Reliability of Resting-State Microstate Features in Electroencephalography

Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 12; p. e114163
Main Authors Khanna, Arjun, Pascual-Leone, Alvaro, Farzan, Faranak
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.12.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's α > 0.8, SEM ≈ 10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α > 0.9). All features had high test-retest reliability with 19 and 8 electrodes. High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health.
AbstractList Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's [alpha] and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's [alpha]>0.8, SEM [almost equal to]10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's [alpha]>0.9). All features had high test-retest reliability with 19 and 8 electrodes. High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health.
Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states (“microstates”) that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. Methods We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k -means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. Results The approach of identifying a single set of “global” microstate maps showed the highest reliability (mean Cronbach's α>0.8, SEM ≈10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α>0.9). All features had high test-retest reliability with 19 and 8 electrodes. Conclusions High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health.
Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states (“microstates”) that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. Methods We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. Results The approach of identifying a single set of “global” microstate maps showed the highest reliability (mean Cronbach's α>0.8, SEM ≈10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α>0.9). All features had high test-retest reliability with 19 and 8 electrodes. Conclusions High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health.
Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's α > 0.8, SEM ≈ 10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α > 0.9). All features had high test-retest reliability with 19 and 8 electrodes. High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health.
Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis.BACKGROUNDElectroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis.We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes.METHODSWe analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes.The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's α > 0.8, SEM ≈ 10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α > 0.9). All features had high test-retest reliability with 19 and 8 electrodes.RESULTSThe approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's α > 0.8, SEM ≈ 10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α > 0.9). All features had high test-retest reliability with 19 and 8 electrodes.High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health.CONCLUSIONSHigh test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health.
Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. Methods We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's [alpha] and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. Results The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's [alpha]>0.8, SEM [almost equal to]10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's [alpha]>0.9). All features had high test-retest reliability with 19 and 8 electrodes. Conclusions High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health.
Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis.We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes.The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's α > 0.8, SEM ≈ 10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α > 0.9). All features had high test-retest reliability with 19 and 8 electrodes.High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health.
Audience Academic
Author Khanna, Arjun
Pascual-Leone, Alvaro
Farzan, Faranak
AuthorAffiliation University of Bern, Switzerland
1 Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
2 Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
AuthorAffiliation_xml – name: 2 Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– name: 1 Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
– name: University of Bern, Switzerland
Author_xml – sequence: 1
  givenname: Arjun
  surname: Khanna
  fullname: Khanna, Arjun
– sequence: 2
  givenname: Alvaro
  surname: Pascual-Leone
  fullname: Pascual-Leone, Alvaro
– sequence: 3
  givenname: Faranak
  surname: Farzan
  fullname: Farzan, Faranak
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25479614$$D View this record in MEDLINE/PubMed
BookMark eNqNk1Fv0zAQxyM0xLbCN0BQCQnBQ4ud2E7CA9I0bVA0NKkDXi3HPaeu3LizHUS_PU6bomaaEPKDnfPv_3fudHeenDS2gSR5idEUZzn-sLKta4SZbmJ4ijAmmGVPkjNcZumEpSg7OTqfJuferxCiWcHYs-Q0pSQvGSZnydc5GC0qbXTYjq0az8EH3dSTuyACjL9p6azfHa9BhNaBH-tmfGVABmehkbBZCmNrJzbL7fPkqRLGw4t-HyU_rq--X36Z3Nx-nl1e3ExkToswKSTBRCkpAFElGEVppgpVUSZlFb9zJLOUKkaoZKjCJEeqAqpyWkpREEZkNkpe7303xnrel8HzmH5aYJQWRSRme2JhxYpvnF4Lt-VWaL4LWFdz4YKWBvgiLTKFKkmzBSMlSUsJFEqZISlYmUsVvT71r7XVGhYSmuCEGZgObxq95LX9xUlKY75lNHjXGzh738by8rX2EowRDdh2998kT_My7qPkzQP08ex6qhYxAd0oG9-VnSm_ILjIUYFwR00foeJawFrL2DNKx_hA8H4giEyA36EWrfd8djf_f_b255B9e8QuQZiw9Na0QdvGD8FXx5X-W-JDs0bg4x7omtI7UFzq2JvRJ6amDceId5NxKBrvJoP3kxHF5IH44P9P2R8npRIt
CitedBy_id crossref_primary_10_1038_s41598_020_79423_7
crossref_primary_10_1016_j_neuroimage_2017_11_062
crossref_primary_10_1007_s11571_023_10016_6
crossref_primary_10_1038_s41598_020_69999_5
crossref_primary_10_1007_s10548_022_00929_6
crossref_primary_10_1016_j_neuroimage_2022_119006
crossref_primary_10_1038_s41597_023_02892_8
crossref_primary_10_1016_j_cortex_2021_02_014
crossref_primary_10_1002_hbm_26480
crossref_primary_10_1017_S0033291724001132
crossref_primary_10_1007_s10548_023_00958_9
crossref_primary_10_1089_brain_2015_0368
crossref_primary_10_1007_s10548_020_00777_2
crossref_primary_10_1016_j_neuroimage_2021_117861
crossref_primary_10_2147_NSS_S485412
crossref_primary_10_1002_hbm_25426
crossref_primary_10_1016_j_pnpbp_2024_110958
crossref_primary_10_1007_s10548_024_01099_3
crossref_primary_10_1142_S0129065720500057
crossref_primary_10_3389_fnhum_2024_1434110
crossref_primary_10_1016_j_neuroimage_2017_08_058
crossref_primary_10_1016_j_jad_2024_09_040
crossref_primary_10_3389_fpsyt_2024_1513793
crossref_primary_10_1038_s41598_024_58886_y
crossref_primary_10_1177_13872877241305961
crossref_primary_10_1007_s10548_023_00988_3
crossref_primary_10_1162_jocn_a_02022
crossref_primary_10_1038_s41598_020_74790_7
crossref_primary_10_3390_bioengineering10030281
crossref_primary_10_3389_fnins_2022_812624
crossref_primary_10_3390_brainsci14100985
crossref_primary_10_1371_journal_pone_0146595
crossref_primary_10_3389_fpsyt_2022_891719
crossref_primary_10_3389_fnhum_2022_857768
crossref_primary_10_3389_fnins_2024_1295615
crossref_primary_10_1073_pnas_2414636122
crossref_primary_10_1093_sleep_zsae053
crossref_primary_10_1007_s11571_024_10095_z
crossref_primary_10_1016_j_neuroimage_2023_120371
crossref_primary_10_1109_THMS_2023_3235003
crossref_primary_10_1007_s10548_023_00993_6
crossref_primary_10_1162_imag_a_00109
crossref_primary_10_3389_fncom_2019_00091
crossref_primary_10_1016_j_jpsychires_2023_07_021
crossref_primary_10_1016_j_nicl_2016_08_008
crossref_primary_10_1007_s11055_019_00850_9
crossref_primary_10_3389_fnins_2019_01251
crossref_primary_10_3389_fnins_2022_911034
crossref_primary_10_3389_fpsyt_2018_00395
crossref_primary_10_1016_j_isci_2023_106017
crossref_primary_10_1016_j_nicl_2020_102488
crossref_primary_10_1016_j_nicl_2024_103583
crossref_primary_10_1016_j_neuroimage_2022_119669
crossref_primary_10_3389_fnins_2019_00563
crossref_primary_10_3389_fnsys_2022_786200
crossref_primary_10_1016_j_nicl_2023_103540
crossref_primary_10_1016_j_jneumeth_2019_108317
crossref_primary_10_3389_fnhum_2017_00441
crossref_primary_10_1186_s12868_024_00854_3
crossref_primary_10_1016_j_ijpsycho_2021_09_001
crossref_primary_10_1089_brain_2020_0848
crossref_primary_10_1024_1016_264X_a000180
crossref_primary_10_1007_s10548_021_00835_3
crossref_primary_10_3390_brainsci14101013
crossref_primary_10_3389_fpsyt_2022_988939
crossref_primary_10_1109_TNSRE_2022_3156546
crossref_primary_10_1016_j_schres_2023_11_014
crossref_primary_10_1016_j_nicl_2019_102046
crossref_primary_10_1016_j_nlm_2021_107424
crossref_primary_10_1186_s10194_022_01414_y
crossref_primary_10_1371_journal_pone_0251842
crossref_primary_10_1016_j_biopsycho_2022_108283
crossref_primary_10_1016_j_nicl_2020_102237
crossref_primary_10_1136_gpsych_2023_101171
crossref_primary_10_1016_j_nicl_2022_103135
crossref_primary_10_1007_s10548_017_0565_z
crossref_primary_10_1016_j_neucli_2018_10_004
crossref_primary_10_1002_hbm_26525
crossref_primary_10_1016_j_neuroimage_2020_117393
crossref_primary_10_1093_cercor_bhae035
crossref_primary_10_1016_j_neuroimage_2019_03_029
crossref_primary_10_1093_scan_nsae012
crossref_primary_10_3389_fnagi_2021_714220
crossref_primary_10_1016_j_bspc_2023_105202
crossref_primary_10_1002_brb3_1630
crossref_primary_10_1016_j_infbeh_2022_101785
crossref_primary_10_1162_jocn_a_01360
crossref_primary_10_3389_fnins_2020_620666
crossref_primary_10_3389_fnbot_2024_1336438
crossref_primary_10_1016_j_ynirp_2022_100089
crossref_primary_10_1016_j_pnpbp_2022_110514
crossref_primary_10_3389_fnhum_2020_576114
crossref_primary_10_1007_s10548_023_01019_x
crossref_primary_10_1016_j_neubiorev_2014_12_010
crossref_primary_10_3389_fnins_2021_689791
crossref_primary_10_1007_s42600_022_00245_9
crossref_primary_10_1007_s10548_018_0689_9
crossref_primary_10_1007_s10548_023_00982_9
crossref_primary_10_1016_j_nicl_2018_10_015
crossref_primary_10_3389_fnins_2021_715512
crossref_primary_10_3389_fpsyt_2021_695272
crossref_primary_10_1038_s41597_024_03241_z
crossref_primary_10_3389_fncom_2018_00070
crossref_primary_10_1016_j_neuroimage_2025_121090
crossref_primary_10_31083_j_jin2309176
crossref_primary_10_1007_s11517_023_02948_2
crossref_primary_10_1016_j_clinph_2023_01_007
crossref_primary_10_3389_fnhum_2019_00056
crossref_primary_10_3389_fnins_2023_1257511
crossref_primary_10_1080_24699322_2017_1389404
crossref_primary_10_1109_TNSRE_2024_3418846
crossref_primary_10_1016_j_neuroscience_2020_11_007
crossref_primary_10_3390_jpm11111216
crossref_primary_10_1016_j_jad_2024_12_095
crossref_primary_10_1016_j_neuroimage_2022_119346
crossref_primary_10_1007_s42600_021_00197_6
crossref_primary_10_1109_TAFFC_2021_3139104
crossref_primary_10_3389_fpsyt_2020_600606
crossref_primary_10_1111_psyp_14268
crossref_primary_10_1080_19585969_2024_2432913
crossref_primary_10_3389_fpsyg_2022_856697
crossref_primary_10_1016_j_bandc_2021_105696
crossref_primary_10_2139_ssrn_4141966
crossref_primary_10_3389_fneur_2021_637542
crossref_primary_10_1186_s40708_020_00107_z
crossref_primary_10_2139_ssrn_4061516
crossref_primary_10_3389_fnhum_2024_1372985
crossref_primary_10_1007_s10548_024_01074_y
crossref_primary_10_1155_2018_9270685
crossref_primary_10_1016_j_cortex_2024_05_019
crossref_primary_10_1177_09567976221110136
crossref_primary_10_3389_fpsyt_2022_853602
crossref_primary_10_1038_s41598_020_72590_7
crossref_primary_10_3389_fnagi_2022_914920
crossref_primary_10_3389_fnins_2023_1247290
crossref_primary_10_1007_s10548_023_00987_4
crossref_primary_10_1109_TMI_2024_3453377
crossref_primary_10_1016_j_psychres_2021_113866
crossref_primary_10_1111_epi_17893
crossref_primary_10_1162_neco_a_01229
crossref_primary_10_1016_j_bspc_2025_107755
crossref_primary_10_1016_j_brs_2022_01_007
crossref_primary_10_1007_s12144_023_04858_w
crossref_primary_10_1038_s41467_020_16914_1
crossref_primary_10_1007_s10548_023_01004_4
crossref_primary_10_1007_s10548_023_01008_0
crossref_primary_10_1016_j_neuroimage_2020_116786
crossref_primary_10_1162_imag_a_00272
crossref_primary_10_1016_j_scog_2015_04_005
crossref_primary_10_31083_j_jin2002042
crossref_primary_10_3389_fnhum_2017_00534
crossref_primary_10_1007_s10548_024_01043_5
crossref_primary_10_1007_s10548_024_01082_y
crossref_primary_10_3389_fnins_2023_1293798
crossref_primary_10_3389_fnhum_2021_795237
Cites_doi 10.1016/j.pscychresns.2004.05.007
10.1093/cercor/bhn056
10.1007/BF01273178
10.1016/S0197-4580(00)00153-6
10.1016/j.jneumeth.2003.10.009
10.1016/j.mbs.2010.12.003
10.1017/CBO9780511596889.009
10.1016/S0925-4927(97)00054-1
10.1016/0013-4694(93)90007-I
10.1191/096228098672090967
10.1159/000098264
10.1007/s00213-007-0737-8
10.1016/j.neuroimage.2004.11.049
10.3109/03091909509030277
10.1076/jcen.23.4.530.1227
10.1073/pnas.1007841107
10.3109/00207459408987242
10.1023/A:1022213302688
10.1109/10.391164
10.1093/ptj/74.8.777
10.1007/s10548-008-0054-5
10.1016/0013-4694(80)90419-8
10.1016/j.clinph.2013.01.005
10.1016/j.ijpsycho.2005.12.015
10.1093/ptj/73.6.386
10.1198/106186005X59243
10.1007/BF01277666
10.1006/nimg.2002.1070
10.1016/j.neuroimage.2010.02.052
10.1016/j.neuroimage.2012.05.060
10.1007/BF01271480
10.1016/0925-4927(93)90005-3
10.1093/cercor/bhi025
10.1155/2011/813870
10.1037/0021-843X.111.2.259
10.1159/000017071
10.1016/j.neuroimage.2012.02.031
10.1007/s00702-004-0194-z
10.1016/S0006-3223(00)00837-4
10.1016/0013-4694(87)90025-3
10.1007/BF02189024
10.1371/journal.pone.0022912
10.1007/s10548-011-0189-7
10.1016/S0167-8760(97)00098-6
10.1016/0165-0173(94)00016-I
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Khanna et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2014 Khanna et al 2014 Khanna et al
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Khanna et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2014 Khanna et al 2014 Khanna et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0114163
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Agricultural Science Database

MEDLINE
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Reliability of EEG Microstates
EISSN 1932-6203
ExternalDocumentID 1632810288
oai_doaj_org_article_d283f0bc53d649429ce5e9c30ca697cf
PMC4257589
3517972961
A418708018
25479614
10_1371_journal_pone_0114163
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01HD069776
– fundername: NCRR NIH HHS
  grantid: M01-RR-01066
– fundername: NICHD NIH HHS
  grantid: R21 HD07616
– fundername: NINDS NIH HHS
  grantid: R01NS073601
– fundername: NCRR NIH HHS
  grantid: UL1 RR025758
– fundername: NIMH NIH HHS
  grantid: R21 MH099196
– fundername: NCRR NIH HHS
  grantid: M01 RR001066
– fundername: NINDS NIH HHS
  grantid: R21 NS085491
– fundername: Canadian Institutes of Health Research
  grantid: 201102MFE-246635-181538
– fundername: NINDS NIH HHS
  grantid: R01 NS073601
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c758t-8c414ffcae05fa65023f8fb56ccbfa670c325f645c60b1470fbe5f759ca8464c3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:13:47 EST 2021
Wed Aug 27 01:23:59 EDT 2025
Thu Aug 21 18:42:06 EDT 2025
Fri Jul 11 04:18:19 EDT 2025
Sat Aug 23 13:16:48 EDT 2025
Tue Jun 17 20:58:03 EDT 2025
Tue Jun 10 20:43:47 EDT 2025
Fri Jun 27 05:01:42 EDT 2025
Fri Jun 27 04:57:12 EDT 2025
Thu May 22 21:22:35 EDT 2025
Mon Jul 21 05:56:03 EDT 2025
Tue Jul 01 01:49:11 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c758t-8c414ffcae05fa65023f8fb56ccbfa670c325f645c60b1470fbe5f759ca8464c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: FF APL. Performed the experiments: FF. Analyzed the data: FF AK. Contributed reagents/materials/analysis tools: APL. Wrote the paper: AK FF.
Competing Interests: AK and FF have no conflict of interest to disclose. APL serves on the scientific advisory boards for Nexstim, Neuronix, starlab Neuroscience, Neosync, and Novavision, and is an inventor on patents and patent applications related to noninvasive brain stimulation and real-time integration of TMS with EEG and fMRI.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0114163
PMID 25479614
PQID 1632810288
PQPubID 1436336
ParticipantIDs plos_journals_1632810288
doaj_primary_oai_doaj_org_article_d283f0bc53d649429ce5e9c30ca697cf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4257589
proquest_miscellaneous_1634727916
proquest_journals_1632810288
gale_infotracmisc_A418708018
gale_infotracacademiconefile_A418708018
gale_incontextgauss_ISR_A418708018
gale_incontextgauss_IOV_A418708018
gale_healthsolutions_A418708018
pubmed_primary_25479614
crossref_citationtrail_10_1371_journal_pone_0114163
crossref_primary_10_1371_journal_pone_0114163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-05
PublicationDateYYYYMMDD 2014-12-05
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References ref34
D Lehmann (ref17) 1993; 50
R Tibshirani (ref33) 2005; 14
V Jelic (ref2) 2000; 21
V Brodbeck (ref20) 2012; 62
J Britz (ref26) 2009; 19
NV Ponomareva (ref3) 1998; 9
J Britz (ref10) 2010; 52
J Wackermann (ref5) 1993; 86
WK Strik (ref40) 1995; 99
H Yuan (ref11) 2012; 60
S Irisawa (ref37) 2006; 54
C Carmeli (ref6) 2005; 25
D Lehmann (ref32) 1980; 48
DO Perkins (ref46) 2000; 47
C Mohr (ref27) 2005; 15
D Lehmann (ref13) 2005; 138
M Yoshimura (ref18) 2007; 191
A Delorme (ref30) 2004; 134
WK Strik (ref39) 1997; 75
D Lehmann (ref29) 1998; 29
D Lehmann (ref25) 1994; 74
M Eliasziw (ref42) 1994; 74
MT Avila (ref1) 2002; 111
PE Shrout (ref45) 1998; 7
RA Charter (ref43) 2001; 23
SL Bressler (ref8) 1995; 20
A Stevens (ref16) 1996; 246
ref44
D Brunet (ref31) 2011; 2011
T Dierks (ref15) 1997; 104
I Kondakor (ref23) 1997; 104
M Murray (ref36) 2008; 20
L Ingber (ref4) 2011; 229
TJ Muller (ref28) 2005; 112
J Cantero (ref19) 1999; 11
F Schlegel (ref22) 2012; 25
ME Roebroeck (ref41) 1993; 73
JM Fuster (ref9) 2006; 60
D Van De Ville (ref12) 2010; 107
RD Pascual-Marqui (ref35) 1995; 42
D Lehmann (ref7) 1987; 67
K Nishida (ref38) 2013; 124
M Kikuchi (ref14) 2011; 6
T Koenig (ref21) 2002; 16
I Kondakor (ref24) 1995; 19
22658975 - Neuroimage. 2012 Sep;62(3):2129-39
7680995 - Electroencephalogr Clin Neurophysiol. 1993 Mar;86(3):193-8
9203079 - J Neural Transm (Vienna). 1997;104(2-3):161-73
12003448 - J Abnorm Psychol. 2002 May;111(2):259-67
8047565 - Phys Ther. 1994 Aug;74(8):777-88
11780951 - J Clin Exp Neuropsychol. 2001 Aug;23(4):530-7
18347966 - Brain Topogr. 2008 Jun;20(4):249-64
18424780 - Cereb Cortex. 2009 Jan;19(1):55-65
2441961 - Electroencephalogr Clin Neurophysiol. 1987 Sep;67(3):271-88
10449257 - Brain Topogr. 1999 Summer;11(4):257-63
15784413 - Neuroimage. 2005 Apr 1;25(2):339-54
21644026 - Brain Topogr. 2012 Jan;25(1):20-6
17199099 - Neuropsychobiology. 2006;54(2):134-9
11969316 - Neuroimage. 2002 May;16(1):41-8
10773186 - Biol Psychiatry. 2000 Apr 15;47(8):762-6
21829554 - PLoS One. 2011;6(7):e22912
9295180 - J Neural Transm (Vienna). 1997;104(4-5):483-95
15689523 - Cereb Cortex. 2005 Sep;15(9):1451-8
9437775 - Psychiatry Res. 1997 Oct 31;75(3):183-91
6155251 - Electroencephalogr Clin Neurophysiol. 1980 Jun;48(6):609-21
8579806 - J Neural Transm Gen Sect. 1995;99(1-3):213-22
10924766 - Neurobiol Aging. 2000 Jul-Aug;21(4):533-40
7622149 - IEEE Trans Biomed Eng. 1995 Jul;42(7):658-65
20921381 - Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18179-84
8908413 - Eur Arch Psychiatry Clin Neurosci. 1996;246(6):310-6
16626831 - Int J Psychophysiol. 2006 May;60(2):125-32
15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
23403263 - Clin Neurophysiol. 2013 Jun;124(6):1106-14
9641243 - Int J Psychophysiol. 1998 Jun;29(1):1-11
7928108 - Int J Neurosci. 1994 Jan-Feb;74(1-4):239-48
22381593 - Neuroimage. 2012 May 1;60(4):2062-72
8497513 - Phys Ther. 1993 Jun;73(6):386-95; discussion 396-401
9701678 - Dement Geriatr Cogn Disord. 1998 Sep-Oct;9(5):267-73
15766637 - Psychiatry Res. 2005 Feb 28;138(2):141-56
7550362 - Brain Res Brain Res Rev. 1995 Mar;20(3):288-304
9803527 - Stat Methods Med Res. 1998 Sep;7(3):301-17
20188188 - Neuroimage. 2010 Oct 1;52(4):1162-70
21253358 - Comput Intell Neurosci. 2011;2011:813870
21167841 - Math Biosci. 2011 Feb;229(2):160-73
8177925 - Psychiatry Res. 1993 Dec;50(4):275-82
7494212 - J Med Eng Technol. 1995 Mar-Jun;19(2-3):66-9
15340871 - J Neural Transm (Vienna). 2005 Apr;112(4):565-76
17333135 - Psychopharmacology (Berl). 2007 May;191(4):995-1004
References_xml – volume: 138
  start-page: 141
  year: 2005
  ident: ref13
  article-title: EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study
  publication-title: Psychiatry Research: Neuroimaging
  doi: 10.1016/j.pscychresns.2004.05.007
– volume: 19
  start-page: 55
  year: 2009
  ident: ref26
  article-title: Right Parietal Brain Activity Precedes Perceptual Alternation of Bistable Stimuli
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhn056
– volume: 104
  start-page: 161
  year: 1997
  ident: ref23
  article-title: Prestimulus EEG microstates influence visual event-related potential microstates in field maps with 47 channels
  publication-title: J Neural Transm
  doi: 10.1007/BF01273178
– volume: 21
  start-page: 533
  year: 2000
  ident: ref2
  article-title: Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer's disease
  publication-title: Neurobiology of Aging
  doi: 10.1016/S0197-4580(00)00153-6
– volume: 134
  start-page: 9
  year: 2004
  ident: ref30
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 229
  start-page: 160
  year: 2011
  ident: ref4
  article-title: Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs
  publication-title: Mathematical Biosciences
  doi: 10.1016/j.mbs.2010.12.003
– ident: ref34
  doi: 10.1017/CBO9780511596889.009
– volume: 75
  start-page: 183
  year: 1997
  ident: ref39
  article-title: Decreased EEG microstate duration and anteriorisation of the brain electrical fields in mild and moderate dementia of the Alzheimer type
  publication-title: Psychiatry Research: Neuroimaging
  doi: 10.1016/S0925-4927(97)00054-1
– volume: 86
  start-page: 193
  year: 1993
  ident: ref5
  article-title: Global dimensional complexity of multi-channel EEG indicates change of human brain functional state after a single dose of a nootropic drug
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(93)90007-I
– volume: 7
  start-page: 301
  year: 1998
  ident: ref45
  article-title: Measurement reliability and agreement in psychiatry
  publication-title: Statistical Methods in Medical Research
  doi: 10.1191/096228098672090967
– volume: 54
  start-page: 134
  year: 2006
  ident: ref37
  article-title: Increased Omega Complexity and Decreased Microstate Duration in Nonmedicated Schizophrenic Patients
  publication-title: Neuropsychobiology
  doi: 10.1159/000098264
– volume: 191
  start-page: 995
  year: 2007
  ident: ref18
  article-title: A pharmaco-EEG study on antipsychotic drugs in healthy volunteers
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-007-0737-8
– volume: 25
  start-page: 339
  year: 2005
  ident: ref6
  article-title: Assessment of EEG synchronization based on state-space analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.11.049
– volume: 19
  start-page: 66
  year: 1995
  ident: ref24
  article-title: Event-related potential map differences depend on the prestimulus microstates
  publication-title: J Med Eng Technol
  doi: 10.3109/03091909509030277
– volume: 23
  start-page: 530
  year: 2001
  ident: ref43
  article-title: Meaning of Reliability in Terms of Correct and Incorrect Clinical Decisions: The Art of Decision Making is Still Alive
  publication-title: Journal of Clinical and Experimental Neuropsychology
  doi: 10.1076/jcen.23.4.530.1227
– volume: 107
  start-page: 18179
  year: 2010
  ident: ref12
  article-title: EEG microstate sequences in healthy humans at rest reveal scale-free dynamics
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1007841107
– volume: 74
  start-page: 239
  year: 1994
  ident: ref25
  article-title: Event-related potential maps depend on prestimulus brain electric microstate map
  publication-title: Int J Neurosci
  doi: 10.3109/00207459408987242
– volume: 11
  start-page: 257
  year: 1999
  ident: ref19
  article-title: Brain Spatial Microstates of Human Spontaneous Alpha Activity in Relaxed Wakefulness, Drowsiness Period, and REM Sleep
  publication-title: Brain Topography
  doi: 10.1023/A:1022213302688
– volume: 42
  start-page: 658
  year: 1995
  ident: ref35
  article-title: Segmentation of brain electrical activity into microstates: model estimation and validation
  publication-title: Biomedical Engineering, IEEE Transactions on
  doi: 10.1109/10.391164
– volume: 74
  start-page: 777
  year: 1994
  ident: ref42
  article-title: Statistical Methodology for the Concurrent Assessment of Interrater and Intrarater Reliability: Using Goniometric Measurements as an Example
  publication-title: Physical Therapy
  doi: 10.1093/ptj/74.8.777
– volume: 20
  start-page: 249
  year: 2008
  ident: ref36
  article-title: Topographic ERP Analyses: A Step-by-Step Tutorial Review
  publication-title: Brain Topography
  doi: 10.1007/s10548-008-0054-5
– volume: 48
  start-page: 609
  year: 1980
  ident: ref32
  article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(80)90419-8
– volume: 124
  start-page: 1106
  year: 2013
  ident: ref38
  article-title: EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's disease
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2013.01.005
– volume: 60
  start-page: 125
  year: 2006
  ident: ref9
  article-title: The cognit: A network model of cortical representation
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2005.12.015
– volume: 73
  start-page: 386
  year: 1993
  ident: ref41
  article-title: The Application of Generalizability Theory to Reliability Assessment: An Illustration Using Isometric Force Measurements
  publication-title: Physical Therapy
  doi: 10.1093/ptj/73.6.386
– volume: 14
  start-page: 511
  year: 2005
  ident: ref33
  article-title: Cluster Validation by Prediction Strength
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186005X59243
– volume: 104
  start-page: 483
  year: 1997
  ident: ref15
  article-title: EEG-microstates in mild memory impairment and Alzheimer's disease: possible association with disturbed information processing
  publication-title: Journal of Neural Transmission
  doi: 10.1007/BF01277666
– volume: 16
  start-page: 41
  year: 2002
  ident: ref21
  article-title: Millisecond by Millisecond, Year by Year: Normative EEG Microstates and Developmental Stages
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1070
– volume: 52
  start-page: 1162
  year: 2010
  ident: ref10
  article-title: BOLD correlates of EEG topography reveal rapid resting-state network dynamics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.02.052
– volume: 62
  start-page: 2129
  year: 2012
  ident: ref20
  article-title: EEG microstates of wakefulness and NREM sleep
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.060
– volume: 99
  start-page: 213
  year: 1995
  ident: ref40
  article-title: Larger topographical variance and decreased duration of brain electric microstates in depression
  publication-title: Journal of Neural Transmission/General Section JNT
  doi: 10.1007/BF01271480
– ident: ref44
– volume: 50
  start-page: 275
  year: 1993
  ident: ref17
  article-title: Space-oriented EEG segmentation reveals changes in brain electric field maps under the influence of a nootropic drug
  publication-title: Psychiatry Research: Neuroimaging
  doi: 10.1016/0925-4927(93)90005-3
– volume: 15
  start-page: 1451
  year: 2005
  ident: ref27
  article-title: Brain state-dependent functional hemispheric specialization in men but not in women
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhi025
– volume: 2011
  start-page: 1
  year: 2011
  ident: ref31
  article-title: Spatiotemporal analysis of multichannel EEG: CARTOOL
  publication-title: Intell Neuroscience
  doi: 10.1155/2011/813870
– volume: 111
  start-page: 259
  year: 2002
  ident: ref1
  article-title: Neurophysiological markers of vulnerability to schizophrenia: Sensitivity and specificity of specific quantitative eye movement measures
  publication-title: Journal of Abnormal Psychology
  doi: 10.1037/0021-843X.111.2.259
– volume: 9
  start-page: 267
  year: 1998
  ident: ref3
  article-title: Possible Neurophysiological Markers of Genetic Predisposition to Alzheimer's Disease
  publication-title: Dementia and Geriatric Cognitive Disorders
  doi: 10.1159/000017071
– volume: 60
  start-page: 2062
  year: 2012
  ident: ref11
  article-title: Spatiotemporal dynamics of the brain at rest — Exploring EEG microstates as electrophysiological signatures of BOLD resting state networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.031
– volume: 112
  start-page: 565
  year: 2005
  ident: ref28
  article-title: Subsecond changes of global brain state in illusory multistable motion perception
  publication-title: J Neural Transm
  doi: 10.1007/s00702-004-0194-z
– volume: 47
  start-page: 762
  year: 2000
  ident: ref46
  article-title: Penny-wise and pound-foolish: the impact of measurement error on sample size requirements in clinical trials
  publication-title: Biological Psychiatry
  doi: 10.1016/S0006-3223(00)00837-4
– volume: 67
  start-page: 271
  year: 1987
  ident: ref7
  article-title: EEG alpha map series: brain micro-states by space-oriented adaptive segmentation
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(87)90025-3
– volume: 246
  start-page: 310
  year: 1996
  ident: ref16
  article-title: Abnormal topography of EEG microstates in Gilles de la Tourette syndrome
  publication-title: European Archives of Psychiatry and Clinical Neuroscience
  doi: 10.1007/BF02189024
– volume: 6
  start-page: e22912
  year: 2011
  ident: ref14
  article-title: EEG Microstate Analysis in Drug-Naive Patients with Panic Disorder
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022912
– volume: 25
  start-page: 20
  year: 2012
  ident: ref22
  article-title: EEG Microstates During Resting Represent Personality Differences
  publication-title: Brain Topography
  doi: 10.1007/s10548-011-0189-7
– volume: 29
  start-page: 1
  year: 1998
  ident: ref29
  article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/S0167-8760(97)00098-6
– volume: 20
  start-page: 288
  year: 1995
  ident: ref8
  article-title: Large-scale cortical networks and cognition
  publication-title: Brain Research Reviews
  doi: 10.1016/0165-0173(94)00016-I
– reference: 7928108 - Int J Neurosci. 1994 Jan-Feb;74(1-4):239-48
– reference: 7550362 - Brain Res Brain Res Rev. 1995 Mar;20(3):288-304
– reference: 7622149 - IEEE Trans Biomed Eng. 1995 Jul;42(7):658-65
– reference: 10449257 - Brain Topogr. 1999 Summer;11(4):257-63
– reference: 8497513 - Phys Ther. 1993 Jun;73(6):386-95; discussion 396-401
– reference: 21253358 - Comput Intell Neurosci. 2011;2011:813870
– reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
– reference: 8579806 - J Neural Transm Gen Sect. 1995;99(1-3):213-22
– reference: 10773186 - Biol Psychiatry. 2000 Apr 15;47(8):762-6
– reference: 9803527 - Stat Methods Med Res. 1998 Sep;7(3):301-17
– reference: 9437775 - Psychiatry Res. 1997 Oct 31;75(3):183-91
– reference: 8047565 - Phys Ther. 1994 Aug;74(8):777-88
– reference: 7680995 - Electroencephalogr Clin Neurophysiol. 1993 Mar;86(3):193-8
– reference: 11969316 - Neuroimage. 2002 May;16(1):41-8
– reference: 21167841 - Math Biosci. 2011 Feb;229(2):160-73
– reference: 9203079 - J Neural Transm (Vienna). 1997;104(2-3):161-73
– reference: 15689523 - Cereb Cortex. 2005 Sep;15(9):1451-8
– reference: 21644026 - Brain Topogr. 2012 Jan;25(1):20-6
– reference: 6155251 - Electroencephalogr Clin Neurophysiol. 1980 Jun;48(6):609-21
– reference: 18424780 - Cereb Cortex. 2009 Jan;19(1):55-65
– reference: 15340871 - J Neural Transm (Vienna). 2005 Apr;112(4):565-76
– reference: 15766637 - Psychiatry Res. 2005 Feb 28;138(2):141-56
– reference: 20921381 - Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18179-84
– reference: 9701678 - Dement Geriatr Cogn Disord. 1998 Sep-Oct;9(5):267-73
– reference: 20188188 - Neuroimage. 2010 Oct 1;52(4):1162-70
– reference: 8177925 - Psychiatry Res. 1993 Dec;50(4):275-82
– reference: 17333135 - Psychopharmacology (Berl). 2007 May;191(4):995-1004
– reference: 11780951 - J Clin Exp Neuropsychol. 2001 Aug;23(4):530-7
– reference: 12003448 - J Abnorm Psychol. 2002 May;111(2):259-67
– reference: 2441961 - Electroencephalogr Clin Neurophysiol. 1987 Sep;67(3):271-88
– reference: 8908413 - Eur Arch Psychiatry Clin Neurosci. 1996;246(6):310-6
– reference: 22381593 - Neuroimage. 2012 May 1;60(4):2062-72
– reference: 21829554 - PLoS One. 2011;6(7):e22912
– reference: 17199099 - Neuropsychobiology. 2006;54(2):134-9
– reference: 18347966 - Brain Topogr. 2008 Jun;20(4):249-64
– reference: 7494212 - J Med Eng Technol. 1995 Mar-Jun;19(2-3):66-9
– reference: 22658975 - Neuroimage. 2012 Sep;62(3):2129-39
– reference: 23403263 - Clin Neurophysiol. 2013 Jun;124(6):1106-14
– reference: 9295180 - J Neural Transm (Vienna). 1997;104(4-5):483-95
– reference: 15784413 - Neuroimage. 2005 Apr 1;25(2):339-54
– reference: 16626831 - Int J Psychophysiol. 2006 May;60(2):125-32
– reference: 9641243 - Int J Psychophysiol. 1998 Jun;29(1):1-11
– reference: 10924766 - Neurobiol Aging. 2000 Jul-Aug;21(4):533-40
SSID ssj0053866
Score 2.5485609
Snippet Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number...
Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered...
Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states (“microstates”) that are altered...
Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states (“microstates”) that are altered...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e114163
SubjectTerms Adult
Algorithms
Bioindicators
Biomarkers
Brain
Brain Mapping
Cluster analysis
Clustering
Consistency
EEG
Electrodes
Electroencephalography
Electroencephalography - methods
Error analysis
Feature extraction
Female
Healthy Volunteers
Humans
Mathematical analysis
Medicine and Health Sciences
Mental disorders
Nervous system diseases
Neurophysiology
Recording
Reliability analysis
Rest - physiology
Standard error
Vector quantization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBFgJCAg5uk_iR-FgQVakESEBRb1bstdtKJVmR3UP_PTO2EzWoUjlwy8YTKzsz9nyjjL8h5DWAcglA3FBTmoZyZRlVXnIqlK_LZdVCyMMvup-_yKMTfnwqTq-1-sKasEgPHBW3v4T45wtjBVtKrmD3tE44mLKwrVS19bj7Qswbk6m4B8MqljIdlGN1uZ_ssrfqO7eHKUAp2SwQBb7-aVderC774SbI-Xfl5LVQdHif3EsYMj-I775F7rjuAdlKq3TI3yYq6XcPyTFWHEcm7qu89zk24oBYRcMxovwXFuPFS-8CweeQX3R56oyDk63O25HT-hE5Ofz448MRTd0TqIUcYE0by0vuvW1dIXwLQKxivvFGSGsN_K4LyyoBZhFWFqbkdeGNE74WyqKBuGWPyaIDfW2THAIYK13RAlhZcts4hWVxSJwGiob47jLCRlVqm6jFscPFpQ7fy2pIMaJmNBpAJwNkhE5PrSK1xi3y79FKkywSY4cb4C46uYu-zV0y8gJtrOMp02l56wNews4F4brJyKsggeQYHVbfnLWbYdCfvv78B6Hv32ZCb5KQ70Edtk0nHuA_IenWTHJnJglL3M6Gt9EjR60MGrRRNQgN8cnRS28efjkN46RYUde5fhNkOGBXyA4y8iQ69aTZSvBaAW7LSD1z95nq5yPdxXngJscQIBr19H_Y6hm5C_A00GoWYocs1r83bhcg4No8D6v9D1oTWgo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVguXBBlK-mFAgICTi4TTa2k5xQQV1KpYJUKOrNSib2tlKVpM3uof-eGccJBFXAMetJlJ3xzDzH4zeMvUZQrhCIl7yMy4yLHBKeWyW4zG0aV_MCUx7t6B59UQcn4vBUnvoPbp0vqxxiogvUVQP0jXwXccM8o2yYvW8vOXWNot1V30LjNrsTY6ahkq5s8WmIxOjLSvnjckka73rr7LRNbXZoIRCrZJKOHGv_GJtn7UXT3QQ8_6yf_C0hLe6zex5Jhnu96TfYLVM_YBveV7vwrSeUfveQHVLdcc_HfR02NjwmZo16yR3QDI-oJM-dKwoJD65x_R2e1-F-3x-HHtaeFQOz9SN2stj__vGA-x4KHHAlsOIZiFhYC4WJpC0Qjs0Tm9lSKoASr9MIkrlE40hQURmLNLKlkTaVOZCZBCSP2axGfW2yENNYEpuoQMhSCchMTsVxRJ-GisYsbwKWDKrU4AnGqc_FhXa7ZikuNHrNaDKA9gYIGB_vanuCjX_IfyArjbJEj-1-aK6W2nubrhA02agEmVRK5JhywUiD8zCCQuUp2IC9IBvr_qzp6OR6T8QYvzBpZwF75SSIIqOmGpxlse46_fnrj_8Q-nY8EXrjhWyD6oDCn3vA_0TUWxPJ7YkkOjpMhjdpRg5a6fQvl8A7h1l68_DLcZgeSnV1tWnWTkYggsU1QsCe9JN61OxcijRH9BawdDLdJ6qfjtTnZ46hnBKBzPKtv7_WU3YX4aejzYzkNputrtbmGUK8Vfnc-fFPeFVQVA
  priority: 102
  providerName: ProQuest
Title Reliability of Resting-State Microstate Features in Electroencephalography
URI https://www.ncbi.nlm.nih.gov/pubmed/25479614
https://www.proquest.com/docview/1632810288
https://www.proquest.com/docview/1634727916
https://pubmed.ncbi.nlm.nih.gov/PMC4257589
https://doaj.org/article/d283f0bc53d649429ce5e9c30ca697cf
http://dx.doi.org/10.1371/journal.pone.0114163
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaxigBIQEPrvJhx8kDQtvUMiZ1oEJR36LEtbtJVVKaVmIv_O3cOU5EUBF7sdT6bKl3Z9_P9fl3hLwGUB4BEM9p7ucxZYkMaaIjRnmihT8PMgh5eKM7vooupuxyxmd7pKnZahVY7TzaYT2p6Xo5-Pnj9gMs-PemaoPwm0GDVVmoAQJ8wBj75ABik8CaBmPW3ivA6ja3l4haaBR4oX1M969ZOsHKcPq3O3dvtSyrXbD07-zKP8LV6AG5b3Gme1o7xiHZU8VDcmhXcuW-tXTT7x6RS8xKrtm6b91SuxPk3SgW1MBQd4wJe-bVkYtocQunc_emcId19RycbHWdNbzXj8l0NPx2fkFthQUq4ZywobFkPtNaZsrjOgOwFoQ61jmPpMzhs_BkGHAwHZeRl_tMeDpXXAueSDQik-ET0itAX0fEhSAX-srLANDMmYxVgqlzSK4GSgcMoBwSNqpMpaUfxyoYy9TcqQk4htSaSdEAqTWAQ2g7alXTb_xH_gyt1Moiebb5olwvUrsW0zlAKu3lkofziCUQkKXiCrzUk1mUCKkd8gJtnNYvUdstID1lPuxuENJjh7wyEkigUWCGziLbVlX66fP3Owh9nXSE3lghXYI6ZGZfRcBvQmKujuRJRxK2AdnpPkKPbLRSpaCNIEb4iCMbL93d_bLtxkkx665Q5dbIMMC3cIJwyNPaqVvNBpyJBLCdQ0TH3Tuq7_YUN9eGvxzDBI-T47vo5xm5BxDVUGt6_IT0Nuuteg4wcJP3yb6YCWjjcx_b0cc-OTgbXn2Z9M0fK32z8rH9NfwNyxlgWw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAXRHk1UGhAIOCQNg87jwNCBVp2226RSot6M4nX3laqkqXZFeqf4jcy4ziBoAq49LjriZUdj2c-r2e-AXiOoDxGIF54RVCkHstk5GU6Zh7PdBJMwhxDHt3ojvfj4RHbOebHS_CjrYWhtMrWJxpHPakk_Ue-gbghTCkapm9n3zzqGkW3q20LjcYsdtXFdzyy1W9GH3B9X4Th9tbh-6Fnuwp4ErHx3EslC5jWMlc-1zkClDDSqS54LGWBnxNfRiHH1-Uy9ouAJb4uFNcJzyS9OJMRznsNrrMIIzlVpm9_bD0_-o44tuV5URJsWGtYn1WlWqeDRxBHvfBnugR0sWAwO6vqy4Dun_mavwXA7dtwyyJXd7MxtWVYUuUdWLa-oXZfWQLr13dhh_KcG_7vC7fS7gExeZRTzwBbd0wpgKaOySX8ucDzvntaultNPx6abHaSt0za9-DoSrR7HwYl6msFXAybUaD8HCHShMlUZZSMR3RtqGhEFcqBqFWlkJbQnPpqnAlzS5fgwabRjKAFEHYBHPC6p2YNocc_5N_RKnWyRMdtvqjOp8LubjFBkKb9QvJoErMMQ7xUXKHd-zKPs0RqB9ZojUVT29o5FbHJAvSXCBJSB54ZCaLkKCnnZ5ov6lqMPn35D6HPBz2hl1ZIV6gOmds6C_xNRPXVk1ztSaJjkb3hFbLIViu1-LUF8cnWSi8fftoN06SUx1eqamFkGCJmPJM48KAx6k6zIWdJhmjRgaRn7j3V90fK0xPDiE6Bh6fZw7-_1hrcGB6O98TeaH_3EdxE6GsoO32-CoP5-UI9Rng5L56YPe3C16t2Ij8BU_GOMA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJqoNCAQMAh3TzsODkgVNquui0tqFDUm0kce1upSkKzK9S_xq9jxnECQRVw6THxxErG45nP8fgbQp4DKI8BiOdeHuSJR1MZeamOqcdSzYMizCDk4Y7u_kG8c0R3j9nxEvnRnYXBtMrOJxpHXVQS_5GPATeECUbDZKxtWsTHrcnb-puHFaRwp7Urp9GayJ66-A7Lt-bNdAvG-kUYTrY_b-54tsKAJwEnz71E0oBqLTPlM50BWAkjneicxVLmcM19GYUMXp3J2M8Dyn2dK6Y5SyV-BJUR9HuNXOcRT3COJZt9egn4kTi2R_UiHoytZazXVanWcRESxNEgFJqKAX1cGNVnVXMZ6P0zd_O3YDi5TW5ZFOtutGa3TJZUeYcsWz_RuK8smfXru2QXc55bLvALt9LuIbJ6lDPPgFx3H9MBzZkmF7HoAtb-7mnpbre1ebCz-iTrWLXvkaMr0e59MipBXyvEhRAaBcrPAC4VVCYqxcQ8pG4DRQPCUA6JOlUKacnNscbGmTA7dhwWOa1mBA6AsAPgEK9_qm7JPf4h_w5HqZdFam5zozqfCTvTRQGATfu5ZFER0xTCvVRMwRzwZRanXGqHrOEYi_aca-9gxAYNwHcCYEgc8sxIID1HiYY-yxZNI6YfvvyH0KfDgdBLK6QrUIfM7JkL-Cak_RpIrg4kwcnIQfMKWmSnlUb8mo7wZGellzc_7ZuxU8zpK1W1MDIU0DOsTxzyoDXqXrMhozwF5OgQPjD3geqHLeXpiWFHxyDEkvTh319rjdwA9yHeTw_2HpGbgIINe6fPVslofr5QjwFpzvMnZkq75OtV-5CfcTqSMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+of+Resting-State+Microstate+Features+in+Electroencephalography&rft.jtitle=PloS+one&rft.au=Khanna%2C+Arjun&rft.au=Pascual-Leone%2C+Alvaro&rft.au=Farzan%2C+Faranak&rft.date=2014-12-05&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=9&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pone.0114163&rft.externalDBID=ISR&rft.externalDocID=A418708018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon