The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa
Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Sig...
Saved in:
Published in | PLoS pathogens Vol. 7; no. 1; p. e1001264 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.01.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms. |
---|---|
AbstractList | Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms. Most bacteria live within biofilm communities, which are a complex population of microorganisms that attach to surfaces and produce copious amounts of extracellular matrix material. Exopolysaccharides are a key feature of the extracellular matrix and are found in many forms, ranging from structurally simple linear homopolymers to structurally complex branched heteropolymers. Exopolysaccharides carry out a wide range of functions involving adherence to surfaces and other cells, structural support and protection against host and environmental stress. The goal of our study was to examine the functional importance of polysaccharide production in the model biofilm organism, Pseudomonas aeruginosa. Using a deletion and over expression strategy, we characterized the function of one polysaccharide, Pel, and demonstrated that this polysaccharide has two roles, a structural role and a protective role, against an important class of antibiotics, aminioglycosides. Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms. Most bacteria live within biofilm communities, which are a complex population of microorganisms that attach to surfaces and produce copious amounts of extracellular matrix material. Exopolysaccharides are a key feature of the extracellular matrix and are found in many forms, ranging from structurally simple linear homopolymers to structurally complex branched heteropolymers. Exopolysaccharides carry out a wide range of functions involving adherence to surfaces and other cells, structural support and protection against host and environmental stress. The goal of our study was to examine the functional importance of polysaccharide production in the model biofilm organism, Pseudomonas aeruginosa . Using a deletion and over expression strategy, we characterized the function of one polysaccharide, Pel, and demonstrated that this polysaccharide has two roles, a structural role and a protective role, against an important class of antibiotics, aminioglycosides. Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms. Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms. |
Audience | Academic |
Author | Gordon, Vernita D Wong, Gerard C L Wozniak, Daniel J Borlee, Bradley R Parsek, Matthew R Murakami, Keiji Colvin, Kelly M |
AuthorAffiliation | 3 Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America Massachusetts General Hospital and Harvard Medical School, United States of America 4 Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America 1 Department of Microbiology, University of Washington, Seattle, Washington, United States of America 2 Department of Physics, University of Texas, Austin, Austin, Texas, United States of America |
AuthorAffiliation_xml | – name: 1 Department of Microbiology, University of Washington, Seattle, Washington, United States of America – name: 4 Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America – name: 2 Department of Physics, University of Texas, Austin, Austin, Texas, United States of America – name: 3 Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America – name: Massachusetts General Hospital and Harvard Medical School, United States of America |
Author_xml | – sequence: 1 givenname: Kelly M surname: Colvin fullname: Colvin, Kelly M organization: Department of Microbiology, University of Washington, Seattle, Washington, United States of America – sequence: 2 givenname: Vernita D surname: Gordon fullname: Gordon, Vernita D – sequence: 3 givenname: Keiji surname: Murakami fullname: Murakami, Keiji – sequence: 4 givenname: Bradley R surname: Borlee fullname: Borlee, Bradley R – sequence: 5 givenname: Daniel J surname: Wozniak fullname: Wozniak, Daniel J – sequence: 6 givenname: Gerard C L surname: Wong fullname: Wong, Gerard C L – sequence: 7 givenname: Matthew R surname: Parsek fullname: Parsek, Matthew R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21298031$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl1vFCEUhiemxn7oPzBK4oXxYlcYBgZumjSN1U0aNVqvCcuc2WUzA1Ngmvbfy3anTdf0xnABgee854P3uDhw3kFRvCV4TmhNPm_8GJzu5sOg05xgTEpevSiOCGN0VtO6OnhyPiyOY9xgXBFK-KvisCSlFJiSo-L6ag1ogA4NvruL2pi1DrYBZLRDEcINII1iCqNJY9Ad0q5BQ_AJTLL5LfgOkHUoZZGl9a3tetTrFOwt8i36GWFsfO-djkhDGFfW-ahfFy9b3UV4M-0nxZ-LL1fn32aXP74uzs8uZ6ZmIs04kUBxLlMTyoG1JSYgK8GpMJpRI1vayrIWoikbLqolayXFuAVJG8Llsm7pSfF-pzt0PqppWlGRUkgsuKAsE4sd0Xi9UUOwvQ53ymur7i98WCkdkjUdKFM2hFXAiTG84jk9hhovGyOIqaRhMmudTtnGZQ-NAZfyvPZE91-cXauVv1HbHktWZ4GPk0Dw1yPEpHobDXSdduDHqCSuCeM1oZn88A_5fHMTtdK5futan9OaraY6KytRScrklpo_Q-XVQG9NNlz-UtgP-LQXkJkEt2mlxxjV4vev_2C_77PVjjXBxxigfRwdwWrr94cm1dbvavJ7Dnv3dOyPQQ8Gp38BpWn9pQ |
CitedBy_id | crossref_primary_10_3390_biologics1030019 crossref_primary_10_1007_s10529_020_02838_9 crossref_primary_10_1099_mic_0_000772 crossref_primary_10_1128_genomeA_00027_14 crossref_primary_10_29328_journal_ijcmbt_1001006 crossref_primary_10_35339_msz_2020_89_04_01 crossref_primary_10_5604_01_3001_0010_3792 crossref_primary_10_1007_s12038_019_9868_4 crossref_primary_10_3103_S0891416812010053 crossref_primary_10_1016_j_pdpdt_2015_08_008 crossref_primary_10_1016_j_genrep_2018_09_003 crossref_primary_10_1093_nar_gks384 crossref_primary_10_4155_fmc_2016_0049 crossref_primary_10_1007_s00203_015_1148_6 crossref_primary_10_1128_spectrum_00296_23 crossref_primary_10_1073_pnas_1919099117 crossref_primary_10_3390_molecules28073179 crossref_primary_10_32839_2304_5809_2021_6_94_25 crossref_primary_10_1111_j_1462_2920_2011_02495_x crossref_primary_10_1111_jam_14089 crossref_primary_10_1074_jbc_M112_375378 crossref_primary_10_1371_journal_pone_0298112 crossref_primary_10_1016_j_jconrel_2024_01_061 crossref_primary_10_1021_acsami_3c18656 crossref_primary_10_1128_AAC_00001_13 crossref_primary_10_1128_spectrum_03774_22 crossref_primary_10_4103_QAIJ_QAIJ_6_23 crossref_primary_10_1128_IAI_01652_14 crossref_primary_10_1128_JB_05346_11 crossref_primary_10_1038_s41522_024_00496_7 crossref_primary_10_1128_mBio_01333_14 crossref_primary_10_1164_rccm_201312_2142OC crossref_primary_10_1111_j_1574_6976_2012_00328_x crossref_primary_10_1016_j_jmb_2015_09_018 crossref_primary_10_1186_s43141_021_00242_y crossref_primary_10_1099_mgen_0_000591 crossref_primary_10_1108_AGJSR_10_2022_0244 crossref_primary_10_1371_journal_pone_0216817 crossref_primary_10_1371_journal_ppat_1004334 crossref_primary_10_1128_AAC_01997_16 crossref_primary_10_3390_ijms18091970 crossref_primary_10_1016_j_jddst_2021_102644 crossref_primary_10_1098_rstb_2019_0192 crossref_primary_10_1016_j_micpath_2019_103668 crossref_primary_10_3390_life14030383 crossref_primary_10_3390_pathogens6040052 crossref_primary_10_1128_JB_00396_21 crossref_primary_10_1128_microbiolspec_MB_0010_2014 crossref_primary_10_3390_microorganisms8111740 crossref_primary_10_1111_j_1462_2920_2012_02753_x crossref_primary_10_1146_annurev_micro_041320_111355 crossref_primary_10_3390_antibiotics3010064 crossref_primary_10_1021_acs_jmedchem_9b01245 crossref_primary_10_3390_nano10061230 crossref_primary_10_15407_dopovidi2020_08_081 crossref_primary_10_2217_fmb_2020_0301 crossref_primary_10_1016_j_heliyon_2024_e32003 crossref_primary_10_1128_JB_01980_12 crossref_primary_10_1016_j_jhin_2020_09_028 crossref_primary_10_1128_mBio_03384_20 crossref_primary_10_1002_mbo3_61 crossref_primary_10_1021_am400044e crossref_primary_10_1128_MMBR_00151_20 crossref_primary_10_1128_aac_00052_22 crossref_primary_10_1371_journal_pone_0209390 crossref_primary_10_7554_eLife_45084 crossref_primary_10_1016_j_desal_2017_12_006 crossref_primary_10_1007_s11274_022_03384_4 crossref_primary_10_1016_j_matpr_2021_05_245 crossref_primary_10_2217_fmb_12_76 crossref_primary_10_1074_jbc_M117_812842 crossref_primary_10_1073_pnas_1503058112 crossref_primary_10_1128_mBio_00242_13 crossref_primary_10_3389_fmicb_2022_955286 crossref_primary_10_1107_S1744309111052109 crossref_primary_10_3389_fchem_2022_842238 crossref_primary_10_1080_02648725_2016_1196554 crossref_primary_10_3390_diagnostics11101746 crossref_primary_10_1128_JB_02150_12 crossref_primary_10_1039_C4NP00086B crossref_primary_10_1128_JB_00575_19 crossref_primary_10_1038_ncomms10750 crossref_primary_10_4155_ppa_2022_0004 crossref_primary_10_1016_j_micpath_2021_105166 crossref_primary_10_3390_genes9020113 crossref_primary_10_3390_v14051057 crossref_primary_10_1099_mic_0_001301 crossref_primary_10_1371_journal_pone_0062735 crossref_primary_10_3389_fmicb_2022_983149 crossref_primary_10_1111_j_1462_2920_2011_02595_x crossref_primary_10_1128_AEM_02628_15 crossref_primary_10_3390_genes14020392 crossref_primary_10_3389_fmicb_2019_00604 crossref_primary_10_1016_j_jiac_2018_01_007 crossref_primary_10_1016_j_jbc_2021_101560 crossref_primary_10_1016_j_isci_2022_105531 crossref_primary_10_1128_microbiolspec_MB_0004_2014 crossref_primary_10_1128_spectrum_00546_24 crossref_primary_10_1073_pnas_1105073108 crossref_primary_10_1371_journal_pgen_1008848 crossref_primary_10_1111_1462_2920_12155 crossref_primary_10_3390_antibiotics10010003 crossref_primary_10_1515_hsz_2020_0213 crossref_primary_10_1128_mbio_00191_22 crossref_primary_10_14202_vetworld_2022_2425_2431 crossref_primary_10_3389_fmicb_2020_611122 crossref_primary_10_3390_w9070462 crossref_primary_10_3390_pathogens13020145 crossref_primary_10_3390_molecules26154582 crossref_primary_10_1002_pat_3266 crossref_primary_10_1038_s41598_023_35056_0 crossref_primary_10_1016_j_watres_2023_119823 crossref_primary_10_1128_AAC_03163_14 crossref_primary_10_3390_antibiotics12071158 crossref_primary_10_1038_s41598_017_09926_3 crossref_primary_10_1128_mBio_00374_17 crossref_primary_10_1111_j_1574_695X_2012_00936_x crossref_primary_10_1039_D0ME00001A crossref_primary_10_1007_s00253_021_11132_1 crossref_primary_10_1016_j_celrep_2021_108782 crossref_primary_10_1088_1361_6463_aa6b83 crossref_primary_10_1371_journal_ppat_1009656 crossref_primary_10_1038_srep30578 crossref_primary_10_1093_nar_gku106 crossref_primary_10_1128_JB_00003_12 crossref_primary_10_3389_fcimb_2022_835754 crossref_primary_10_3390_v16030478 crossref_primary_10_1080_10643389_2020_1757937 crossref_primary_10_1089_mdr_2016_0087 crossref_primary_10_1093_femsre_fuac048 crossref_primary_10_1128_JB_00410_15 crossref_primary_10_1016_j_bioflm_2022_100089 crossref_primary_10_1038_s41598_019_50003_8 crossref_primary_10_1039_c3sm27638d crossref_primary_10_1128_AAC_00234_19 crossref_primary_10_3389_fmicb_2019_00396 crossref_primary_10_1016_j_micres_2024_127612 crossref_primary_10_1089_wound_2023_0007 crossref_primary_10_1159_000494069 crossref_primary_10_1128_AAC_00433_15 crossref_primary_10_3389_fmicb_2021_617784 crossref_primary_10_1038_s41522_018_0056_3 crossref_primary_10_1126_sciadv_1501632 crossref_primary_10_3390_microorganisms10091755 crossref_primary_10_1002_bit_25147 crossref_primary_10_1074_jbc_M115_674929 crossref_primary_10_1021_acs_est_6b01458 crossref_primary_10_1128_mbio_02624_22 crossref_primary_10_3390_antibiotics10020175 crossref_primary_10_1007_s00203_021_02371_x crossref_primary_10_1016_j_bioflm_2023_100155 crossref_primary_10_1111_mmi_13863 crossref_primary_10_1128_JB_00311_11 crossref_primary_10_3390_ijms24108709 crossref_primary_10_1128_msphere_00057_23 crossref_primary_10_1128_AEM_01705_19 crossref_primary_10_3390_antibiotics9100674 crossref_primary_10_1016_j_cell_2020_07_006 crossref_primary_10_1016_j_cis_2017_07_016 crossref_primary_10_3390_jmse9030243 crossref_primary_10_1128_JB_00307_19 crossref_primary_10_3389_fcimb_2015_00040 crossref_primary_10_3389_fcimb_2017_00106 crossref_primary_10_3390_genes13020375 crossref_primary_10_1021_acsomega_2c04911 crossref_primary_10_3390_microorganisms9020445 crossref_primary_10_1021_acsabm_1c00794 crossref_primary_10_1084_jem_20120033 crossref_primary_10_1007_s12223_018_0585_4 crossref_primary_10_1111_1462_2920_13719 crossref_primary_10_3389_fmicb_2023_1187708 crossref_primary_10_3389_fpls_2021_798992 crossref_primary_10_1111_j_1462_2920_2012_02810_x crossref_primary_10_1016_j_bioflm_2020_100024 crossref_primary_10_1111_jam_13392 crossref_primary_10_1080_00914037_2022_2066668 crossref_primary_10_15547_bjvm_2021_0061 crossref_primary_10_1128_AEM_01182_17 crossref_primary_10_1073_pnas_2113723119 crossref_primary_10_3390_pharmaceutics15112582 crossref_primary_10_1007_s12223_022_00962_9 crossref_primary_10_1039_C9MD00566H crossref_primary_10_1111_1758_2229_12682 crossref_primary_10_1099_mic_0_001459 crossref_primary_10_1021_acsinfecdis_9b00402 crossref_primary_10_1128_AAC_01049_18 crossref_primary_10_1016_j_biopha_2024_116330 crossref_primary_10_1016_j_electacta_2019_135390 crossref_primary_10_1021_acs_bioconjchem_1c00116 crossref_primary_10_1080_17460441_2020_1803274 crossref_primary_10_1371_journal_pone_0086751 crossref_primary_10_1371_journal_ppat_1003526 crossref_primary_10_1080_08927014_2019_1627337 crossref_primary_10_1007_s43630_022_00236_w crossref_primary_10_1021_acsabm_1c01198 crossref_primary_10_1128_JB_00101_19 crossref_primary_10_1016_j_carbpol_2021_119013 crossref_primary_10_1155_2015_759348 crossref_primary_10_1002_adbi_201700161 crossref_primary_10_1038_s41598_020_71834_w crossref_primary_10_1128_microbiolspec_MB_0011_2014 crossref_primary_10_3390_life13020503 crossref_primary_10_1007_s13353_023_00811_6 crossref_primary_10_1128_JB_00239_13 crossref_primary_10_1099_mgen_0_000513 crossref_primary_10_1089_mdr_2014_0024 crossref_primary_10_1099_mic_0_000155 crossref_primary_10_1556_004_2022_00029 crossref_primary_10_1007_s11172_024_4262_2 crossref_primary_10_3390_ijms20143423 crossref_primary_10_1152_physrev_00009_2015 crossref_primary_10_1063_5_0080845 crossref_primary_10_1128_mBio_01536_14 crossref_primary_10_1038_npjbiofilms_2016_6 crossref_primary_10_1128_aem_01341_22 crossref_primary_10_1088_1367_2630_18_4_045019 crossref_primary_10_1111_mmi_12587 crossref_primary_10_1128_mBio_00864_17 crossref_primary_10_1007_s10482_016_0675_8 crossref_primary_10_1128_jb_00587_21 crossref_primary_10_1016_j_ijregi_2024_100369 crossref_primary_10_3934_bioeng_2015_3_104 crossref_primary_10_1038_lsa_2016_158 crossref_primary_10_1111_j_1574_6976_2011_00322_x crossref_primary_10_1371_journal_pone_0180341 crossref_primary_10_1038_s41522_023_00375_7 crossref_primary_10_1016_j_actbio_2018_09_059 crossref_primary_10_1007_s00203_022_02930_w crossref_primary_10_1007_s11538_020_00701_6 crossref_primary_10_1073_pnas_1702798114 crossref_primary_10_1038_s41522_023_00412_5 crossref_primary_10_1039_D3EN00219E crossref_primary_10_1038_s41579_022_00791_0 crossref_primary_10_1128_AEM_01307_16 crossref_primary_10_3389_fcimb_2020_00213 crossref_primary_10_1007_s12033_024_01169_8 crossref_primary_10_1128_aac_00021_22 crossref_primary_10_1139_cjm_2016_0119 crossref_primary_10_1513_AnnalsATS_201603_194FR crossref_primary_10_3389_fmicb_2015_00851 crossref_primary_10_7554_eLife_05701 crossref_primary_10_1016_j_ibiod_2017_01_019 crossref_primary_10_1103_PRXLife_2_023003 crossref_primary_10_7554_eLife_21855 crossref_primary_10_1021_cb400485k crossref_primary_10_3390_ijms141020983 crossref_primary_10_1016_j_isci_2022_104234 crossref_primary_10_1111_1462_2920_12856 crossref_primary_10_1016_j_carbpol_2020_116625 crossref_primary_10_1007_s00203_022_02770_8 crossref_primary_10_1099_jmm_0_001791 crossref_primary_10_1111_j_1462_2920_2011_02657_x crossref_primary_10_1074_jbc_M112_378273 crossref_primary_10_1016_j_cbpa_2023_102418 crossref_primary_10_1099_mic_0_000380 crossref_primary_10_1016_j_tim_2012_10_008 crossref_primary_10_1007_s10096_014_2058_2 crossref_primary_10_1186_1471_2180_13_241 crossref_primary_10_1371_journal_ppat_1007411 crossref_primary_10_3390_md17060355 crossref_primary_10_1016_j_tim_2012_10_001 crossref_primary_10_1371_journal_pone_0029113 crossref_primary_10_3390_pharmaceutics14102016 crossref_primary_10_1021_acs_langmuir_0c01473 crossref_primary_10_1128_JB_00765_12 crossref_primary_10_3389_fcimb_2015_00083 crossref_primary_10_1002_prot_25171 crossref_primary_10_1007_s11095_017_2301_5 crossref_primary_10_1007_s12275_018_8114_3 crossref_primary_10_1099_mic_0_001140 crossref_primary_10_1038_s41598_017_05253_9 crossref_primary_10_1021_acs_analchem_1c03633 crossref_primary_10_1038_s41522_021_00243_2 crossref_primary_10_1016_j_carbpol_2021_118778 crossref_primary_10_1016_j_jmb_2015_08_016 crossref_primary_10_1017_S1431927614000361 crossref_primary_10_1016_j_cell_2024_03_001 crossref_primary_10_1016_j_intimp_2021_108471 crossref_primary_10_1038_srep24289 crossref_primary_10_1016_j_resmic_2013_03_021 crossref_primary_10_1093_femsre_fuad060 crossref_primary_10_3389_fcimb_2017_00039 crossref_primary_10_1016_j_memsci_2016_08_071 crossref_primary_10_1080_17460441_2019_1570129 crossref_primary_10_1109_TMBMC_2015_2465515 crossref_primary_10_1016_j_tim_2014_02_001 crossref_primary_10_1128_JB_02516_14 crossref_primary_10_1038_nprot_2015_115 crossref_primary_10_56150_tjhsl_1386213 crossref_primary_10_1111_j_1365_2958_2011_07889_x crossref_primary_10_1007_s00253_018_9315_8 crossref_primary_10_1016_j_biotechadv_2021_107862 crossref_primary_10_1007_s12275_018_8336_4 crossref_primary_10_1134_S0026261723604748 crossref_primary_10_3389_fmicb_2022_977673 crossref_primary_10_3390_ijms23169202 crossref_primary_10_1002_sca_21148 crossref_primary_10_1128_jb_00365_23 crossref_primary_10_3390_microorganisms10020303 crossref_primary_10_1016_j_mib_2016_02_004 crossref_primary_10_1128_mBio_01376_18 crossref_primary_10_1039_D1SM00463H crossref_primary_10_1111_1758_2229_12171 crossref_primary_10_1038_s41522_023_00426_z crossref_primary_10_1074_jbc_RA120_014555 crossref_primary_10_3389_fmicb_2015_01475 crossref_primary_10_3389_fmicb_2019_02603 crossref_primary_10_1038_s41396_020_00779_9 crossref_primary_10_1111_j_1462_2920_2011_02503_x crossref_primary_10_3390_biomedicines7020034 crossref_primary_10_1080_09168451_2014_877828 crossref_primary_10_1016_j_carbpol_2014_08_051 crossref_primary_10_1128_AEM_00637_11 crossref_primary_10_3412_jsb_67_227 crossref_primary_10_1038_s41522_022_00311_1 crossref_primary_10_1016_j_memsci_2014_04_046 crossref_primary_10_1371_journal_pgen_1009634 crossref_primary_10_1093_femsre_fux010 crossref_primary_10_3390_md21010009 crossref_primary_10_1039_D4NR01415D crossref_primary_10_1038_s41467_019_10469_6 crossref_primary_10_1007_s00253_012_4144_7 crossref_primary_10_1109_TNB_2023_3268138 crossref_primary_10_1128_mBio_02644_19 crossref_primary_10_3390_nano10102022 crossref_primary_10_1039_C7TB02888A crossref_primary_10_3389_fcimb_2022_969326 crossref_primary_10_1128_IAI_00631_20 crossref_primary_10_1111_1462_2920_12095 crossref_primary_10_1016_j_bpj_2018_08_016 crossref_primary_10_1128_JB_00265_21 crossref_primary_10_1128_mBio_00860_21 crossref_primary_10_3389_fmicb_2020_00813 crossref_primary_10_1038_s41522_018_0076_z crossref_primary_10_1016_j_carbpol_2022_120318 crossref_primary_10_7845_kjm_2016_6027 crossref_primary_10_1128_jb_00331_23 crossref_primary_10_1371_journal_ppat_1002299 crossref_primary_10_3389_fmicb_2022_894562 crossref_primary_10_1371_journal_ppat_1002298 crossref_primary_10_1371_journal_ppat_1004479 crossref_primary_10_1080_08927014_2015_1102897 crossref_primary_10_1098_rsos_170702 crossref_primary_10_1128_AAC_01981_17 crossref_primary_10_1186_s40793_017_0293_8 crossref_primary_10_1073_pnas_1613606114 crossref_primary_10_3390_ijms241512496 crossref_primary_10_3390_jof8040336 crossref_primary_10_1038_s41413_023_00254_z |
Cites_doi | 10.1146/annurev.micro.56.012302.160705 10.1016/S0378-1119(98)00130-9 10.1073/pnas.0507170102 10.1038/417552a 10.1128/9781555817718.ch10 10.1128/JB.00585-07 10.1046/j.1365-2958.2001.02337.x 10.1093/glycob/cwq047 10.1146/annurev.micro.57.030502.090720 10.1016/S0140-6736(01)05321-1 10.1111/j.1462-2920.2004.00656.x 10.1111/j.1365-2958.2006.05421.x 10.1126/science.284.5418.1318 10.1016/S0167-7012(01)00246-9 10.1099/00221287-146-10-2395 10.1111/j.1365-2958.2007.05879.x 10.1128/AAC.47.1.317-323.2003 10.1016/j.mib.2007.09.010 10.1126/science.280.5361.295 10.1038/nature02122 10.1128/AEM.60.2.740-745.1994 10.1046/j.1365-2958.2003.03877.x 10.1128/JB.182.12.3593-3596.2000 10.1172/JCI30783 10.1128/JB.183.18.5395-5401.2001 10.1128/JB.185.9.2687-2689.2003 10.1099/mic.0.27410-0 10.1016/S0966-842X(00)01913-2 10.1073/pnas.96.20.11229 10.1186/gb-2006-7-10-r90 10.1128/JB.00119-09 10.1128/JB.01202-06 10.1007/s12016-008-8079-9 10.1126/science.7604262 10.1128/JB.186.14.4457-4465.2004 10.1128/JB.186.14.4466-4475.2004 10.1128/AAC.27.4.619 10.1016/S0076-6879(01)36576-X 10.1038/35037627 10.1128/JB.188.7.2681-2691.2006 10.1128/AEM.71.8.4809-4821.2005 10.1016/j.micinf.2003.08.009 10.1073/pnas.86.20.7914 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 Public Library of Science 2011 Colvin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, et al. (2011) The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa. PLoS Pathog 7(1): e1001264. doi:10.1371/journal.ppat.1001264 Colvin et al. 2011 |
Copyright_xml | – notice: COPYRIGHT 2011 Public Library of Science – notice: 2011 Colvin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, et al. (2011) The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa. PLoS Pathog 7(1): e1001264. doi:10.1371/journal.ppat.1001264 – notice: Colvin et al. 2011 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISN ISR 3V. 7QL 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PIMPY PQEST PQQKQ PQUKI 5PM DOA |
DOI | 10.1371/journal.ppat.1001264 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Canada Science in Context ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Databases Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Bacteriology Abstracts (Microbiology B) MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | The Pseudomonas aeruginosa Biofilm Matrix |
EISSN | 1553-7374 |
Editor | Ausubel, Frederick M. |
Editor_xml | – sequence: 1 givenname: Frederick M. surname: Ausubel fullname: Ausubel, Frederick M. |
ExternalDocumentID | 1289086835 oai_doaj_org_article_c2d154e61cc6463c90e70bdc81c49c59 2896634341 A248493595 10_1371_journal_ppat_1001264 21298031 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI097511 – fundername: NIAID NIH HHS grantid: R01 AI077628 – fundername: NIAID NIH HHS grantid: 1 R01 AI077628-01A1 – fundername: NIAID NIH HHS grantid: R01 AI061396 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ ABDBF ABUWG ACGFO ACIHN ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAP EAS EBD ECM EIF EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO QN7 RNS RPM SV3 TR2 TUS UKHRP WOW ~8M AAYXX CITATION 7QL 7U9 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PQEST PQUKI 5PM AAPBV ABPTK |
ID | FETCH-LOGICAL-c758t-619e30298a136e5f201e948638ca53c9f3f92788d2d684b5f9300fe93d169b7f3 |
IEDL.DBID | RPM |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Oct 01 00:11:18 EDT 2023 Tue Oct 22 15:14:35 EDT 2024 Tue Sep 17 21:17:28 EDT 2024 Fri Aug 16 08:34:29 EDT 2024 Thu Oct 10 18:25:53 EDT 2024 Tue Nov 19 21:32:21 EST 2024 Tue Nov 12 23:36:50 EST 2024 Sat Sep 28 21:05:52 EDT 2024 Sat Sep 28 21:27:32 EDT 2024 Fri Aug 23 00:55:36 EDT 2024 Sat Sep 28 07:50:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c758t-619e30298a136e5f201e948638ca53c9f3f92788d2d684b5f9300fe93d169b7f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Conceived and designed the experiments: KMC VDG KM GCLW MRP. Performed the experiments: KMC VDG KM BRB. Analyzed the data: KMC VDG KM BRB DJW GCLW MRP. Wrote the paper: KMC DJW GCLW MRP. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029257/ |
PMID | 21298031 |
PQID | 1289086835 |
PQPubID | 1436335 |
ParticipantIDs | plos_journals_1289086835 doaj_primary_oai_doaj_org_article_c2d154e61cc6463c90e70bdc81c49c59 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3029257 proquest_miscellaneous_907156713 proquest_journals_1289086835 gale_infotracmisc_A248493595 gale_infotracacademiconefile_A248493595 gale_incontextgauss_ISR_A248493595 gale_incontextgauss_ISN_A248493595 crossref_primary_10_1371_journal_ppat_1001264 pubmed_primary_21298031 |
PublicationCentury | 2000 |
PublicationDate | 2011-01-01 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2011 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | 17586642 - J Bacteriol. 2007 Nov;189(22):8154-64 16547056 - J Bacteriol. 2006 Apr;188(7):2681-91 14731271 - Mol Microbiol. 2004 Feb;51(3):675-90 11463434 - Lancet. 2001 Jul 14;358(9276):135-8 11048725 - Nature. 2000 Oct 12;407(6805):762-4 14527295 - Annu Rev Microbiol. 2003;57:677-701 16186483 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14422-7 14623017 - Microbes Infect. 2003 Nov;5(13):1213-9 9535661 - Science. 1998 Apr 10;280(5361):295-8 17364024 - J Clin Invest. 2007 Apr;117(4):877-88 12499208 - Antimicrob Agents Chemother. 2003 Jan;47(1):317-23 18509765 - Clin Rev Allergy Immunol. 2008 Dec;35(3):124-34 17981495 - Curr Opin Microbiol. 2007 Dec;10(6):644-8 16349202 - Appl Environ Microbiol. 1994 Feb;60(2):740-5 16980452 - J Bacteriol. 2006 Dec;188(23):8213-21 18770545 - Curr Protoc Microbiol. 2005 Jul;Chapter 1:Unit 1B.1 15560820 - Environ Microbiol. 2004 Dec;6(12):1220-7 2813368 - Proc Natl Acad Sci U S A. 1989 Oct;86(20):7914-8 20348539 - Glycobiology. 2010 Jul;20(7):895-904 9661666 - Gene. 1998 May 28;212(1):77-86 3923925 - Antimicrob Agents Chemother. 1985 Apr;27(4):619-24 12037568 - Nature. 2002 May 30;417(6888):552-5 11021916 - Microbiology. 2000 Oct;146 ( Pt 10):2395-407 12700246 - J Bacteriol. 2003 May;185(9):2687-9 15231778 - J Bacteriol. 2004 Jul;186(14):4466-75 15758243 - Microbiology. 2005 Mar;151(Pt 3):985-97 7604262 - Science. 1995 Jun 30;268(5219):1899-902 17038190 - Genome Biol. 2006;7(10):R90 14628055 - Nature. 2003 Nov 20;426(6964):306-10 11398416 - Methods Enzymol. 2001;336:41-7 16085879 - Appl Environ Microbiol. 2005 Aug;71(8):4809-21 13278508 - J Gen Microbiol. 1955 Dec;13(3):572-81 10500159 - Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11229-34 11166241 - Trends Microbiol. 2001 Jan;9(1):34-9 19329647 - J Bacteriol. 2009 Jun;191(11):3492-503 17059568 - Mol Microbiol. 2006 Dec;62(5):1264-77 17824927 - Mol Microbiol. 2007 Sep;65(6):1474-84 10334980 - Science. 1999 May 21;284(5418):1318-22 11348676 - J Microbiol Methods. 2001 Jul;45(3):187-95 11514525 - J Bacteriol. 2001 Sep;183(18):5395-401 12142477 - Annu Rev Microbiol. 2002;56:187-209 11260463 - Mol Microbiol. 2001 Mar;39(6):1452-63 15231777 - J Bacteriol. 2004 Jul;186(14):4457-65 10852895 - J Bacteriol. 2000 Jun;182(12):3593-6 MR Parsek (ref2) 2003; 57 BW Holloway (ref38) 1955; 13 DG Davies (ref42) 1998; 280 JS E.F. Fritsch (ref47) 1989 E Drenkard (ref4) 2003; 5 C Ryder (ref11) 2007; 10 JH Merritt (ref35) 2007; 189 P Vasseur (ref18) 2005; 151 PK Singh (ref8) 2000; 407 VT Lee (ref21) 2007; 65 JD Shrout (ref45) 2006; 62 P Stoodley (ref3) 2002; 56 PS Stewart (ref14) 2001; 358 TF Mah (ref30) 2003; 426 M Starkey (ref12) 2004 MC Walters 3rd (ref33) 2003; 47 M Starkey (ref23) 2009; 191 PK Singh (ref28) 2002; 417 AL Schaefer (ref46) 2001; 336 JW Hickman (ref20) 2005; 102 JH Merritt (ref44) 2005; 1 JC Nickel (ref6) 1985; 27 L Friedman (ref17) 2004; 51 B Koch (ref43) 2001; 45 L Friedman (ref24) 2004; 186 JW Costerton (ref7) 1999; 284 Y Kaneko (ref40) 2007; 117 PN Danese (ref36) 2000; 182 EC Pesci (ref34) 1999; 96 TF Mah (ref5) 2001; 9 VE Wagner (ref9) 2008; 35 A Varki (ref13) 1999 KD Jackson (ref25) 2004; 186 T Ophir (ref10) 1994; 60 L Ma (ref26) 2006; 188 A Heydorn (ref27) 2000; 146 (Pt 10) TT Hoang (ref41) 1998; 212 I Sadovskaya (ref31) 2010; 20 X Zogaj (ref22) 2001; 39 A Ashkin (ref29) 1989; 86 M Hentzer (ref15) 2001; 183 DG Lee (ref19) 2006; 7 JJ Harrison (ref16) 2004; 6 MJ Kirisits (ref32) 2005; 71 GA O'Toole (ref1) 2003; 185 KM Thormann (ref37) 2006; 188 LG Rahme (ref39) 1995; 268 |
References_xml | – volume: 56 start-page: 187 year: 2002 ident: ref3 article-title: Biofilms as complex differentiated communities. publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.56.012302.160705 contributor: fullname: P Stoodley – volume: 212 start-page: 77 year: 1998 ident: ref41 article-title: A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. publication-title: Gene doi: 10.1016/S0378-1119(98)00130-9 contributor: fullname: TT Hoang – volume: 102 start-page: 14422 year: 2005 ident: ref20 article-title: A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0507170102 contributor: fullname: JW Hickman – volume: 417 start-page: 552 year: 2002 ident: ref28 article-title: A component of innate immunity prevents bacterial biofilm development. publication-title: Nature doi: 10.1038/417552a contributor: fullname: PK Singh – year: 2004 ident: ref12 article-title: A Sticky business: The extracellular polymeric substance matrix of bacterial biofilms doi: 10.1128/9781555817718.ch10 contributor: fullname: M Starkey – volume: 189 start-page: 8154 year: 2007 ident: ref35 article-title: SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. publication-title: J Bacteriol doi: 10.1128/JB.00585-07 contributor: fullname: JH Merritt – volume: 39 start-page: 1452 year: 2001 ident: ref22 article-title: The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2001.02337.x contributor: fullname: X Zogaj – year: 1999 ident: ref13 article-title: Essentials in Glycobiology contributor: fullname: A Varki – volume: 20 start-page: 895 year: 2010 ident: ref31 article-title: High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated β-(1→3)-glucans, which bind aminoglycosides. publication-title: Glycobiology doi: 10.1093/glycob/cwq047 contributor: fullname: I Sadovskaya – volume: 57 start-page: 677 year: 2003 ident: ref2 article-title: Bacterial biofilms: an emerging link to disease pathogenesis. publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.57.030502.090720 contributor: fullname: MR Parsek – volume: 358 start-page: 135 year: 2001 ident: ref14 article-title: Antibiotic resistance of bacteria in biofilms. publication-title: Lancet doi: 10.1016/S0140-6736(01)05321-1 contributor: fullname: PS Stewart – volume: 6 start-page: 1220 year: 2004 ident: ref16 article-title: Biofilm susceptibility to metal toxicity. publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2004.00656.x contributor: fullname: JJ Harrison – volume: 62 start-page: 1264 year: 2006 ident: ref45 article-title: The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2006.05421.x contributor: fullname: JD Shrout – volume: 284 start-page: 1318 year: 1999 ident: ref7 article-title: Bacterial biofilms: a common cause of persistent infections. publication-title: Science doi: 10.1126/science.284.5418.1318 contributor: fullname: JW Costerton – volume: 1 start-page: Unit 1B.1 year: 2005 ident: ref44 article-title: Growing and analyzing static biofilms. publication-title: Curr Protoc Microbiol Chapter contributor: fullname: JH Merritt – year: 1989 ident: ref47 article-title: Molecular Cloning contributor: fullname: JS E.F. Fritsch – volume: 45 start-page: 187 year: 2001 ident: ref43 article-title: A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. publication-title: J Microbiol Methods doi: 10.1016/S0167-7012(01)00246-9 contributor: fullname: B Koch – volume: 146 (Pt 10) start-page: 2395 year: 2000 ident: ref27 article-title: Quantification of biofilm structures by the novel computer program COMSTAT. publication-title: Microbiology doi: 10.1099/00221287-146-10-2395 contributor: fullname: A Heydorn – volume: 65 start-page: 1474 year: 2007 ident: ref21 article-title: A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2007.05879.x contributor: fullname: VT Lee – volume: 47 start-page: 317 year: 2003 ident: ref33 article-title: Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.47.1.317-323.2003 contributor: fullname: MC Walters 3rd – volume: 10 start-page: 644 year: 2007 ident: ref11 article-title: Role of polysaccharides in Pseudomonas aeruginosa biofilm development. publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2007.09.010 contributor: fullname: C Ryder – volume: 280 start-page: 295 year: 1998 ident: ref42 article-title: The involvement of cell-to-cell signals in the development of a bacterial biofilm. publication-title: Science doi: 10.1126/science.280.5361.295 contributor: fullname: DG Davies – volume: 426 start-page: 306 year: 2003 ident: ref30 article-title: A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. publication-title: Nature doi: 10.1038/nature02122 contributor: fullname: TF Mah – volume: 60 start-page: 740 year: 1994 ident: ref10 article-title: A Role for Exopolysaccharides in the Protection of Microorganisms from Desiccation. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.60.2.740-745.1994 contributor: fullname: T Ophir – volume: 51 start-page: 675 year: 2004 ident: ref17 article-title: Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03877.x contributor: fullname: L Friedman – volume: 182 start-page: 3593 year: 2000 ident: ref36 article-title: Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. publication-title: J Bacteriol doi: 10.1128/JB.182.12.3593-3596.2000 contributor: fullname: PN Danese – volume: 13 start-page: 572 year: 1955 ident: ref38 article-title: Genetic recombination in Pseudomonas aeruginosa. publication-title: J Gen Microbiol contributor: fullname: BW Holloway – volume: 117 start-page: 877 year: 2007 ident: ref40 article-title: The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. publication-title: J Clin Invest doi: 10.1172/JCI30783 contributor: fullname: Y Kaneko – volume: 183 start-page: 5395 year: 2001 ident: ref15 article-title: Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. publication-title: J Bacteriol doi: 10.1128/JB.183.18.5395-5401.2001 contributor: fullname: M Hentzer – volume: 185 start-page: 2687 year: 2003 ident: ref1 article-title: To build a biofilm. publication-title: J Bacteriol doi: 10.1128/JB.185.9.2687-2689.2003 contributor: fullname: GA O'Toole – volume: 151 start-page: 985 year: 2005 ident: ref18 article-title: The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. publication-title: Microbiology doi: 10.1099/mic.0.27410-0 contributor: fullname: P Vasseur – volume: 9 start-page: 34 year: 2001 ident: ref5 article-title: Mechanisms of biofilm resistance to antimicrobial agents. publication-title: Trends Microbiol doi: 10.1016/S0966-842X(00)01913-2 contributor: fullname: TF Mah – volume: 96 start-page: 11229 year: 1999 ident: ref34 article-title: Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.20.11229 contributor: fullname: EC Pesci – volume: 7 start-page: R90 year: 2006 ident: ref19 article-title: Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. publication-title: Genome Biol doi: 10.1186/gb-2006-7-10-r90 contributor: fullname: DG Lee – volume: 191 start-page: 3492 year: 2009 ident: ref23 article-title: Pseudomonas aeruginosa rugose small colony variants have adaptations likely to promote persistence in the cystic fibrosis lung. publication-title: J Bacteriol doi: 10.1128/JB.00119-09 contributor: fullname: M Starkey – volume: 188 start-page: 8213 year: 2006 ident: ref26 article-title: Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. publication-title: J Bacteriol doi: 10.1128/JB.01202-06 contributor: fullname: L Ma – volume: 35 start-page: 124 year: 2008 ident: ref9 article-title: Pseudomonas aeruginosa biofilms in CF Infection. publication-title: Clin Rev Allergy Immunol doi: 10.1007/s12016-008-8079-9 contributor: fullname: VE Wagner – volume: 268 start-page: 1899 year: 1995 ident: ref39 article-title: Common virulence factors for bacterial pathogenicity in plants and animals. publication-title: Science doi: 10.1126/science.7604262 contributor: fullname: LG Rahme – volume: 186 start-page: 4457 year: 2004 ident: ref24 article-title: Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. publication-title: J Bacteriol doi: 10.1128/JB.186.14.4457-4465.2004 contributor: fullname: L Friedman – volume: 186 start-page: 4466 year: 2004 ident: ref25 article-title: Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. publication-title: J Bacteriol doi: 10.1128/JB.186.14.4466-4475.2004 contributor: fullname: KD Jackson – volume: 27 start-page: 619 year: 1985 ident: ref6 article-title: Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.27.4.619 contributor: fullname: JC Nickel – volume: 336 start-page: 41 year: 2001 ident: ref46 article-title: Acylated homoserine lactone detection in Pseudomonas aeruginosa biofilms by radiolabel assay. publication-title: Methods Enzymol doi: 10.1016/S0076-6879(01)36576-X contributor: fullname: AL Schaefer – volume: 407 start-page: 762 year: 2000 ident: ref8 article-title: Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. publication-title: Nature doi: 10.1038/35037627 contributor: fullname: PK Singh – volume: 188 start-page: 2681 year: 2006 ident: ref37 article-title: Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilm by cyclic di-GMP. publication-title: J Bacteriol doi: 10.1128/JB.188.7.2681-2691.2006 contributor: fullname: KM Thormann – volume: 71 start-page: 4809 year: 2005 ident: ref32 article-title: Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.8.4809-4821.2005 contributor: fullname: MJ Kirisits – volume: 5 start-page: 1213 year: 2003 ident: ref4 article-title: Antimicrobial resistance of Pseudomonas aeruginosa biofilms. publication-title: Microbes Infect doi: 10.1016/j.micinf.2003.08.009 contributor: fullname: E Drenkard – volume: 86 start-page: 7914 year: 1989 ident: ref29 article-title: Internal cell manipulation using infrared laser traps. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.86.20.7914 contributor: fullname: A Ashkin |
SSID | ssj0041316 |
Score | 2.559217 |
Snippet | Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for... Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for... Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1001264 |
SubjectTerms | Alginates Anti-Bacterial Agents - pharmacology Antimicrobial agents Bacterial Adhesion Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Biofilms Biofilms - growth & development Experiments Extracellular Matrix - physiology Gene Expression Regulation, Bacterial Genetic aspects Microbial mats Microbial polysaccharides Microbial Sensitivity Tests Microbial Viability - drug effects Microbiology Microbiology/Medical Microbiology Microbiology/Microbial Growth and Development Operons Physiological aspects Polysaccharides, Bacterial - genetics Polysaccharides, Bacterial - metabolism Pseudomonas aeruginosa Pseudomonas aeruginosa - drug effects Pseudomonas aeruginosa - growth & development Pseudomonas aeruginosa - physiology Tobramycin - pharmacology |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA6yIPginr9u9ZQggk_1miZNm8dTPE7BQ9SDewtpOjkLe221u3D33zvTdJernPgi7NNmGsjMl8lMO_mGsdeQhirHcyABUegEz1vcUsrUmLUSebrwLq8oUfx8qk_O1Kfz_PxGqy-qCYv0wFFxhz6r8ZQHLbzXSktvUijSqvY4jzI-j1f30mybTEUfjJ55bHpKTXGSQmo9XZqThTicbPS27916ZCDKtJodSiN3_85DL_pVN9wWfv5ZRXnjWDp-wO5P8SQ_iuvYY3egfcjuxg6T14_YT4QB72HF-251PThPl6yaGjgqlNP7WOCORwpZot_grq35xNyAXpBT6SFvWo5BIq8aau59yS-J0_-Kd4F_GWBTdwhjN3AHvzYXTdsN7jE7O_7w_f1JMnVZSDzmCmvMHQ1IImJ3QmrIA0YEYFSJ-xINhfoOMpgME-U6q3WpqjwYmaYBjKyFNlUR5BO2aLsW9hmvRChwTh3QmysQusRYIXdBmRDKEnS2ZMlWzbaPZBp2_KJWYBIS9WXJLHYyy5K9I1vsZIkKe_wDAWIngNh_AWTJXpElLZFdtFRNc-E2w2A_fju1R5kq1Xg1-a9CX2dCbyah0KHFvZtuMODiiURrJnkwk8Qt62fD-4Sq7ZoHK-hzb6kxGsYnt0i7fZjvhmlSqpBrodsM1mCsmOtCyCV7GnG5UxtGJ6ZE571kxQyxM73OR9rmx0g1TsBAp_7sfxjiObsXX8jT74AtENzwAiO6dfVy3Ly_AbG8R14 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegCIkXxPcCA1kIiaewOnGc-AmNiWkgbao2JvXNchy7VApxN7cS---5S9xC0EDqU32xkrufz3f--B0h7-zU1QXMA6llpUhhvoUhxWUDWSuSpzOjixoTxdMzcXLJv86LeVxwC_FY5dYn9o668QbXyA8Y7ohVAgKGj6urFKtG4e5qLKFxl9xjGUzlgOdyvku4wD_3pU-xNE5a5kLEq3N5yQ6ipT6sVnrd8xBlgo-mpp7Bf-enJ6vWh9uC0L_PUv4xOR0_Ig9jVEkPBxg8Jnds94TcH-pM3jwlVwAGOrMtnfn2JmiDV62WjaVHuqPoLCzV9KInkkUSDqq7hs4G_gbwhfTct5YuOwqhIoUu3bL9QU-R2f8n9Y7Ogt00HrSjA9X2erNYdj7oZ-Ty-PO3o5M01lpIDWQMa8ggpc2Rjl2zXNjCQVxgJa9gdIK5ciNd7mQG6XKTNaLideFkPp06K_OGCVmXLn9OJp3v7B6hNXMl9Ckc-HRumaggYii049K5qrIiS0i6VbNaDZQaqt9XKyEVGfSl0CwqmiUhn9AWO1kkxO7_8NcLFceXMlkDwaAVzBjBBbzw1JbTujEANy5NIRPyFi2pkPKiwzM1C70JQX25OFOHGa94f0H5n0LnI6H3Uch5sLjR8R4DfDxSaY0k90eSMHDNqHkPUbX95qB-Qxye3CLt9ma6a8ZO8ZxcZ_0mKAkRYyFKlifkxYDLndogRpEVuPCElCPEjvQ6bumW33vCcQQGuPaX_3-rV-TBsOCOv30yAdja1xCxres3_bD8BYMtPbQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBddxmCXse9m64YYg51cLFuWrUMZXVnpBimhXaA3IctSFvDsNE6g-e_7nmyHeaSXQU7Rs4j1fu8rkn6PkM82dHkCcSCwLBUBxFswKS4LqFqRPJ0ZneRYKE4uxcWM_7xJbg5I37O1W8Bmb2mH_aRmq_L47nb7FQz-xHdtSFn_0PFyqdeeUwiC_CPyOILYiIe8Jny3rwAe2zdDxWY5QRoL0V2me2gWTxUcySyM2SBueXr_nRMfLcu62Zeh_nvQ8q_Idf6cPOtSTnraYuQFObDVS_KkbUK5fUVuASl0aks6rcttow3ew1oUlp7piqInsVTTa88yiwwdVFcFnbbkDuAo6VVdWrqoKOSRFKZ0i_IPnSDt_x2tHZ02dlPUgHTdUG1Xm_miqhv9mszOv_86uwi6RgyBgXJiDeWltDFytWsWC5s4SBqs5BmYLugyNtLFTkZQSxdRITKeJ07GYeisjAsmZJ66-A0ZVXVlDwnNmUthTuHA4XPLRAbpRKIdl85lmRXRmAT9Mqtly7eh_KZbCnVKu14KNaQ6DY3JN9TFThbZsv0X9WquOuNTJiogU7SCGSO4gB8c2jTMCwNY5NIkckw-oSYV8mFUeOBmrjdNo35cX6rTiGfc315-UOhqIPSlE3I1aNzo7pIDvDzybA0kjwaSYNVmMHyIqOrfuVEMd4QzAQkzPNkjbf8w3Q3jpHiIrrL1plES0slEpCwek7ctLnfL1qN8TNIBYgfrOhypFr89GzkCA_z-u_9-8j152v5Rj58jMgJE2w-Q6a3zj9547wGiCFDB priority: 102 providerName: Scholars Portal |
Title | The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21298031 https://www.proquest.com/docview/1289086835 https://search.proquest.com/docview/907156713 https://pubmed.ncbi.nlm.nih.gov/PMC3029257 https://doaj.org/article/c2d154e61cc6463c90e70bdc81c49c59 http://dx.doi.org/10.1371/journal.ppat.1001264 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZtxmAvY7-brQtiDPbkxLZk2XpsQ0s3SDDpCnkTsixlBsfO6gTW_34n2Q7z6F4Gxg_WWdi670539ukTQp-1b7II5gFPBzHzYL4Fk6I8h6zVkqcHSkaZTRQXS3ZzR7-to_UJivq1MK5oX2XFtCq306r44Word1s16-vEZuliTvyQA9Rmp-gUpt8-RW_dLzhlt9-p3Q_Hiwlj3Xo5EgezTj3T3U7uHfkQRAOODTjkiU-CwdTkGPyPfnq0K-vmsSD071rKPyan6xfoeRdV4ov26V-iE129Qk_bfSYfXqOfAAac6hKndfnQSGWXWhW5xnNZYessNJb41hHJWhIOLKscpy1_A_hCvKpLjYsKQ6iIoUtTlFu8sMz-v3BtcNroQ14DmGWDpb4_bIqqbuQbdHd99X1-43V7LXgKMoY9ZJBc22FNZECYjgzEBZrTBKwT1EUUN8TwENLlPMxZQrPIcOL7RnOSB4xnsSFv0aiqK32GcBaYGPpkBnw61QFLIGKIpKHcmCTRLBwjrx9msWspNYT7rxZDKtKOl7AaEp2GxujS6uIoawmx3YX6fiM6WAgV5hAMahYoxSiDB_Z17Ge5ArhRriI-Rp-sJoWlvKhsTc1GHppGfL1diouQJtQtUP6n0Gog9KUTMjVoXMluHQO8vKXSGkieDyTBcNWg-cyiqn_nRgT2p2_CICaGO3ukPd6Mj822U1snV-n60AgOEWPE4oCM0bsWl8dh61E-RvEAsYNxHbaA_TnC8c7e3v_3nR_Qs_ZbvD3O0QgQrT9CMLfPJmDC63iCnlxeLdPVxH0SgfOCJhNn1r8BXYJK5A |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,12056,21388,24318,27924,27925,31719,31720,33744,33745,43310,43805,53791,53793,73745,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4IXxPcKAyyExFNYkzhO_IS2aVMHa1V1m7Q3y3HsEqnE3dJK7L_nLnEKQQOpT_XFSu5-Pt_543eEfDQjmycwDwQmTHkA8y0MKSYKyFqRPD3UKskxUZxM-fiSfb1KrvyCW-2PVXY-sXHUhdO4Rr4f4o5YxiFg-LK6DrBqFO6u-hIa98kOMqcnA7JzeDydzTtfDB66KX6KxXGCNObcX56L03Df2-rzaqXWDRNRxFlvcmo4_LeeerBauvquMPTv05R_TE8nT8hjH1fSgxYIT8k9Uz0jD9pKk7fPyTXAgc7Mks7c8rZWGi9blYWhR6qi6C4MVfS8oZJFGg6qqoLOWgYH8IZ07paGlhWFYJFCl7Zc_qAT5Pb_SZ2ls9psCgf6UTVV5mazKCtXqxfk8uT44mgc-GoLgYacYQ05pDAxErKrMOYmsRAZGMEyGJ9gsFgLG1sRQcJcRAXPWJ5YEY9G1oi4CLnIUxu_JIPKVWaX0Dy0KfTJLXh1ZkKeQcyQKMuEtVlmeDQkQadmuWpJNWSzs5ZCMtLqS6JZpDfLkByiLbaySInd_OFuFtKPMKmjAsJBw0OtOePwwiOTjvJCA-CY0IkYkg9oSYmkFxWeqlmoTV3L0_OpPIhYxporyv8UmveEPnkh68DiWvmbDPDxSKbVk9zrScLQ1b3mXURV9821_A1yeLJD2t3NdNuMneJJucq4TS0FxIwJT8N4SF61uNyqDaIUkYETH5K0h9ieXvstVfm9oRxHYIBzf_3_t3pPHo4vJmfy7HT67Q151C6_42-PDADC5i3Eb-v8nR-kvwD4iEIK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4gXxOdWGGAhJJ5C8-E48RPaxqoNWBV1TNqb5Th2qVTibmkl9t9zl7iFoIGUp_hiJb7fne9i-3eEvDOhLVOYBwITZTyA-RZMiokKslYkT4-0SktMFM8m_OSCfb5ML_3-p8Zvq9z4xNZRV07jP_JRhCtiOYeAYWT9toji0_jj8irAClK40urLadwlOzArhvGA7BweT4rpxi-Dt24LoWKhnCBLOPcH6ZIsGnm9fVgu1aplJYo5601ULZ__1msPlgvX3BaS_r2z8o-pavyIPPQxJj3oQPGY3DH1E3Kvqzp585RcATRoYRa0cIubRmk8eDWvDD1SNUXXYaii5y2tLFJyUFVXtOjYHMAz0qlbGDqvKQSOFLq088UPeoY8_z-ps7RozLpyMD6qocpcr2fz2jXqGbkYH387Ogl85YVAQ_6wgnxSmATJ2VWUcJNaiBKMYDnYKigv0cImVsSQPFdxxXNWplYkYWiNSKqIizKzyXMyqF1t9ggtI5tBn9yCh2cm4jnED6myTFib54bHQxJshlkuO4IN2a6yZZCYdOMlUS3Sq2VIDlEXW1mkx25vuOuZ9NYmdVxBaGh4pDVnHF44NFlYVhrAx4ROxZC8RU1KJMCoEUoztW4aeXo-kQcxy1l7XPmfQtOe0HsvZB1oXCt_qgE-Hom1epL7PUkwY91r3kNUbb65kb8BD09ukHZ7M902Y6e4a642bt1IAfFjyrMoGZLdDpfbYYOIReTg0Ick6yG2N679lnr-vaUfR2CAo3_x_7d6Q-6Dfcqvp5MvL8mD7k88XvtkAAg2ryCUW5WvvY3-AjRPRjc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Pel+Polysaccharide+Can+Serve+a+Structural+and+Protective+Role+in+the+Biofilm+Matrix+of+Pseudomonas+aeruginosa&rft.jtitle=PLoS+pathogens&rft.au=Colvin%2C+Kelly+M.&rft.au=Gordon%2C+Vernita+D.&rft.au=Murakami%2C+Keiji&rft.au=Borlee%2C+Bradley+R.&rft.date=2011-01-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.ppat.1001264&rft_id=info%3Apmid%2F21298031&rft.externalDBID=PMC3029257 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |