Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields

To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information of rice seedlings and weeds must be detected in site-specific weed management (SSWM). With the development of deep learning, a semantic segm...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 4; p. e0215676
Main Authors Ma, Xu, Deng, Xiangwu, Qi, Long, Jiang, Yu, Li, Hongwei, Wang, Yuwei, Xing, Xupo
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 18.04.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information of rice seedlings and weeds must be detected in site-specific weed management (SSWM). With the development of deep learning, a semantic segmentation method with the SegNet that is based on fully convolutional network (FCN) was proposed. In this paper, RGB color images of seedling rice were captured in paddy field, and ground truth (GT) images were obtained by manually labeled the pixels in the RGB images with three separate categories, namely, rice seedlings, background, and weeds. The class weight coefficients were calculated to solve the problem of the unbalance of the number of the classification category. GT images and RGB images were used for data training and data testing. Eighty percent of the samples were randomly selected as the training dataset and 20% of samples were used as the test dataset. The proposed method was compared with a classical semantic segmentation model, namely, FCN, and U-Net models. The average accuracy rate of the SegNet method was 92.7%, whereas the average accuracy rates of the FCN and U-Net methods were 89.5% and 70.8%, respectively. The proposed SegNet method realized higher classification accuracy and could effectively classify the pixels of rice seedlings, background, and weeds in the paddy field images and acquire the positions of their regions.
AbstractList To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information of rice seedlings and weeds must be detected in site-specific weed management (SSWM). With the development of deep learning, a semantic segmentation method with the SegNet that is based on fully convolutional network (FCN) was proposed. In this paper, RGB color images of seedling rice were captured in paddy field, and ground truth (GT) images were obtained by manually labeled the pixels in the RGB images with three separate categories, namely, rice seedlings, background, and weeds. The class weight coefficients were calculated to solve the problem of the unbalance of the number of the classification category. GT images and RGB images were used for data training and data testing. Eighty percent of the samples were randomly selected as the training dataset and 20% of samples were used as the test dataset. The proposed method was compared with a classical semantic segmentation model, namely, FCN, and U-Net models. The average accuracy rate of the SegNet method was 92.7%, whereas the average accuracy rates of the FCN and U-Net methods were 89.5% and 70.8%, respectively. The proposed SegNet method realized higher classification accuracy and could effectively classify the pixels of rice seedlings, background, and weeds in the paddy field images and acquire the positions of their regions.
To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information of rice seedlings and weeds must be detected in site-specific weed management (SSWM). With the development of deep learning, a semantic segmentation method with the SegNet that is based on fully convolutional network (FCN) was proposed. In this paper, RGB color images of seedling rice were captured in paddy field, and ground truth (GT) images were obtained by manually labeled the pixels in the RGB images with three separate categories, namely, rice seedlings, background, and weeds. The class weight coefficients were calculated to solve the problem of the unbalance of the number of the classification category. GT images and RGB images were used for data training and data testing. Eighty percent of the samples were randomly selected as the training dataset and 20% of samples were used as the test dataset. The proposed method was compared with a classical semantic segmentation model, namely, FCN, and U-Net models. The average accuracy rate of the SegNet method was 92.7%, whereas the average accuracy rates of the FCN and U-Net methods were 89.5% and 70.8%, respectively. The proposed SegNet method realized higher classification accuracy and could effectively classify the pixels of rice seedlings, background, and weeds in the paddy field images and acquire the positions of their regions.To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information of rice seedlings and weeds must be detected in site-specific weed management (SSWM). With the development of deep learning, a semantic segmentation method with the SegNet that is based on fully convolutional network (FCN) was proposed. In this paper, RGB color images of seedling rice were captured in paddy field, and ground truth (GT) images were obtained by manually labeled the pixels in the RGB images with three separate categories, namely, rice seedlings, background, and weeds. The class weight coefficients were calculated to solve the problem of the unbalance of the number of the classification category. GT images and RGB images were used for data training and data testing. Eighty percent of the samples were randomly selected as the training dataset and 20% of samples were used as the test dataset. The proposed method was compared with a classical semantic segmentation model, namely, FCN, and U-Net models. The average accuracy rate of the SegNet method was 92.7%, whereas the average accuracy rates of the FCN and U-Net methods were 89.5% and 70.8%, respectively. The proposed SegNet method realized higher classification accuracy and could effectively classify the pixels of rice seedlings, background, and weeds in the paddy field images and acquire the positions of their regions.
Audience Academic
Author Deng, Xiangwu
Qi, Long
Ma, Xu
Li, Hongwei
Jiang, Yu
Wang, Yuwei
Xing, Xupo
AuthorAffiliation College of Engineering, South China Agricultural University, Guangzhou, China
Newcastle University, UNITED KINGDOM
AuthorAffiliation_xml – name: Newcastle University, UNITED KINGDOM
– name: College of Engineering, South China Agricultural University, Guangzhou, China
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0001-5810-154X
  surname: Ma
  fullname: Ma, Xu
– sequence: 2
  givenname: Xiangwu
  surname: Deng
  fullname: Deng, Xiangwu
– sequence: 3
  givenname: Long
  surname: Qi
  fullname: Qi, Long
– sequence: 4
  givenname: Yu
  surname: Jiang
  fullname: Jiang, Yu
– sequence: 5
  givenname: Hongwei
  surname: Li
  fullname: Li, Hongwei
– sequence: 6
  givenname: Yuwei
  surname: Wang
  fullname: Wang, Yuwei
– sequence: 7
  givenname: Xupo
  surname: Xing
  fullname: Xing, Xupo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30998770$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L1DAUhousuB_6D0QLgujFjGnSJqkXwrK4OrCw4NdtOE2TTsZMM5u0u86_N3U6Ml0WkV60PX3eNz0v55wmR61rVZI8z9A8Iyx7t3K9b8HON7E8RzgrKKOPkpOsJHhGMSJHB8_HyWkIK4QKwil9khwTVJacMXSSuMve2m0qXXvrbN8ZFy3TVnV3zv9MtfOpN1KlQanamrZJoa3Tu_iSmjU0Q71Zq7aDQZdCl3bLAzZ0A2LadAN1vU21UbYOT5PHGmxQz8b7WfL98uO3i8-zq-tPi4vzq5lkBe9mRVaXmpQIcaIJYE1LpnPJSqYAqJI5x4oVdQGyYjVHrCYZQ5lWkKNCSlxhcpa83PlurAtizCoIjLOswBxlKBKLHVE7WImNjx35rXBgxJ-C840A3xlplSgJlJwSDhWFvAIKBKs813nF8hhoUUWvD-NpfbVWtYyZeLAT0-mX1ixF424FzRnmmESDN6OBdze9Cp1YmyCVtdAq1-_-u8wpx0Nnr-6hD3c3Ug3EBkyrXTxXDqbivOCYk5KVNFLzB6h41Wpt4kwobWJ9Ing7EUSmU7-6BvoQxOLrl_9nr39M2dcH7FKB7ZZhHMgwBV8cJv034v1ER-D9DpDeheCVFtLsBjS2ZqzIkBjWZx-aGNZHjOsTxfk98d7_n7Lfbe4fMQ
CitedBy_id crossref_primary_10_47836_pjst_32_3_13
crossref_primary_10_1007_s43154_022_00086_5
crossref_primary_10_3390_rs14215388
crossref_primary_10_1016_j_compag_2021_106067
crossref_primary_10_37391_ijeer_100412
crossref_primary_10_1007_s11119_022_09954_8
crossref_primary_10_34133_2020_3194308
crossref_primary_10_1016_j_suscom_2022_100759
crossref_primary_10_3390_electronics9101602
crossref_primary_10_1016_j_atech_2023_100337
crossref_primary_10_1016_j_biosystemseng_2022_12_012
crossref_primary_10_3389_fpls_2023_1133969
crossref_primary_10_3390_s20185249
crossref_primary_10_3390_s21113647
crossref_primary_10_1016_j_jag_2021_102553
crossref_primary_10_3389_fpls_2021_591333
crossref_primary_10_3390_rs12040633
crossref_primary_10_32604_cmc_2023_038796
crossref_primary_10_1016_j_engappai_2024_109487
crossref_primary_10_1080_23311916_2021_2018791
crossref_primary_10_3389_fpls_2022_837726
crossref_primary_10_3389_fpls_2022_927368
crossref_primary_10_3389_fpls_2024_1361002
crossref_primary_10_1016_j_compag_2024_109499
crossref_primary_10_1016_j_compag_2023_107994
crossref_primary_10_1080_22797254_2024_2352386
crossref_primary_10_3390_pr11041263
crossref_primary_10_3390_rs13214486
crossref_primary_10_1016_j_cj_2021_03_015
crossref_primary_10_1016_j_aiia_2023_09_002
crossref_primary_10_3390_s21113758
crossref_primary_10_1007_s41348_022_00663_y
crossref_primary_10_3390_drones7100624
crossref_primary_10_1109_ACCESS_2023_3300234
crossref_primary_10_1016_j_compag_2022_107146
crossref_primary_10_1016_j_cropro_2023_106522
crossref_primary_10_1155_2022_6871085
crossref_primary_10_1007_s11042_024_18272_2
crossref_primary_10_3390_rs15215165
crossref_primary_10_1016_j_atech_2024_100505
crossref_primary_10_32604_csse_2023_027647
crossref_primary_10_3390_agriculture15050521
crossref_primary_10_1016_j_phycom_2023_102079
crossref_primary_10_3390_rs15071817
crossref_primary_10_3389_fpls_2025_1507442
crossref_primary_10_3934_math_2024498
crossref_primary_10_1038_s41598_024_81010_z
crossref_primary_10_1155_2020_6474536
crossref_primary_10_1016_j_compag_2023_107881
crossref_primary_10_1016_j_compag_2020_105446
crossref_primary_10_3390_s24134364
crossref_primary_10_1371_journal_pone_0239591
crossref_primary_10_1016_j_compag_2020_105590
crossref_primary_10_3390_chemosensors10020045
crossref_primary_10_1016_j_compag_2022_107179
crossref_primary_10_3390_su15075764
crossref_primary_10_1080_10095020_2022_2144770
crossref_primary_10_1016_j_dib_2024_111118
crossref_primary_10_1109_ACCESS_2019_2954587
crossref_primary_10_3390_rs14174217
crossref_primary_10_1016_j_atech_2024_100557
crossref_primary_10_1016_j_inpa_2019_12_002
crossref_primary_10_1016_j_atech_2024_100761
crossref_primary_10_3390_rs12193270
crossref_primary_10_1016_j_aiia_2024_06_005
crossref_primary_10_1016_j_compag_2024_108862
crossref_primary_10_1016_j_cropro_2024_107076
crossref_primary_10_1109_ACCESS_2020_3030112
crossref_primary_10_1016_j_cropro_2024_107075
crossref_primary_10_1017_wet_2022_84
crossref_primary_10_1016_j_jksuci_2023_03_023
crossref_primary_10_1093_g3journal_jkae026
crossref_primary_10_3389_fpls_2019_01404
crossref_primary_10_34133_plantphenomics_0031
crossref_primary_10_1016_j_compag_2021_106178
crossref_primary_10_3390_agriculture13061176
crossref_primary_10_1016_j_gltp_2021_08_063
crossref_primary_10_3390_rs14020274
crossref_primary_10_1016_j_eja_2023_126845
crossref_primary_10_1109_ACCESS_2020_2987642
crossref_primary_10_4081_jae_2025_1741
crossref_primary_10_1007_s44196_022_00129_x
crossref_primary_10_1017_wet_2024_7
crossref_primary_10_1109_ACCESS_2023_3242604
crossref_primary_10_1007_s11760_023_02863_x
crossref_primary_10_3389_fpls_2023_1320448
crossref_primary_10_3389_fpls_2024_1449514
crossref_primary_10_3390_agronomy14102253
crossref_primary_10_1016_j_compag_2023_108235
Cites_doi 10.1016/j.compag.2018.02.016
10.1007/s13593-016-0405-7
10.1109/CVPR.2014.276
10.1016/j.eswa.2015.10.043
10.1109/TPAMI.2016.2572683
10.3390/s18072113
10.1007/978-3-319-46448-0_2
10.1109/TPAMI.2017.2699184
10.3390/s150819688
10.1109/ICPR.2016.7900179
10.1109/CVPR.2014.81
10.1371/journal.pone.0196302
10.1109/CVPR.2017.660
10.1109/CVPR.2016.91
10.1109/CVPR.2016.343
10.1016/j.compag.2015.12.016
10.1007/s11119-012-9276-3
10.1016/j.cropro.2014.05.016
10.1109/CVPR.2015.7298594
10.1007/s11263-013-0620-5
10.1007/978-3-319-24574-4_28
10.1007/s11119-008-9097-6
10.1109/TPAMI.2016.2577031
10.1109/ICCV.2015.178
10.1109/TPAMI.2016.2644615
10.1016/j.asoc.2010.01.011
10.1016/j.cropro.2016.08.031
10.3390/s18103299
10.3897/nl.37.7708
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Ma et al 2019 Ma et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Ma et al 2019 Ma et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0215676
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic

Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Agriculture
DocumentTitleAlternate Fully convolution network for rice seedling and weed image segmentation at the seedling stage in paddy fields
EISSN 1932-6203
ExternalDocumentID 2211528010
oai_doaj_org_article_93a98638ab6a4ba6a32e44f4b743865b
PMC6472823
A582839796
30998770
10_1371_journal_pone_0215676
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 31801258
– fundername: ;
  grantid: CARS-01-43
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
ID FETCH-LOGICAL-c758t-51d9f390083f3a2f697f4c797eaa6ec482e75d5acb7d807d31701fea405cc2b23
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Oct 01 00:11:26 EDT 2023
Wed Aug 27 01:30:14 EDT 2025
Thu Aug 21 13:59:10 EDT 2025
Fri Jul 11 06:24:08 EDT 2025
Fri Jul 25 10:25:05 EDT 2025
Tue Jun 17 21:18:49 EDT 2025
Tue Jun 10 20:42:44 EDT 2025
Fri Jun 27 04:23:01 EDT 2025
Fri Jun 27 03:47:35 EDT 2025
Thu May 22 21:31:15 EDT 2025
Wed Feb 19 02:31:04 EST 2025
Tue Jul 01 01:07:42 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c758t-51d9f390083f3a2f697f4c797eaa6ec482e75d5acb7d807d31701fea405cc2b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-5810-154X
OpenAccessLink https://doaj.org/article/93a98638ab6a4ba6a32e44f4b743865b
PMID 30998770
PQID 2211528010
PQPubID 1436336
PageCount e0215676
ParticipantIDs plos_journals_2211528010
doaj_primary_oai_doaj_org_article_93a98638ab6a4ba6a32e44f4b743865b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6472823
proquest_miscellaneous_2211946822
proquest_journals_2211528010
gale_infotracmisc_A582839796
gale_infotracacademiconefile_A582839796
gale_incontextgauss_ISR_A582839796
gale_incontextgauss_IOV_A582839796
gale_healthsolutions_A582839796
pubmed_primary_30998770
crossref_citationtrail_10_1371_journal_pone_0215676
crossref_primary_10_1371_journal_pone_0215676
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-18
PublicationDateYYYYMMDD 2019-04-18
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Pérez-Ortiz (ref7) 2016; 47
ref13
ref12
ref34
H Huang (ref25) 2018; 18
L Chen (ref28) 2018; 40
ref14
ref11
ref10
ref32
I Borra-Serrano (ref9) 2015; 15
ref17
A Kamilaris (ref23) 2018; 147
HG Jensen (ref4) 2012; 13
ref19
ref18
FZ Zhuang (ref33) 2015; 26
E Shelhamer (ref20) 2017; 39
A Tellaeche (ref5) 2011; 11
LJ Wiles (ref3) 2009; 10
A Farahpour haghani (ref30); 37
JL Tang (ref6) 2016; 122
V Badrinarayanan (ref27) 2017; 39
YF He (ref31) 2002
J Uijlings (ref15) 2013; 104
H Huang (ref24) 2018; 13
H Huang (ref26) 2018; 18
ref22
ref21
ref29
S Tshewang (ref2) 2016; 90
S Ren (ref16) 2017; 39
F López-Granados (ref8) 2016; 36
RS Chhokar (ref1) 2014; 64
References_xml – volume: 147
  start-page: 70
  year: 2018
  ident: ref23
  article-title: Deep learning in agriculture: A survey
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.02.016
– volume: 36
  start-page: 67
  issue: 4
  year: 2016
  ident: ref8
  article-title: Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery
  publication-title: Agronomy for Sustainable Development
  doi: 10.1007/s13593-016-0405-7
– ident: ref12
  doi: 10.1109/CVPR.2014.276
– volume: 26
  start-page: 26
  issue: 1
  year: 2015
  ident: ref33
  article-title: Survey on transfer learning research
  publication-title: Ruan Jian Xue Bao/Journal of Software
– volume: 47
  start-page: 85
  year: 2016
  ident: ref7
  article-title: Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.043
– volume: 39
  start-page: 640
  issue: 4
  year: 2017
  ident: ref20
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2572683
– volume: 18
  issue: 7
  year: 2018
  ident: ref26
  article-title: A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery
  publication-title: Sensors
  doi: 10.3390/s18072113
– ident: ref18
  doi: 10.1007/978-3-319-46448-0_2
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: ref28
  article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2699184
– volume: 15
  issue: 8
  year: 2015
  ident: ref9
  article-title: Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping
  publication-title: Sensors
  doi: 10.3390/s150819688
– ident: ref14
  doi: 10.1109/ICPR.2016.7900179
– ident: ref19
– ident: ref32
– ident: ref13
  doi: 10.1109/CVPR.2014.81
– volume: 13
  start-page: e0196302
  issue: 4
  year: 2018
  ident: ref24
  article-title: A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0196302
– ident: ref29
  doi: 10.1109/CVPR.2017.660
– ident: ref17
  doi: 10.1109/CVPR.2016.91
– ident: ref21
  doi: 10.1109/CVPR.2016.343
– volume: 122
  start-page: 103
  year: 2016
  ident: ref6
  article-title: Weed detection using image processing under different illumination for site-specific areas spraying
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2015.12.016
– volume: 13
  start-page: 661
  issue: 6
  year: 2012
  ident: ref4
  article-title: Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-012-9276-3
– volume: 64
  start-page: 7
  issue: Supplement C
  year: 2014
  ident: ref1
  article-title: Effects of crop establishment techniques on weeds and rice yield
  publication-title: Crop Protection
  doi: 10.1016/j.cropro.2014.05.016
– ident: ref11
  doi: 10.1109/CVPR.2015.7298594
– volume: 104
  start-page: 154
  issue: 2
  year: 2013
  ident: ref15
  article-title: Selective Search for Object Recognition
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-013-0620-5
– ident: ref34
  doi: 10.1007/978-3-319-24574-4_28
– start-page: 59
  issue: 3
  year: 2002
  ident: ref31
  article-title: Occurrence and dominant population of weeds in paddy fields in guizhou province
  publication-title: Seed
– volume: 10
  start-page: 277
  issue: 3
  year: 2009
  ident: ref3
  article-title: Beyond patch spraying: site-specific weed management with several herbicides
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-008-9097-6
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: ref16
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref22
  doi: 10.1109/ICCV.2015.178
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: ref27
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2644615
– volume: 11
  start-page: 908
  issue: 1
  year: 2011
  ident: ref5
  article-title: A computer vision approach for weeds identification through Support Vector Machines
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.01.011
– volume: 90
  start-page: 117
  year: 2016
  ident: ref2
  article-title: Weed management challenges in rice (Oryza sativa L.) for food security in Bhutan: A review
  publication-title: Crop Protection
  doi: 10.1016/j.cropro.2016.08.031
– ident: ref10
– volume: 18
  issue: 10
  year: 2018
  ident: ref25
  article-title: Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery
  publication-title: Sensors
  doi: 10.3390/s18103299
– volume: 37
  start-page: 113
  issue: 2
  ident: ref30
  article-title: The biology of Gynnidomorpha permixtana (Lepidoptera, Tortricidae) on Sagittaria trifolia L. (Alismataceae) in paddy fields in Iran
  publication-title: Nota Lepidopterologica
  doi: 10.3897/nl.37.7708
SSID ssj0053866
Score 2.5534296
Snippet To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0215676
SubjectTerms Agriculture
Algorithms
Aquatic plants
Artificial neural networks
Classification
Color imagery
Control
Crop Production
Engineering schools
Ground truth
Herbicides
Image acquisition
Image classification
Image processing
Image Processing, Computer-Assisted
Image segmentation
Machine learning
Manufacturing costs
Methods
Model accuracy
Neural networks
Neural Networks, Computer
Oryza - growth & development
Pattern recognition
Pixels
Plant Weeds - growth & development
Pollution
Pollution control
Remote sensing
Rice
Rice fields
Seedlings
Seedlings - growth & development
Semantic segmentation
Semantics
Test procedures
Training
Unmanned aerial vehicles
Weed control
Weeds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyqsLLRiEBBzSNn7EzrEgqoIESEBRb5Ht2GWl1rsiu6r675mJvWGDKpUDx8Sfk92ZyTzk8WdCXgqrNRfeFkIGVggmQmEgjoBCRC0c0072ZDqfPlfHJ-LjqTzdOOoLe8ISPXAS3H7NTa3BSIytjLCmMpx5IYKwEPp0JS16X4h562Iq-WB4QVXljXJclftZL3uLefR7GOUq5BjZCEQ9X__glSeL83l3Xcr5d-fkRig6ukvu5BySHqbfvkVu-XiPbOWvtKOvM5X0m_tkjhXmFcXW8mxiMC-mzm8K6SpFSiHaQQTDXenUxJZewgWdXYCbgftnF3lrUqRmSSFX_IOFrBIgs0gX4LuuaN8J1z0gJ0fvv787LvIRC4WDQmFZyLKtA68xEQvcsFDVKginauWNqbwTmnklW2mcVa0-UC1H-vbgDaR5zjHL-EMyiSDUbUJNKa1odSm9qUHxSgemoJgJAPPcSz8lfC3vxmX-cTwG47zpF9UU1CFJfA1qqclampJimLVI_Bs34N-iKgcssmf3N8CmmmxTzU02NSXP0BCatBV18AHNIa4x4kIovOZFj0AGjYgtOmdm1XXNhy8__gH07esI9CqDwhzE4UzeFgH_CZm5RsidERL8gBsNb6PZrqXSNQxqe8kgAzmAmWtTvn74-TCMD8W2u-jnq4SpRQVJ5JQ8SpY_SJZDbaGVgtlq9E2MRD8eibOfPYE5HlmgGX_8P3T1hNyGHLZf4Cv1Dpksf638LuSJS_u0dwm_Afj3Zu0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvMADYuNjhQEGIQEP2VZ_5wkVxDSQAAkY6lvkOHZXaUtC0wrtv-cucbMFTcBj45-T9M53vovPPxPyQuTGcOHzRMjAEsFESCzMI6AQkQrHjJMtmc6nz-roWHycyVn84NbEssqNT2wddVE5_Ea-zyBTkQz86cGb-meCp0bh6mo8QuM6uYHUZVjSpWd9wgWPUSpul-N6sh-1s1dXpd_DuU4h08il6ahl7e9986g-rZqrAs8_6ycvTUiHd8jtGEnSaaf6LXLNl9vk1nS-jGwafptsRctt6KtIL_36Lqkw6zynWG4ehx3cpeyqwSmEsBRphmgDsxruVKe2LOgv-EEXZ-B64Pr8LG5XKqldUYgfL7AQaQJkUdIa_Nk5bavjmnvk-PD993dHSTx2IXGQPKwSOSnSwFMMzgK3LKhUB-F0qr21yjthmNeykNblujAHuuBI6R68hdDPOZYzfp-MShDxDqF2InNRmIn0NoXBoE1gGhKcADDPvfRjwjfSz1zkJMejMU6zdqFNQ27SCTNDnWVRZ2OS9L3qjpPjH_i3qNgei4za7YVqOc-igWYpt6kBZ2RzZUVuleXMCxFEDiGWUTIfk6c4LLJue2rvF7Iprjvi4ig85nmLQFaNEst25nbdNNmHLz_-A_Tt6wD0MoJCBeJwNm6VgP-EbF0D5O4ACb7BDZp3cBBvpNJkF1YEPTcD--rmZ30z3hRL8UpfrTtMKhQElmPyoLODXrIc8g2jNfTWAwsZiH7YUi5OWlJzPMbAMP7w76_1iNyEiLVdzpuYXTJaLdf-MUSFq_xJa_q_AcjCYyk
  priority: 102
  providerName: ProQuest
Title Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields
URI https://www.ncbi.nlm.nih.gov/pubmed/30998770
https://www.proquest.com/docview/2211528010
https://www.proquest.com/docview/2211946822
https://pubmed.ncbi.nlm.nih.gov/PMC6472823
https://doaj.org/article/93a98638ab6a4ba6a32e44f4b743865b
http://dx.doi.org/10.1371/journal.pone.0215676
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe27oUXxPhaYRSDkICHTI3txM4DQtvUMpA20KCob5GTOF2lLilNK-gLfzt3jhsIKgJeIjU-J-r5fPe73PmOkGciUYoLk3giyJknmMg9DXYEFkREImUqDWwxnfOL8Gwk3o2D8Q7Z9Gx1DKy2unbYT2q0mB19-7J-DRv-le3aIP3NpKN5WZgjtGGhDHfJHtgmiVv1XDRxBXixjV4iavFC1ufuMN2fntIyVramf6O5O_NZWW2Dpb9nV_5iroa3yE2HM-lxLRj7ZMcUt8m-28kVfeHKTb-8Q0r0QtcU08-dGMK8os4OpwBpKZYdohVYOTy5TnWR0a_wg06vQRXB_cm1O75UUL2kgCd_0gLyBJJpQeeg39bUZstVd8loOPh0eua5NgxeCs7E0gv8LMp5hGAt55rlYSRzkcpIGq1DkwrFjAyyQKeJzFRfZhxLvOdGAxRMU5Ywfo90CmDqAaHaDxKRKT8wOgLhkCpnEhyeHMgMN4HpEr7hd5y6GuXYKmMW28CbBF-lZl-MqxS7VeoSr5k1r2t0_IX-BJeyocUK2_ZGuZjEbsPGEdeRAuWkk1CLRIeaMyNELhKAXCoMki55jIIQ18dVGz0RH2McEoOl8JqnlgKrbBSYxjPRq6qK377__A9EHy9bRM8dUV4CO1Ltjk7Af8LqXS3KwxYl6Iq0NXyAYrvhShUz8P8DBiilDzM3orx9-EkzjA_F1LzClKuaJhIhAM0uuV9LfsNZDv6HkhJmy9aeaLG-PVJMr2yRc2xroBh_8J9r-5DcAEhr432-OiSd5WJlHgFsXCY9sivHEq7q1Mfr8E2P7J0MLj5c9uyHmJ7VFHj9PvgB1JJy8A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem8QA8IDY-VhjMIBDwkK11nNh5QKh8TC37QIJt6ptxHKdU2pLStJr6T_E3cpc42YIm4GWPjS9pcz7_7q6--5mQFzyW0uc29niQMo8znnoa_AhMCI-4YdIEJZnOwWE4OOafR8Fohfyqe2GwrLLGxBKok9zgf-Q7DDKVgAGedt9Nf3p4ahTurtZHaFRmsWeX55CyFW-HH2F-XzK2--now8Bzpwp4BmLjuRf0kiiFTB9ij9TXLA0jkXIjImG1Dq3hklkRJIE2sUhkVyQ-MpanVkNkYwyLkegAIP8GON4urigxahI8eK0wdO15vujtOGvYnuaZ3UbfGiKzySX3V54S0PiC1elpXlwV6P5Zr3nJAe7eJXdc5Er7lamtkRWbrZPb_fHMsXfYdbLmkKKgrx2d9Zt7JMcsd0mxvN2ZOTwlq6rPKYTMFGmNaAFeFDvjqc4Seg4f6OQMoA6uj89ce1RG9ZxCvHohC5EtiEwyOgX8XNKyGq-4T46vZUIekNUMVLxBqO4FMU9kL7A6AuMTMmUCEqoUxKxvA9shfq19ZRwHOh7FcarKjT0BuVClTIVzptycdYjX3DWtOED-If8eJ7aRRQbv8kI-GysHCCrydSQB_HQcah7rUPvMcp7yGEI6GQZxh2yhWaiqHbbBIdXHfU7cjIWveV5KIItHhmVCY70oCjX8cvIfQt--toReOaE0B3UY7Voz4J2QHawludmSBCwyreENNOJaK4W6WLVwZ23YVw8_a4bxoVj6l9l8UclEPIRAtkMeVuug0awP-Y0UAu4WrRXSUn17JJv8KEnU8dgEyfxHf_9ZW-Tm4OhgX-0PD_cek1sQLZdbiT25SVbns4V9AhHpPH5awgAl368bd34DLK2gQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamIiF4QGz8WGEwg0DAQ9bFcWLnAaHCqFYGAwFDfQuOY5dKW1KaVlP_Nf467hI3W9AEvOyx8SVtzufv7urzd4Q84amUATepx0PLPM649RT4EZgQHnPNpA4rMp0Ph9H-EX83Ckdr5NfqLAyWVa4wsQLqrND4H3mPQaYSMsDT3Z51ZRGf9gavpj897CCFO62rdhq1iRyY5Smkb-XL4R7M9VPGBm-_vtn3XIcBT0OcPPdCP4stZP0Qh9hAMRvFwnItYmGUiozmkhkRZqHSqcjkrsgCZC-3RkGUozVLkfQA4P-KCEIf15gYNckevGIUuaN6gfB7zjJ2pkVudtDPRshycs4VVh0DGr_QmR4X5UVB75-1m-ec4eAmueGiWNqvzW6drJl8g1zvj2eOycNskHWHGiV97qitX9wiBWa8S4ql7s7k4Sl5XYlOIXymSHFES_CoeEqeqjyjp_CBTk4A9uD6-MQdlcqpmlOIXc9kIcoFkUlOp4ClS1pV5pW3ydGlTMgd0slBxZuEKj9MeSb90KgYDFFIywQkVxbETGBC0yXBSvuJdnzo2JbjOKk2-QTkRbUyE5yzxM1Zl3jNXdOaD-Qf8q9xYhtZZPOuLhSzceLAIYkDFUsAQpVGiqcqUgEznFueQngnozDtkm00i6Q-GttgUtLHPU_cmIWveVxJIKNHjmtjrBZlmQw_fvsPoS-fW0LPnJAtQB1auWMa8E7IFNaS3GpJAi7p1vAmGvFKK2VytoLhzpVhXzz8qBnGh2IZYG6KRS0T8wiC2i65W6-DRrMB5DpSCLhbtFZIS_XtkXzyoyJUxxYKkgX3_v6ztslVQJzk_fDw4D65BoFztavoyy3Smc8W5gEEp_P0YYUClHy_bNj5DZ7fpHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+convolutional+network+for+rice+seedling+and+weed+image+segmentation+at+the+seedling+stage+in+paddy+fields&rft.jtitle=PloS+one&rft.au=Ma%2C+Xu&rft.au=Deng%2C+Xiangwu&rft.au=Qi%2C+Long&rft.au=Jiang%2C+Yu&rft.date=2019-04-18&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=4&rft.spage=e0215676&rft_id=info:doi/10.1371%2Fjournal.pone.0215676&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0215676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon