Application of Deep Learning to Enhance the Computation of Phase Matrices of Nonspherical Atmospheric Particles Across All Size Parameters

Single‐scattering properties of nonspherical particles are essential to atmospheric radiative transfer and remote sensing studies. In particular, full scattering phase matrices are indispensable for simulating polarized radiative transfer and polarimetry‐based remote sensing. However, accurately com...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 3
Main Authors Xi, Yue, Bi, Lei, Lin, Wushao
Format Journal Article
LanguageEnglish
Published 01.09.2025
Online AccessGet full text

Cover

Loading…
Abstract Single‐scattering properties of nonspherical particles are essential to atmospheric radiative transfer and remote sensing studies. In particular, full scattering phase matrices are indispensable for simulating polarized radiative transfer and polarimetry‐based remote sensing. However, accurately computing these optical properties of nonspherical aerosols across a complete spectrum of size parameters ranging from Rayleigh to geometric optics domains poses a significant challenge. Prior investigations have demonstrated the efficacy of the machine learning approach in computing the optical properties (extinction efficiency, single‐scattering albedo, and asymmetry factor) of nonspherical particles based on the optical property database generated from a combination of exact numerical methods for smaller size parameters and physical‐geometric optics approximation methods for large size parameters. In this study, we successfully applied the machine learning method to compute six nonzero scattering matrices at scattering angles from 0 to 180° for a broad range of size parameters. We found that the deep learning method can significantly enhances the accuracy of the scattering phase matrix in a size parameter range that bridges the exact results computed from the invariant imbedding T‐matrix method and the approximate results from the improved geometric optics method. Furthermore, we have developed a deep neural network capable of effectively computing the scattering matrices of super‐spheroidal particles with a wide range of size parameters, shape parameters, and refractive indices, thereby facilitating their application in polarimetry‐based remote sensing and radiation transfer models. Accurately simulating how nonspherical aerosols scatter light is essential for atmospheric radiative transfer and remote sensing studies. However, calculating these scattering properties across a broad spectrum of particle sizes and wavelengths—spanning all possible size parameters—remains a significant challenge. To solve this, machine learning techniques have been explored in this study. By training a deep neural network model on a comprehensive database that merges precise numerical simulations and physical‐geometrical optics approximations, a new model can now predict the optical properties of nonspherical aerosols for any size parameters. The approach not only improves accuracy for mid‐sized parameters but also works well for particle parameters not in the training data. This machine learning‐based method enhance our ability to study radiative transfer and has potential applications in related fields. The deep neural network (DNN), trained using the phase matrices of small size parameters, showed exceptional extrapolation accuracy for medium‐sized parameters The DNN integrates invariant imbedding T‐matrix method and improved geometric optics method calculation results for small and large size parameters, respectively, ensuring smooth transition and outperforming the traditional method The DNN offers an accurate and efficient method for computing phase matrices of nonspherical particles across all size parameters
AbstractList Single‐scattering properties of nonspherical particles are essential to atmospheric radiative transfer and remote sensing studies. In particular, full scattering phase matrices are indispensable for simulating polarized radiative transfer and polarimetry‐based remote sensing. However, accurately computing these optical properties of nonspherical aerosols across a complete spectrum of size parameters ranging from Rayleigh to geometric optics domains poses a significant challenge. Prior investigations have demonstrated the efficacy of the machine learning approach in computing the optical properties (extinction efficiency, single‐scattering albedo, and asymmetry factor) of nonspherical particles based on the optical property database generated from a combination of exact numerical methods for smaller size parameters and physical‐geometric optics approximation methods for large size parameters. In this study, we successfully applied the machine learning method to compute six nonzero scattering matrices at scattering angles from 0 to 180° for a broad range of size parameters. We found that the deep learning method can significantly enhances the accuracy of the scattering phase matrix in a size parameter range that bridges the exact results computed from the invariant imbedding T‐matrix method and the approximate results from the improved geometric optics method. Furthermore, we have developed a deep neural network capable of effectively computing the scattering matrices of super‐spheroidal particles with a wide range of size parameters, shape parameters, and refractive indices, thereby facilitating their application in polarimetry‐based remote sensing and radiation transfer models. Accurately simulating how nonspherical aerosols scatter light is essential for atmospheric radiative transfer and remote sensing studies. However, calculating these scattering properties across a broad spectrum of particle sizes and wavelengths—spanning all possible size parameters—remains a significant challenge. To solve this, machine learning techniques have been explored in this study. By training a deep neural network model on a comprehensive database that merges precise numerical simulations and physical‐geometrical optics approximations, a new model can now predict the optical properties of nonspherical aerosols for any size parameters. The approach not only improves accuracy for mid‐sized parameters but also works well for particle parameters not in the training data. This machine learning‐based method enhance our ability to study radiative transfer and has potential applications in related fields. The deep neural network (DNN), trained using the phase matrices of small size parameters, showed exceptional extrapolation accuracy for medium‐sized parameters The DNN integrates invariant imbedding T‐matrix method and improved geometric optics method calculation results for small and large size parameters, respectively, ensuring smooth transition and outperforming the traditional method The DNN offers an accurate and efficient method for computing phase matrices of nonspherical particles across all size parameters
Author Lin, Wushao
Xi, Yue
Bi, Lei
Author_xml – sequence: 1
  givenname: Yue
  surname: Xi
  fullname: Xi, Yue
  organization: School of Earth Sciences Zhejiang University Hangzhou China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-1996-880X
  surname: Bi
  fullname: Bi, Lei
  organization: School of Earth Sciences Zhejiang University Hangzhou China
– sequence: 3
  givenname: Wushao
  orcidid: 0000-0001-6460-4207
  surname: Lin
  fullname: Lin, Wushao
  organization: School of Earth Sciences Zhejiang University Hangzhou China
BookMark eNpNkE1OwzAQhS1UJErpjgP4AAT8k8TxMiqFggpUovvIcSfEKLEj2yzgCJyaFCrU1Zs382n09M7RxDoLCF1Sck0JkzeMsOxxRQjJWXGCpkxKnmSMksnRfIbmIbyPDOeMFERM0Xc5DJ3RKhpnsWvwLcCA16C8NfYNR4eXtlVWA44t4IXrh4_4z25aFQA_qeiNhrDfPDsbhhZGrzpcxt4dHN4oH43uRqrU3oVRug6_mi_YX1QPEXy4QKeN6gLMDzpD27vldrFK1i_3D4tynWiRFQmATpkkqUgzoWpe6x1oCbVWaZY3OeEUpGS1oJLJusggZQIUh7rY7Yqcain4DF39vf0N4qGpBm965T8rSqp9k9Vxk_wHeippkg
Cites_doi 10.1364/AO.35.006568
10.1364/OE.471821
10.1364/AO.27.004861
10.1029/2024JH000170
10.1016/j.jqsrt.2004.03.011
10.1029/2021JD035629
10.1364/OE.23.011995
10.1002/2017JD027869
10.1016/S0022‐4073(02)00331‐X
10.1109/TGRS.2024.3419169
10.1134/S0030400X12040078
10.5281/zenodo.15205351
10.1029/2018GL081193
10.1364/OE.503825
10.1016/j.jqsrt.2011.02.015
10.5281/zenodo.14634314
10.1016/j.jqsrt.2025.109341
10.1364/AO.52.000640
10.1364/OL.15.001221
10.1016/j.jqsrt.2007.01.033
10.1364/OE.25.024044
10.1016/j.jqsrt.2014.01.013
10.1016/j.jqsrt.2018.10.021
10.1016/j.jqsrt.2005.11.053
10.1016/S0022‐4073(00)00127‐8
10.1016/j.jqsrt.2024.109057
10.1109/LGRS.2024.3453654
10.5194/amt‐7‐419‐2014
10.1364/OL.20.001356
10.1007/978-3-662-46762-6_7
10.1364/OE.27.000A92
10.1016/j.atmosres.2012.08.006
10.1029/2005JD006619
10.1016/j.jqsrt.2012.12.019
10.1364/OE.26.001726
10.5194/gmd‐9‐1647‐2016
10.1002/asl2.524
10.1038/nature14539
10.1029/2024JH000355
10.3390/rs13091733
10.1016/j.rse.2022.113079
10.1175/1520‐0477(1998)079<0831:OPOAAC>2.0.CO;2
10.1002/qj.40
10.1086/166795
10.1029/2023JD039568
10.1109/PROC.1965.4058
10.1016/S0022‐4073(02)00337‐0
10.1007/s00376‐021‐1375‐5
10.1016/0022‐4073(91)90043‐P
10.5194/amt‐14‐4083‐2021
10.1029/2021GL097548
10.1016/j.jqsrt.2016.05.006
10.1175/JAS‐D‐20‐0338.1
10.1016/j.jqsrt.2016.12.007
10.1029/2020JD033310
10.5194/amt‐6‐1397‐2013
10.1007/978-1-4899-7687-1
10.1109/TGRS.2021.3099026
10.5194/amt‐5‐73‐2012
10.1126/science.1127647
10.1364/OE.22.010270
10.1364/AO.36.008031
10.1029/2018JD029464
10.1016/S0022‐4073(98)00008‐9
10.1038/s41612‐024‐00652‐y
10.1016/j.jqsrt.2024.109326
10.1364/AO.40.000400
10.1364/AO.48.000114
10.5194/gmd‐11‐2739‐2018
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1029/2025JH000628
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
ExternalDocumentID 10_1029_2025JH000628
GroupedDBID 0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-LOGICAL-c758-eec429047457ab3bcdec9ebca456f6031e992b71929b85e427ea3eb8dd861c973
ISSN 2993-5210
IngestDate Sun Aug 03 02:40:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c758-eec429047457ab3bcdec9ebca456f6031e992b71929b85e427ea3eb8dd861c973
ORCID 0000-0002-1996-880X
0000-0001-6460-4207
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2025JH000628
ParticipantIDs crossref_primary_10_1029_2025JH000628
PublicationCentury 2000
PublicationDate 2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-00
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
References e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Sun B. (e_1_2_10_55_1) 2019
e_1_2_10_70_1
Bohren C. F. (e_1_2_10_12_1) 2008
e_1_2_10_2_1
Berdnik V. V. (e_1_2_10_3_1) 2016
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Di Noia A. (e_1_2_10_19_1) 2018
Wang X. (e_1_2_10_64_1) 2024
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Sammut C. (e_1_2_10_54_1) 2017
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
Geiss A. (e_1_2_10_27_1) 2024
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – ident: e_1_2_10_70_1
  doi: 10.1364/AO.35.006568
– ident: e_1_2_10_71_1
  doi: 10.1364/OE.471821
– ident: e_1_2_10_33_1
  doi: 10.1364/AO.27.004861
– ident: e_1_2_10_50_1
  doi: 10.1029/2024JH000170
– ident: e_1_2_10_61_1
  doi: 10.1016/j.jqsrt.2004.03.011
– ident: e_1_2_10_36_1
  doi: 10.1029/2021JD035629
– ident: e_1_2_10_75_1
  doi: 10.1364/OE.23.011995
– ident: e_1_2_10_5_1
  doi: 10.1002/2017JD027869
– ident: e_1_2_10_47_1
  doi: 10.1016/S0022‐4073(02)00331‐X
– ident: e_1_2_10_20_1
  doi: 10.1109/TGRS.2024.3419169
– ident: e_1_2_10_2_1
  doi: 10.1134/S0030400X12040078
– ident: e_1_2_10_69_1
  doi: 10.5281/zenodo.15205351
– ident: e_1_2_10_65_1
  doi: 10.1029/2018GL081193
– ident: e_1_2_10_41_1
  doi: 10.1364/OE.503825
– ident: e_1_2_10_10_1
  doi: 10.1016/j.jqsrt.2011.02.015
– ident: e_1_2_10_68_1
  doi: 10.5281/zenodo.14634314
– ident: e_1_2_10_74_1
  doi: 10.1016/j.jqsrt.2025.109341
– ident: e_1_2_10_45_1
  doi: 10.1364/AO.52.000640
– ident: e_1_2_10_32_1
  doi: 10.1364/OL.15.001221
– ident: e_1_2_10_73_1
  doi: 10.1016/j.jqsrt.2007.01.033
– start-page: 1
  volume-title: Geoscientific model development discussions
  year: 2024
  ident: e_1_2_10_27_1
– volume-title: Absorption and scattering of light by small particles
  year: 2008
  ident: e_1_2_10_12_1
– ident: e_1_2_10_56_1
  doi: 10.1364/OE.25.024044
– ident: e_1_2_10_7_1
  doi: 10.1016/j.jqsrt.2014.01.013
– ident: e_1_2_10_46_1
  doi: 10.1016/j.jqsrt.2018.10.021
– ident: e_1_2_10_60_1
  doi: 10.1016/j.jqsrt.2005.11.053
– ident: e_1_2_10_29_1
  doi: 10.1016/S0022‐4073(00)00127‐8
– ident: e_1_2_10_6_1
  doi: 10.1016/j.jqsrt.2024.109057
– ident: e_1_2_10_17_1
  doi: 10.1109/LGRS.2024.3453654
– ident: e_1_2_10_15_1
  doi: 10.5194/amt‐7‐419‐2014
– ident: e_1_2_10_48_1
  doi: 10.1364/OL.20.001356
– start-page: 291
  volume-title: Light scattering reviews 10: Light scattering and radiative transfer
  year: 2016
  ident: e_1_2_10_3_1
  doi: 10.1007/978-3-662-46762-6_7
– ident: e_1_2_10_58_1
  doi: 10.1364/OE.27.000A92
– ident: e_1_2_10_66_1
  doi: 10.1016/j.atmosres.2012.08.006
– start-page: 1
  volume-title: Geoscientific model development discussions
  year: 2024
  ident: e_1_2_10_64_1
– ident: e_1_2_10_22_1
  doi: 10.1029/2005JD006619
– ident: e_1_2_10_34_1
  doi: 10.1016/j.jqsrt.2012.12.019
– volume-title: Invariant Imbedding T‐matrix method for light scattering by nonspherical and inhomogeneous particles
  year: 2019
  ident: e_1_2_10_55_1
– ident: e_1_2_10_4_1
  doi: 10.1364/OE.26.001726
– ident: e_1_2_10_23_1
  doi: 10.5194/gmd‐9‐1647‐2016
– ident: e_1_2_10_28_1
  doi: 10.1002/asl2.524
– ident: e_1_2_10_39_1
  doi: 10.1038/nature14539
– ident: e_1_2_10_16_1
  doi: 10.1029/2024JH000355
– ident: e_1_2_10_57_1
  doi: 10.3390/rs13091733
– ident: e_1_2_10_62_1
  doi: 10.1016/j.rse.2022.113079
– ident: e_1_2_10_30_1
  doi: 10.1175/1520‐0477(1998)079<0831:OPOAAC>2.0.CO;2
– ident: e_1_2_10_35_1
  doi: 10.1002/qj.40
– ident: e_1_2_10_21_1
  doi: 10.1086/166795
– ident: e_1_2_10_63_1
  doi: 10.1029/2023JD039568
– ident: e_1_2_10_67_1
  doi: 10.1109/PROC.1965.4058
– ident: e_1_2_10_51_1
  doi: 10.1016/S0022‐4073(02)00337‐0
– ident: e_1_2_10_72_1
  doi: 10.1007/s00376‐021‐1375‐5
– ident: e_1_2_10_24_1
  doi: 10.1016/0022‐4073(91)90043‐P
– ident: e_1_2_10_25_1
  doi: 10.5194/amt‐14‐4083‐2021
– ident: e_1_2_10_18_1
  doi: 10.1029/2021GL097548
– ident: e_1_2_10_37_1
  doi: 10.1016/j.jqsrt.2016.05.006
– ident: e_1_2_10_53_1
  doi: 10.1175/JAS‐D‐20‐0338.1
– ident: e_1_2_10_9_1
  doi: 10.1016/j.jqsrt.2016.12.007
– ident: e_1_2_10_44_1
  doi: 10.1029/2020JD033310
– ident: e_1_2_10_14_1
  doi: 10.5194/amt‐6‐1397‐2013
– start-page: 279
  volume-title: Springer series in light scattering: Volume 1: Multiple light scattering, radiative transfer and remote sensing
  year: 2018
  ident: e_1_2_10_19_1
– volume-title: Encyclopedia of machine learning and data mining
  year: 2017
  ident: e_1_2_10_54_1
  doi: 10.1007/978-1-4899-7687-1
– ident: e_1_2_10_42_1
  doi: 10.1109/TGRS.2021.3099026
– ident: e_1_2_10_13_1
  doi: 10.5194/amt‐5‐73‐2012
– ident: e_1_2_10_31_1
  doi: 10.1126/science.1127647
– ident: e_1_2_10_8_1
  doi: 10.1364/OE.22.010270
– ident: e_1_2_10_40_1
  doi: 10.1364/AO.36.008031
– ident: e_1_2_10_43_1
  doi: 10.1029/2018JD029464
– ident: e_1_2_10_49_1
  doi: 10.1016/S0022‐4073(98)00008‐9
– ident: e_1_2_10_38_1
  doi: 10.1038/s41612‐024‐00652‐y
– ident: e_1_2_10_52_1
  doi: 10.1016/j.jqsrt.2024.109326
– ident: e_1_2_10_59_1
  doi: 10.1364/AO.40.000400
– ident: e_1_2_10_11_1
  doi: 10.1364/AO.48.000114
– ident: e_1_2_10_26_1
  doi: 10.5194/gmd‐11‐2739‐2018
SSID ssj0003320807
Score 2.3023803
Snippet Single‐scattering properties of nonspherical particles are essential to atmospheric radiative transfer and remote sensing studies. In particular, full...
SourceID crossref
SourceType Index Database
Title Application of Deep Learning to Enhance the Computation of Phase Matrices of Nonspherical Atmospheric Particles Across All Size Parameters
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLXKsGGDQIB4jryAVZUhtZ3GWVYwqBqpIySKKKsqdm4nIzFNxaSbWfABfADfy72OnVioSAObqHVd1-o5so99X4y9FkqisLU60XYKiTJ6kphKpgiInmR6oytV0j3k4nw6_6zOVtlqNPoVeS3tW3Nibw7GlfwPqtiGuFKU7D8g2w-KDfga8cUnIozPW2E8G6zPJPreA-xCwtQLEpWn29pFBLSuOB2Vb-j7fqxx-xovXIL-Lu_sOc6Scgx0qLVXjX-HItM7z41nbk8dU73PT5c3QJ-UV-RPc_0XjXsBzS4QwacVqk-o2FFN4vZbmKqPrQvzCyRYOU-Dr_vB8N-FcsNl70bUZUD4sr-uyya-wBBZ76Hl1zlBLoSoIjrzDBxo8wu1iPgoDy7_qaDsqfQjZ_PUhYcO21ww7f-x-_U-ic4aL4p1_O077K7A4wetn4sfw92dlEhlF4nfz9PHVOAAb-MBIrUTyZblA3bfY8FnHYQP2Qi2j9jPiDi82XAiDg_E4W3DPXE4EodHxKG-jjg8EIdaYuLwiDi8Jw7viMOROJyIwwfiPGbLD6fLd_PEF-VILB4tEwCLCiZVucry0khjK7AFOdShEN9QxXIoCmFyPDcURmegRA6lBKOrSk8ntsjlE3a0bbbwlHErVV5OJ4A7XKmqIi2NytTGCm2KVOPgz9ib8N-td13qlfUhkJ7fst8Ldm-g30t21H7fwytUlK05djcxxw7k3_ZpekM
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Deep+Learning+to+Enhance+the+Computation+of+Phase+Matrices+of+Nonspherical+Atmospheric+Particles+Across+All+Size+Parameters&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Xi%2C+Yue&rft.au=Bi%2C+Lei&rft.au=Lin%2C+Wushao&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000628&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon