic data from six subjects were recorded and analyzed during ARM task performance. The subjects used a robotic manipulator while moving their hand in the frontal plane. The EMG data of 15 muscles were also recorded. The MSs used in the model were extracted from the recorded EMG data. The proposed model explains two aspects of the motor control system by a novel computational approach: 1) the CNS reduces the dimension of the control space using the notion of MSs and thereby, avoids immense computational loads; 2) at the level of motor planning, the CNS generates the desired position of the hand at the starting, via and the final points, and this amounts to a regulatory and non-tracking structure. In this study, we introduce a hierarchical and modular computational model to explain how the CNS (Central Nervous System) controls arm reaching movement (ARM) in the frontal plane and under different conditions. The proposed hierarchical organization was established at three levels: 1) motor planning, 2) command production, and 3) motor execution. Since in this work we are not discussing motion learning, no learning procedure was considered in the model. Previous models mainly assume that the motor planning level produces the desired trajectories of the joints and feeds it to the next level to be tracked. In the proposed model, the motion control is described based on a regulatory control policy, that is, the output of the motor planning level is a step function defining the initial and final desired position of the hand. For the command production level, a nonlinear predictive model was developed to explain how the time-invariant muscle synergies (MSs) are recruited. We used the same computational model to explain the arm reaching motion for a combined ARM task. The combined ARM is defined as two successive ARM such that it starts from point A and reaches to point C via point B. To develop the model, kinematic and kinetic data from six subjects were recorded and analyzed during ARM task performance. The subjects used a robotic manipulator while moving their hand in the frontal plane. The EMG data of 15 muscles were also recorded. The MSs used in the model were extracted from the recorded EMG data. The proposed model explains two aspects of the motor control system by a novel computational approach: 1) the CNS reduces the dimension of the control space using the notion of MSs and thereby, avoids immense computational loads; 2) at the level of motor planning, the CNS generates the desired position of the hand at the starting, via and the final points, and this amounts to a regulatory and non-tracking structure.In this study, we introduce a hierarchical and modular computational model to explain how the CNS (Central Nervous System) controls arm reaching movement (ARM) in the frontal plane and under different conditions. The proposed hierarchical organization was established at three levels: 1) motor planning, 2) command production, and 3) motor execution. Since in this work we are not discussing motion learning, no learning procedure was considered in the model. Previous models mainly assume that the motor planning level produces the desired trajectories of the joints and feeds it to the next level to be tracked. In the proposed model, the motion control is described based on a regulatory control policy, that is, the output of the motor planning level is a step function defining the initial and final desired position of the hand. For the command production level, a nonlinear predictive model was developed to explain how the time-invariant muscle synergies (MSs) are recruited. We used the same computational model to explain the arm reaching motion for a combined ARM task. The combined ARM is defined as two successive ARM such that it starts from point A and reaches to point C via point B. To develop the model, kinematic and kinetic data from six subjects were recorded and analyzed during ARM task performance. The subjects used a robotic manipulator while moving their hand in the frontal plane. The EMG data of 15 muscles were also recorded. The MSs used in the model were extracted from the recorded EMG data. The proposed model explains two aspects of the motor control system by a novel computational approach: 1) the CNS reduces the dimension of the control space using the notion of MSs and thereby, avoids immense computational loads; 2) at the level of motor planning, the CNS generates the desired position of the hand at the starting, via and the final points, and this amounts to a regulatory and non-tracking structure. |
Audience | Academic |
Author | Dehghani, Sedigheh Bahrami, Fariba |
AuthorAffiliation | CIPCE, Human Motor Control and Computational Neuroscience Laboratory, School of ECE, College of Engineering, University of Tehran, Tehran, Iran Toronto Rehabilitation Institute - UHN, CANADA |
AuthorAffiliation_xml | – name: Toronto Rehabilitation Institute - UHN, CANADA – name: CIPCE, Human Motor Control and Computational Neuroscience Laboratory, School of ECE, College of Engineering, University of Tehran, Tehran, Iran |
Author_xml | – sequence: 1 givenname: Sedigheh orcidid: 0000-0003-1337-6050 surname: Dehghani fullname: Dehghani, Sedigheh – sequence: 2 givenname: Fariba orcidid: 0000-0002-8214-1821 surname: Bahrami fullname: Bahrami, Fariba |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32023300$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk81u1DAQxyNURD_gDRBYQkJw2MWxEzvhAKoqoCtVVKLA1ZrYk11XSbzYSaE8CweehSfD6W5X3apCyAdb49_858Pj_WSncx0myeOUTlMu01fnbvAdNNNlNE8pY4Vk4l6yl5acTQSjfOfGeTfZD-Gc0pwXQjxIdjmjjHNK95Jfx-47MQ4D6RdIjj6eEe263ruGgG-JR9AL281J6y6wxa4Pb__8no33ZtCjHcjCogcfKQ0NiSk2tkPwZOnRWN3bC9wIOj-Hzv6E3rqOVBDQkHgYw1qDQFxN2iHoBkm47NDPLYaHyf0amoCP1vtB8uX9u89Hx5OT0w-zo8OTiZZ50U9KndGsyijUTGIqBLBYJStzbQQ3WYGikiYvUklZlpmagkiFzKuCmsyYjKLkB8nTle6ycUGtGxsU43mayawUIhKzFWEcnKulty34S-XAqitDLE2B723MXglWI5OVLCUvMs7iXtK0hErnKS9LgKj1Zh1tqFo0OrbVQ7Mlun3T2YWauwslaRSSY7ov1gLefRsw9Kq1QWPTQIduuMqbxadOBY3os1vo3dWtqTnEAmxXuxhXj6LqUKScZVKyPFLTO6i4DLY2PjLWNtq3HF5uOYyDgD_6OQwhqNnZp_9nT79us89vsAuEpl8E1wzjYIVt8MnNTm9afD3-EchWgPYuBI_1BkmpGn_ZdbvU-MvU-pdFt9e33LTtr-Y6dsQ2_3b-C_liLxI |
CitedBy_id | crossref_primary_10_1038_s41598_021_96084_2 crossref_primary_10_3390_s22135001 crossref_primary_10_3390_robotics11010020 |
Cites_doi | 10.1049/iet-cta.2012.0934 10.1007/BF00204593 10.1038/44565 10.1007/s00422-011-0442-x 10.3389/fncom.2016.00143 10.1016/j.neucom.2008.12.016 10.1146/annurev.bioeng.3.1.245 10.1016/j.tics.2009.11.004 10.1007/978-3-642-39875-9_7 10.1109/TAC.1984.1103644 10.1080/00222895.1993.9942048 10.1016/B0-12-227210-2/00216-8 10.1038/nn1010 10.1016/S0079-6123(06)65019-X 10.1523/JNEUROSCI.02-11-01527.1982 10.1016/S0959-4388(99)00028-8 10.1126/science.285.5436.2136 10.1016/0021-9290(95)00178-6 10.3389/fncom.2013.00071 10.1523/JNEUROSCI.0830-06.2006 10.1038/29528 10.1007/978-0-387-77064-2_16 10.1021/ie9604280 10.1162/neco.2006.18.10.2320 10.1007/s10339-004-0046-7 10.1016/j.brainresrev.2007.08.004 10.1016/j.neuron.2015.02.042 10.1152/jn.00222.2005 10.1007/s00221-013-3606-1 10.1523/JNEUROSCI.2621-15.2015 10.3389/fncom.2013.00011 10.1523/JNEUROSCI.05-07-01688.1985 10.1002/scj.10377 10.1152/jn.1999.82.5.2676 10.1038/nn963 10.2514/3.21233 10.1162/neco.2009.06-08-798 10.1016/S0019-0578(07)60121-9 10.1016/j.neures.2015.12.008 10.1109/ICBME.2015.7404147 10.1152/jn.00173.2011 10.1201/9780203503584.ch11 10.1016/j.jbiomech.2015.12.024 10.1152/jn.00681.2004 10.1152/jn.1999.81.5.2140 10.1007/s00422-009-0342-5 10.1073/pnas.91.16.7534 10.1016/j.neuroscience.2010.07.006 10.1152/jn.00596.2004 10.1007/s00426-009-0235-1 10.1152/jn.00776.2013 10.1152/jn.1988.60.4.1268 10.1152/jn.00079.2011 10.1523/JNEUROSCI.4334-06.2007 10.1007/s10827-017-0650-z 10.1523/JNEUROSCI.3115-09.2009 10.3389/fncom.2015.00114 10.1126/science.1857964 10.1115/1.4024911 10.1038/nrn2332 10.1152/jn.00810.2005 10.1109/ICBME.2010.5704975 10.1016/j.cub.2015.05.038 10.1152/jn.1995.73.2.836 10.1016/j.neubiorev.2016.08.005 10.1142/6986 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Dehghani, Bahrami. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Dehghani, Bahrami 2020 Dehghani, Bahrami |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Dehghani, Bahrami. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Dehghani, Bahrami 2020 Dehghani, Bahrami |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0228726 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | How does the CNS control arm reaching movements? |
EISSN | 1932-6203 |
ExternalDocumentID | 2351474966 oai_doaj_org_article_62fe27b797384327979019abc51399aa PMC7001977 A613247725 32023300 10_1371_journal_pone_0228726 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GrantInformation_xml | – fundername: ; grantid: 816 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 ESTFP PUEGO 5PM - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c758t-9c404b40af27e166a2866295cd63d48e6b7d58170244df0a61675b80d4dd40e73 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:12:36 EST 2021 Wed Aug 27 01:29:30 EDT 2025 Thu Aug 21 14:37:43 EDT 2025 Mon Sep 08 03:01:02 EDT 2025 Fri Jul 25 11:17:35 EDT 2025 Tue Jun 17 20:52:13 EDT 2025 Tue Jun 10 20:29:13 EDT 2025 Fri Jun 27 04:53:56 EDT 2025 Fri Jun 27 04:35:32 EDT 2025 Thu May 22 21:20:03 EDT 2025 Mon Jul 21 05:57:01 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Tue Jul 01 01:52:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c758t-9c404b40af27e166a2866295cd63d48e6b7d58170244df0a61675b80d4dd40e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0003-1337-6050 0000-0002-8214-1821 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0228726 |
PMID | 32023300 |
PQID | 2351474966 |
PQPubID | 1436336 |
PageCount | e0228726 |
ParticipantIDs | plos_journals_2351474966 doaj_primary_oai_doaj_org_article_62fe27b797384327979019abc51399aa pubmedcentral_primary_oai_pubmedcentral_nih_gov_7001977 proquest_miscellaneous_2352053160 proquest_journals_2351474966 gale_infotracmisc_A613247725 gale_infotracacademiconefile_A613247725 gale_incontextgauss_ISR_A613247725 gale_incontextgauss_IOV_A613247725 gale_healthsolutions_A613247725 pubmed_primary_32023300 crossref_primary_10_1371_journal_pone_0228726 crossref_citationtrail_10_1371_journal_pone_0228726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-05 |
PublicationDateYYYYMMDD | 2020-02-05 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | M Ito (pone.0228726.ref056) 2008; 9 A V Alexandrov (pone.0228726.ref074) 2011; 104 DD Lee (pone.0228726.ref044) 1999; 401 K V Byadarhaly (pone.0228726.ref075) 2012 M Darainy (pone.0228726.ref026) 2004; 92 T Flash (pone.0228726.ref009) 1985; 5 M Sartori (pone.0228726.ref034) 2013; 7 X Yan (pone.0228726.ref063) 2009 M Chhabra (pone.0228726.ref076) 2006; 18 C Alessandro (pone.0228726.ref033) 2013; 7 EF Camacho (pone.0228726.ref058) 2005 C Alessandro (pone.0228726.ref030) 2012 E Todorov (pone.0228726.ref025) 2002; 5 E Chiovetto (pone.0228726.ref039) 2010; 170 J Nishii (pone.0228726.ref079) 2009; 21 A D’Avella (pone.0228726.ref038) 2013; 7 B Hoff (pone.0228726.ref067) 1993; 25 M Emadi Andani (pone.0228726.ref007) 2009; 72 D Borzelli (pone.0228726.ref036) 2013; 7 pone.0228726.ref071 A de Rugy (pone.0228726.ref035) 2013; 7 Florin C. Ppescu (pone.0228726.ref084) 2000 D Flament (pone.0228726.ref089) 1988; 60 T Waegeman (pone.0228726.ref021) 2013; 7 Y Ueyama (pone.0228726.ref092) 2017; 43 NA Bernshtein (pone.0228726.ref002) 1967 M Emadi-Andani (pone.0228726.ref012) 2009; 101 A Biess (pone.0228726.ref053) 2007; 27 KE Zelik (pone.0228726.ref070) 2014; 111 A D’Avella (pone.0228726.ref037) 2006; 26 MC Tresch (pone.0228726.ref045) 2006; 95 E Chiovetto (pone.0228726.ref052) 2013; 7 DJ Berger (pone.0228726.ref027) 2014; 8 AH Eskandari (pone.0228726.ref028) 2016; 49 FR Sarlegna (pone.0228726.ref016) 2009; 629 I Delis (pone.0228726.ref048) 2018; 8 WW Teka (pone.0228726.ref087) 2017; 12 pone.0228726.ref064 P Cisek (pone.0228726.ref004) 2005; 6 N Mehrabi (pone.0228726.ref023) 2017; 10 T Reppert (pone.0228726.ref082) 2015; 35 P de Leva (pone.0228726.ref054) 1996; 29 R Shridhar (pone.0228726.ref061) 1997; 36 M Pandy (pone.0228726.ref065) 2001; 3 pone.0228726.ref017 LH Ting (pone.0228726.ref078) 2015; 86 M Sharif Shourijeh (pone.0228726.ref024) 2014; 9 Y Ueyama (pone.0228726.ref091) 2014; 8 N Hogan (pone.0228726.ref020) 1984; 29 J Diedrichsen (pone.0228726.ref001) 2010; 14 S Wise (pone.0228726.ref003) 2002 ML Latash (pone.0228726.ref083) 2016; 69 E Chiovetto (pone.0228726.ref072) 2016 pone.0228726.ref019 E Bizzi (pone.0228726.ref029) 2008; 57 E Bizzi (pone.0228726.ref068) 1991; 253 A Georgopoulos (pone.0228726.ref086) 1982; 2 LH Ting (pone.0228726.ref051) 2011 M Kawato (pone.0228726.ref008) 1987; 68 FA Mussa-Ivaldi (pone.0228726.ref069) 1994; 91 LH Ting (pone.0228726.ref043) 2007; 165 M Xu-Wilson (pone.0228726.ref093) 2009; 29 SG Manohar (pone.0228726.ref081) 2015; 25 RS Razavian (pone.0228726.ref040) 2015; 9 M Hirashima (pone.0228726.ref032) 2016; 104 H Miyamoto (pone.0228726.ref014) 2004; 35 M Kawato (pone.0228726.ref066) 1999; 9 CM Harris (pone.0228726.ref010) 1998; 394 D Moran (pone.0228726.ref088) 1999; 82 I Delis (pone.0228726.ref050) 2015; 9 pone.0228726.ref006 N Hogan (pone.0228726.ref031) 2013; 7 WM Land (pone.0228726.ref005) 2013; 7 A Kadiallah (pone.0228726.ref018) 2011; 106 FS Alnajjar (pone.0228726.ref049) 2014 P Bagheri (pone.0228726.ref059) 2013; 7 W Wojsznis (pone.0228726.ref060) 2003; 42 M Sadeghi (pone.0228726.ref013) 2013; 229 EJ Iglesias (pone.0228726.ref062) 2006; 19 S Kakei (pone.0228726.ref085) 1999; 285 P Lu (pone.0228726.ref057) 1994; 17 LH Ting (pone.0228726.ref046) 2005; 93 M Ito (pone.0228726.ref094) 2000; 886 A D’Avella (pone.0228726.ref077) 2003; 6 G Torres-oviedo (pone.0228726.ref042) 2006; 96 J Roh (pone.0228726.ref047) 2012; 107 C Alessandro (pone.0228726.ref073) 2014; 7 J Gonzalez-vargas (pone.0228726.ref022) 2015; 9 E Nakano (pone.0228726.ref015) 1999; 81 pone.0228726.ref080 Q Fu (pone.0228726.ref090) 1995; 73 pone.0228726.ref041 H Imamizu (pone.0228726.ref055) 2009; 73 Y Uno (pone.0228726.ref011) 1989; 61 |
References_xml | – volume: 7 start-page: 1806 issue: 14 year: 2013 ident: pone.0228726.ref059 article-title: Analytical approach to tuning of model predictive control for first-order plus dead time models publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2012.0934 – volume: 61 start-page: 89 issue: 2 year: 1989 ident: pone.0228726.ref011 article-title: Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model publication-title: Biol Cybern doi: 10.1007/BF00204593 – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: pone.0228726.ref044 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – year: 2016 ident: pone.0228726.ref072 article-title: A Unifying Framework for the Identification of Motor Primitives publication-title: arXiv Prepr arXiv160306879 – volume: 104 start-page: 425 year: 2011 ident: pone.0228726.ref074 article-title: Closed-loop and open-loop control of posture and movement during human trunk bending publication-title: Biol Cybern doi: 10.1007/s00422-011-0442-x – volume: 10 start-page: 1 year: 2017 ident: pone.0228726.ref023 article-title: Predictive Simulation of Reaching Moving Targets Using Nonlinear Model Predictive Control publication-title: Front Comput Neurosci doi: 10.3389/fncom.2016.00143 – volume: 72 start-page: 2310 issue: 10–12 year: 2009 ident: pone.0228726.ref007 article-title: AMA-MOSAICI: An automatic module assigning hierarchical structure to control human motion based on movement decomposition publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.12.016 – volume: 3 start-page: 245 year: 2001 ident: pone.0228726.ref065 article-title: Computer modeling and simulation of human movement publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev.bioeng.3.1.245 – volume: 14 start-page: 31 year: 2010 ident: pone.0228726.ref001 article-title: The coordination of movement: optimal feedback control and beyond publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2009.11.004 – start-page: 249 volume-title: Model predictive Control. second year: 2005 ident: pone.0228726.ref058 – volume: 9 start-page: 1 year: 2015 ident: pone.0228726.ref040 article-title: A model-based approach to predict muscle synergies using optimization: application to feedback control publication-title: Front Comput Neurosci – ident: pone.0228726.ref006 doi: 10.1007/978-3-642-39875-9_7 – volume: 29 start-page: 681 issue: 8 year: 1984 ident: pone.0228726.ref020 article-title: Adaptive control of mechanical impedance by co-activation of antagonist muscles publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.1984.1103644 – volume: 25 start-page: 175 issue: 3 year: 1993 ident: pone.0228726.ref067 article-title: Models of trajectory formation and temporal interaction of reach and grasp publication-title: J Mot Behav doi: 10.1080/00222895.1993.9942048 – start-page: 137 volume-title: Encyclopedia of the human brain year: 2002 ident: pone.0228726.ref003 doi: 10.1016/B0-12-227210-2/00216-8 – volume: 6 start-page: 300 issue: 3 year: 2003 ident: pone.0228726.ref077 article-title: Combinations of muscle synergies in the construction of a natural motor behavior publication-title: Nat Neurosci doi: 10.1038/nn1010 – volume: 165 start-page: 299 year: 2007 ident: pone.0228726.ref043 article-title: Dimensional reduction in sensorimotor systems: A framework for understanding muscle coordination of posture publication-title: Prog Brain Res doi: 10.1016/S0079-6123(06)65019-X – volume: 2 start-page: 1527 issue: 11 year: 1982 ident: pone.0228726.ref086 article-title: On the relations between the direction of twodimensional arm movements and cell discharge in primate motor cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.02-11-01527.1982 – volume: 9 start-page: 718 issue: 6 year: 1999 ident: pone.0228726.ref066 article-title: Internal Models for Motor Control and Trajectory Planning publication-title: Curr Opin Neurobiol doi: 10.1016/S0959-4388(99)00028-8 – volume: 285 start-page: 2136 issue: 5436 year: 1999 ident: pone.0228726.ref085 article-title: Muscle and movement representations in the primary motor cortex publication-title: Science doi: 10.1126/science.285.5436.2136 – volume: 29 start-page: 1223 issue: 9 year: 1996 ident: pone.0228726.ref054 article-title: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters publication-title: J Biomech doi: 10.1016/0021-9290(95)00178-6 – volume: 7 start-page: 71 year: 2013 ident: pone.0228726.ref031 article-title: Dynamic primitives in the control of locomotion publication-title: Front Comput Neurosci doi: 10.3389/fncom.2013.00071 – volume: 26 start-page: 7791 issue: 30 year: 2006 ident: pone.0228726.ref037 article-title: Control of Fast-Reaching Movements by Muscle Synergy Combinations publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0830-06.2006 – year: 2012 ident: pone.0228726.ref075 article-title: A modular neural model of motor synergies publication-title: Neural Networks – volume: 394 start-page: 780 issue: 6695 year: 1998 ident: pone.0228726.ref010 article-title: Signal-dependent noise determines motor planning publication-title: Nature doi: 10.1038/29528 – volume: 629 start-page: 317 year: 2009 ident: pone.0228726.ref016 article-title: The Roles of Vision and Proprioception in the Planning of Reaching Movements publication-title: Adv Exp Med Biol doi: 10.1007/978-0-387-77064-2_16 – volume: 36 start-page: 729 issue: 3 year: 1997 ident: pone.0228726.ref061 article-title: A tuning strategy for unconstrained SISO model predictive control publication-title: Ind Eng Chem Res doi: 10.1021/ie9604280 – volume: 18 start-page: 2320 year: 2006 ident: pone.0228726.ref076 article-title: Properties of Synergies Arising from a Theory of Optimal Motor Behavior publication-title: Neural Comput doi: 10.1162/neco.2006.18.10.2320 – volume: 6 start-page: 15 year: 2005 ident: pone.0228726.ref004 article-title: Neural representations of motor plans, desired trajectories, and controlled objects publication-title: Cogn Process doi: 10.1007/s10339-004-0046-7 – start-page: 102 volume-title: Motor Control Theories, Experiments, and ApplicationsTheories, Experiments, and Applications year: 2011 ident: pone.0228726.ref051 – volume: 57 start-page: 125 year: 2008 ident: pone.0228726.ref029 article-title: Combining modules for movement publication-title: Brain Res Rev doi: 10.1016/j.brainresrev.2007.08.004 – volume: 7 start-page: 99 issue: July year: 2013 ident: pone.0228726.ref021 article-title: MACOP modular architecture with control primitives publication-title: Front Comput Neurosci – volume: 7 start-page: 1 issue: June year: 2013 ident: pone.0228726.ref034 article-title: A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives publication-title: Front Comput Neurosci – volume: 86 start-page: 38 issue: 1 year: 2015 ident: pone.0228726.ref078 article-title: Neuromechanical Principles Underlying Movement Modularity and Their Implications for Rehabilitation publication-title: Neuron doi: 10.1016/j.neuron.2015.02.042 – volume: 9 start-page: 1 issue: 399 year: 2015 ident: pone.0228726.ref050 article-title: Task-discriminative space-by-time factorization of muscle activity publication-title: Front Hum Neurosci – volume: 68 start-page: 95 year: 1987 ident: pone.0228726.ref008 article-title: A hierarchical neural network model for control and learning of voluntary movement publication-title: Biol Cybern – volume: 95 start-page: 2199 year: 2006 ident: pone.0228726.ref045 article-title: Matrix Factorization Algorithms for the Identification of Muscle Synergies: Evaluation on Simulated and Experimental Data Sets publication-title: J Neurophysiol doi: 10.1152/jn.00222.2005 – volume: 229 start-page: 221 issue: 2 year: 2013 ident: pone.0228726.ref013 article-title: Trajectory of human movement during sit to stand: a new modeling approach based on movement decomposition and multi- phase cost function publication-title: Exp Brain Res doi: 10.1007/s00221-013-3606-1 – volume: 35 start-page: 15369 issue: 46 year: 2015 ident: pone.0228726.ref082 article-title: Modulation of Saccade Vigor during Value-Based Decision Making publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2621-15.2015 – volume: 7 start-page: 127 year: 2013 ident: pone.0228726.ref005 article-title: From action representation to action execution: exploring the links between cognitive and biomechanical levels of motor control publication-title: Front Comput Neurosci – volume: 7 start-page: 11 year: 2013 ident: pone.0228726.ref052 article-title: Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies publication-title: Front Comput Neurosci doi: 10.3389/fncom.2013.00011 – ident: pone.0228726.ref064 – volume: 5 start-page: 1688 issue: 7 year: 1985 ident: pone.0228726.ref009 article-title: The coordination of arm movements: an experimentally confirmed mathematical model publication-title: J Neurosci doi: 10.1523/JNEUROSCI.05-07-01688.1985 – volume: 35 start-page: 48 year: 2004 ident: pone.0228726.ref014 article-title: TOPS (Task optimization in the presence of signal-dependent noise) model publication-title: Syst Comput Japan doi: 10.1002/scj.10377 – volume: 7 start-page: 1 issue: April year: 2013 ident: pone.0228726.ref038 article-title: Control of reaching movements by muscle synergy combinations publication-title: Front Comput Neurosci – start-page: 50 volume-title: The co-ordination and regulation of movements year: 1967 ident: pone.0228726.ref002 – volume: 7 start-page: 1 issue: December year: 2013 ident: pone.0228726.ref036 article-title: Effort minimization and synergistic muscle recruitment for three-dimensional force generation publication-title: Front Comput Neurosci – start-page: 245 year: 2014 ident: pone.0228726.ref049 publication-title: Muscle Synergy Features in Behavior – volume: 82 start-page: 2676 issue: 5 year: 1999 ident: pone.0228726.ref088 article-title: Motor cortical representation of speed and direction during reaching publication-title: J Neurophysiol doi: 10.1152/jn.1999.82.5.2676 – volume: 5 start-page: 30 issue: 11 year: 2002 ident: pone.0228726.ref025 article-title: Optimal feedback control as a theory of motor coordination publication-title: Nat Neurosci doi: 10.1038/nn963 – volume: 17 start-page: 553 issue: 3 year: 1994 ident: pone.0228726.ref057 article-title: Nonlinear Predictive Controllers for Continuous Systems publication-title: J Guid Control Dyn doi: 10.2514/3.21233 – volume: 21 start-page: 2634 issue: 9 year: 2009 ident: pone.0228726.ref079 article-title: Evaluation of trajectory planning models for arm-reaching movements based on energy cost publication-title: Neural Comput doi: 10.1162/neco.2009.06-08-798 – volume: 8 start-page: 1 issue: 8391 year: 2018 ident: pone.0228726.ref048 article-title: Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements publication-title: scintific reports – volume: 42 start-page: 149 year: 2003 ident: pone.0228726.ref060 article-title: Practical approach to tuning MPC publication-title: ISA Trans doi: 10.1016/S0019-0578(07)60121-9 – volume: 104 start-page: 80 year: 2016 ident: pone.0228726.ref032 article-title: How does the brain solve muscle redundancy? Filling the gap between optimization and muscle synergy hypotheses publication-title: Neurosci Res doi: 10.1016/j.neures.2015.12.008 – ident: pone.0228726.ref041 doi: 10.1109/ICBME.2015.7404147 – volume: 107 start-page: 2123 year: 2012 ident: pone.0228726.ref047 article-title: Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans publication-title: J Neurophysiol doi: 10.1152/jn.00173.2011 – ident: pone.0228726.ref017 doi: 10.1201/9780203503584.ch11 – volume: 19 start-page: 88 year: 2006 ident: pone.0228726.ref062 article-title: Tuning equation for dynamic matrix control in SISO loops publication-title: Rev Ing y Desarro – volume: 886 start-page: 237 year: 2000 ident: pone.0228726.ref094 article-title: Mechanisms of motor learning in the cerebellum publication-title: Brain Res – volume: 49 start-page: 967 issue: August year: 2016 ident: pone.0228726.ref028 article-title: The effect of parameters of equilibrium-based 3-D biomechanical models on extracted muscle synergies during isometric lumbar exertion publication-title: J Biomech doi: 10.1016/j.jbiomech.2015.12.024 – volume: 93 start-page: 609 year: 2005 ident: pone.0228726.ref046 article-title: A Limited Set of Muscle Synergies for Force Control During a Postural Task publication-title: J Neurophysiol doi: 10.1152/jn.00681.2004 – volume: 12 start-page: 1 year: 2017 ident: pone.0228726.ref087 article-title: From the motor cortex to the movement and back again publication-title: PLoS ONE – volume: 81 start-page: 2140 issue: 5 year: 1999 ident: pone.0228726.ref015 article-title: Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model publication-title: J Neurophysiol doi: 10.1152/jn.1999.81.5.2140 – volume: 101 start-page: 361 year: 2009 ident: pone.0228726.ref012 article-title: MODEM: a multi-agent hierarchical structure to model the human motor control system publication-title: Biol Cybern doi: 10.1007/s00422-009-0342-5 – volume: 91 start-page: 7534 year: 1994 ident: pone.0228726.ref069 article-title: Motor learning through the combination of primitives publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.91.16.7534 – volume: 170 start-page: 1223 issue: 4 year: 2010 ident: pone.0228726.ref039 article-title: Tri-dimensional and triphasic muscle organization of whole-body pointing movements publication-title: Neuroscience doi: 10.1016/j.neuroscience.2010.07.006 – ident: pone.0228726.ref019 – volume: 92 start-page: 3344 year: 2004 ident: pone.0228726.ref026 article-title: Learning to control arm stiffness under static conditions publication-title: J Neurophysiol doi: 10.1152/jn.00596.2004 – volume: 73 start-page: 527 issue: 4 year: 2009 ident: pone.0228726.ref055 article-title: Brain mechanisms for predictive control by switching internal models: Implications for higher-order cognitive functions publication-title: Psychol Res doi: 10.1007/s00426-009-0235-1 – volume: 111 start-page: 1686 issue: 8 year: 2014 ident: pone.0228726.ref070 article-title: Can modular strategies simplify neural control of multidirectional human locomotion publication-title: J Neurophysiol doi: 10.1152/jn.00776.2013 – ident: pone.0228726.ref071 – volume: 60 start-page: 1268 issue: 4 year: 1988 ident: pone.0228726.ref089 article-title: Relations of motor cortex neural discharge to kinematics of passive and active elbow movements in the monkey publication-title: J Neurophysiol doi: 10.1152/jn.1988.60.4.1268 – volume: 106 start-page: 2737 year: 2011 ident: pone.0228726.ref018 article-title: Impedance control is selectively tuned to multiple directions of movement publication-title: J Neurophysiol doi: 10.1152/jn.00079.2011 – volume: 27 start-page: 13045 issue: 48 year: 2007 ident: pone.0228726.ref053 article-title: A Computational Model for Redundant Human Three-Dimensional Pointing Movements: Integration of Independent Spatial and Temporal Motor Plans Simplifies Movement Dynamics publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4334-06.2007 – volume: 43 start-page: 93 issue: 1 year: 2017 ident: pone.0228726.ref092 article-title: Optimal feedback control to describe multiple representations of primary motor cortex neurons publication-title: J Comput Neurosci doi: 10.1007/s10827-017-0650-z – volume: 7 start-page: 1 issue: 43 year: 2013 ident: pone.0228726.ref033 article-title: Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives publication-title: Front Comput Neurosci – volume: 29 start-page: 12930 issue: 41 year: 2009 ident: pone.0228726.ref093 article-title: Cerebellar contributions to adaptive control of saccades in humans publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3115-09.2009 – volume: 9 start-page: 1 year: 2015 ident: pone.0228726.ref022 article-title: A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions publication-title: Front Comput Neurosci doi: 10.3389/fncom.2015.00114 – volume: 253 start-page: 287 issue: July year: 1991 ident: pone.0228726.ref068 article-title: Computations underlying the production of movement: a biological persectiv publication-title: Science doi: 10.1126/science.1857964 – volume: 7 start-page: 1 issue: 191 year: 2014 ident: pone.0228726.ref073 article-title: A computational analysis of motor synergies by dynamic response decomposition publication-title: Front Comput Neurosci – volume: 8 start-page: 1 issue: 46 year: 2014 ident: pone.0228726.ref027 article-title: Effective force control by muscle synergies publication-title: Front Comput Neurosci – start-page: 33 year: 2012 ident: pone.0228726.ref030 article-title: Synthesis and adaptation of effective motor synergies for the solution of reaching tasks publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 9 issue: 2 year: 2014 ident: pone.0228726.ref024 article-title: Optimal control and forward dynamics of human periodic motions using fourier series for muscle excitation patterns publication-title: J Comput Nonlin Dynam doi: 10.1115/1.4024911 – volume: 9 start-page: 304 issue: 4 year: 2008 ident: pone.0228726.ref056 article-title: Control of mental activities by internal models in the cerebellum publication-title: Nat Rev Neurosci doi: 10.1038/nrn2332 – volume: 96 start-page: 1530 year: 2006 ident: pone.0228726.ref042 article-title: Muscle Synergy Organization Is Robust Across a Variety of Postural Perturbations publication-title: J Neurophysiol doi: 10.1152/jn.00810.2005 – ident: pone.0228726.ref080 doi: 10.1109/ICBME.2010.5704975 – volume: 8 start-page: 1 issue: 119 year: 2014 ident: pone.0228726.ref091 article-title: Mini-max feedback control as a computational theory of sensorimotor control in the presence of structural uncertainty publication-title: Front Comput Neurosci – volume: 7 start-page: 1 issue: 19 year: 2013 ident: pone.0228726.ref035 article-title: Are muscle synergies useful for neural control? publication-title: Front Comput Neurosci – volume: 25 start-page: 1707 issue: 13 year: 2015 ident: pone.0228726.ref081 article-title: Reward Pays the Cost of Noise Reduction in Motor and Cognitive Control publication-title: Curr Biol doi: 10.1016/j.cub.2015.05.038 – start-page: 2670 year: 2000 ident: pone.0228726.ref084 article-title: End Points of Planar Reaching Movements Are Disrupted by Small Force Pulses: An Evaluation of the Hypothesis of Equifinality publication-title: J Physiol – volume: 73 start-page: 836 issue: 2 year: 1995 ident: pone.0228726.ref090 article-title: Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons publication-title: J Neurophysiol doi: 10.1152/jn.1995.73.2.836 – volume: 69 start-page: 136 year: 2016 ident: pone.0228726.ref083 article-title: Neuroscience and Biobehavioral Reviews Towards physics of neural processes and behavior publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2016.08.005 – start-page: 108 volume-title: Linear Regression Analysis: Theory and Computing year: 2009 ident: pone.0228726.ref063 doi: 10.1142/6986 |
SSID | ssj0053866 |
Score | 2.3382866 |
Snippet | In this study, we introduce a hierarchical and modular computational model to explain how the CNS (Central Nervous System) controls arm reaching movement (ARM)... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0228726 |
SubjectTerms | Aircraft Analysis Arm Arm - physiology Biology and Life Sciences Central nervous system Central Nervous System - physiology Computer applications Control systems Controllers Electromyography Engineering and Technology Engineering schools Experiments Hand Humans Laboratories Learning Medicine and Health Sciences Models, Neurological Motion control Motor task performance Movement - physiology Muscle, Skeletal - physiology Muscles Musculoskeletal system Neurosciences Nonlinear control Nonlinear Dynamics Novels Prediction models Predictive control Research and Analysis Methods Robot arms Step functions Time Tracking Variables |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdQn3hBjH8rDDAICXjIltqOHT-hMTF1PAyJMbS3yI6dMWlNqqbVtO_CA5-FT8ad40YNmjQeeGrluzjunX2-q-9-JuRNpq3NS5Mllap0IqwViWHaJ9rkHmhOWBOyfI_l9FR8PsvONq76wpywDh64E9yeZJVnyiqteC44g0_YwbSxZQa-izbBNUp1ug6mOhsMq1jKWCjH1WQv6mV33tR-FxFfFIIpbGxEAa-_t8qj-WXT3uRy_p05ubEVHd4n96IPSfe7sW-RO75-QLbiKm3puwgl_f4h-TltrqhroBH8PHpwfEJjajo1ixldxExKOmsCaviy_fD71xHS3arEdkPxpuxw1gCqpHUHq2EWdL7A8x20lH2HzUZRJ8W90VH4gq-9cN7QpqKzVQvDpe01lhtCgP6InB5--nYwTeJ9DEkJUcUy0aVIhRWpqZjyEykNAykznZVOcidyL61yGQL-gcvgqtTICUQjNk-dcE6kXvHHZAQj9duEKuslKyfcSS2EnhhtOfShNWjGcO3SMeFr5RRlBCvHOzMui3ACpyBo6WRdoEqLqNIxSfqn5h1Yxy38H1HvPS9CbYcGEFkRJ2Bx2wQck5c4a4qubrU3GMU-OEpMQPCSjcnrwIFwGzXm85ybVdsWR1--_wPTydcB09vIVDUgjtLEGgr4TQjjNeDcGXCC0SgH5G2c42uptAXDig4lIPiFJ9fz_mbyq56MnWKOXu2bVeBhaNIlaO9Jt0x6yXIGviFPgaIGC2gg-iGlvvgR0M4xMQKClKf_Q1fPyF2G_5dg1n22Q0bLxco_B6dyaV8E-_EHcOV2qQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCCGF8rDDAICXjIljiOHT9NY6J0PAyJMbS3yF-BSWtSmlbT_hb-We4SNzRoAp5a-S6pe-c739nnnwl5lSljcquzqJSlirgxPNJM-Ujp3APNcaPbKt9jMT3lH8-ys7Dg1oSyyrVPbB21qy2uke8xLDmXHKLz_fmPCG-Nwt3VcIXGTXIrgZkGx3k--bD2xGDLQoTjcqlM9oJ2dud15XcR90UipMLGdNSi9ve-eTS_qJvrAs8_6yc3JqTJXXInRJL0oFP9Frnhq3tkK9hqQ98EQOm398nPaX1JXQ2NEO3Rw-MTGgrUqV7M6CLUU9JZ3WKHL5t9eoRkt7LYrClel91uOIA-adVha-gFnS9wkwfdZf--euNkJ8UJ0lH4gr967rymdUlnqwZ6S5srPHMIWfoDcjp5_-VwGoVLGSILqcUyUpbH3PBYl0z6RAjNQMhMZdaJ1PHcCyNdhqh_EDe4MtYigZTE5LHjzvHYy_QhGUFP_Tah0njBbJI6oThXiVYmhXcoBYrRqXLxmKRr3RQ2IJbjxRkXRbsNJyFz6URdoEaLoNExifqn5h1ixz_436Hae17E224bQGRFMN9CsNIzaaSSac5TBp8QRyltbAYRtNJ6TJ7joCm6w6u91ygOIFpiHDKYbExethyIuVFhUc83vWqa4ujT1_9gOvk8YHodmMoaxGF1OEgB_wmxvAacOwNO8Bx2QN7GIb6WSlP8tjF4cj3srye_6Mn4UizUq3y9ankY-nUB2nvUWUkv2ZRBgJjGQJED-xmIfkipzr-3kOdYHQGZyuO_d-sJuc1wOQSL6rMdMlouVv4pxIxL86x1DL8ABKJuLA priority: 102 providerName: ProQuest |
Title | How does the CNS control arm reaching movements? Introducing a hierarchical nonlinear predictive control organization based on the idea of muscle synergies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32023300 https://www.proquest.com/docview/2351474966 https://www.proquest.com/docview/2352053160 https://pubmed.ncbi.nlm.nih.gov/PMC7001977 https://doaj.org/article/62fe27b797384327979019abc51399aa http://dx.doi.org/10.1371/journal.pone.0228726 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw0Nq6F14Q42uFUQxCAh4ypY5j1w9o2qqWDomCNor6FtmxMya1TWlawV74I_xZ7lI3WlAneEkr39l17-zzXXwfhLyKlTGdVMdBJjMVcGN4oJlygdIdBzDLjS69fIdiMOIfxvF4h2xqtnoCFltNO6wnNVpMjn5-vz6GDf-urNog25tOR_N85o4wn4tkYpfswdkk0Bz7yKt7BdjdQvgAutt61g6oMo9_Ja0b80lebFNF__aovHFE9e-Ru163pCfrxbBPdtzsPtn3u7egb3yK6bcPyO9B_oPaHBpB_6Pd4QX1LutUL6Z04T0s6TQvs4kvi2N6hmC7SrFZUyygXV5BAIfpbJ1tQy_ofIHXPihAq_HyG7GeFI9MS-EL_uqVdZrmGZ2uCpgtLa4xChHs9odk1O996Q4CX6YhSMHYWAYq5SE3PNQZk64thGZAZKbi1IrI8o4TRtoY8wCCJmGzUAtgS2w6oeXW8tDJ6BFpwEzdAaHSOMHSdmSF4ly1tTIRjKEUMEZHyoZNEm14k6Q-hzmW0pgk5cWcBFtmTeoEOZp4jjZJUPWar3N4_AP_FNle4WIG7rIBSJb4DZ0IljkmjVQy6vCIwSdoVkqbNAadWmndJM9x0STrcNZKjiQnoD8xDjZN3CQvSwzMwjFDN59LvSqK5OzT1_9AujivIb32SFkO5Ei1D62A_4TZvWqYhzVMkCVpDXyAS3xDlSJhGOghOdjE0HOz7LeDX1RgHBRd92YuX5U4DCW9AO49Xu-SirIRA5UxCgEia_unRvo6ZHb1rUyCjv4SYLs8uX3GT8kdhi9H0MU-PiSN5WLlnoEGuTQtsivHEp6dbhuf_fctsnfaG34-b5XvZFql0MDnr94f6WN4lw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BrlAV4Q42uFwQwCAQ_ZUsex6wc0jcHUsjEk9qG-BTt2oNLalKbVtN_Cf-A3cpe4oUET8LKnVrmL696d7872fRDyPFbGdFMdB5nMVMCN4YFmygVKdx3ALDe6jPI9FL0T_mEQD1bIz0UuDIZVLnRiqahtnuIZ-RbDkHPJwTvfnnwPsGsU3q4uWmhUYrHvLs5hy1a86b8D_r5gbO_98W4v8F0FghR841mgUh5yw0OdMek6QmjWFYKpOLUisrzrhJE2xrJ1YPhsFmrRAZ_adEPLreWhkxGMe41c53gyDutHDuoNHugOIXx6XiQ7W14aNif52G1inRmJJRyWzF_ZJaC2Ba3JWV5c5uj-Ga-5ZAD3bpNb3nOlO5WorZIVN75DVr1uKOgrX8D69V3yo5efU5vDQ_Au6e7hEfUB8VRPR3Tq4zfpKC9rlc-KbdpHsJ2n-FhTbM9dXnCA_NBxVctDT-lkipdKqJ7r8fKlTFKKBtlS-IK_OrRO0zyjo3kBs6XFBeY4Dl1xj5xcCbvukxbM1K0RKo0TLO1EVijOVUcrE8EYSgFjdKRs2CbRgjdJ6iukY6OOs6S89pOwU6pInSBHE8_RNgnqtyZVhZB_4L9Ftte4WN-7fAAkS7y6SATLHJNGKhl1ecTgE_w2pU0ag8eutG6TDRSapEqWrbVUsgPeGeOwY4rb5FmJgTU-xhhE9FXPiyLpfzr9D6Sjzw2klx4py4EcqfaJG_CfsHZYA3O9gQmaKm2A11DEF1Qpkt9rGt5ciP3l4Kc1GAfFwMCxy-clDkM7IoB7D6pVUlM2YuCQRiFAZGP9NEjfhIyH38oS6xiNATujh3-f1ga50Tv-eJAc9A_3H5GbDI9iMKA_Xiet2XTuHoO_OjNPSiVByZer1kq_AB_XqWM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpFQrwgxtcKgxkEAh6ypo5j1w9oGhtTy9BAjKG-BTt2oNLalKbVtN_CP-HXcZe4oUET8LKnVr6L696d787xfRDyNFbG9FIdB5nMVMCN4YFmygVK9xzALDe6jPI9Ev0T_nYYD9fIz2UuDIZVLnViqahtnuI78g7DkHPJwTvvZD4s4sP-wc70e4AdpPCmddlOoxKRQ3d-Bse34tVgH3j9jLGDN5_2-oHvMBCk4CfPA5XykBse6oxJ1xVCs54QTMWpFZHlPSeMtDGWsAMjaLNQiy7416YXWm4tD52MYN4r5KqMwKuCvSSH9WEP9IgQPlUvkt2Ol4ztaT5x21hzRmI5hxVTWHYMqO1Ca3qaFxc5vX_Gbq4Yw4Ob5Ib3YuluJXbrZM1NbpF1rycK-sIXs355m_zo52fU5jAInibdOzqmPjie6tmYznwsJx3nZd3yebFDBwi2ixSHNcVW3eVlB8gSnVR1PfSMTmd4wYSqup4vX8kqpWicLYUv-Ksj6zTNMzpeFLBaWpxjvuPIFXfIyaWw6y5pwUrdBqHSOMHSbmSF4lx1tTIRzKEUMEZHyoZtEi15k6S-Wjo27ThNyitACaemitQJcjTxHG2ToH5qWlUL-Qf-a2R7jYu1vssBIFniVUciWOaYNFLJqMcjBp_gwylt0hi8d6V1m2yh0CRV4mytsZJd8NQYh9NT3CZPSgys9zHBnfNVL4oiGbz__B9Ixx8bSM89UpYDOVLtkzjgP2EdsQbmZgMTtFbaAG-giC-pUiS_9zc8uRT7i8GPazBOikGCE5cvShyGNkUA9-5Vu6SmbMTAOY1CgMjG_mmQvgmZjL6V5dYxMgNOSff_vqwtcg30UfJucHT4gFxn-FYGY_vjTdKazxbuIbiuc_Oo1BGUfLlspfQLTfCtog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+does+the+CNS+control+arm+reaching+movements%3F+Introducing+a+hierarchical+nonlinear+predictive+control+organization+based+on+the+idea+of+muscle+synergies&rft.jtitle=PloS+one&rft.au=Dehghani%2C+Sedigheh&rft.au=Bahrami%2C+Fariba&rft.date=2020-02-05&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=15&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pone.0228726&rft.externalDocID=2351474966 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |