Application of Deep Learning to Enhance the Computation of Phase Matrices of Nonspherical Atmospheric Particles Across All Size Parameters
Single‐scattering properties of nonspherical particles are essential to atmospheric radiative transfer and remote sensing studies. In particular, full scattering phase matrices are indispensable for simulating polarized radiative transfer and polarimetry‐based remote sensing. However, accurately com...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 2; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.09.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐scattering properties of nonspherical particles are essential to atmospheric radiative transfer and remote sensing studies. In particular, full scattering phase matrices are indispensable for simulating polarized radiative transfer and polarimetry‐based remote sensing. However, accurately computing these optical properties of nonspherical aerosols across a complete spectrum of size parameters ranging from Rayleigh to geometric optics domains poses a significant challenge. Prior investigations have demonstrated the efficacy of the machine learning approach in computing the optical properties (extinction efficiency, single‐scattering albedo, and asymmetry factor) of nonspherical particles based on the optical property database generated from a combination of exact numerical methods for smaller size parameters and physical‐geometric optics approximation methods for large size parameters. In this study, we successfully applied the machine learning method to compute six nonzero scattering matrices at scattering angles from 0 to 180° for a broad range of size parameters. We found that the deep learning method can significantly enhances the accuracy of the scattering phase matrix in a size parameter range that bridges the exact results computed from the invariant imbedding T‐matrix method and the approximate results from the improved geometric optics method. Furthermore, we have developed a deep neural network capable of effectively computing the scattering matrices of super‐spheroidal particles with a wide range of size parameters, shape parameters, and refractive indices, thereby facilitating their application in polarimetry‐based remote sensing and radiation transfer models.
Accurately simulating how nonspherical aerosols scatter light is essential for atmospheric radiative transfer and remote sensing studies. However, calculating these scattering properties across a broad spectrum of particle sizes and wavelengths—spanning all possible size parameters—remains a significant challenge. To solve this, machine learning techniques have been explored in this study. By training a deep neural network model on a comprehensive database that merges precise numerical simulations and physical‐geometrical optics approximations, a new model can now predict the optical properties of nonspherical aerosols for any size parameters. The approach not only improves accuracy for mid‐sized parameters but also works well for particle parameters not in the training data. This machine learning‐based method enhance our ability to study radiative transfer and has potential applications in related fields.
The deep neural network (DNN), trained using the phase matrices of small size parameters, showed exceptional extrapolation accuracy for medium‐sized parameters The DNN integrates invariant imbedding T‐matrix method and improved geometric optics method calculation results for small and large size parameters, respectively, ensuring smooth transition and outperforming the traditional method The DNN offers an accurate and efficient method for computing phase matrices of nonspherical particles across all size parameters |
---|---|
AbstractList | Single‐scattering properties of nonspherical particles are essential to atmospheric radiative transfer and remote sensing studies. In particular, full scattering phase matrices are indispensable for simulating polarized radiative transfer and polarimetry‐based remote sensing. However, accurately computing these optical properties of nonspherical aerosols across a complete spectrum of size parameters ranging from Rayleigh to geometric optics domains poses a significant challenge. Prior investigations have demonstrated the efficacy of the machine learning approach in computing the optical properties (extinction efficiency, single‐scattering albedo, and asymmetry factor) of nonspherical particles based on the optical property database generated from a combination of exact numerical methods for smaller size parameters and physical‐geometric optics approximation methods for large size parameters. In this study, we successfully applied the machine learning method to compute six nonzero scattering matrices at scattering angles from 0 to 180° for a broad range of size parameters. We found that the deep learning method can significantly enhances the accuracy of the scattering phase matrix in a size parameter range that bridges the exact results computed from the invariant imbedding T‐matrix method and the approximate results from the improved geometric optics method. Furthermore, we have developed a deep neural network capable of effectively computing the scattering matrices of super‐spheroidal particles with a wide range of size parameters, shape parameters, and refractive indices, thereby facilitating their application in polarimetry‐based remote sensing and radiation transfer models.
Accurately simulating how nonspherical aerosols scatter light is essential for atmospheric radiative transfer and remote sensing studies. However, calculating these scattering properties across a broad spectrum of particle sizes and wavelengths—spanning all possible size parameters—remains a significant challenge. To solve this, machine learning techniques have been explored in this study. By training a deep neural network model on a comprehensive database that merges precise numerical simulations and physical‐geometrical optics approximations, a new model can now predict the optical properties of nonspherical aerosols for any size parameters. The approach not only improves accuracy for mid‐sized parameters but also works well for particle parameters not in the training data. This machine learning‐based method enhance our ability to study radiative transfer and has potential applications in related fields.
The deep neural network (DNN), trained using the phase matrices of small size parameters, showed exceptional extrapolation accuracy for medium‐sized parameters The DNN integrates invariant imbedding T‐matrix method and improved geometric optics method calculation results for small and large size parameters, respectively, ensuring smooth transition and outperforming the traditional method The DNN offers an accurate and efficient method for computing phase matrices of nonspherical particles across all size parameters |
Author | Lin, Wushao Xi, Yue Bi, Lei |
Author_xml | – sequence: 1 givenname: Yue surname: Xi fullname: Xi, Yue organization: School of Earth Sciences Zhejiang University Hangzhou China – sequence: 2 givenname: Lei orcidid: 0000-0002-1996-880X surname: Bi fullname: Bi, Lei organization: School of Earth Sciences Zhejiang University Hangzhou China – sequence: 3 givenname: Wushao orcidid: 0000-0001-6460-4207 surname: Lin fullname: Lin, Wushao organization: School of Earth Sciences Zhejiang University Hangzhou China |
BookMark | eNpNkE1OwzAQhS1UJErpjgP4AAT8k8TxMiqFggpUovvIcSfEKLEj2yzgCJyaFCrU1Zs382n09M7RxDoLCF1Sck0JkzeMsOxxRQjJWXGCpkxKnmSMksnRfIbmIbyPDOeMFERM0Xc5DJ3RKhpnsWvwLcCA16C8NfYNR4eXtlVWA44t4IXrh4_4z25aFQA_qeiNhrDfPDsbhhZGrzpcxt4dHN4oH43uRqrU3oVRug6_mi_YX1QPEXy4QKeN6gLMDzpD27vldrFK1i_3D4tynWiRFQmATpkkqUgzoWpe6x1oCbVWaZY3OeEUpGS1oJLJusggZQIUh7rY7Yqcain4DF39vf0N4qGpBm965T8rSqp9k9Vxk_wHeippkg |
Cites_doi | 10.1364/AO.35.006568 10.1364/OE.471821 10.1364/AO.27.004861 10.1029/2024JH000170 10.1016/j.jqsrt.2004.03.011 10.1029/2021JD035629 10.1364/OE.23.011995 10.1002/2017JD027869 10.1016/S0022‐4073(02)00331‐X 10.1109/TGRS.2024.3419169 10.1134/S0030400X12040078 10.5281/zenodo.15205351 10.1029/2018GL081193 10.1364/OE.503825 10.1016/j.jqsrt.2011.02.015 10.5281/zenodo.14634314 10.1016/j.jqsrt.2025.109341 10.1364/AO.52.000640 10.1364/OL.15.001221 10.1016/j.jqsrt.2007.01.033 10.1364/OE.25.024044 10.1016/j.jqsrt.2014.01.013 10.1016/j.jqsrt.2018.10.021 10.1016/j.jqsrt.2005.11.053 10.1016/S0022‐4073(00)00127‐8 10.1016/j.jqsrt.2024.109057 10.1109/LGRS.2024.3453654 10.5194/amt‐7‐419‐2014 10.1364/OL.20.001356 10.1007/978-3-662-46762-6_7 10.1364/OE.27.000A92 10.1016/j.atmosres.2012.08.006 10.1029/2005JD006619 10.1016/j.jqsrt.2012.12.019 10.1364/OE.26.001726 10.5194/gmd‐9‐1647‐2016 10.1002/asl2.524 10.1038/nature14539 10.1029/2024JH000355 10.3390/rs13091733 10.1016/j.rse.2022.113079 10.1175/1520‐0477(1998)079<0831:OPOAAC>2.0.CO;2 10.1002/qj.40 10.1086/166795 10.1029/2023JD039568 10.1109/PROC.1965.4058 10.1016/S0022‐4073(02)00337‐0 10.1007/s00376‐021‐1375‐5 10.1016/0022‐4073(91)90043‐P 10.5194/amt‐14‐4083‐2021 10.1029/2021GL097548 10.1016/j.jqsrt.2016.05.006 10.1175/JAS‐D‐20‐0338.1 10.1016/j.jqsrt.2016.12.007 10.1029/2020JD033310 10.5194/amt‐6‐1397‐2013 10.1007/978-1-4899-7687-1 10.1109/TGRS.2021.3099026 10.5194/amt‐5‐73‐2012 10.1126/science.1127647 10.1364/OE.22.010270 10.1364/AO.36.008031 10.1029/2018JD029464 10.1016/S0022‐4073(98)00008‐9 10.1038/s41612‐024‐00652‐y 10.1016/j.jqsrt.2024.109326 10.1364/AO.40.000400 10.1364/AO.48.000114 10.5194/gmd‐11‐2739‐2018 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1029/2025JH000628 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
ExternalDocumentID | 10_1029_2025JH000628 |
GroupedDBID | 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E WIN |
ID | FETCH-LOGICAL-c758-eec429047457ab3bcdec9ebca456f6031e992b71929b85e427ea3eb8dd861c973 |
ISSN | 2993-5210 |
IngestDate | Sun Aug 03 02:40:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c758-eec429047457ab3bcdec9ebca456f6031e992b71929b85e427ea3eb8dd861c973 |
ORCID | 0000-0002-1996-880X 0000-0001-6460-4207 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2025JH000628 |
ParticipantIDs | crossref_primary_10_1029_2025JH000628 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2025 |
References | e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Sun B. (e_1_2_10_55_1) 2019 e_1_2_10_70_1 Bohren C. F. (e_1_2_10_12_1) 2008 e_1_2_10_2_1 Berdnik V. V. (e_1_2_10_3_1) 2016 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Di Noia A. (e_1_2_10_19_1) 2018 Wang X. (e_1_2_10_64_1) 2024 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 Sammut C. (e_1_2_10_54_1) 2017 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 Geiss A. (e_1_2_10_27_1) 2024 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – ident: e_1_2_10_70_1 doi: 10.1364/AO.35.006568 – ident: e_1_2_10_71_1 doi: 10.1364/OE.471821 – ident: e_1_2_10_33_1 doi: 10.1364/AO.27.004861 – ident: e_1_2_10_50_1 doi: 10.1029/2024JH000170 – ident: e_1_2_10_61_1 doi: 10.1016/j.jqsrt.2004.03.011 – ident: e_1_2_10_36_1 doi: 10.1029/2021JD035629 – ident: e_1_2_10_75_1 doi: 10.1364/OE.23.011995 – ident: e_1_2_10_5_1 doi: 10.1002/2017JD027869 – ident: e_1_2_10_47_1 doi: 10.1016/S0022‐4073(02)00331‐X – ident: e_1_2_10_20_1 doi: 10.1109/TGRS.2024.3419169 – ident: e_1_2_10_2_1 doi: 10.1134/S0030400X12040078 – ident: e_1_2_10_69_1 doi: 10.5281/zenodo.15205351 – ident: e_1_2_10_65_1 doi: 10.1029/2018GL081193 – ident: e_1_2_10_41_1 doi: 10.1364/OE.503825 – ident: e_1_2_10_10_1 doi: 10.1016/j.jqsrt.2011.02.015 – ident: e_1_2_10_68_1 doi: 10.5281/zenodo.14634314 – ident: e_1_2_10_74_1 doi: 10.1016/j.jqsrt.2025.109341 – ident: e_1_2_10_45_1 doi: 10.1364/AO.52.000640 – ident: e_1_2_10_32_1 doi: 10.1364/OL.15.001221 – ident: e_1_2_10_73_1 doi: 10.1016/j.jqsrt.2007.01.033 – start-page: 1 volume-title: Geoscientific model development discussions year: 2024 ident: e_1_2_10_27_1 – volume-title: Absorption and scattering of light by small particles year: 2008 ident: e_1_2_10_12_1 – ident: e_1_2_10_56_1 doi: 10.1364/OE.25.024044 – ident: e_1_2_10_7_1 doi: 10.1016/j.jqsrt.2014.01.013 – ident: e_1_2_10_46_1 doi: 10.1016/j.jqsrt.2018.10.021 – ident: e_1_2_10_60_1 doi: 10.1016/j.jqsrt.2005.11.053 – ident: e_1_2_10_29_1 doi: 10.1016/S0022‐4073(00)00127‐8 – ident: e_1_2_10_6_1 doi: 10.1016/j.jqsrt.2024.109057 – ident: e_1_2_10_17_1 doi: 10.1109/LGRS.2024.3453654 – ident: e_1_2_10_15_1 doi: 10.5194/amt‐7‐419‐2014 – ident: e_1_2_10_48_1 doi: 10.1364/OL.20.001356 – start-page: 291 volume-title: Light scattering reviews 10: Light scattering and radiative transfer year: 2016 ident: e_1_2_10_3_1 doi: 10.1007/978-3-662-46762-6_7 – ident: e_1_2_10_58_1 doi: 10.1364/OE.27.000A92 – ident: e_1_2_10_66_1 doi: 10.1016/j.atmosres.2012.08.006 – start-page: 1 volume-title: Geoscientific model development discussions year: 2024 ident: e_1_2_10_64_1 – ident: e_1_2_10_22_1 doi: 10.1029/2005JD006619 – ident: e_1_2_10_34_1 doi: 10.1016/j.jqsrt.2012.12.019 – volume-title: Invariant Imbedding T‐matrix method for light scattering by nonspherical and inhomogeneous particles year: 2019 ident: e_1_2_10_55_1 – ident: e_1_2_10_4_1 doi: 10.1364/OE.26.001726 – ident: e_1_2_10_23_1 doi: 10.5194/gmd‐9‐1647‐2016 – ident: e_1_2_10_28_1 doi: 10.1002/asl2.524 – ident: e_1_2_10_39_1 doi: 10.1038/nature14539 – ident: e_1_2_10_16_1 doi: 10.1029/2024JH000355 – ident: e_1_2_10_57_1 doi: 10.3390/rs13091733 – ident: e_1_2_10_62_1 doi: 10.1016/j.rse.2022.113079 – ident: e_1_2_10_30_1 doi: 10.1175/1520‐0477(1998)079<0831:OPOAAC>2.0.CO;2 – ident: e_1_2_10_35_1 doi: 10.1002/qj.40 – ident: e_1_2_10_21_1 doi: 10.1086/166795 – ident: e_1_2_10_63_1 doi: 10.1029/2023JD039568 – ident: e_1_2_10_67_1 doi: 10.1109/PROC.1965.4058 – ident: e_1_2_10_51_1 doi: 10.1016/S0022‐4073(02)00337‐0 – ident: e_1_2_10_72_1 doi: 10.1007/s00376‐021‐1375‐5 – ident: e_1_2_10_24_1 doi: 10.1016/0022‐4073(91)90043‐P – ident: e_1_2_10_25_1 doi: 10.5194/amt‐14‐4083‐2021 – ident: e_1_2_10_18_1 doi: 10.1029/2021GL097548 – ident: e_1_2_10_37_1 doi: 10.1016/j.jqsrt.2016.05.006 – ident: e_1_2_10_53_1 doi: 10.1175/JAS‐D‐20‐0338.1 – ident: e_1_2_10_9_1 doi: 10.1016/j.jqsrt.2016.12.007 – ident: e_1_2_10_44_1 doi: 10.1029/2020JD033310 – ident: e_1_2_10_14_1 doi: 10.5194/amt‐6‐1397‐2013 – start-page: 279 volume-title: Springer series in light scattering: Volume 1: Multiple light scattering, radiative transfer and remote sensing year: 2018 ident: e_1_2_10_19_1 – volume-title: Encyclopedia of machine learning and data mining year: 2017 ident: e_1_2_10_54_1 doi: 10.1007/978-1-4899-7687-1 – ident: e_1_2_10_42_1 doi: 10.1109/TGRS.2021.3099026 – ident: e_1_2_10_13_1 doi: 10.5194/amt‐5‐73‐2012 – ident: e_1_2_10_31_1 doi: 10.1126/science.1127647 – ident: e_1_2_10_8_1 doi: 10.1364/OE.22.010270 – ident: e_1_2_10_40_1 doi: 10.1364/AO.36.008031 – ident: e_1_2_10_43_1 doi: 10.1029/2018JD029464 – ident: e_1_2_10_49_1 doi: 10.1016/S0022‐4073(98)00008‐9 – ident: e_1_2_10_38_1 doi: 10.1038/s41612‐024‐00652‐y – ident: e_1_2_10_52_1 doi: 10.1016/j.jqsrt.2024.109326 – ident: e_1_2_10_59_1 doi: 10.1364/AO.40.000400 – ident: e_1_2_10_11_1 doi: 10.1364/AO.48.000114 – ident: e_1_2_10_26_1 doi: 10.5194/gmd‐11‐2739‐2018 |
SSID | ssj0003320807 |
Score | 2.3023803 |
Snippet | Single‐scattering properties of nonspherical particles are essential to atmospheric radiative transfer and remote sensing studies. In particular, full... |
SourceID | crossref |
SourceType | Index Database |
Title | Application of Deep Learning to Enhance the Computation of Phase Matrices of Nonspherical Atmospheric Particles Across All Size Parameters |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLXKsGGDQIB4jryAVZUhtZ3GWVYwqBqpIySKKKsqdm4nIzFNxaSbWfABfADfy72OnVioSAObqHVd1-o5so99X4y9FkqisLU60XYKiTJ6kphKpgiInmR6oytV0j3k4nw6_6zOVtlqNPoVeS3tW3Nibw7GlfwPqtiGuFKU7D8g2w-KDfga8cUnIozPW2E8G6zPJPreA-xCwtQLEpWn29pFBLSuOB2Vb-j7fqxx-xovXIL-Lu_sOc6Scgx0qLVXjX-HItM7z41nbk8dU73PT5c3QJ-UV-RPc_0XjXsBzS4QwacVqk-o2FFN4vZbmKqPrQvzCyRYOU-Dr_vB8N-FcsNl70bUZUD4sr-uyya-wBBZ76Hl1zlBLoSoIjrzDBxo8wu1iPgoDy7_qaDsqfQjZ_PUhYcO21ww7f-x-_U-ic4aL4p1_O077K7A4wetn4sfw92dlEhlF4nfz9PHVOAAb-MBIrUTyZblA3bfY8FnHYQP2Qi2j9jPiDi82XAiDg_E4W3DPXE4EodHxKG-jjg8EIdaYuLwiDi8Jw7viMOROJyIwwfiPGbLD6fLd_PEF-VILB4tEwCLCiZVucry0khjK7AFOdShEN9QxXIoCmFyPDcURmegRA6lBKOrSk8ntsjlE3a0bbbwlHErVV5OJ4A7XKmqIi2NytTGCm2KVOPgz9ib8N-td13qlfUhkJ7fst8Ldm-g30t21H7fwytUlK05djcxxw7k3_ZpekM |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Deep+Learning+to+Enhance+the+Computation+of+Phase+Matrices+of+Nonspherical+Atmospheric+Particles+Across+All+Size+Parameters&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Xi%2C+Yue&rft.au=Bi%2C+Lei&rft.au=Lin%2C+Wushao&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000628&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000628 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |