Reliability of Resting-State Microstate Features in Electroencephalography
Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use...
Saved in:
Published in | PloS one Vol. 9; no. 12; p. e114163 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
05.12.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis.
We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes.
The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's α > 0.8, SEM ≈ 10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α > 0.9). All features had high test-retest reliability with 19 and 8 electrodes.
High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health. |
---|---|
AbstractList | Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's [alpha] and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's [alpha]>0.8, SEM [almost equal to]10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's [alpha]>0.9). All features had high test-retest reliability with 19 and 8 electrodes. High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health. Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states (“microstates”) that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. Methods We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k -means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. Results The approach of identifying a single set of “global” microstate maps showed the highest reliability (mean Cronbach's α>0.8, SEM ≈10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α>0.9). All features had high test-retest reliability with 19 and 8 electrodes. Conclusions High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health. Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states (“microstates”) that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. Methods We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. Results The approach of identifying a single set of “global” microstate maps showed the highest reliability (mean Cronbach's α>0.8, SEM ≈10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α>0.9). All features had high test-retest reliability with 19 and 8 electrodes. Conclusions High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health. Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's α > 0.8, SEM ≈ 10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α > 0.9). All features had high test-retest reliability with 19 and 8 electrodes. High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health. Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis.BACKGROUNDElectroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis.We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes.METHODSWe analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes.The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's α > 0.8, SEM ≈ 10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α > 0.9). All features had high test-retest reliability with 19 and 8 electrodes.RESULTSThe approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's α > 0.8, SEM ≈ 10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α > 0.9). All features had high test-retest reliability with 19 and 8 electrodes.High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health.CONCLUSIONSHigh test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health. Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis. Methods We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's [alpha] and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes. Results The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's [alpha]>0.8, SEM [almost equal to]10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's [alpha]>0.9). All features had high test-retest reliability with 19 and 8 electrodes. Conclusions High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health. Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number of neuropsychiatric disorders, suggesting their potential use as biomarkers of neurophysiological health and disease. However, use of EEG microstates as neurophysiological biomarkers requires assessment of the test-retest reliability of microstate analysis.We analyzed resting-state, eyes-closed, 30-channel EEG from 10 healthy subjects over 3 sessions spaced approximately 48 hours apart. We identified four microstate classes and calculated the average duration, frequency, and coverage fraction of these microstates. Using Cronbach's α and the standard error of measurement (SEM) as indicators of reliability, we examined: (1) the test-retest reliability of microstate features using a variety of different approaches; (2) the consistency between TAAHC and k-means clustering algorithms; and (3) whether microstate analysis can be reliably conducted with 19 and 8 electrodes.The approach of identifying a single set of "global" microstate maps showed the highest reliability (mean Cronbach's α > 0.8, SEM ≈ 10% of mean values) compared to microstates derived by each session or each recording. There was notably low reliability in features calculated from maps extracted individually for each recording, suggesting that the analysis is most reliable when maps are held constant. Features were highly consistent across clustering methods (Cronbach's α > 0.9). All features had high test-retest reliability with 19 and 8 electrodes.High test-retest reliability and cross-method consistency of microstate features suggests their potential as biomarkers for assessment of the brain's neurophysiological health. |
Audience | Academic |
Author | Khanna, Arjun Pascual-Leone, Alvaro Farzan, Faranak |
AuthorAffiliation | University of Bern, Switzerland 1 Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America 2 Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada |
AuthorAffiliation_xml | – name: 2 Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – name: 1 Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America – name: University of Bern, Switzerland |
Author_xml | – sequence: 1 givenname: Arjun surname: Khanna fullname: Khanna, Arjun – sequence: 2 givenname: Alvaro surname: Pascual-Leone fullname: Pascual-Leone, Alvaro – sequence: 3 givenname: Faranak surname: Farzan fullname: Farzan, Faranak |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25479614$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk1Fv0zAQxyM0xLbCN0BQCQnBQ4ud2E7CA9I0bVA0NKkDXi3HPaeu3LizHUS_PU6bomaaEPKDnfPv_3fudHeenDS2gSR5idEUZzn-sLKta4SZbmJ4ijAmmGVPkjNcZumEpSg7OTqfJuferxCiWcHYs-Q0pSQvGSZnydc5GC0qbXTYjq0az8EH3dSTuyACjL9p6azfHa9BhNaBH-tmfGVABmehkbBZCmNrJzbL7fPkqRLGw4t-HyU_rq--X36Z3Nx-nl1e3ExkToswKSTBRCkpAFElGEVppgpVUSZlFb9zJLOUKkaoZKjCJEeqAqpyWkpREEZkNkpe7303xnrel8HzmH5aYJQWRSRme2JhxYpvnF4Lt-VWaL4LWFdz4YKWBvgiLTKFKkmzBSMlSUsJFEqZISlYmUsVvT71r7XVGhYSmuCEGZgObxq95LX9xUlKY75lNHjXGzh738by8rX2EowRDdh2998kT_My7qPkzQP08ex6qhYxAd0oG9-VnSm_ILjIUYFwR00foeJawFrL2DNKx_hA8H4giEyA36EWrfd8djf_f_b255B9e8QuQZiw9Na0QdvGD8FXx5X-W-JDs0bg4x7omtI7UFzq2JvRJ6amDceId5NxKBrvJoP3kxHF5IH44P9P2R8npRIt |
CitedBy_id | crossref_primary_10_1038_s41598_020_79423_7 crossref_primary_10_1016_j_neuroimage_2017_11_062 crossref_primary_10_1007_s11571_023_10016_6 crossref_primary_10_1038_s41598_020_69999_5 crossref_primary_10_1007_s10548_022_00929_6 crossref_primary_10_1016_j_neuroimage_2022_119006 crossref_primary_10_1038_s41597_023_02892_8 crossref_primary_10_1016_j_cortex_2021_02_014 crossref_primary_10_1002_hbm_26480 crossref_primary_10_1017_S0033291724001132 crossref_primary_10_1007_s10548_023_00958_9 crossref_primary_10_1089_brain_2015_0368 crossref_primary_10_1007_s10548_020_00777_2 crossref_primary_10_1016_j_neuroimage_2021_117861 crossref_primary_10_2147_NSS_S485412 crossref_primary_10_1002_hbm_25426 crossref_primary_10_1016_j_pnpbp_2024_110958 crossref_primary_10_1007_s10548_024_01099_3 crossref_primary_10_1142_S0129065720500057 crossref_primary_10_3389_fnhum_2024_1434110 crossref_primary_10_1016_j_neuroimage_2017_08_058 crossref_primary_10_1016_j_jad_2024_09_040 crossref_primary_10_3389_fpsyt_2024_1513793 crossref_primary_10_1038_s41598_024_58886_y crossref_primary_10_1177_13872877241305961 crossref_primary_10_1007_s10548_023_00988_3 crossref_primary_10_1162_jocn_a_02022 crossref_primary_10_1038_s41598_020_74790_7 crossref_primary_10_3390_bioengineering10030281 crossref_primary_10_3389_fnins_2022_812624 crossref_primary_10_3390_brainsci14100985 crossref_primary_10_1371_journal_pone_0146595 crossref_primary_10_3389_fpsyt_2022_891719 crossref_primary_10_3389_fnhum_2022_857768 crossref_primary_10_3389_fnins_2024_1295615 crossref_primary_10_1073_pnas_2414636122 crossref_primary_10_1093_sleep_zsae053 crossref_primary_10_1007_s11571_024_10095_z crossref_primary_10_1016_j_neuroimage_2023_120371 crossref_primary_10_1109_THMS_2023_3235003 crossref_primary_10_1007_s10548_023_00993_6 crossref_primary_10_1162_imag_a_00109 crossref_primary_10_3389_fncom_2019_00091 crossref_primary_10_1016_j_jpsychires_2023_07_021 crossref_primary_10_1016_j_nicl_2016_08_008 crossref_primary_10_1007_s11055_019_00850_9 crossref_primary_10_3389_fnins_2019_01251 crossref_primary_10_3389_fnins_2022_911034 crossref_primary_10_3389_fpsyt_2018_00395 crossref_primary_10_1016_j_isci_2023_106017 crossref_primary_10_1016_j_nicl_2020_102488 crossref_primary_10_1016_j_nicl_2024_103583 crossref_primary_10_1016_j_neuroimage_2022_119669 crossref_primary_10_3389_fnins_2019_00563 crossref_primary_10_3389_fnsys_2022_786200 crossref_primary_10_1016_j_nicl_2023_103540 crossref_primary_10_1016_j_jneumeth_2019_108317 crossref_primary_10_3389_fnhum_2017_00441 crossref_primary_10_1186_s12868_024_00854_3 crossref_primary_10_1016_j_ijpsycho_2021_09_001 crossref_primary_10_1089_brain_2020_0848 crossref_primary_10_1024_1016_264X_a000180 crossref_primary_10_1007_s10548_021_00835_3 crossref_primary_10_3390_brainsci14101013 crossref_primary_10_3389_fpsyt_2022_988939 crossref_primary_10_1109_TNSRE_2022_3156546 crossref_primary_10_1016_j_schres_2023_11_014 crossref_primary_10_1016_j_nicl_2019_102046 crossref_primary_10_1016_j_nlm_2021_107424 crossref_primary_10_1186_s10194_022_01414_y crossref_primary_10_1371_journal_pone_0251842 crossref_primary_10_1016_j_biopsycho_2022_108283 crossref_primary_10_1016_j_nicl_2020_102237 crossref_primary_10_1136_gpsych_2023_101171 crossref_primary_10_1016_j_nicl_2022_103135 crossref_primary_10_1007_s10548_017_0565_z crossref_primary_10_1016_j_neucli_2018_10_004 crossref_primary_10_1002_hbm_26525 crossref_primary_10_1016_j_neuroimage_2020_117393 crossref_primary_10_1093_cercor_bhae035 crossref_primary_10_1016_j_neuroimage_2019_03_029 crossref_primary_10_1093_scan_nsae012 crossref_primary_10_3389_fnagi_2021_714220 crossref_primary_10_1016_j_bspc_2023_105202 crossref_primary_10_1002_brb3_1630 crossref_primary_10_1016_j_infbeh_2022_101785 crossref_primary_10_1162_jocn_a_01360 crossref_primary_10_3389_fnins_2020_620666 crossref_primary_10_3389_fnbot_2024_1336438 crossref_primary_10_1016_j_ynirp_2022_100089 crossref_primary_10_1016_j_pnpbp_2022_110514 crossref_primary_10_3389_fnhum_2020_576114 crossref_primary_10_1007_s10548_023_01019_x crossref_primary_10_1016_j_neubiorev_2014_12_010 crossref_primary_10_3389_fnins_2021_689791 crossref_primary_10_1007_s42600_022_00245_9 crossref_primary_10_1007_s10548_018_0689_9 crossref_primary_10_1007_s10548_023_00982_9 crossref_primary_10_1016_j_nicl_2018_10_015 crossref_primary_10_3389_fnins_2021_715512 crossref_primary_10_3389_fpsyt_2021_695272 crossref_primary_10_1038_s41597_024_03241_z crossref_primary_10_3389_fncom_2018_00070 crossref_primary_10_1016_j_neuroimage_2025_121090 crossref_primary_10_31083_j_jin2309176 crossref_primary_10_1007_s11517_023_02948_2 crossref_primary_10_1016_j_clinph_2023_01_007 crossref_primary_10_3389_fnhum_2019_00056 crossref_primary_10_3389_fnins_2023_1257511 crossref_primary_10_1080_24699322_2017_1389404 crossref_primary_10_1109_TNSRE_2024_3418846 crossref_primary_10_1016_j_neuroscience_2020_11_007 crossref_primary_10_3390_jpm11111216 crossref_primary_10_1016_j_jad_2024_12_095 crossref_primary_10_1016_j_neuroimage_2022_119346 crossref_primary_10_1007_s42600_021_00197_6 crossref_primary_10_1109_TAFFC_2021_3139104 crossref_primary_10_3389_fpsyt_2020_600606 crossref_primary_10_1111_psyp_14268 crossref_primary_10_1080_19585969_2024_2432913 crossref_primary_10_3389_fpsyg_2022_856697 crossref_primary_10_1016_j_bandc_2021_105696 crossref_primary_10_2139_ssrn_4141966 crossref_primary_10_3389_fneur_2021_637542 crossref_primary_10_1186_s40708_020_00107_z crossref_primary_10_2139_ssrn_4061516 crossref_primary_10_3389_fnhum_2024_1372985 crossref_primary_10_1007_s10548_024_01074_y crossref_primary_10_1155_2018_9270685 crossref_primary_10_1016_j_cortex_2024_05_019 crossref_primary_10_1177_09567976221110136 crossref_primary_10_3389_fpsyt_2022_853602 crossref_primary_10_1038_s41598_020_72590_7 crossref_primary_10_3389_fnagi_2022_914920 crossref_primary_10_3389_fnins_2023_1247290 crossref_primary_10_1007_s10548_023_00987_4 crossref_primary_10_1109_TMI_2024_3453377 crossref_primary_10_1016_j_psychres_2021_113866 crossref_primary_10_1111_epi_17893 crossref_primary_10_1162_neco_a_01229 crossref_primary_10_1016_j_bspc_2025_107755 crossref_primary_10_1016_j_brs_2022_01_007 crossref_primary_10_1007_s12144_023_04858_w crossref_primary_10_1038_s41467_020_16914_1 crossref_primary_10_1007_s10548_023_01004_4 crossref_primary_10_1007_s10548_023_01008_0 crossref_primary_10_1016_j_neuroimage_2020_116786 crossref_primary_10_1162_imag_a_00272 crossref_primary_10_1016_j_scog_2015_04_005 crossref_primary_10_31083_j_jin2002042 crossref_primary_10_3389_fnhum_2017_00534 crossref_primary_10_1007_s10548_024_01043_5 crossref_primary_10_1007_s10548_024_01082_y crossref_primary_10_3389_fnins_2023_1293798 crossref_primary_10_3389_fnhum_2021_795237 |
Cites_doi | 10.1016/j.pscychresns.2004.05.007 10.1093/cercor/bhn056 10.1007/BF01273178 10.1016/S0197-4580(00)00153-6 10.1016/j.jneumeth.2003.10.009 10.1016/j.mbs.2010.12.003 10.1017/CBO9780511596889.009 10.1016/S0925-4927(97)00054-1 10.1016/0013-4694(93)90007-I 10.1191/096228098672090967 10.1159/000098264 10.1007/s00213-007-0737-8 10.1016/j.neuroimage.2004.11.049 10.3109/03091909509030277 10.1076/jcen.23.4.530.1227 10.1073/pnas.1007841107 10.3109/00207459408987242 10.1023/A:1022213302688 10.1109/10.391164 10.1093/ptj/74.8.777 10.1007/s10548-008-0054-5 10.1016/0013-4694(80)90419-8 10.1016/j.clinph.2013.01.005 10.1016/j.ijpsycho.2005.12.015 10.1093/ptj/73.6.386 10.1198/106186005X59243 10.1007/BF01277666 10.1006/nimg.2002.1070 10.1016/j.neuroimage.2010.02.052 10.1016/j.neuroimage.2012.05.060 10.1007/BF01271480 10.1016/0925-4927(93)90005-3 10.1093/cercor/bhi025 10.1155/2011/813870 10.1037/0021-843X.111.2.259 10.1159/000017071 10.1016/j.neuroimage.2012.02.031 10.1007/s00702-004-0194-z 10.1016/S0006-3223(00)00837-4 10.1016/0013-4694(87)90025-3 10.1007/BF02189024 10.1371/journal.pone.0022912 10.1007/s10548-011-0189-7 10.1016/S0167-8760(97)00098-6 10.1016/0165-0173(94)00016-I |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Khanna et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2014 Khanna et al 2014 Khanna et al |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Khanna et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2014 Khanna et al 2014 Khanna et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0114163 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection Proquest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Reliability of EEG Microstates |
EISSN | 1932-6203 |
ExternalDocumentID | 1632810288 oai_doaj_org_article_d283f0bc53d649429ce5e9c30ca697cf PMC4257589 3517972961 A418708018 25479614 10_1371_journal_pone_0114163 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01HD069776 – fundername: NCRR NIH HHS grantid: M01-RR-01066 – fundername: NICHD NIH HHS grantid: R21 HD07616 – fundername: NINDS NIH HHS grantid: R01NS073601 – fundername: NCRR NIH HHS grantid: UL1 RR025758 – fundername: NIMH NIH HHS grantid: R21 MH099196 – fundername: NCRR NIH HHS grantid: M01 RR001066 – fundername: NINDS NIH HHS grantid: R21 NS085491 – fundername: Canadian Institutes of Health Research grantid: 201102MFE-246635-181538 – fundername: NINDS NIH HHS grantid: R01 NS073601 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB PV9 RIG RZL BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c758t-8c414ffcae05fa65023f8fb56ccbfa670c325f645c60b1470fbe5f759ca8464c3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:13:47 EST 2021 Wed Aug 27 01:23:59 EDT 2025 Thu Aug 21 18:42:06 EDT 2025 Fri Jul 11 04:18:19 EDT 2025 Sat Aug 23 13:16:48 EDT 2025 Tue Jun 17 20:58:03 EDT 2025 Tue Jun 10 20:43:47 EDT 2025 Fri Jun 27 05:01:42 EDT 2025 Fri Jun 27 04:57:12 EDT 2025 Thu May 22 21:22:35 EDT 2025 Mon Jul 21 05:56:03 EDT 2025 Tue Jul 01 01:49:11 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c758t-8c414ffcae05fa65023f8fb56ccbfa670c325f645c60b1470fbe5f759ca8464c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: FF APL. Performed the experiments: FF. Analyzed the data: FF AK. Contributed reagents/materials/analysis tools: APL. Wrote the paper: AK FF. Competing Interests: AK and FF have no conflict of interest to disclose. APL serves on the scientific advisory boards for Nexstim, Neuronix, starlab Neuroscience, Neosync, and Novavision, and is an inventor on patents and patent applications related to noninvasive brain stimulation and real-time integration of TMS with EEG and fMRI. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0114163 |
PMID | 25479614 |
PQID | 1632810288 |
PQPubID | 1436336 |
ParticipantIDs | plos_journals_1632810288 doaj_primary_oai_doaj_org_article_d283f0bc53d649429ce5e9c30ca697cf pubmedcentral_primary_oai_pubmedcentral_nih_gov_4257589 proquest_miscellaneous_1634727916 proquest_journals_1632810288 gale_infotracmisc_A418708018 gale_infotracacademiconefile_A418708018 gale_incontextgauss_ISR_A418708018 gale_incontextgauss_IOV_A418708018 gale_healthsolutions_A418708018 pubmed_primary_25479614 crossref_citationtrail_10_1371_journal_pone_0114163 crossref_primary_10_1371_journal_pone_0114163 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-05 |
PublicationDateYYYYMMDD | 2014-12-05 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2014 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | ref34 D Lehmann (ref17) 1993; 50 R Tibshirani (ref33) 2005; 14 V Jelic (ref2) 2000; 21 V Brodbeck (ref20) 2012; 62 J Britz (ref26) 2009; 19 NV Ponomareva (ref3) 1998; 9 J Britz (ref10) 2010; 52 J Wackermann (ref5) 1993; 86 WK Strik (ref40) 1995; 99 H Yuan (ref11) 2012; 60 S Irisawa (ref37) 2006; 54 C Carmeli (ref6) 2005; 25 D Lehmann (ref32) 1980; 48 DO Perkins (ref46) 2000; 47 C Mohr (ref27) 2005; 15 D Lehmann (ref13) 2005; 138 M Yoshimura (ref18) 2007; 191 A Delorme (ref30) 2004; 134 WK Strik (ref39) 1997; 75 D Lehmann (ref29) 1998; 29 D Lehmann (ref25) 1994; 74 M Eliasziw (ref42) 1994; 74 MT Avila (ref1) 2002; 111 PE Shrout (ref45) 1998; 7 RA Charter (ref43) 2001; 23 SL Bressler (ref8) 1995; 20 A Stevens (ref16) 1996; 246 ref44 D Brunet (ref31) 2011; 2011 T Dierks (ref15) 1997; 104 I Kondakor (ref23) 1997; 104 M Murray (ref36) 2008; 20 L Ingber (ref4) 2011; 229 TJ Muller (ref28) 2005; 112 J Cantero (ref19) 1999; 11 F Schlegel (ref22) 2012; 25 ME Roebroeck (ref41) 1993; 73 JM Fuster (ref9) 2006; 60 D Van De Ville (ref12) 2010; 107 RD Pascual-Marqui (ref35) 1995; 42 D Lehmann (ref7) 1987; 67 K Nishida (ref38) 2013; 124 M Kikuchi (ref14) 2011; 6 T Koenig (ref21) 2002; 16 I Kondakor (ref24) 1995; 19 22658975 - Neuroimage. 2012 Sep;62(3):2129-39 7680995 - Electroencephalogr Clin Neurophysiol. 1993 Mar;86(3):193-8 9203079 - J Neural Transm (Vienna). 1997;104(2-3):161-73 12003448 - J Abnorm Psychol. 2002 May;111(2):259-67 8047565 - Phys Ther. 1994 Aug;74(8):777-88 11780951 - J Clin Exp Neuropsychol. 2001 Aug;23(4):530-7 18347966 - Brain Topogr. 2008 Jun;20(4):249-64 18424780 - Cereb Cortex. 2009 Jan;19(1):55-65 2441961 - Electroencephalogr Clin Neurophysiol. 1987 Sep;67(3):271-88 10449257 - Brain Topogr. 1999 Summer;11(4):257-63 15784413 - Neuroimage. 2005 Apr 1;25(2):339-54 21644026 - Brain Topogr. 2012 Jan;25(1):20-6 17199099 - Neuropsychobiology. 2006;54(2):134-9 11969316 - Neuroimage. 2002 May;16(1):41-8 10773186 - Biol Psychiatry. 2000 Apr 15;47(8):762-6 21829554 - PLoS One. 2011;6(7):e22912 9295180 - J Neural Transm (Vienna). 1997;104(4-5):483-95 15689523 - Cereb Cortex. 2005 Sep;15(9):1451-8 9437775 - Psychiatry Res. 1997 Oct 31;75(3):183-91 6155251 - Electroencephalogr Clin Neurophysiol. 1980 Jun;48(6):609-21 8579806 - J Neural Transm Gen Sect. 1995;99(1-3):213-22 10924766 - Neurobiol Aging. 2000 Jul-Aug;21(4):533-40 7622149 - IEEE Trans Biomed Eng. 1995 Jul;42(7):658-65 20921381 - Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18179-84 8908413 - Eur Arch Psychiatry Clin Neurosci. 1996;246(6):310-6 16626831 - Int J Psychophysiol. 2006 May;60(2):125-32 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 23403263 - Clin Neurophysiol. 2013 Jun;124(6):1106-14 9641243 - Int J Psychophysiol. 1998 Jun;29(1):1-11 7928108 - Int J Neurosci. 1994 Jan-Feb;74(1-4):239-48 22381593 - Neuroimage. 2012 May 1;60(4):2062-72 8497513 - Phys Ther. 1993 Jun;73(6):386-95; discussion 396-401 9701678 - Dement Geriatr Cogn Disord. 1998 Sep-Oct;9(5):267-73 15766637 - Psychiatry Res. 2005 Feb 28;138(2):141-56 7550362 - Brain Res Brain Res Rev. 1995 Mar;20(3):288-304 9803527 - Stat Methods Med Res. 1998 Sep;7(3):301-17 20188188 - Neuroimage. 2010 Oct 1;52(4):1162-70 21253358 - Comput Intell Neurosci. 2011;2011:813870 21167841 - Math Biosci. 2011 Feb;229(2):160-73 8177925 - Psychiatry Res. 1993 Dec;50(4):275-82 7494212 - J Med Eng Technol. 1995 Mar-Jun;19(2-3):66-9 15340871 - J Neural Transm (Vienna). 2005 Apr;112(4):565-76 17333135 - Psychopharmacology (Berl). 2007 May;191(4):995-1004 |
References_xml | – volume: 138 start-page: 141 year: 2005 ident: ref13 article-title: EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study publication-title: Psychiatry Research: Neuroimaging doi: 10.1016/j.pscychresns.2004.05.007 – volume: 19 start-page: 55 year: 2009 ident: ref26 article-title: Right Parietal Brain Activity Precedes Perceptual Alternation of Bistable Stimuli publication-title: Cerebral Cortex doi: 10.1093/cercor/bhn056 – volume: 104 start-page: 161 year: 1997 ident: ref23 article-title: Prestimulus EEG microstates influence visual event-related potential microstates in field maps with 47 channels publication-title: J Neural Transm doi: 10.1007/BF01273178 – volume: 21 start-page: 533 year: 2000 ident: ref2 article-title: Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer's disease publication-title: Neurobiology of Aging doi: 10.1016/S0197-4580(00)00153-6 – volume: 134 start-page: 9 year: 2004 ident: ref30 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 229 start-page: 160 year: 2011 ident: ref4 article-title: Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs publication-title: Mathematical Biosciences doi: 10.1016/j.mbs.2010.12.003 – ident: ref34 doi: 10.1017/CBO9780511596889.009 – volume: 75 start-page: 183 year: 1997 ident: ref39 article-title: Decreased EEG microstate duration and anteriorisation of the brain electrical fields in mild and moderate dementia of the Alzheimer type publication-title: Psychiatry Research: Neuroimaging doi: 10.1016/S0925-4927(97)00054-1 – volume: 86 start-page: 193 year: 1993 ident: ref5 article-title: Global dimensional complexity of multi-channel EEG indicates change of human brain functional state after a single dose of a nootropic drug publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(93)90007-I – volume: 7 start-page: 301 year: 1998 ident: ref45 article-title: Measurement reliability and agreement in psychiatry publication-title: Statistical Methods in Medical Research doi: 10.1191/096228098672090967 – volume: 54 start-page: 134 year: 2006 ident: ref37 article-title: Increased Omega Complexity and Decreased Microstate Duration in Nonmedicated Schizophrenic Patients publication-title: Neuropsychobiology doi: 10.1159/000098264 – volume: 191 start-page: 995 year: 2007 ident: ref18 article-title: A pharmaco-EEG study on antipsychotic drugs in healthy volunteers publication-title: Psychopharmacology doi: 10.1007/s00213-007-0737-8 – volume: 25 start-page: 339 year: 2005 ident: ref6 article-title: Assessment of EEG synchronization based on state-space analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.11.049 – volume: 19 start-page: 66 year: 1995 ident: ref24 article-title: Event-related potential map differences depend on the prestimulus microstates publication-title: J Med Eng Technol doi: 10.3109/03091909509030277 – volume: 23 start-page: 530 year: 2001 ident: ref43 article-title: Meaning of Reliability in Terms of Correct and Incorrect Clinical Decisions: The Art of Decision Making is Still Alive publication-title: Journal of Clinical and Experimental Neuropsychology doi: 10.1076/jcen.23.4.530.1227 – volume: 107 start-page: 18179 year: 2010 ident: ref12 article-title: EEG microstate sequences in healthy humans at rest reveal scale-free dynamics publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1007841107 – volume: 74 start-page: 239 year: 1994 ident: ref25 article-title: Event-related potential maps depend on prestimulus brain electric microstate map publication-title: Int J Neurosci doi: 10.3109/00207459408987242 – volume: 11 start-page: 257 year: 1999 ident: ref19 article-title: Brain Spatial Microstates of Human Spontaneous Alpha Activity in Relaxed Wakefulness, Drowsiness Period, and REM Sleep publication-title: Brain Topography doi: 10.1023/A:1022213302688 – volume: 42 start-page: 658 year: 1995 ident: ref35 article-title: Segmentation of brain electrical activity into microstates: model estimation and validation publication-title: Biomedical Engineering, IEEE Transactions on doi: 10.1109/10.391164 – volume: 74 start-page: 777 year: 1994 ident: ref42 article-title: Statistical Methodology for the Concurrent Assessment of Interrater and Intrarater Reliability: Using Goniometric Measurements as an Example publication-title: Physical Therapy doi: 10.1093/ptj/74.8.777 – volume: 20 start-page: 249 year: 2008 ident: ref36 article-title: Topographic ERP Analyses: A Step-by-Step Tutorial Review publication-title: Brain Topography doi: 10.1007/s10548-008-0054-5 – volume: 48 start-page: 609 year: 1980 ident: ref32 article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(80)90419-8 – volume: 124 start-page: 1106 year: 2013 ident: ref38 article-title: EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's disease publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2013.01.005 – volume: 60 start-page: 125 year: 2006 ident: ref9 article-title: The cognit: A network model of cortical representation publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2005.12.015 – volume: 73 start-page: 386 year: 1993 ident: ref41 article-title: The Application of Generalizability Theory to Reliability Assessment: An Illustration Using Isometric Force Measurements publication-title: Physical Therapy doi: 10.1093/ptj/73.6.386 – volume: 14 start-page: 511 year: 2005 ident: ref33 article-title: Cluster Validation by Prediction Strength publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186005X59243 – volume: 104 start-page: 483 year: 1997 ident: ref15 article-title: EEG-microstates in mild memory impairment and Alzheimer's disease: possible association with disturbed information processing publication-title: Journal of Neural Transmission doi: 10.1007/BF01277666 – volume: 16 start-page: 41 year: 2002 ident: ref21 article-title: Millisecond by Millisecond, Year by Year: Normative EEG Microstates and Developmental Stages publication-title: NeuroImage doi: 10.1006/nimg.2002.1070 – volume: 52 start-page: 1162 year: 2010 ident: ref10 article-title: BOLD correlates of EEG topography reveal rapid resting-state network dynamics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.02.052 – volume: 62 start-page: 2129 year: 2012 ident: ref20 article-title: EEG microstates of wakefulness and NREM sleep publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.060 – volume: 99 start-page: 213 year: 1995 ident: ref40 article-title: Larger topographical variance and decreased duration of brain electric microstates in depression publication-title: Journal of Neural Transmission/General Section JNT doi: 10.1007/BF01271480 – ident: ref44 – volume: 50 start-page: 275 year: 1993 ident: ref17 article-title: Space-oriented EEG segmentation reveals changes in brain electric field maps under the influence of a nootropic drug publication-title: Psychiatry Research: Neuroimaging doi: 10.1016/0925-4927(93)90005-3 – volume: 15 start-page: 1451 year: 2005 ident: ref27 article-title: Brain state-dependent functional hemispheric specialization in men but not in women publication-title: Cereb Cortex doi: 10.1093/cercor/bhi025 – volume: 2011 start-page: 1 year: 2011 ident: ref31 article-title: Spatiotemporal analysis of multichannel EEG: CARTOOL publication-title: Intell Neuroscience doi: 10.1155/2011/813870 – volume: 111 start-page: 259 year: 2002 ident: ref1 article-title: Neurophysiological markers of vulnerability to schizophrenia: Sensitivity and specificity of specific quantitative eye movement measures publication-title: Journal of Abnormal Psychology doi: 10.1037/0021-843X.111.2.259 – volume: 9 start-page: 267 year: 1998 ident: ref3 article-title: Possible Neurophysiological Markers of Genetic Predisposition to Alzheimer's Disease publication-title: Dementia and Geriatric Cognitive Disorders doi: 10.1159/000017071 – volume: 60 start-page: 2062 year: 2012 ident: ref11 article-title: Spatiotemporal dynamics of the brain at rest — Exploring EEG microstates as electrophysiological signatures of BOLD resting state networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.02.031 – volume: 112 start-page: 565 year: 2005 ident: ref28 article-title: Subsecond changes of global brain state in illusory multistable motion perception publication-title: J Neural Transm doi: 10.1007/s00702-004-0194-z – volume: 47 start-page: 762 year: 2000 ident: ref46 article-title: Penny-wise and pound-foolish: the impact of measurement error on sample size requirements in clinical trials publication-title: Biological Psychiatry doi: 10.1016/S0006-3223(00)00837-4 – volume: 67 start-page: 271 year: 1987 ident: ref7 article-title: EEG alpha map series: brain micro-states by space-oriented adaptive segmentation publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(87)90025-3 – volume: 246 start-page: 310 year: 1996 ident: ref16 article-title: Abnormal topography of EEG microstates in Gilles de la Tourette syndrome publication-title: European Archives of Psychiatry and Clinical Neuroscience doi: 10.1007/BF02189024 – volume: 6 start-page: e22912 year: 2011 ident: ref14 article-title: EEG Microstate Analysis in Drug-Naive Patients with Panic Disorder publication-title: PLoS ONE doi: 10.1371/journal.pone.0022912 – volume: 25 start-page: 20 year: 2012 ident: ref22 article-title: EEG Microstates During Resting Represent Personality Differences publication-title: Brain Topography doi: 10.1007/s10548-011-0189-7 – volume: 29 start-page: 1 year: 1998 ident: ref29 article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts publication-title: International Journal of Psychophysiology doi: 10.1016/S0167-8760(97)00098-6 – volume: 20 start-page: 288 year: 1995 ident: ref8 article-title: Large-scale cortical networks and cognition publication-title: Brain Research Reviews doi: 10.1016/0165-0173(94)00016-I – reference: 7928108 - Int J Neurosci. 1994 Jan-Feb;74(1-4):239-48 – reference: 7550362 - Brain Res Brain Res Rev. 1995 Mar;20(3):288-304 – reference: 7622149 - IEEE Trans Biomed Eng. 1995 Jul;42(7):658-65 – reference: 10449257 - Brain Topogr. 1999 Summer;11(4):257-63 – reference: 8497513 - Phys Ther. 1993 Jun;73(6):386-95; discussion 396-401 – reference: 21253358 - Comput Intell Neurosci. 2011;2011:813870 – reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 – reference: 8579806 - J Neural Transm Gen Sect. 1995;99(1-3):213-22 – reference: 10773186 - Biol Psychiatry. 2000 Apr 15;47(8):762-6 – reference: 9803527 - Stat Methods Med Res. 1998 Sep;7(3):301-17 – reference: 9437775 - Psychiatry Res. 1997 Oct 31;75(3):183-91 – reference: 8047565 - Phys Ther. 1994 Aug;74(8):777-88 – reference: 7680995 - Electroencephalogr Clin Neurophysiol. 1993 Mar;86(3):193-8 – reference: 11969316 - Neuroimage. 2002 May;16(1):41-8 – reference: 21167841 - Math Biosci. 2011 Feb;229(2):160-73 – reference: 9203079 - J Neural Transm (Vienna). 1997;104(2-3):161-73 – reference: 15689523 - Cereb Cortex. 2005 Sep;15(9):1451-8 – reference: 21644026 - Brain Topogr. 2012 Jan;25(1):20-6 – reference: 6155251 - Electroencephalogr Clin Neurophysiol. 1980 Jun;48(6):609-21 – reference: 18424780 - Cereb Cortex. 2009 Jan;19(1):55-65 – reference: 15340871 - J Neural Transm (Vienna). 2005 Apr;112(4):565-76 – reference: 15766637 - Psychiatry Res. 2005 Feb 28;138(2):141-56 – reference: 20921381 - Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18179-84 – reference: 9701678 - Dement Geriatr Cogn Disord. 1998 Sep-Oct;9(5):267-73 – reference: 20188188 - Neuroimage. 2010 Oct 1;52(4):1162-70 – reference: 8177925 - Psychiatry Res. 1993 Dec;50(4):275-82 – reference: 17333135 - Psychopharmacology (Berl). 2007 May;191(4):995-1004 – reference: 11780951 - J Clin Exp Neuropsychol. 2001 Aug;23(4):530-7 – reference: 12003448 - J Abnorm Psychol. 2002 May;111(2):259-67 – reference: 2441961 - Electroencephalogr Clin Neurophysiol. 1987 Sep;67(3):271-88 – reference: 8908413 - Eur Arch Psychiatry Clin Neurosci. 1996;246(6):310-6 – reference: 22381593 - Neuroimage. 2012 May 1;60(4):2062-72 – reference: 21829554 - PLoS One. 2011;6(7):e22912 – reference: 17199099 - Neuropsychobiology. 2006;54(2):134-9 – reference: 18347966 - Brain Topogr. 2008 Jun;20(4):249-64 – reference: 7494212 - J Med Eng Technol. 1995 Mar-Jun;19(2-3):66-9 – reference: 22658975 - Neuroimage. 2012 Sep;62(3):2129-39 – reference: 23403263 - Clin Neurophysiol. 2013 Jun;124(6):1106-14 – reference: 9295180 - J Neural Transm (Vienna). 1997;104(4-5):483-95 – reference: 15784413 - Neuroimage. 2005 Apr 1;25(2):339-54 – reference: 16626831 - Int J Psychophysiol. 2006 May;60(2):125-32 – reference: 9641243 - Int J Psychophysiol. 1998 Jun;29(1):1-11 – reference: 10924766 - Neurobiol Aging. 2000 Jul-Aug;21(4):533-40 |
SSID | ssj0053866 |
Score | 2.5485609 |
Snippet | Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered in a number... Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states ("microstates") that are altered... Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states (“microstates”) that are altered... Background Electroencephalographic (EEG) microstate analysis is a method of identifying quasi-stable functional brain states (“microstates”) that are altered... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e114163 |
SubjectTerms | Adult Algorithms Bioindicators Biomarkers Brain Brain Mapping Cluster analysis Clustering Consistency EEG Electrodes Electroencephalography Electroencephalography - methods Error analysis Feature extraction Female Healthy Volunteers Humans Mathematical analysis Medicine and Health Sciences Mental disorders Nervous system diseases Neurophysiology Recording Reliability analysis Rest - physiology Standard error Vector quantization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBFgJCAg5uk_iR-FgQVakESEBRb1bstdtKJVmR3UP_PTO2EzWoUjlwy8YTKzsz9nyjjL8h5DWAcglA3FBTmoZyZRlVXnIqlK_LZdVCyMMvup-_yKMTfnwqTq-1-sKasEgPHBW3v4T45wtjBVtKrmD3tE44mLKwrVS19bj7Qswbk6m4B8MqljIdlGN1uZ_ssrfqO7eHKUAp2SwQBb7-aVderC774SbI-Xfl5LVQdHif3EsYMj-I775F7rjuAdlKq3TI3yYq6XcPyTFWHEcm7qu89zk24oBYRcMxovwXFuPFS-8CweeQX3R56oyDk63O25HT-hE5Ofz448MRTd0TqIUcYE0by0vuvW1dIXwLQKxivvFGSGsN_K4LyyoBZhFWFqbkdeGNE74WyqKBuGWPyaIDfW2THAIYK13RAlhZcts4hWVxSJwGiob47jLCRlVqm6jFscPFpQ7fy2pIMaJmNBpAJwNkhE5PrSK1xi3y79FKkywSY4cb4C46uYu-zV0y8gJtrOMp02l56wNews4F4brJyKsggeQYHVbfnLWbYdCfvv78B6Hv32ZCb5KQ70Edtk0nHuA_IenWTHJnJglL3M6Gt9EjR60MGrRRNQgN8cnRS28efjkN46RYUde5fhNkOGBXyA4y8iQ69aTZSvBaAW7LSD1z95nq5yPdxXngJscQIBr19H_Y6hm5C_A00GoWYocs1r83bhcg4No8D6v9D1oTWgo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVguXBBlK-mFAgICTi4TTa2k5xQQV1KpYJUKOrNSib2tlKVpM3uof-eGccJBFXAMetJlJ3xzDzH4zeMvUZQrhCIl7yMy4yLHBKeWyW4zG0aV_MCUx7t6B59UQcn4vBUnvoPbp0vqxxiogvUVQP0jXwXccM8o2yYvW8vOXWNot1V30LjNrsTY6ahkq5s8WmIxOjLSvnjckka73rr7LRNbXZoIRCrZJKOHGv_GJtn7UXT3QQ8_6yf_C0hLe6zex5Jhnu96TfYLVM_YBveV7vwrSeUfveQHVLdcc_HfR02NjwmZo16yR3QDI-oJM-dKwoJD65x_R2e1-F-3x-HHtaeFQOz9SN2stj__vGA-x4KHHAlsOIZiFhYC4WJpC0Qjs0Tm9lSKoASr9MIkrlE40hQURmLNLKlkTaVOZCZBCSP2axGfW2yENNYEpuoQMhSCchMTsVxRJ-GisYsbwKWDKrU4AnGqc_FhXa7ZikuNHrNaDKA9gYIGB_vanuCjX_IfyArjbJEj-1-aK6W2nubrhA02agEmVRK5JhywUiD8zCCQuUp2IC9IBvr_qzp6OR6T8QYvzBpZwF75SSIIqOmGpxlse46_fnrj_8Q-nY8EXrjhWyD6oDCn3vA_0TUWxPJ7YkkOjpMhjdpRg5a6fQvl8A7h1l68_DLcZgeSnV1tWnWTkYggsU1QsCe9JN61OxcijRH9BawdDLdJ6qfjtTnZ46hnBKBzPKtv7_WU3YX4aejzYzkNputrtbmGUK8Vfnc-fFPeFVQVA priority: 102 providerName: ProQuest |
Title | Reliability of Resting-State Microstate Features in Electroencephalography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25479614 https://www.proquest.com/docview/1632810288 https://www.proquest.com/docview/1634727916 https://pubmed.ncbi.nlm.nih.gov/PMC4257589 https://doaj.org/article/d283f0bc53d649429ce5e9c30ca697cf http://dx.doi.org/10.1371/journal.pone.0114163 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaxigBIQEPrvJhx8kDQtvUMiZ1oEJR36LEtbtJVVKaVmIv_O3cOU5EUBF7sdT6bKl3Z9_P9fl3hLwGUB4BEM9p7ucxZYkMaaIjRnmihT8PMgh5eKM7vooupuxyxmd7pKnZahVY7TzaYT2p6Xo5-Pnj9gMs-PemaoPwm0GDVVmoAQJ8wBj75ABik8CaBmPW3ivA6ja3l4haaBR4oX1M969ZOsHKcPq3O3dvtSyrXbD07-zKP8LV6AG5b3Gme1o7xiHZU8VDcmhXcuW-tXTT7x6RS8xKrtm6b91SuxPk3SgW1MBQd4wJe-bVkYtocQunc_emcId19RycbHWdNbzXj8l0NPx2fkFthQUq4ZywobFkPtNaZsrjOgOwFoQ61jmPpMzhs_BkGHAwHZeRl_tMeDpXXAueSDQik-ET0itAX0fEhSAX-srLANDMmYxVgqlzSK4GSgcMoBwSNqpMpaUfxyoYy9TcqQk4htSaSdEAqTWAQ2g7alXTb_xH_gyt1Moiebb5olwvUrsW0zlAKu3lkofziCUQkKXiCrzUk1mUCKkd8gJtnNYvUdstID1lPuxuENJjh7wyEkigUWCGziLbVlX66fP3Owh9nXSE3lghXYI6ZGZfRcBvQmKujuRJRxK2AdnpPkKPbLRSpaCNIEb4iCMbL93d_bLtxkkx665Q5dbIMMC3cIJwyNPaqVvNBpyJBLCdQ0TH3Tuq7_YUN9eGvxzDBI-T47vo5xm5BxDVUGt6_IT0Nuuteg4wcJP3yb6YCWjjcx_b0cc-OTgbXn2Z9M0fK32z8rH9NfwNyxlgWw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAXRHk1UGhAIOCQNg87jwNCBVp2226RSot6M4nX3laqkqXZFeqf4jcy4ziBoAq49LjriZUdj2c-r2e-AXiOoDxGIF54RVCkHstk5GU6Zh7PdBJMwhxDHt3ojvfj4RHbOebHS_CjrYWhtMrWJxpHPakk_Ue-gbghTCkapm9n3zzqGkW3q20LjcYsdtXFdzyy1W9GH3B9X4Th9tbh-6Fnuwp4ErHx3EslC5jWMlc-1zkClDDSqS54LGWBnxNfRiHH1-Uy9ouAJb4uFNcJzyS9OJMRznsNrrMIIzlVpm9_bD0_-o44tuV5URJsWGtYn1WlWqeDRxBHvfBnugR0sWAwO6vqy4Dun_mavwXA7dtwyyJXd7MxtWVYUuUdWLa-oXZfWQLr13dhh_KcG_7vC7fS7gExeZRTzwBbd0wpgKaOySX8ucDzvntaultNPx6abHaSt0za9-DoSrR7HwYl6msFXAybUaD8HCHShMlUZZSMR3RtqGhEFcqBqFWlkJbQnPpqnAlzS5fgwabRjKAFEHYBHPC6p2YNocc_5N_RKnWyRMdtvqjOp8LubjFBkKb9QvJoErMMQ7xUXKHd-zKPs0RqB9ZojUVT29o5FbHJAvSXCBJSB54ZCaLkKCnnZ5ov6lqMPn35D6HPBz2hl1ZIV6gOmds6C_xNRPXVk1ztSaJjkb3hFbLIViu1-LUF8cnWSi8fftoN06SUx1eqamFkGCJmPJM48KAx6k6zIWdJhmjRgaRn7j3V90fK0xPDiE6Bh6fZw7-_1hrcGB6O98TeaH_3EdxE6GsoO32-CoP5-UI9Rng5L56YPe3C16t2Ij8BU_GOMA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJqoNCAQMAh3TzsODkgVNquui0tqFDUm0kce1upSkKzK9S_xq9jxnECQRVw6THxxErG45nP8fgbQp4DKI8BiOdeHuSJR1MZeamOqcdSzYMizCDk4Y7u_kG8c0R3j9nxEvnRnYXBtMrOJxpHXVQS_5GPATeECUbDZKxtWsTHrcnb-puHFaRwp7Urp9GayJ66-A7Lt-bNdAvG-kUYTrY_b-54tsKAJwEnz71E0oBqLTPlM50BWAkjneicxVLmcM19GYUMXp3J2M8Dyn2dK6Y5SyV-BJUR9HuNXOcRT3COJZt9egn4kTi2R_UiHoytZazXVanWcRESxNEgFJqKAX1cGNVnVXMZ6P0zd_O3YDi5TW5ZFOtutGa3TJZUeYcsWz_RuK8smfXru2QXc55bLvALt9LuIbJ6lDPPgFx3H9MBzZkmF7HoAtb-7mnpbre1ebCz-iTrWLXvkaMr0e59MipBXyvEhRAaBcrPAC4VVCYqxcQ8pG4DRQPCUA6JOlUKacnNscbGmTA7dhwWOa1mBA6AsAPgEK9_qm7JPf4h_w5HqZdFam5zozqfCTvTRQGATfu5ZFER0xTCvVRMwRzwZRanXGqHrOEYi_aca-9gxAYNwHcCYEgc8sxIID1HiYY-yxZNI6YfvvyH0KfDgdBLK6QrUIfM7JkL-Cak_RpIrg4kwcnIQfMKWmSnlUb8mo7wZGellzc_7ZuxU8zpK1W1MDIU0DOsTxzyoDXqXrMhozwF5OgQPjD3geqHLeXpiWFHxyDEkvTh319rjdwA9yHeTw_2HpGbgIINe6fPVslofr5QjwFpzvMnZkq75OtV-5CfcTqSMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+of+Resting-State+Microstate+Features+in+Electroencephalography&rft.jtitle=PloS+one&rft.au=Khanna%2C+Arjun&rft.au=Pascual-Leone%2C+Alvaro&rft.au=Farzan%2C+Faranak&rft.date=2014-12-05&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=9&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pone.0114163&rft.externalDBID=ISR&rft.externalDocID=A418708018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |