Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields
To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information of rice seedlings and weeds must be detected in site-specific weed management (SSWM). With the development of deep learning, a semantic segm...
Saved in:
Published in | PloS one Vol. 14; no. 4; p. e0215676 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
18.04.2019
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information of rice seedlings and weeds must be detected in site-specific weed management (SSWM). With the development of deep learning, a semantic segmentation method with the SegNet that is based on fully convolutional network (FCN) was proposed. In this paper, RGB color images of seedling rice were captured in paddy field, and ground truth (GT) images were obtained by manually labeled the pixels in the RGB images with three separate categories, namely, rice seedlings, background, and weeds. The class weight coefficients were calculated to solve the problem of the unbalance of the number of the classification category. GT images and RGB images were used for data training and data testing. Eighty percent of the samples were randomly selected as the training dataset and 20% of samples were used as the test dataset. The proposed method was compared with a classical semantic segmentation model, namely, FCN, and U-Net models. The average accuracy rate of the SegNet method was 92.7%, whereas the average accuracy rates of the FCN and U-Net methods were 89.5% and 70.8%, respectively. The proposed SegNet method realized higher classification accuracy and could effectively classify the pixels of rice seedlings, background, and weeds in the paddy field images and acquire the positions of their regions. |
---|---|
AbstractList | To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information of rice seedlings and weeds must be detected in site-specific weed management (SSWM). With the development of deep learning, a semantic segmentation method with the SegNet that is based on fully convolutional network (FCN) was proposed. In this paper, RGB color images of seedling rice were captured in paddy field, and ground truth (GT) images were obtained by manually labeled the pixels in the RGB images with three separate categories, namely, rice seedlings, background, and weeds. The class weight coefficients were calculated to solve the problem of the unbalance of the number of the classification category. GT images and RGB images were used for data training and data testing. Eighty percent of the samples were randomly selected as the training dataset and 20% of samples were used as the test dataset. The proposed method was compared with a classical semantic segmentation model, namely, FCN, and U-Net models. The average accuracy rate of the SegNet method was 92.7%, whereas the average accuracy rates of the FCN and U-Net methods were 89.5% and 70.8%, respectively. The proposed SegNet method realized higher classification accuracy and could effectively classify the pixels of rice seedlings, background, and weeds in the paddy field images and acquire the positions of their regions. To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information of rice seedlings and weeds must be detected in site-specific weed management (SSWM). With the development of deep learning, a semantic segmentation method with the SegNet that is based on fully convolutional network (FCN) was proposed. In this paper, RGB color images of seedling rice were captured in paddy field, and ground truth (GT) images were obtained by manually labeled the pixels in the RGB images with three separate categories, namely, rice seedlings, background, and weeds. The class weight coefficients were calculated to solve the problem of the unbalance of the number of the classification category. GT images and RGB images were used for data training and data testing. Eighty percent of the samples were randomly selected as the training dataset and 20% of samples were used as the test dataset. The proposed method was compared with a classical semantic segmentation model, namely, FCN, and U-Net models. The average accuracy rate of the SegNet method was 92.7%, whereas the average accuracy rates of the FCN and U-Net methods were 89.5% and 70.8%, respectively. The proposed SegNet method realized higher classification accuracy and could effectively classify the pixels of rice seedlings, background, and weeds in the paddy field images and acquire the positions of their regions.To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information of rice seedlings and weeds must be detected in site-specific weed management (SSWM). With the development of deep learning, a semantic segmentation method with the SegNet that is based on fully convolutional network (FCN) was proposed. In this paper, RGB color images of seedling rice were captured in paddy field, and ground truth (GT) images were obtained by manually labeled the pixels in the RGB images with three separate categories, namely, rice seedlings, background, and weeds. The class weight coefficients were calculated to solve the problem of the unbalance of the number of the classification category. GT images and RGB images were used for data training and data testing. Eighty percent of the samples were randomly selected as the training dataset and 20% of samples were used as the test dataset. The proposed method was compared with a classical semantic segmentation model, namely, FCN, and U-Net models. The average accuracy rate of the SegNet method was 92.7%, whereas the average accuracy rates of the FCN and U-Net methods were 89.5% and 70.8%, respectively. The proposed SegNet method realized higher classification accuracy and could effectively classify the pixels of rice seedlings, background, and weeds in the paddy field images and acquire the positions of their regions. |
Audience | Academic |
Author | Deng, Xiangwu Qi, Long Ma, Xu Li, Hongwei Jiang, Yu Wang, Yuwei Xing, Xupo |
AuthorAffiliation | College of Engineering, South China Agricultural University, Guangzhou, China Newcastle University, UNITED KINGDOM |
AuthorAffiliation_xml | – name: Newcastle University, UNITED KINGDOM – name: College of Engineering, South China Agricultural University, Guangzhou, China |
Author_xml | – sequence: 1 givenname: Xu orcidid: 0000-0001-5810-154X surname: Ma fullname: Ma, Xu – sequence: 2 givenname: Xiangwu surname: Deng fullname: Deng, Xiangwu – sequence: 3 givenname: Long surname: Qi fullname: Qi, Long – sequence: 4 givenname: Yu surname: Jiang fullname: Jiang, Yu – sequence: 5 givenname: Hongwei surname: Li fullname: Li, Hongwei – sequence: 6 givenname: Yuwei surname: Wang fullname: Wang, Yuwei – sequence: 7 givenname: Xupo surname: Xing fullname: Xing, Xupo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30998770$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk12L1DAUhousuB_6D0QLgujFjGnSJqkXwrK4OrCw4NdtOE2TTsZMM5u0u86_N3U6Ml0WkV60PX3eNz0v55wmR61rVZI8z9A8Iyx7t3K9b8HON7E8RzgrKKOPkpOsJHhGMSJHB8_HyWkIK4QKwil9khwTVJacMXSSuMve2m0qXXvrbN8ZFy3TVnV3zv9MtfOpN1KlQanamrZJoa3Tu_iSmjU0Q71Zq7aDQZdCl3bLAzZ0A2LadAN1vU21UbYOT5PHGmxQz8b7WfL98uO3i8-zq-tPi4vzq5lkBe9mRVaXmpQIcaIJYE1LpnPJSqYAqJI5x4oVdQGyYjVHrCYZQ5lWkKNCSlxhcpa83PlurAtizCoIjLOswBxlKBKLHVE7WImNjx35rXBgxJ-C840A3xlplSgJlJwSDhWFvAIKBKs813nF8hhoUUWvD-NpfbVWtYyZeLAT0-mX1ixF424FzRnmmESDN6OBdze9Cp1YmyCVtdAq1-_-u8wpx0Nnr-6hD3c3Ug3EBkyrXTxXDqbivOCYk5KVNFLzB6h41Wpt4kwobWJ9Ing7EUSmU7-6BvoQxOLrl_9nr39M2dcH7FKB7ZZhHMgwBV8cJv034v1ER-D9DpDeheCVFtLsBjS2ZqzIkBjWZx-aGNZHjOsTxfk98d7_n7Lfbe4fMQ |
CitedBy_id | crossref_primary_10_47836_pjst_32_3_13 crossref_primary_10_1007_s43154_022_00086_5 crossref_primary_10_3390_rs14215388 crossref_primary_10_1016_j_compag_2021_106067 crossref_primary_10_37391_ijeer_100412 crossref_primary_10_1007_s11119_022_09954_8 crossref_primary_10_34133_2020_3194308 crossref_primary_10_1016_j_suscom_2022_100759 crossref_primary_10_3390_electronics9101602 crossref_primary_10_1016_j_atech_2023_100337 crossref_primary_10_1016_j_biosystemseng_2022_12_012 crossref_primary_10_3389_fpls_2023_1133969 crossref_primary_10_3390_s20185249 crossref_primary_10_3390_s21113647 crossref_primary_10_1016_j_jag_2021_102553 crossref_primary_10_3389_fpls_2021_591333 crossref_primary_10_3390_rs12040633 crossref_primary_10_32604_cmc_2023_038796 crossref_primary_10_1016_j_engappai_2024_109487 crossref_primary_10_1080_23311916_2021_2018791 crossref_primary_10_3389_fpls_2022_837726 crossref_primary_10_3389_fpls_2022_927368 crossref_primary_10_3389_fpls_2024_1361002 crossref_primary_10_1016_j_compag_2024_109499 crossref_primary_10_1016_j_compag_2023_107994 crossref_primary_10_1080_22797254_2024_2352386 crossref_primary_10_3390_pr11041263 crossref_primary_10_3390_rs13214486 crossref_primary_10_1016_j_cj_2021_03_015 crossref_primary_10_1016_j_aiia_2023_09_002 crossref_primary_10_3390_s21113758 crossref_primary_10_1007_s41348_022_00663_y crossref_primary_10_3390_drones7100624 crossref_primary_10_1109_ACCESS_2023_3300234 crossref_primary_10_1016_j_compag_2022_107146 crossref_primary_10_1016_j_cropro_2023_106522 crossref_primary_10_1155_2022_6871085 crossref_primary_10_1007_s11042_024_18272_2 crossref_primary_10_3390_rs15215165 crossref_primary_10_1016_j_atech_2024_100505 crossref_primary_10_32604_csse_2023_027647 crossref_primary_10_3390_agriculture15050521 crossref_primary_10_1016_j_phycom_2023_102079 crossref_primary_10_3390_rs15071817 crossref_primary_10_3389_fpls_2025_1507442 crossref_primary_10_3934_math_2024498 crossref_primary_10_1038_s41598_024_81010_z crossref_primary_10_1155_2020_6474536 crossref_primary_10_1016_j_compag_2023_107881 crossref_primary_10_1016_j_compag_2020_105446 crossref_primary_10_3390_s24134364 crossref_primary_10_1371_journal_pone_0239591 crossref_primary_10_1016_j_compag_2020_105590 crossref_primary_10_3390_chemosensors10020045 crossref_primary_10_1016_j_compag_2022_107179 crossref_primary_10_3390_su15075764 crossref_primary_10_1080_10095020_2022_2144770 crossref_primary_10_1016_j_dib_2024_111118 crossref_primary_10_1109_ACCESS_2019_2954587 crossref_primary_10_3390_rs14174217 crossref_primary_10_1016_j_atech_2024_100557 crossref_primary_10_1016_j_inpa_2019_12_002 crossref_primary_10_1016_j_atech_2024_100761 crossref_primary_10_3390_rs12193270 crossref_primary_10_1016_j_aiia_2024_06_005 crossref_primary_10_1016_j_compag_2024_108862 crossref_primary_10_1016_j_cropro_2024_107076 crossref_primary_10_1109_ACCESS_2020_3030112 crossref_primary_10_1016_j_cropro_2024_107075 crossref_primary_10_1017_wet_2022_84 crossref_primary_10_1016_j_jksuci_2023_03_023 crossref_primary_10_1093_g3journal_jkae026 crossref_primary_10_3389_fpls_2019_01404 crossref_primary_10_34133_plantphenomics_0031 crossref_primary_10_1016_j_compag_2021_106178 crossref_primary_10_3390_agriculture13061176 crossref_primary_10_1016_j_gltp_2021_08_063 crossref_primary_10_3390_rs14020274 crossref_primary_10_1016_j_eja_2023_126845 crossref_primary_10_1109_ACCESS_2020_2987642 crossref_primary_10_4081_jae_2025_1741 crossref_primary_10_1007_s44196_022_00129_x crossref_primary_10_1017_wet_2024_7 crossref_primary_10_1109_ACCESS_2023_3242604 crossref_primary_10_1007_s11760_023_02863_x crossref_primary_10_3389_fpls_2023_1320448 crossref_primary_10_3389_fpls_2024_1449514 crossref_primary_10_3390_agronomy14102253 crossref_primary_10_1016_j_compag_2023_108235 |
Cites_doi | 10.1016/j.compag.2018.02.016 10.1007/s13593-016-0405-7 10.1109/CVPR.2014.276 10.1016/j.eswa.2015.10.043 10.1109/TPAMI.2016.2572683 10.3390/s18072113 10.1007/978-3-319-46448-0_2 10.1109/TPAMI.2017.2699184 10.3390/s150819688 10.1109/ICPR.2016.7900179 10.1109/CVPR.2014.81 10.1371/journal.pone.0196302 10.1109/CVPR.2017.660 10.1109/CVPR.2016.91 10.1109/CVPR.2016.343 10.1016/j.compag.2015.12.016 10.1007/s11119-012-9276-3 10.1016/j.cropro.2014.05.016 10.1109/CVPR.2015.7298594 10.1007/s11263-013-0620-5 10.1007/978-3-319-24574-4_28 10.1007/s11119-008-9097-6 10.1109/TPAMI.2016.2577031 10.1109/ICCV.2015.178 10.1109/TPAMI.2016.2644615 10.1016/j.asoc.2010.01.011 10.1016/j.cropro.2016.08.031 10.3390/s18103299 10.3897/nl.37.7708 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 Public Library of Science 2019 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Ma et al 2019 Ma et al |
Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Ma et al 2019 Ma et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0215676 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Agriculture |
DocumentTitleAlternate | Fully convolution network for rice seedling and weed image segmentation at the seedling stage in paddy fields |
EISSN | 1932-6203 |
ExternalDocumentID | 2211528010 oai_doaj_org_article_93a98638ab6a4ba6a32e44f4b743865b PMC6472823 A582839796 30998770 10_1371_journal_pone_0215676 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: 31801258 – fundername: ; grantid: CARS-01-43 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK |
ID | FETCH-LOGICAL-c758t-51d9f390083f3a2f697f4c797eaa6ec482e75d5acb7d807d31701fea405cc2b23 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Oct 01 00:11:26 EDT 2023 Wed Aug 27 01:30:14 EDT 2025 Thu Aug 21 13:59:10 EDT 2025 Fri Jul 11 06:24:08 EDT 2025 Fri Jul 25 10:25:05 EDT 2025 Tue Jun 17 21:18:49 EDT 2025 Tue Jun 10 20:42:44 EDT 2025 Fri Jun 27 04:23:01 EDT 2025 Fri Jun 27 03:47:35 EDT 2025 Thu May 22 21:31:15 EDT 2025 Wed Feb 19 02:31:04 EST 2025 Tue Jul 01 01:07:42 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c758t-51d9f390083f3a2f697f4c797eaa6ec482e75d5acb7d807d31701fea405cc2b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0001-5810-154X |
OpenAccessLink | https://doaj.org/article/93a98638ab6a4ba6a32e44f4b743865b |
PMID | 30998770 |
PQID | 2211528010 |
PQPubID | 1436336 |
PageCount | e0215676 |
ParticipantIDs | plos_journals_2211528010 doaj_primary_oai_doaj_org_article_93a98638ab6a4ba6a32e44f4b743865b pubmedcentral_primary_oai_pubmedcentral_nih_gov_6472823 proquest_miscellaneous_2211946822 proquest_journals_2211528010 gale_infotracmisc_A582839796 gale_infotracacademiconefile_A582839796 gale_incontextgauss_ISR_A582839796 gale_incontextgauss_IOV_A582839796 gale_healthsolutions_A582839796 pubmed_primary_30998770 crossref_citationtrail_10_1371_journal_pone_0215676 crossref_primary_10_1371_journal_pone_0215676 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-18 |
PublicationDateYYYYMMDD | 2019-04-18 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2019 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | M Pérez-Ortiz (ref7) 2016; 47 ref13 ref12 ref34 H Huang (ref25) 2018; 18 L Chen (ref28) 2018; 40 ref14 ref11 ref10 ref32 I Borra-Serrano (ref9) 2015; 15 ref17 A Kamilaris (ref23) 2018; 147 HG Jensen (ref4) 2012; 13 ref19 ref18 FZ Zhuang (ref33) 2015; 26 E Shelhamer (ref20) 2017; 39 A Tellaeche (ref5) 2011; 11 LJ Wiles (ref3) 2009; 10 A Farahpour haghani (ref30); 37 JL Tang (ref6) 2016; 122 V Badrinarayanan (ref27) 2017; 39 YF He (ref31) 2002 J Uijlings (ref15) 2013; 104 H Huang (ref24) 2018; 13 H Huang (ref26) 2018; 18 ref22 ref21 ref29 S Tshewang (ref2) 2016; 90 S Ren (ref16) 2017; 39 F López-Granados (ref8) 2016; 36 RS Chhokar (ref1) 2014; 64 |
References_xml | – volume: 147 start-page: 70 year: 2018 ident: ref23 article-title: Deep learning in agriculture: A survey publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.02.016 – volume: 36 start-page: 67 issue: 4 year: 2016 ident: ref8 article-title: Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery publication-title: Agronomy for Sustainable Development doi: 10.1007/s13593-016-0405-7 – ident: ref12 doi: 10.1109/CVPR.2014.276 – volume: 26 start-page: 26 issue: 1 year: 2015 ident: ref33 article-title: Survey on transfer learning research publication-title: Ruan Jian Xue Bao/Journal of Software – volume: 47 start-page: 85 year: 2016 ident: ref7 article-title: Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.10.043 – volume: 39 start-page: 640 issue: 4 year: 2017 ident: ref20 article-title: Fully Convolutional Networks for Semantic Segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2572683 – volume: 18 issue: 7 year: 2018 ident: ref26 article-title: A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery publication-title: Sensors doi: 10.3390/s18072113 – ident: ref18 doi: 10.1007/978-3-319-46448-0_2 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: ref28 article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2017.2699184 – volume: 15 issue: 8 year: 2015 ident: ref9 article-title: Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping publication-title: Sensors doi: 10.3390/s150819688 – ident: ref14 doi: 10.1109/ICPR.2016.7900179 – ident: ref19 – ident: ref32 – ident: ref13 doi: 10.1109/CVPR.2014.81 – volume: 13 start-page: e0196302 issue: 4 year: 2018 ident: ref24 article-title: A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery publication-title: PLOS ONE doi: 10.1371/journal.pone.0196302 – ident: ref29 doi: 10.1109/CVPR.2017.660 – ident: ref17 doi: 10.1109/CVPR.2016.91 – ident: ref21 doi: 10.1109/CVPR.2016.343 – volume: 122 start-page: 103 year: 2016 ident: ref6 article-title: Weed detection using image processing under different illumination for site-specific areas spraying publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2015.12.016 – volume: 13 start-page: 661 issue: 6 year: 2012 ident: ref4 article-title: Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark publication-title: Precision Agriculture doi: 10.1007/s11119-012-9276-3 – volume: 64 start-page: 7 issue: Supplement C year: 2014 ident: ref1 article-title: Effects of crop establishment techniques on weeds and rice yield publication-title: Crop Protection doi: 10.1016/j.cropro.2014.05.016 – ident: ref11 doi: 10.1109/CVPR.2015.7298594 – volume: 104 start-page: 154 issue: 2 year: 2013 ident: ref15 article-title: Selective Search for Object Recognition publication-title: International Journal of Computer Vision doi: 10.1007/s11263-013-0620-5 – ident: ref34 doi: 10.1007/978-3-319-24574-4_28 – start-page: 59 issue: 3 year: 2002 ident: ref31 article-title: Occurrence and dominant population of weeds in paddy fields in guizhou province publication-title: Seed – volume: 10 start-page: 277 issue: 3 year: 2009 ident: ref3 article-title: Beyond patch spraying: site-specific weed management with several herbicides publication-title: Precision Agriculture doi: 10.1007/s11119-008-9097-6 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: ref16 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2577031 – ident: ref22 doi: 10.1109/ICCV.2015.178 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: ref27 article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2644615 – volume: 11 start-page: 908 issue: 1 year: 2011 ident: ref5 article-title: A computer vision approach for weeds identification through Support Vector Machines publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.01.011 – volume: 90 start-page: 117 year: 2016 ident: ref2 article-title: Weed management challenges in rice (Oryza sativa L.) for food security in Bhutan: A review publication-title: Crop Protection doi: 10.1016/j.cropro.2016.08.031 – ident: ref10 – volume: 18 issue: 10 year: 2018 ident: ref25 article-title: Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery publication-title: Sensors doi: 10.3390/s18103299 – volume: 37 start-page: 113 issue: 2 ident: ref30 article-title: The biology of Gynnidomorpha permixtana (Lepidoptera, Tortricidae) on Sagittaria trifolia L. (Alismataceae) in paddy fields in Iran publication-title: Nota Lepidopterologica doi: 10.3897/nl.37.7708 |
SSID | ssj0053866 |
Score | 2.5534296 |
Snippet | To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0215676 |
SubjectTerms | Agriculture Algorithms Aquatic plants Artificial neural networks Classification Color imagery Control Crop Production Engineering schools Ground truth Herbicides Image acquisition Image classification Image processing Image Processing, Computer-Assisted Image segmentation Machine learning Manufacturing costs Methods Model accuracy Neural networks Neural Networks, Computer Oryza - growth & development Pattern recognition Pixels Plant Weeds - growth & development Pollution Pollution control Remote sensing Rice Rice fields Seedlings Seedlings - growth & development Semantic segmentation Semantics Test procedures Training Unmanned aerial vehicles Weed control Weeds |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyqsLLRiEBBzSNn7EzrEgqoIESEBRb5Ht2GWl1rsiu6r675mJvWGDKpUDx8Sfk92ZyTzk8WdCXgqrNRfeFkIGVggmQmEgjoBCRC0c0072ZDqfPlfHJ-LjqTzdOOoLe8ISPXAS3H7NTa3BSIytjLCmMpx5IYKwEPp0JS16X4h562Iq-WB4QVXljXJclftZL3uLefR7GOUq5BjZCEQ9X__glSeL83l3Xcr5d-fkRig6ukvu5BySHqbfvkVu-XiPbOWvtKOvM5X0m_tkjhXmFcXW8mxiMC-mzm8K6SpFSiHaQQTDXenUxJZewgWdXYCbgftnF3lrUqRmSSFX_IOFrBIgs0gX4LuuaN8J1z0gJ0fvv787LvIRC4WDQmFZyLKtA68xEQvcsFDVKginauWNqbwTmnklW2mcVa0-UC1H-vbgDaR5zjHL-EMyiSDUbUJNKa1odSm9qUHxSgemoJgJAPPcSz8lfC3vxmX-cTwG47zpF9UU1CFJfA1qqclampJimLVI_Bs34N-iKgcssmf3N8CmmmxTzU02NSXP0BCatBV18AHNIa4x4kIovOZFj0AGjYgtOmdm1XXNhy8__gH07esI9CqDwhzE4UzeFgH_CZm5RsidERL8gBsNb6PZrqXSNQxqe8kgAzmAmWtTvn74-TCMD8W2u-jnq4SpRQVJ5JQ8SpY_SJZDbaGVgtlq9E2MRD8eibOfPYE5HlmgGX_8P3T1hNyGHLZf4Cv1Dpksf638LuSJS_u0dwm_Afj3Zu0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvMADYuNjhQEGIQEP2VZ_5wkVxDSQAAkY6lvkOHZXaUtC0wrtv-cucbMFTcBj45-T9M53vovPPxPyQuTGcOHzRMjAEsFESCzMI6AQkQrHjJMtmc6nz-roWHycyVn84NbEssqNT2wddVE5_Ea-zyBTkQz86cGb-meCp0bh6mo8QuM6uYHUZVjSpWd9wgWPUSpul-N6sh-1s1dXpd_DuU4h08il6ahl7e9986g-rZqrAs8_6ycvTUiHd8jtGEnSaaf6LXLNl9vk1nS-jGwafptsRctt6KtIL_36Lqkw6zynWG4ehx3cpeyqwSmEsBRphmgDsxruVKe2LOgv-EEXZ-B64Pr8LG5XKqldUYgfL7AQaQJkUdIa_Nk5bavjmnvk-PD993dHSTx2IXGQPKwSOSnSwFMMzgK3LKhUB-F0qr21yjthmNeykNblujAHuuBI6R68hdDPOZYzfp-MShDxDqF2InNRmIn0NoXBoE1gGhKcADDPvfRjwjfSz1zkJMejMU6zdqFNQ27SCTNDnWVRZ2OS9L3qjpPjH_i3qNgei4za7YVqOc-igWYpt6kBZ2RzZUVuleXMCxFEDiGWUTIfk6c4LLJue2rvF7Iprjvi4ig85nmLQFaNEst25nbdNNmHLz_-A_Tt6wD0MoJCBeJwNm6VgP-EbF0D5O4ACb7BDZp3cBBvpNJkF1YEPTcD--rmZ30z3hRL8UpfrTtMKhQElmPyoLODXrIc8g2jNfTWAwsZiH7YUi5OWlJzPMbAMP7w76_1iNyEiLVdzpuYXTJaLdf-MUSFq_xJa_q_AcjCYyk priority: 102 providerName: ProQuest |
Title | Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30998770 https://www.proquest.com/docview/2211528010 https://www.proquest.com/docview/2211946822 https://pubmed.ncbi.nlm.nih.gov/PMC6472823 https://doaj.org/article/93a98638ab6a4ba6a32e44f4b743865b http://dx.doi.org/10.1371/journal.pone.0215676 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe27oUXxPhaYRSDkICHTI3txM4DQtvUMpA20KCob5GTOF2lLilNK-gLfzt3jhsIKgJeIjU-J-r5fPe73PmOkGciUYoLk3giyJknmMg9DXYEFkREImUqDWwxnfOL8Gwk3o2D8Q7Z9Gx1DKy2unbYT2q0mB19-7J-DRv-le3aIP3NpKN5WZgjtGGhDHfJHtgmiVv1XDRxBXixjV4iavFC1ufuMN2fntIyVramf6O5O_NZWW2Dpb9nV_5iroa3yE2HM-lxLRj7ZMcUt8m-28kVfeHKTb-8Q0r0QtcU08-dGMK8os4OpwBpKZYdohVYOTy5TnWR0a_wg06vQRXB_cm1O75UUL2kgCd_0gLyBJJpQeeg39bUZstVd8loOPh0eua5NgxeCs7E0gv8LMp5hGAt55rlYSRzkcpIGq1DkwrFjAyyQKeJzFRfZhxLvOdGAxRMU5Ywfo90CmDqAaHaDxKRKT8wOgLhkCpnEhyeHMgMN4HpEr7hd5y6GuXYKmMW28CbBF-lZl-MqxS7VeoSr5k1r2t0_IX-BJeyocUK2_ZGuZjEbsPGEdeRAuWkk1CLRIeaMyNELhKAXCoMki55jIIQ18dVGz0RH2McEoOl8JqnlgKrbBSYxjPRq6qK377__A9EHy9bRM8dUV4CO1Ltjk7Af8LqXS3KwxYl6Iq0NXyAYrvhShUz8P8DBiilDzM3orx9-EkzjA_F1LzClKuaJhIhAM0uuV9LfsNZDv6HkhJmy9aeaLG-PVJMr2yRc2xroBh_8J9r-5DcAEhr432-OiSd5WJlHgFsXCY9sivHEq7q1Mfr8E2P7J0MLj5c9uyHmJ7VFHj9PvgB1JJy8A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem8QA8IDY-VhjMIBDwkK11nNh5QKh8TC37QIJt6ptxHKdU2pLStJr6T_E3cpc42YIm4GWPjS9pcz7_7q6--5mQFzyW0uc29niQMo8znnoa_AhMCI-4YdIEJZnOwWE4OOafR8Fohfyqe2GwrLLGxBKok9zgf-Q7DDKVgAGedt9Nf3p4ahTurtZHaFRmsWeX55CyFW-HH2F-XzK2--now8Bzpwp4BmLjuRf0kiiFTB9ij9TXLA0jkXIjImG1Dq3hklkRJIE2sUhkVyQ-MpanVkNkYwyLkegAIP8GON4urigxahI8eK0wdO15vujtOGvYnuaZ3UbfGiKzySX3V54S0PiC1elpXlwV6P5Zr3nJAe7eJXdc5Er7lamtkRWbrZPb_fHMsXfYdbLmkKKgrx2d9Zt7JMcsd0mxvN2ZOTwlq6rPKYTMFGmNaAFeFDvjqc4Seg4f6OQMoA6uj89ce1RG9ZxCvHohC5EtiEwyOgX8XNKyGq-4T46vZUIekNUMVLxBqO4FMU9kL7A6AuMTMmUCEqoUxKxvA9shfq19ZRwHOh7FcarKjT0BuVClTIVzptycdYjX3DWtOED-If8eJ7aRRQbv8kI-GysHCCrydSQB_HQcah7rUPvMcp7yGEI6GQZxh2yhWaiqHbbBIdXHfU7cjIWveV5KIItHhmVCY70oCjX8cvIfQt--toReOaE0B3UY7Voz4J2QHawludmSBCwyreENNOJaK4W6WLVwZ23YVw8_a4bxoVj6l9l8UclEPIRAtkMeVuug0awP-Y0UAu4WrRXSUn17JJv8KEnU8dgEyfxHf_9ZW-Tm4OhgX-0PD_cek1sQLZdbiT25SVbns4V9AhHpPH5awgAl368bd34DLK2gQg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamIiF4QGz8WGEwg0DAQ9bFcWLnAaHCqFYGAwFDfQuOY5dKW1KaVlP_Nf467hI3W9AEvOyx8SVtzufv7urzd4Q84amUATepx0PLPM649RT4EZgQHnPNpA4rMp0Ph9H-EX83Ckdr5NfqLAyWVa4wsQLqrND4H3mPQaYSMsDT3Z51ZRGf9gavpj897CCFO62rdhq1iRyY5Smkb-XL4R7M9VPGBm-_vtn3XIcBT0OcPPdCP4stZP0Qh9hAMRvFwnItYmGUiozmkhkRZqHSqcjkrsgCZC-3RkGUozVLkfQA4P-KCEIf15gYNckevGIUuaN6gfB7zjJ2pkVudtDPRshycs4VVh0DGr_QmR4X5UVB75-1m-ec4eAmueGiWNqvzW6drJl8g1zvj2eOycNskHWHGiV97qitX9wiBWa8S4ql7s7k4Sl5XYlOIXymSHFES_CoeEqeqjyjp_CBTk4A9uD6-MQdlcqpmlOIXc9kIcoFkUlOp4ClS1pV5pW3ydGlTMgd0slBxZuEKj9MeSb90KgYDFFIywQkVxbETGBC0yXBSvuJdnzo2JbjOKk2-QTkRbUyE5yzxM1Zl3jNXdOaD-Qf8q9xYhtZZPOuLhSzceLAIYkDFUsAQpVGiqcqUgEznFueQngnozDtkm00i6Q-GttgUtLHPU_cmIWveVxJIKNHjmtjrBZlmQw_fvsPoS-fW0LPnJAtQB1auWMa8E7IFNaS3GpJAi7p1vAmGvFKK2VytoLhzpVhXzz8qBnGh2IZYG6KRS0T8wiC2i65W6-DRrMB5DpSCLhbtFZIS_XtkXzyoyJUxxYKkgX3_v6ztslVQJzk_fDw4D65BoFztavoyy3Smc8W5gEEp_P0YYUClHy_bNj5DZ7fpHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+convolutional+network+for+rice+seedling+and+weed+image+segmentation+at+the+seedling+stage+in+paddy+fields&rft.jtitle=PloS+one&rft.au=Ma%2C+Xu&rft.au=Deng%2C+Xiangwu&rft.au=Qi%2C+Long&rft.au=Jiang%2C+Yu&rft.date=2019-04-18&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=4&rft.spage=e0215676&rft_id=info:doi/10.1371%2Fjournal.pone.0215676&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0215676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |