Global Estimation of Subsurface Eddy Kinetic Energy of Mesoscale Eddies Using Machine Learning

Oceanic eddy kinetic energy (EKE) is a key quantity for measuring the intensity of mesoscale eddies and developing mesoscale eddy parameterizations in ocean circulation models. Three decades of satellite observations enable a global assessment of sea surface EKE. However, due to the sparseness of in...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 3
Main Authors Xie, Chenyue, Gao, An‐Kang, Lu, Xiyun
Format Journal Article
LanguageEnglish
Published 01.09.2025
Online AccessGet full text

Cover

Loading…
Abstract Oceanic eddy kinetic energy (EKE) is a key quantity for measuring the intensity of mesoscale eddies and developing mesoscale eddy parameterizations in ocean circulation models. Three decades of satellite observations enable a global assessment of sea surface EKE. However, due to the sparseness of in situ observational data, subsurface EKE with a spatial filter has not been systematically studied. Subsurface EKE can be inferred theoretically and numerically from sea surface observations, but is limited by the problem of decreasing correlation with sea surface variables as depth increases. In this study, we propose a dual‐branch neural network approach to reconstruct the monthly mean subsurface EKE using sea surface variables and subsurface climatological variables (e.g., horizontal filtered velocity gradients), inspired by the Taylor‐series expansion of subsurface EKE. Four neural network models are trained on a high‐resolution global ocean reanalysis data set: surface input fully connected neural network model (FCNN), surface input residual neural network model (ResNet), dual‐branch fully connected neural network model (DB‐FCNN), and dual‐branch residual neural network model (DB‐ResNet). The proposed DB‐FCNN and DB‐ResNet models integrate the surface input variables and the vertical profiles of subsurface variables. The DB‐ResNet model outperforms the FCNN, ResNet, DB‐FCNN, and traditional physics‐based models in both regional and global reconstruction of subsurface EKE in the upper 2,000 m. In addition, the DB‐ResNet model performs well for both regional and global observational data based on transfer learning. These results reveal the potential of the DB‐ResNet model for efficient and accurate reconstruction of subsurface oceanic variables. Mesoscale eddies, which are loosely defined as swirling water masses of tens to hundreds of kilometers in horizontal width, are crucial in shaping ocean circulation and influencing global climate dynamics. Eddy kinetic energy (EKE) is a key indicator of mesoscale eddy intensity and is essential for global ocean modeling and applications in oceanography and climate studies. Although surface EKE can be derived from satellite altimetry data measuring the sea surface height, subsurface EKE is challenging to measure because there are not enough in situ observations. This study explores machine learning methods to predict subsurface EKE using sea surface variables and sparse vertical profiles of variables from reanalysis and observational data sets. We develop a dual‐branch residual neural network model that can effectively reconstruct the global subsurface EKE. This work not only enhances the prediction of subsurface processes but also supports broader applications in climate modeling. Dual‐branch neural network models are proposed to estimate the subsurface eddy kinetic energy (EKE) by integrating surface data and sparse subsurface variables The proposed DB‐ResNet model outperforms models that rely only on surface data in reconstructing the vertical structure of EKE The locally trained DB‐ResNet model can be applied to global ocean and further adapted to observational data through transfer learning
AbstractList Oceanic eddy kinetic energy (EKE) is a key quantity for measuring the intensity of mesoscale eddies and developing mesoscale eddy parameterizations in ocean circulation models. Three decades of satellite observations enable a global assessment of sea surface EKE. However, due to the sparseness of in situ observational data, subsurface EKE with a spatial filter has not been systematically studied. Subsurface EKE can be inferred theoretically and numerically from sea surface observations, but is limited by the problem of decreasing correlation with sea surface variables as depth increases. In this study, we propose a dual‐branch neural network approach to reconstruct the monthly mean subsurface EKE using sea surface variables and subsurface climatological variables (e.g., horizontal filtered velocity gradients), inspired by the Taylor‐series expansion of subsurface EKE. Four neural network models are trained on a high‐resolution global ocean reanalysis data set: surface input fully connected neural network model (FCNN), surface input residual neural network model (ResNet), dual‐branch fully connected neural network model (DB‐FCNN), and dual‐branch residual neural network model (DB‐ResNet). The proposed DB‐FCNN and DB‐ResNet models integrate the surface input variables and the vertical profiles of subsurface variables. The DB‐ResNet model outperforms the FCNN, ResNet, DB‐FCNN, and traditional physics‐based models in both regional and global reconstruction of subsurface EKE in the upper 2,000 m. In addition, the DB‐ResNet model performs well for both regional and global observational data based on transfer learning. These results reveal the potential of the DB‐ResNet model for efficient and accurate reconstruction of subsurface oceanic variables. Mesoscale eddies, which are loosely defined as swirling water masses of tens to hundreds of kilometers in horizontal width, are crucial in shaping ocean circulation and influencing global climate dynamics. Eddy kinetic energy (EKE) is a key indicator of mesoscale eddy intensity and is essential for global ocean modeling and applications in oceanography and climate studies. Although surface EKE can be derived from satellite altimetry data measuring the sea surface height, subsurface EKE is challenging to measure because there are not enough in situ observations. This study explores machine learning methods to predict subsurface EKE using sea surface variables and sparse vertical profiles of variables from reanalysis and observational data sets. We develop a dual‐branch residual neural network model that can effectively reconstruct the global subsurface EKE. This work not only enhances the prediction of subsurface processes but also supports broader applications in climate modeling. Dual‐branch neural network models are proposed to estimate the subsurface eddy kinetic energy (EKE) by integrating surface data and sparse subsurface variables The proposed DB‐ResNet model outperforms models that rely only on surface data in reconstructing the vertical structure of EKE The locally trained DB‐ResNet model can be applied to global ocean and further adapted to observational data through transfer learning
Author Gao, An‐Kang
Lu, Xiyun
Xie, Chenyue
Author_xml – sequence: 1
  givenname: Chenyue
  orcidid: 0000-0001-6115-4204
  surname: Xie
  fullname: Xie, Chenyue
  organization: Department of Modern Mechanics University of Science and Technology of China Hefei China
– sequence: 2
  givenname: An‐Kang
  orcidid: 0000-0002-9805-1388
  surname: Gao
  fullname: Gao, An‐Kang
  organization: Department of Modern Mechanics University of Science and Technology of China Hefei China
– sequence: 3
  givenname: Xiyun
  surname: Lu
  fullname: Lu, Xiyun
  organization: Department of Modern Mechanics University of Science and Technology of China Hefei China
BookMark eNpNkL1OwzAcxC1UJErpxgP4AQj8bTd1PKIqtEAqBspK5M9iFGxkp0PenhQYOt3p9NNJd5doEmKwCF0TuCVAxR0FunjaAEDJqzM0pUKwoqQEJif-As1z_hwZxihUwKfofd1FJTtc595_yd7HgKPDrweVD8lJbXFtzICffbC917gONu2HI7G1OWYtu1_A24zfsg97vJX6Y2RxY2UKY3CFzp3ssp3_6wztHurdalM0L-vH1X1TaF5WhVSSKQeyrJgDyw0VlgkORLMFd0DIuIlp5ZzixmghKQew0rmFWVLKl5qyGbr5q9Up5pysa7_TOCcNLYH2-E57-g77AQQBWO8
Cites_doi 10.3389/feart.2021.698876
10.1109/LGRS.2018.2866237
10.1029/2021MS002534
10.1016/j.ocemod.2017.02.004
10.1029/2021JC017453
10.3389/fmars.2019.00194
10.5194/gmd‐9‐1937‐2016
10.1175/JCLI‐D‐15‐0028.1
10.1080/14685248.2019.1706742
10.1103/PhysRevFluids.2.054604
10.1029/2023GL104889
10.1029/2018MS001472
10.1175/JTECH‐D‐13‐00109.1
10.1175/JPO‐D‐17‐0136.1
10.1016/0022‐1694(70)90255‐6
10.1029/2023MS004047
10.1016/j.ocemod.2015.04.002
10.1029/2020GL088376
10.1175/1520‐0485(1987)017<1978:aitote>2.0.co;2
10.1029/2023GL104688
10.1017/S002211207900001X
10.1175/JPO2840.1
10.1029/2024MS004422
10.1029/2023MS004093
10.1017/9781107588417
10.1029/2023GL103114
10.1175/1520‐0485(2002)032?lt3328:TOEHT?gt2.0.CO;2
10.21105/joss.04277
10.1016/j.jhydrol.2012.12.004
10.1061/(ASCE)1084‐0699(2006)11:6(597)
10.1029/2023GL105642
10.1029/2022MS003589
10.1029/2022MS003370
10.1016/j.pocean.2011.01.002
10.1029/2021JC017967
10.1175/JPO‐D‐17‐0100.1
10.1146/annurev.fluid.32.1.1
10.1016/j.ocemod.2017.01.001
10.1175/JPO‐D‐23‐0203.1
10.1029/2021GL094772
10.1029/2024MS004262
10.1002/2016JC012256
10.1029/2022JC019160
10.1111/j.1600‐0870.2009.00432.x
10.1029/2023MS004145
10.1038/s41597‐019‐0236‐x
10.5194/os‐15‐1091‐2019
10.1029/2023GL104835
10.1002/2014JC010221
10.1029/2022MS003424
10.1029/2019MS001855
10.1029/2020GL089425
10.1146/annurev.marine.010908.163704
10.1029/2021GL094777
10.1016/j.ocemod.2010.02.001
10.1175/JPO‐D‐11‐0111.1
10.1029/2024GL110059
10.1175/2007JCLI1824.1
10.1103/PhysRevE.99.053113
10.1029/2023MS003693
10.3390/rs12040720
10.1103/PhysRevFluids.6.084612
10.1002/2017GL075430
10.1175/JPO‐D‐12‐0107.1
10.1029/2023MS003728
10.1029/2023MS003771
10.1029/2021JC018001
10.5194/essd‐8‐165‐2016
10.1175/JPO‐D‐22‐0108.1
10.1093/nsr/nwac044
10.1038/s41467‐022‐33031‐3
10.1029/2023MS003874
10.1175/JPO‐D‐12‐0204.1
10.1175/1520‐0469(1975)032<0233:tgmaat>2.0.co;2
10.1029/2019MS001750
10.5194/essd‐14‐5037‐2022
10.1175/JPO‐D‐13‐0113.1
10.1016/j.ocemod.2024.102373
10.1214/aoms/1177703732
10.1080/01490410903297766
10.5194/os‐18‐1221‐2022
10.1029/2020MS002151
10.1038/s41558‐022‐01478‐3
10.1175/1520‐0485(1999)029<3161:asonab>2.0.co;2
10.1002/2015GL066152
10.1029/2023MS003709
10.1029/2019MS001965
10.1126/sciadv.abf4920
10.1109/LGRS.2017.2665603
10.1103/PhysRevFluids.5.054606
10.1175/JPO‐D‐19‐0311.1
10.1175/JPO‐D‐21‐0217.1
10.5281/zenodo.14328633
10.5194/gmd‐13‐1609‐2020
10.1175/JCLI‐D‐20‐0166.1
10.1175/1520‐0485(1997)027<1770:tvpooh>2.0.co;2
10.1029/2021MS002474
10.1016/j.ocemod.2007.09.002
10.1093/climsys/dzw001
10.1038/s41467‐020‐20779‐9
10.1029/2022MS003356
10.1175/JPO‐D‐23‐0017.1
10.1016/j.jocs.2022.101707
10.1109/TKDE.2009.191
10.1175/JPO‐D‐21‐0199.1
10.1175/JPO‐D‐22‐0146.1
10.3389/fmars.2019.00232
10.1029/2021MS002552
10.1029/2023GL107652
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1029/2024JH000578
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
ExternalDocumentID 10_1029_2024JH000578
GroupedDBID 0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-LOGICAL-c758-aba3bf0a583f0e7d29e39701c347f0110053cbffb7ddc9a2700eaff4d62276c23
ISSN 2993-5210
IngestDate Wed Aug 27 16:29:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c758-aba3bf0a583f0e7d29e39701c347f0110053cbffb7ddc9a2700eaff4d62276c23
ORCID 0000-0001-6115-4204
0000-0002-9805-1388
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024JH000578
ParticipantIDs crossref_primary_10_1029_2024JH000578
PublicationCentury 2000
PublicationDate 2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-00
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
References e_1_2_12_6_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_115_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_92_1
Vallis G. K. (e_1_2_12_95_1) 2017
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_114_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_29_1
e_1_2_12_103_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_19_1
e_1_2_12_38_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
Yosinski J. (e_1_2_12_113_1) 2014; 27
e_1_2_12_49_1
e_1_2_12_102_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_39_1
e_1_2_12_116_1
Amante C. (e_1_2_12_3_1) 2009
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_105_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
Kolodziejczyk N. (e_1_2_12_50_1) 2023
e_1_2_12_11_1
e_1_2_12_72_1
Pope S. B. (e_1_2_12_78_1) 2000
e_1_2_12_9_1
References_xml – ident: e_1_2_12_44_1
  doi: 10.3389/feart.2021.698876
– ident: e_1_2_12_16_1
  doi: 10.1109/LGRS.2018.2866237
– ident: e_1_2_12_36_1
  doi: 10.1029/2021MS002534
– ident: e_1_2_12_97_1
– ident: e_1_2_12_5_1
  doi: 10.1016/j.ocemod.2017.02.004
– ident: e_1_2_12_63_1
  doi: 10.1029/2021JC017453
– ident: e_1_2_12_17_1
  doi: 10.3389/fmars.2019.00194
– ident: e_1_2_12_23_1
  doi: 10.5194/gmd‐9‐1937‐2016
– ident: e_1_2_12_29_1
  doi: 10.1175/JCLI‐D‐15‐0028.1
– ident: e_1_2_12_24_1
  doi: 10.1080/14685248.2019.1706742
– ident: e_1_2_12_30_1
  doi: 10.1103/PhysRevFluids.2.054604
– ident: e_1_2_12_116_1
  doi: 10.1029/2023GL104889
– ident: e_1_2_12_12_1
  doi: 10.1029/2018MS001472
– ident: e_1_2_12_28_1
  doi: 10.1175/JTECH‐D‐13‐00109.1
– ident: e_1_2_12_85_1
  doi: 10.1175/JPO‐D‐17‐0136.1
– ident: e_1_2_12_48_1
– ident: e_1_2_12_71_1
  doi: 10.1016/0022‐1694(70)90255‐6
– ident: e_1_2_12_6_1
  doi: 10.1029/2023MS004047
– ident: e_1_2_12_83_1
  doi: 10.1016/j.ocemod.2015.04.002
– ident: e_1_2_12_114_1
  doi: 10.1029/2020GL088376
– ident: e_1_2_12_76_1
  doi: 10.1175/1520‐0485(1987)017<1978:aitote>2.0.co;2
– ident: e_1_2_12_93_1
  doi: 10.1029/2023GL104688
– ident: e_1_2_12_18_1
  doi: 10.1017/S002211207900001X
– ident: e_1_2_12_53_1
  doi: 10.1175/JPO2840.1
– ident: e_1_2_12_67_1
  doi: 10.1029/2024MS004422
– ident: e_1_2_12_110_1
  doi: 10.1029/2023MS004093
– volume-title: Atmospheric and oceanic fluid dynamics
  year: 2017
  ident: e_1_2_12_95_1
  doi: 10.1017/9781107588417
– ident: e_1_2_12_72_1
  doi: 10.1029/2023GL103114
– ident: e_1_2_12_43_1
  doi: 10.1175/1520‐0485(2002)032?lt3328:TOEHT?gt2.0.CO;2
– ident: e_1_2_12_89_1
  doi: 10.21105/joss.04277
– ident: e_1_2_12_82_1
  doi: 10.1016/j.jhydrol.2012.12.004
– ident: e_1_2_12_64_1
  doi: 10.1061/(ASCE)1084‐0699(2006)11:6(597)
– ident: e_1_2_12_111_1
  doi: 10.1029/2023GL105642
– ident: e_1_2_12_61_1
  doi: 10.1029/2022MS003589
– ident: e_1_2_12_87_1
  doi: 10.1029/2022MS003370
– ident: e_1_2_12_15_1
  doi: 10.1016/j.pocean.2011.01.002
– volume-title: Turbulent flows
  year: 2000
  ident: e_1_2_12_78_1
– ident: e_1_2_12_35_1
  doi: 10.1029/2021JC017967
– ident: e_1_2_12_2_1
  doi: 10.1175/JPO‐D‐17‐0100.1
– ident: e_1_2_12_65_1
  doi: 10.1146/annurev.fluid.32.1.1
– ident: e_1_2_12_60_1
  doi: 10.1016/j.ocemod.2017.01.001
– ident: e_1_2_12_115_1
  doi: 10.1175/JPO‐D‐23‐0203.1
– ident: e_1_2_12_55_1
  doi: 10.1029/2021GL094772
– ident: e_1_2_12_66_1
  doi: 10.1029/2024MS004262
– ident: e_1_2_12_4_1
  doi: 10.1002/2016JC012256
– ident: e_1_2_12_99_1
  doi: 10.1029/2022JC019160
– ident: e_1_2_12_25_1
  doi: 10.1111/j.1600‐0870.2009.00432.x
– ident: e_1_2_12_91_1
  doi: 10.1029/2023MS004145
– ident: e_1_2_12_68_1
  doi: 10.1038/s41597‐019‐0236‐x
– ident: e_1_2_12_7_1
  doi: 10.5194/os‐15‐1091‐2019
– ident: e_1_2_12_37_1
  doi: 10.1029/2023GL104835
– ident: e_1_2_12_54_1
  doi: 10.1002/2014JC010221
– ident: e_1_2_12_107_1
  doi: 10.1029/2022MS003424
– ident: e_1_2_12_45_1
  doi: 10.1029/2019MS001855
– ident: e_1_2_12_33_1
  doi: 10.1029/2020GL089425
– ident: e_1_2_12_49_1
  doi: 10.1146/annurev.marine.010908.163704
– ident: e_1_2_12_47_1
  doi: 10.1029/2021GL094777
– ident: e_1_2_12_59_1
  doi: 10.1016/j.ocemod.2010.02.001
– ident: e_1_2_12_51_1
  doi: 10.1175/JPO‐D‐11‐0111.1
– ident: e_1_2_12_62_1
  doi: 10.1029/2024GL110059
– ident: e_1_2_12_80_1
  doi: 10.1175/2007JCLI1824.1
– ident: e_1_2_12_104_1
  doi: 10.1103/PhysRevE.99.053113
– ident: e_1_2_12_13_1
  doi: 10.1029/2023MS003693
– ident: e_1_2_12_32_1
  doi: 10.3390/rs12040720
– ident: e_1_2_12_108_1
  doi: 10.1103/PhysRevFluids.6.084612
– ident: e_1_2_12_52_1
  doi: 10.1002/2017GL075430
– ident: e_1_2_12_57_1
– ident: e_1_2_12_86_1
  doi: 10.1175/JPO‐D‐12‐0107.1
– ident: e_1_2_12_109_1
  doi: 10.1029/2023MS003728
– ident: e_1_2_12_77_1
  doi: 10.1029/2023MS003771
– ident: e_1_2_12_69_1
  doi: 10.1029/2021JC018001
– ident: e_1_2_12_8_1
  doi: 10.5194/essd‐8‐165‐2016
– ident: e_1_2_12_56_1
  doi: 10.1175/JPO‐D‐22‐0108.1
– ident: e_1_2_12_117_1
  doi: 10.1093/nsr/nwac044
– ident: e_1_2_12_90_1
  doi: 10.1038/s41467‐022‐33031‐3
– ident: e_1_2_12_41_1
  doi: 10.1029/2023MS003874
– ident: e_1_2_12_96_1
  doi: 10.1175/JPO‐D‐12‐0204.1
– ident: e_1_2_12_38_1
  doi: 10.1175/1520‐0469(1975)032<0233:tgmaat>2.0.co;2
– ident: e_1_2_12_42_1
  doi: 10.1029/2019MS001750
– ident: e_1_2_12_92_1
  doi: 10.5194/essd‐14‐5037‐2022
– ident: e_1_2_12_98_1
  doi: 10.1175/JPO‐D‐13‐0113.1
– ident: e_1_2_12_21_1
  doi: 10.1016/j.ocemod.2024.102373
– ident: e_1_2_12_40_1
  doi: 10.1214/aoms/1177703732
– ident: e_1_2_12_10_1
  doi: 10.1080/01490410903297766
– ident: e_1_2_12_75_1
  doi: 10.5194/os‐18‐1221‐2022
– ident: e_1_2_12_88_1
  doi: 10.1029/2020MS002151
– ident: e_1_2_12_11_1
  doi: 10.1038/s41558‐022‐01478‐3
– ident: e_1_2_12_101_1
  doi: 10.1175/1520‐0485(1999)029<3161:asonab>2.0.co;2
– volume-title: Isas temperature, salinity, dissolved oxygen gridded fields
  year: 2023
  ident: e_1_2_12_50_1
– ident: e_1_2_12_81_1
  doi: 10.1002/2015GL066152
– ident: e_1_2_12_102_1
  doi: 10.1029/2023MS003709
– volume: 27
  year: 2014
  ident: e_1_2_12_113_1
  article-title: How transferable are features in deep neural networks
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_12_58_1
  doi: 10.1029/2019MS001965
– ident: e_1_2_12_79_1
  doi: 10.1126/sciadv.abf4920
– ident: e_1_2_12_14_1
  doi: 10.1109/LGRS.2017.2665603
– ident: e_1_2_12_105_1
  doi: 10.1103/PhysRevFluids.5.054606
– volume-title: Etopo1 1 arc‐minute global relief model: Procedures, data sources and analysis
  year: 2009
  ident: e_1_2_12_3_1
– ident: e_1_2_12_84_1
  doi: 10.1175/JPO‐D‐19‐0311.1
– ident: e_1_2_12_94_1
  doi: 10.1175/JPO‐D‐21‐0217.1
– ident: e_1_2_12_103_1
  doi: 10.5281/zenodo.14328633
– ident: e_1_2_12_9_1
  doi: 10.5194/gmd‐13‐1609‐2020
– ident: e_1_2_12_39_1
  doi: 10.1175/JCLI‐D‐20‐0166.1
– ident: e_1_2_12_100_1
  doi: 10.1175/1520‐0485(1997)027<1770:tvpooh>2.0.co;2
– ident: e_1_2_12_26_1
  doi: 10.1029/2021MS002474
– ident: e_1_2_12_22_1
  doi: 10.1016/j.ocemod.2007.09.002
– ident: e_1_2_12_20_1
  doi: 10.1093/climsys/dzw001
– ident: e_1_2_12_31_1
  doi: 10.1038/s41467‐020‐20779‐9
– ident: e_1_2_12_46_1
  doi: 10.1029/2022MS003356
– ident: e_1_2_12_106_1
  doi: 10.1175/JPO‐D‐23‐0017.1
– ident: e_1_2_12_74_1
  doi: 10.1016/j.jocs.2022.101707
– ident: e_1_2_12_73_1
  doi: 10.1109/TKDE.2009.191
– ident: e_1_2_12_112_1
  doi: 10.1175/JPO‐D‐21‐0199.1
– ident: e_1_2_12_19_1
  doi: 10.1175/JPO‐D‐22‐0146.1
– ident: e_1_2_12_70_1
  doi: 10.3389/fmars.2019.00232
– ident: e_1_2_12_34_1
  doi: 10.1029/2021MS002552
– ident: e_1_2_12_27_1
  doi: 10.1029/2023GL107652
SSID ssj0003320807
Score 2.301832
Snippet Oceanic eddy kinetic energy (EKE) is a key quantity for measuring the intensity of mesoscale eddies and developing mesoscale eddy parameterizations in ocean...
SourceID crossref
SourceType Index Database
Title Global Estimation of Subsurface Eddy Kinetic Energy of Mesoscale Eddies Using Machine Learning
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5TL15EUfHnyEFPo9ol_XmUMR3KPE3YyZE0iRO0G7oe5sG_3ZcmzapMmF5KSdO09Pvy8iV57xWhszYNZQYzBy-LufCCmLe9BIYJjxEV8ihLEsF0NHL_Puo9BLfDcNhofNSjS2b8IvtYGlfyH1ShDHDVUbJ_QNY1CgVwDvjCERCG40oYm4T9rS5001cn_bQpKN4Ugw7bFWLeugMdqbOydk2Un3Z5ke-Td8CmrAAz5ZbxG-iXfpWySrn69ItufZKTaQWuTRU0vnA3v1RLLTZeblp83-sfmv2Qzljm88KR6oaZaJvc-V7cMfsC2lmo0BeHz_Miry9SkNB5YVlbRrSbICgFswUjl5RZY0xqnKNLTbxPdIZUeEhw29OK0_wB6Hsm7R8jnPM7LHfcSTqq372GNghMMbSN7H8u1ucoJb6JtnfvaeMmoIHLegM1RVOTJoNttGWxwVeGIDuoIfNd9GjIgRfkwBOFF-TAmhzYkgMbcugajhzYkAOX5MAWX1yRYw8NrruDTs-zP9OAXhgmHuOMcuWzMKHKl7EgqQQl6rczGsSqzBsY0owrxWMhspRpdwTJlApEREgcZYTuo_V8kssDhFPKaMJS5sdMwDAroGERRSFRoB5jRqJDdF59j9HUpEwZLfvwRyvWO0abC0qdoPXZWyFPQQnOeLNcQWmWwH0BkRhd4Q
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Estimation+of+Subsurface+Eddy+Kinetic+Energy+of+Mesoscale+Eddies+Using+Machine+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Xie%2C+Chenyue&rft.au=Gao%2C+An%E2%80%90Kang&rft.au=Lu%2C+Xiyun&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2024JH000578&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000578
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon