Global Estimation of Subsurface Eddy Kinetic Energy of Mesoscale Eddies Using Machine Learning
Oceanic eddy kinetic energy (EKE) is a key quantity for measuring the intensity of mesoscale eddies and developing mesoscale eddy parameterizations in ocean circulation models. Three decades of satellite observations enable a global assessment of sea surface EKE. However, due to the sparseness of in...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 2; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.09.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Oceanic eddy kinetic energy (EKE) is a key quantity for measuring the intensity of mesoscale eddies and developing mesoscale eddy parameterizations in ocean circulation models. Three decades of satellite observations enable a global assessment of sea surface EKE. However, due to the sparseness of in situ observational data, subsurface EKE with a spatial filter has not been systematically studied. Subsurface EKE can be inferred theoretically and numerically from sea surface observations, but is limited by the problem of decreasing correlation with sea surface variables as depth increases. In this study, we propose a dual‐branch neural network approach to reconstruct the monthly mean subsurface EKE using sea surface variables and subsurface climatological variables (e.g., horizontal filtered velocity gradients), inspired by the Taylor‐series expansion of subsurface EKE. Four neural network models are trained on a high‐resolution global ocean reanalysis data set: surface input fully connected neural network model (FCNN), surface input residual neural network model (ResNet), dual‐branch fully connected neural network model (DB‐FCNN), and dual‐branch residual neural network model (DB‐ResNet). The proposed DB‐FCNN and DB‐ResNet models integrate the surface input variables and the vertical profiles of subsurface variables. The DB‐ResNet model outperforms the FCNN, ResNet, DB‐FCNN, and traditional physics‐based models in both regional and global reconstruction of subsurface EKE in the upper 2,000 m. In addition, the DB‐ResNet model performs well for both regional and global observational data based on transfer learning. These results reveal the potential of the DB‐ResNet model for efficient and accurate reconstruction of subsurface oceanic variables.
Mesoscale eddies, which are loosely defined as swirling water masses of tens to hundreds of kilometers in horizontal width, are crucial in shaping ocean circulation and influencing global climate dynamics. Eddy kinetic energy (EKE) is a key indicator of mesoscale eddy intensity and is essential for global ocean modeling and applications in oceanography and climate studies. Although surface EKE can be derived from satellite altimetry data measuring the sea surface height, subsurface EKE is challenging to measure because there are not enough in situ observations. This study explores machine learning methods to predict subsurface EKE using sea surface variables and sparse vertical profiles of variables from reanalysis and observational data sets. We develop a dual‐branch residual neural network model that can effectively reconstruct the global subsurface EKE. This work not only enhances the prediction of subsurface processes but also supports broader applications in climate modeling.
Dual‐branch neural network models are proposed to estimate the subsurface eddy kinetic energy (EKE) by integrating surface data and sparse subsurface variables The proposed DB‐ResNet model outperforms models that rely only on surface data in reconstructing the vertical structure of EKE The locally trained DB‐ResNet model can be applied to global ocean and further adapted to observational data through transfer learning |
---|---|
AbstractList | Oceanic eddy kinetic energy (EKE) is a key quantity for measuring the intensity of mesoscale eddies and developing mesoscale eddy parameterizations in ocean circulation models. Three decades of satellite observations enable a global assessment of sea surface EKE. However, due to the sparseness of in situ observational data, subsurface EKE with a spatial filter has not been systematically studied. Subsurface EKE can be inferred theoretically and numerically from sea surface observations, but is limited by the problem of decreasing correlation with sea surface variables as depth increases. In this study, we propose a dual‐branch neural network approach to reconstruct the monthly mean subsurface EKE using sea surface variables and subsurface climatological variables (e.g., horizontal filtered velocity gradients), inspired by the Taylor‐series expansion of subsurface EKE. Four neural network models are trained on a high‐resolution global ocean reanalysis data set: surface input fully connected neural network model (FCNN), surface input residual neural network model (ResNet), dual‐branch fully connected neural network model (DB‐FCNN), and dual‐branch residual neural network model (DB‐ResNet). The proposed DB‐FCNN and DB‐ResNet models integrate the surface input variables and the vertical profiles of subsurface variables. The DB‐ResNet model outperforms the FCNN, ResNet, DB‐FCNN, and traditional physics‐based models in both regional and global reconstruction of subsurface EKE in the upper 2,000 m. In addition, the DB‐ResNet model performs well for both regional and global observational data based on transfer learning. These results reveal the potential of the DB‐ResNet model for efficient and accurate reconstruction of subsurface oceanic variables.
Mesoscale eddies, which are loosely defined as swirling water masses of tens to hundreds of kilometers in horizontal width, are crucial in shaping ocean circulation and influencing global climate dynamics. Eddy kinetic energy (EKE) is a key indicator of mesoscale eddy intensity and is essential for global ocean modeling and applications in oceanography and climate studies. Although surface EKE can be derived from satellite altimetry data measuring the sea surface height, subsurface EKE is challenging to measure because there are not enough in situ observations. This study explores machine learning methods to predict subsurface EKE using sea surface variables and sparse vertical profiles of variables from reanalysis and observational data sets. We develop a dual‐branch residual neural network model that can effectively reconstruct the global subsurface EKE. This work not only enhances the prediction of subsurface processes but also supports broader applications in climate modeling.
Dual‐branch neural network models are proposed to estimate the subsurface eddy kinetic energy (EKE) by integrating surface data and sparse subsurface variables The proposed DB‐ResNet model outperforms models that rely only on surface data in reconstructing the vertical structure of EKE The locally trained DB‐ResNet model can be applied to global ocean and further adapted to observational data through transfer learning |
Author | Gao, An‐Kang Lu, Xiyun Xie, Chenyue |
Author_xml | – sequence: 1 givenname: Chenyue orcidid: 0000-0001-6115-4204 surname: Xie fullname: Xie, Chenyue organization: Department of Modern Mechanics University of Science and Technology of China Hefei China – sequence: 2 givenname: An‐Kang orcidid: 0000-0002-9805-1388 surname: Gao fullname: Gao, An‐Kang organization: Department of Modern Mechanics University of Science and Technology of China Hefei China – sequence: 3 givenname: Xiyun surname: Lu fullname: Lu, Xiyun organization: Department of Modern Mechanics University of Science and Technology of China Hefei China |
BookMark | eNpNkL1OwzAcxC1UJErpxgP4AQj8bTd1PKIqtEAqBspK5M9iFGxkp0PenhQYOt3p9NNJd5doEmKwCF0TuCVAxR0FunjaAEDJqzM0pUKwoqQEJif-As1z_hwZxihUwKfofd1FJTtc595_yd7HgKPDrweVD8lJbXFtzICffbC917gONu2HI7G1OWYtu1_A24zfsg97vJX6Y2RxY2UKY3CFzp3ssp3_6wztHurdalM0L-vH1X1TaF5WhVSSKQeyrJgDyw0VlgkORLMFd0DIuIlp5ZzixmghKQew0rmFWVLKl5qyGbr5q9Up5pysa7_TOCcNLYH2-E57-g77AQQBWO8 |
Cites_doi | 10.3389/feart.2021.698876 10.1109/LGRS.2018.2866237 10.1029/2021MS002534 10.1016/j.ocemod.2017.02.004 10.1029/2021JC017453 10.3389/fmars.2019.00194 10.5194/gmd‐9‐1937‐2016 10.1175/JCLI‐D‐15‐0028.1 10.1080/14685248.2019.1706742 10.1103/PhysRevFluids.2.054604 10.1029/2023GL104889 10.1029/2018MS001472 10.1175/JTECH‐D‐13‐00109.1 10.1175/JPO‐D‐17‐0136.1 10.1016/0022‐1694(70)90255‐6 10.1029/2023MS004047 10.1016/j.ocemod.2015.04.002 10.1029/2020GL088376 10.1175/1520‐0485(1987)017<1978:aitote>2.0.co;2 10.1029/2023GL104688 10.1017/S002211207900001X 10.1175/JPO2840.1 10.1029/2024MS004422 10.1029/2023MS004093 10.1017/9781107588417 10.1029/2023GL103114 10.1175/1520‐0485(2002)032?lt3328:TOEHT?gt2.0.CO;2 10.21105/joss.04277 10.1016/j.jhydrol.2012.12.004 10.1061/(ASCE)1084‐0699(2006)11:6(597) 10.1029/2023GL105642 10.1029/2022MS003589 10.1029/2022MS003370 10.1016/j.pocean.2011.01.002 10.1029/2021JC017967 10.1175/JPO‐D‐17‐0100.1 10.1146/annurev.fluid.32.1.1 10.1016/j.ocemod.2017.01.001 10.1175/JPO‐D‐23‐0203.1 10.1029/2021GL094772 10.1029/2024MS004262 10.1002/2016JC012256 10.1029/2022JC019160 10.1111/j.1600‐0870.2009.00432.x 10.1029/2023MS004145 10.1038/s41597‐019‐0236‐x 10.5194/os‐15‐1091‐2019 10.1029/2023GL104835 10.1002/2014JC010221 10.1029/2022MS003424 10.1029/2019MS001855 10.1029/2020GL089425 10.1146/annurev.marine.010908.163704 10.1029/2021GL094777 10.1016/j.ocemod.2010.02.001 10.1175/JPO‐D‐11‐0111.1 10.1029/2024GL110059 10.1175/2007JCLI1824.1 10.1103/PhysRevE.99.053113 10.1029/2023MS003693 10.3390/rs12040720 10.1103/PhysRevFluids.6.084612 10.1002/2017GL075430 10.1175/JPO‐D‐12‐0107.1 10.1029/2023MS003728 10.1029/2023MS003771 10.1029/2021JC018001 10.5194/essd‐8‐165‐2016 10.1175/JPO‐D‐22‐0108.1 10.1093/nsr/nwac044 10.1038/s41467‐022‐33031‐3 10.1029/2023MS003874 10.1175/JPO‐D‐12‐0204.1 10.1175/1520‐0469(1975)032<0233:tgmaat>2.0.co;2 10.1029/2019MS001750 10.5194/essd‐14‐5037‐2022 10.1175/JPO‐D‐13‐0113.1 10.1016/j.ocemod.2024.102373 10.1214/aoms/1177703732 10.1080/01490410903297766 10.5194/os‐18‐1221‐2022 10.1029/2020MS002151 10.1038/s41558‐022‐01478‐3 10.1175/1520‐0485(1999)029<3161:asonab>2.0.co;2 10.1002/2015GL066152 10.1029/2023MS003709 10.1029/2019MS001965 10.1126/sciadv.abf4920 10.1109/LGRS.2017.2665603 10.1103/PhysRevFluids.5.054606 10.1175/JPO‐D‐19‐0311.1 10.1175/JPO‐D‐21‐0217.1 10.5281/zenodo.14328633 10.5194/gmd‐13‐1609‐2020 10.1175/JCLI‐D‐20‐0166.1 10.1175/1520‐0485(1997)027<1770:tvpooh>2.0.co;2 10.1029/2021MS002474 10.1016/j.ocemod.2007.09.002 10.1093/climsys/dzw001 10.1038/s41467‐020‐20779‐9 10.1029/2022MS003356 10.1175/JPO‐D‐23‐0017.1 10.1016/j.jocs.2022.101707 10.1109/TKDE.2009.191 10.1175/JPO‐D‐21‐0199.1 10.1175/JPO‐D‐22‐0146.1 10.3389/fmars.2019.00232 10.1029/2021MS002552 10.1029/2023GL107652 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1029/2024JH000578 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
ExternalDocumentID | 10_1029_2024JH000578 |
GroupedDBID | 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E WIN |
ID | FETCH-LOGICAL-c758-aba3bf0a583f0e7d29e39701c347f0110053cbffb7ddc9a2700eaff4d62276c23 |
ISSN | 2993-5210 |
IngestDate | Wed Aug 27 16:29:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c758-aba3bf0a583f0e7d29e39701c347f0110053cbffb7ddc9a2700eaff4d62276c23 |
ORCID | 0000-0001-6115-4204 0000-0002-9805-1388 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024JH000578 |
ParticipantIDs | crossref_primary_10_1029_2024JH000578 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2025 |
References | e_1_2_12_6_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_115_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_100_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_92_1 Vallis G. K. (e_1_2_12_95_1) 2017 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_114_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_29_1 e_1_2_12_103_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_19_1 e_1_2_12_38_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 Yosinski J. (e_1_2_12_113_1) 2014; 27 e_1_2_12_49_1 e_1_2_12_102_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_39_1 e_1_2_12_116_1 Amante C. (e_1_2_12_3_1) 2009 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_105_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 Kolodziejczyk N. (e_1_2_12_50_1) 2023 e_1_2_12_11_1 e_1_2_12_72_1 Pope S. B. (e_1_2_12_78_1) 2000 e_1_2_12_9_1 |
References_xml | – ident: e_1_2_12_44_1 doi: 10.3389/feart.2021.698876 – ident: e_1_2_12_16_1 doi: 10.1109/LGRS.2018.2866237 – ident: e_1_2_12_36_1 doi: 10.1029/2021MS002534 – ident: e_1_2_12_97_1 – ident: e_1_2_12_5_1 doi: 10.1016/j.ocemod.2017.02.004 – ident: e_1_2_12_63_1 doi: 10.1029/2021JC017453 – ident: e_1_2_12_17_1 doi: 10.3389/fmars.2019.00194 – ident: e_1_2_12_23_1 doi: 10.5194/gmd‐9‐1937‐2016 – ident: e_1_2_12_29_1 doi: 10.1175/JCLI‐D‐15‐0028.1 – ident: e_1_2_12_24_1 doi: 10.1080/14685248.2019.1706742 – ident: e_1_2_12_30_1 doi: 10.1103/PhysRevFluids.2.054604 – ident: e_1_2_12_116_1 doi: 10.1029/2023GL104889 – ident: e_1_2_12_12_1 doi: 10.1029/2018MS001472 – ident: e_1_2_12_28_1 doi: 10.1175/JTECH‐D‐13‐00109.1 – ident: e_1_2_12_85_1 doi: 10.1175/JPO‐D‐17‐0136.1 – ident: e_1_2_12_48_1 – ident: e_1_2_12_71_1 doi: 10.1016/0022‐1694(70)90255‐6 – ident: e_1_2_12_6_1 doi: 10.1029/2023MS004047 – ident: e_1_2_12_83_1 doi: 10.1016/j.ocemod.2015.04.002 – ident: e_1_2_12_114_1 doi: 10.1029/2020GL088376 – ident: e_1_2_12_76_1 doi: 10.1175/1520‐0485(1987)017<1978:aitote>2.0.co;2 – ident: e_1_2_12_93_1 doi: 10.1029/2023GL104688 – ident: e_1_2_12_18_1 doi: 10.1017/S002211207900001X – ident: e_1_2_12_53_1 doi: 10.1175/JPO2840.1 – ident: e_1_2_12_67_1 doi: 10.1029/2024MS004422 – ident: e_1_2_12_110_1 doi: 10.1029/2023MS004093 – volume-title: Atmospheric and oceanic fluid dynamics year: 2017 ident: e_1_2_12_95_1 doi: 10.1017/9781107588417 – ident: e_1_2_12_72_1 doi: 10.1029/2023GL103114 – ident: e_1_2_12_43_1 doi: 10.1175/1520‐0485(2002)032?lt3328:TOEHT?gt2.0.CO;2 – ident: e_1_2_12_89_1 doi: 10.21105/joss.04277 – ident: e_1_2_12_82_1 doi: 10.1016/j.jhydrol.2012.12.004 – ident: e_1_2_12_64_1 doi: 10.1061/(ASCE)1084‐0699(2006)11:6(597) – ident: e_1_2_12_111_1 doi: 10.1029/2023GL105642 – ident: e_1_2_12_61_1 doi: 10.1029/2022MS003589 – ident: e_1_2_12_87_1 doi: 10.1029/2022MS003370 – ident: e_1_2_12_15_1 doi: 10.1016/j.pocean.2011.01.002 – volume-title: Turbulent flows year: 2000 ident: e_1_2_12_78_1 – ident: e_1_2_12_35_1 doi: 10.1029/2021JC017967 – ident: e_1_2_12_2_1 doi: 10.1175/JPO‐D‐17‐0100.1 – ident: e_1_2_12_65_1 doi: 10.1146/annurev.fluid.32.1.1 – ident: e_1_2_12_60_1 doi: 10.1016/j.ocemod.2017.01.001 – ident: e_1_2_12_115_1 doi: 10.1175/JPO‐D‐23‐0203.1 – ident: e_1_2_12_55_1 doi: 10.1029/2021GL094772 – ident: e_1_2_12_66_1 doi: 10.1029/2024MS004262 – ident: e_1_2_12_4_1 doi: 10.1002/2016JC012256 – ident: e_1_2_12_99_1 doi: 10.1029/2022JC019160 – ident: e_1_2_12_25_1 doi: 10.1111/j.1600‐0870.2009.00432.x – ident: e_1_2_12_91_1 doi: 10.1029/2023MS004145 – ident: e_1_2_12_68_1 doi: 10.1038/s41597‐019‐0236‐x – ident: e_1_2_12_7_1 doi: 10.5194/os‐15‐1091‐2019 – ident: e_1_2_12_37_1 doi: 10.1029/2023GL104835 – ident: e_1_2_12_54_1 doi: 10.1002/2014JC010221 – ident: e_1_2_12_107_1 doi: 10.1029/2022MS003424 – ident: e_1_2_12_45_1 doi: 10.1029/2019MS001855 – ident: e_1_2_12_33_1 doi: 10.1029/2020GL089425 – ident: e_1_2_12_49_1 doi: 10.1146/annurev.marine.010908.163704 – ident: e_1_2_12_47_1 doi: 10.1029/2021GL094777 – ident: e_1_2_12_59_1 doi: 10.1016/j.ocemod.2010.02.001 – ident: e_1_2_12_51_1 doi: 10.1175/JPO‐D‐11‐0111.1 – ident: e_1_2_12_62_1 doi: 10.1029/2024GL110059 – ident: e_1_2_12_80_1 doi: 10.1175/2007JCLI1824.1 – ident: e_1_2_12_104_1 doi: 10.1103/PhysRevE.99.053113 – ident: e_1_2_12_13_1 doi: 10.1029/2023MS003693 – ident: e_1_2_12_32_1 doi: 10.3390/rs12040720 – ident: e_1_2_12_108_1 doi: 10.1103/PhysRevFluids.6.084612 – ident: e_1_2_12_52_1 doi: 10.1002/2017GL075430 – ident: e_1_2_12_57_1 – ident: e_1_2_12_86_1 doi: 10.1175/JPO‐D‐12‐0107.1 – ident: e_1_2_12_109_1 doi: 10.1029/2023MS003728 – ident: e_1_2_12_77_1 doi: 10.1029/2023MS003771 – ident: e_1_2_12_69_1 doi: 10.1029/2021JC018001 – ident: e_1_2_12_8_1 doi: 10.5194/essd‐8‐165‐2016 – ident: e_1_2_12_56_1 doi: 10.1175/JPO‐D‐22‐0108.1 – ident: e_1_2_12_117_1 doi: 10.1093/nsr/nwac044 – ident: e_1_2_12_90_1 doi: 10.1038/s41467‐022‐33031‐3 – ident: e_1_2_12_41_1 doi: 10.1029/2023MS003874 – ident: e_1_2_12_96_1 doi: 10.1175/JPO‐D‐12‐0204.1 – ident: e_1_2_12_38_1 doi: 10.1175/1520‐0469(1975)032<0233:tgmaat>2.0.co;2 – ident: e_1_2_12_42_1 doi: 10.1029/2019MS001750 – ident: e_1_2_12_92_1 doi: 10.5194/essd‐14‐5037‐2022 – ident: e_1_2_12_98_1 doi: 10.1175/JPO‐D‐13‐0113.1 – ident: e_1_2_12_21_1 doi: 10.1016/j.ocemod.2024.102373 – ident: e_1_2_12_40_1 doi: 10.1214/aoms/1177703732 – ident: e_1_2_12_10_1 doi: 10.1080/01490410903297766 – ident: e_1_2_12_75_1 doi: 10.5194/os‐18‐1221‐2022 – ident: e_1_2_12_88_1 doi: 10.1029/2020MS002151 – ident: e_1_2_12_11_1 doi: 10.1038/s41558‐022‐01478‐3 – ident: e_1_2_12_101_1 doi: 10.1175/1520‐0485(1999)029<3161:asonab>2.0.co;2 – volume-title: Isas temperature, salinity, dissolved oxygen gridded fields year: 2023 ident: e_1_2_12_50_1 – ident: e_1_2_12_81_1 doi: 10.1002/2015GL066152 – ident: e_1_2_12_102_1 doi: 10.1029/2023MS003709 – volume: 27 year: 2014 ident: e_1_2_12_113_1 article-title: How transferable are features in deep neural networks publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_12_58_1 doi: 10.1029/2019MS001965 – ident: e_1_2_12_79_1 doi: 10.1126/sciadv.abf4920 – ident: e_1_2_12_14_1 doi: 10.1109/LGRS.2017.2665603 – ident: e_1_2_12_105_1 doi: 10.1103/PhysRevFluids.5.054606 – volume-title: Etopo1 1 arc‐minute global relief model: Procedures, data sources and analysis year: 2009 ident: e_1_2_12_3_1 – ident: e_1_2_12_84_1 doi: 10.1175/JPO‐D‐19‐0311.1 – ident: e_1_2_12_94_1 doi: 10.1175/JPO‐D‐21‐0217.1 – ident: e_1_2_12_103_1 doi: 10.5281/zenodo.14328633 – ident: e_1_2_12_9_1 doi: 10.5194/gmd‐13‐1609‐2020 – ident: e_1_2_12_39_1 doi: 10.1175/JCLI‐D‐20‐0166.1 – ident: e_1_2_12_100_1 doi: 10.1175/1520‐0485(1997)027<1770:tvpooh>2.0.co;2 – ident: e_1_2_12_26_1 doi: 10.1029/2021MS002474 – ident: e_1_2_12_22_1 doi: 10.1016/j.ocemod.2007.09.002 – ident: e_1_2_12_20_1 doi: 10.1093/climsys/dzw001 – ident: e_1_2_12_31_1 doi: 10.1038/s41467‐020‐20779‐9 – ident: e_1_2_12_46_1 doi: 10.1029/2022MS003356 – ident: e_1_2_12_106_1 doi: 10.1175/JPO‐D‐23‐0017.1 – ident: e_1_2_12_74_1 doi: 10.1016/j.jocs.2022.101707 – ident: e_1_2_12_73_1 doi: 10.1109/TKDE.2009.191 – ident: e_1_2_12_112_1 doi: 10.1175/JPO‐D‐21‐0199.1 – ident: e_1_2_12_19_1 doi: 10.1175/JPO‐D‐22‐0146.1 – ident: e_1_2_12_70_1 doi: 10.3389/fmars.2019.00232 – ident: e_1_2_12_34_1 doi: 10.1029/2021MS002552 – ident: e_1_2_12_27_1 doi: 10.1029/2023GL107652 |
SSID | ssj0003320807 |
Score | 2.301832 |
Snippet | Oceanic eddy kinetic energy (EKE) is a key quantity for measuring the intensity of mesoscale eddies and developing mesoscale eddy parameterizations in ocean... |
SourceID | crossref |
SourceType | Index Database |
Title | Global Estimation of Subsurface Eddy Kinetic Energy of Mesoscale Eddies Using Machine Learning |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5TL15EUfHnyEFPo9ol_XmUMR3KPE3YyZE0iRO0G7oe5sG_3ZcmzapMmF5KSdO09Pvy8iV57xWhszYNZQYzBy-LufCCmLe9BIYJjxEV8ihLEsF0NHL_Puo9BLfDcNhofNSjS2b8IvtYGlfyH1ShDHDVUbJ_QNY1CgVwDvjCERCG40oYm4T9rS5001cn_bQpKN4Ugw7bFWLeugMdqbOydk2Un3Z5ke-Td8CmrAAz5ZbxG-iXfpWySrn69ItufZKTaQWuTRU0vnA3v1RLLTZeblp83-sfmv2Qzljm88KR6oaZaJvc-V7cMfsC2lmo0BeHz_Miry9SkNB5YVlbRrSbICgFswUjl5RZY0xqnKNLTbxPdIZUeEhw29OK0_wB6Hsm7R8jnPM7LHfcSTqq372GNghMMbSN7H8u1ucoJb6JtnfvaeMmoIHLegM1RVOTJoNttGWxwVeGIDuoIfNd9GjIgRfkwBOFF-TAmhzYkgMbcugajhzYkAOX5MAWX1yRYw8NrruDTs-zP9OAXhgmHuOMcuWzMKHKl7EgqQQl6rczGsSqzBsY0owrxWMhspRpdwTJlApEREgcZYTuo_V8kssDhFPKaMJS5sdMwDAroGERRSFRoB5jRqJDdF59j9HUpEwZLfvwRyvWO0abC0qdoPXZWyFPQQnOeLNcQWmWwH0BkRhd4Q |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Estimation+of+Subsurface+Eddy+Kinetic+Energy+of+Mesoscale+Eddies+Using+Machine+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Xie%2C+Chenyue&rft.au=Gao%2C+An%E2%80%90Kang&rft.au=Lu%2C+Xiyun&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2024JH000578&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000578 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |