Targeting Epigenetic Regulation of miR-34a for Treatment of Pancreatic Cancer by Inhibition of Pancreatic Cancer Stem Cells
MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2'...
Saved in:
Published in | PloS one Vol. 6; no. 8; p. e24099 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
31.08.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) and HDAC inhibitor Vorinostat (SAHA).
Re-expression of miR-34a in human pancreatic cancer stem cells (CSCs) and in human pancreatic cancer cell lines upon treatment with 5-Aza-dC and SAHA strongly inhibited the cell proliferation, cell cycle progression, self-renewal, epithelial to mesenchymal transition (EMT) and invasion. In pancreatic CSCs, modulation of miR-34a induced apoptosis by activating caspase-3/7. Treatment of pancreatic CSCs with the chromatin-modulating agents resulted in the inhibition of Bcl-2, CDK6 and SIRT1, which are the putative targets of miR-34a. MiR-34a upregulation by these agents also induced acetylated p53, p21(WAF1), p27(KIP1) and PUMA in pancreatic CSCs. Inhibition of miR-34a by antagomiR abrogates the effects of 5-Aza-dC and SAHA, suggesting that 5-Aza-dC and SAHA regulate stem cell characteristics through miR-34a. In CSCs, SAHA inhibited Notch pathway, suggesting its suppression may contribute to inhibition of the self-renewal capacity and induction of apoptosis. Interestingly, treatment of pancreatic CSCs with SAHA resulted in the inhibition of EMT with the transcriptional up-regulation of E-Cadherin and down-regulation of N-Cadherin. Expression of EMT inducers (Zeb-1, Snail and Slug) was inhibited in CSCs upon treatment with SAHA. 5-Aza-dC and SAHA also retard in vitro migration and invasion of CSCs.
The present study thus demonstrates the role of miR-34a as a critical regulator of pancreatic cancer progression by the regulating CSC characteristics. The restoration of its expression by 5-Aza-dC and SAHA in CSCs will not only provide mechanistic insight and therapeutic targets for pancreatic cancer but also promising reagents to boost patient response to existing chemotherapies or as a standalone cancer drug by eliminating the CSC characteristics. |
---|---|
AbstractList | MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) and HDAC inhibitor Vorinostat (SAHA).BACKGROUNDMicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) and HDAC inhibitor Vorinostat (SAHA).Re-expression of miR-34a in human pancreatic cancer stem cells (CSCs) and in human pancreatic cancer cell lines upon treatment with 5-Aza-dC and SAHA strongly inhibited the cell proliferation, cell cycle progression, self-renewal, epithelial to mesenchymal transition (EMT) and invasion. In pancreatic CSCs, modulation of miR-34a induced apoptosis by activating caspase-3/7. Treatment of pancreatic CSCs with the chromatin-modulating agents resulted in the inhibition of Bcl-2, CDK6 and SIRT1, which are the putative targets of miR-34a. MiR-34a upregulation by these agents also induced acetylated p53, p21(WAF1), p27(KIP1) and PUMA in pancreatic CSCs. Inhibition of miR-34a by antagomiR abrogates the effects of 5-Aza-dC and SAHA, suggesting that 5-Aza-dC and SAHA regulate stem cell characteristics through miR-34a. In CSCs, SAHA inhibited Notch pathway, suggesting its suppression may contribute to inhibition of the self-renewal capacity and induction of apoptosis. Interestingly, treatment of pancreatic CSCs with SAHA resulted in the inhibition of EMT with the transcriptional up-regulation of E-Cadherin and down-regulation of N-Cadherin. Expression of EMT inducers (Zeb-1, Snail and Slug) was inhibited in CSCs upon treatment with SAHA. 5-Aza-dC and SAHA also retard in vitro migration and invasion of CSCs.METHODOLOGY/PRINCIPAL FINDINGSRe-expression of miR-34a in human pancreatic cancer stem cells (CSCs) and in human pancreatic cancer cell lines upon treatment with 5-Aza-dC and SAHA strongly inhibited the cell proliferation, cell cycle progression, self-renewal, epithelial to mesenchymal transition (EMT) and invasion. In pancreatic CSCs, modulation of miR-34a induced apoptosis by activating caspase-3/7. Treatment of pancreatic CSCs with the chromatin-modulating agents resulted in the inhibition of Bcl-2, CDK6 and SIRT1, which are the putative targets of miR-34a. MiR-34a upregulation by these agents also induced acetylated p53, p21(WAF1), p27(KIP1) and PUMA in pancreatic CSCs. Inhibition of miR-34a by antagomiR abrogates the effects of 5-Aza-dC and SAHA, suggesting that 5-Aza-dC and SAHA regulate stem cell characteristics through miR-34a. In CSCs, SAHA inhibited Notch pathway, suggesting its suppression may contribute to inhibition of the self-renewal capacity and induction of apoptosis. Interestingly, treatment of pancreatic CSCs with SAHA resulted in the inhibition of EMT with the transcriptional up-regulation of E-Cadherin and down-regulation of N-Cadherin. Expression of EMT inducers (Zeb-1, Snail and Slug) was inhibited in CSCs upon treatment with SAHA. 5-Aza-dC and SAHA also retard in vitro migration and invasion of CSCs.The present study thus demonstrates the role of miR-34a as a critical regulator of pancreatic cancer progression by the regulating CSC characteristics. The restoration of its expression by 5-Aza-dC and SAHA in CSCs will not only provide mechanistic insight and therapeutic targets for pancreatic cancer but also promising reagents to boost patient response to existing chemotherapies or as a standalone cancer drug by eliminating the CSC characteristics.CONCLUSIONSThe present study thus demonstrates the role of miR-34a as a critical regulator of pancreatic cancer progression by the regulating CSC characteristics. The restoration of its expression by 5-Aza-dC and SAHA in CSCs will not only provide mechanistic insight and therapeutic targets for pancreatic cancer but also promising reagents to boost patient response to existing chemotherapies or as a standalone cancer drug by eliminating the CSC characteristics. Background MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) and HDAC inhibitor Vorinostat (SAHA). Methodology/Principal Findings Re-expression of miR-34a in human pancreatic cancer stem cells (CSCs) and in human pancreatic cancer cell lines upon treatment with 5-Aza-dC and SAHA strongly inhibited the cell proliferation, cell cycle progression, self-renewal, epithelial to mesenchymal transition (EMT) and invasion. In pancreatic CSCs, modulation of miR-34a induced apoptosis by activating caspase-3/7. Treatment of pancreatic CSCs with the chromatin-modulating agents resulted in the inhibition of Bcl-2, CDK6 and SIRT1, which are the putative targets of miR-34a. MiR-34a upregulation by these agents also induced acetylated p53, p21.sup.WAF1, p27.sup.KIP1 and PUMA in pancreatic CSCs. Inhibition of miR-34a by antagomiR abrogates the effects of 5-Aza-dC and SAHA, suggesting that 5-Aza-dC and SAHA regulate stem cell characteristics through miR-34a. In CSCs, SAHA inhibited Notch pathway, suggesting its suppression may contribute to inhibition of the self-renewal capacity and induction of apoptosis. Interestingly, treatment of pancreatic CSCs with SAHA resulted in the inhibition of EMT with the transcriptional up-regulation of E-Cadherin and down-regulation of N-Cadherin. Expression of EMT inducers (Zeb-1, Snail and Slug) was inhibited in CSCs upon treatment with SAHA. 5-Aza-dC and SAHA also retard in vitro migration and invasion of CSCs. Conclusions The present study thus demonstrates the role of miR-34a as a critical regulator of pancreatic cancer progression by the regulating CSC characteristics. The restoration of its expression by 5-Aza-dC and SAHA in CSCs will not only provide mechanistic insight and therapeutic targets for pancreatic cancer but also promising reagents to boost patient response to existing chemotherapies or as a standalone cancer drug by eliminating the CSC characteristics. Background MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2′-deoxycytidine (5-Aza-dC) and HDAC inhibitor Vorinostat (SAHA). Methodology/Principal Findings Re-expression of miR-34a in human pancreatic cancer stem cells (CSCs) and in human pancreatic cancer cell lines upon treatment with 5-Aza-dC and SAHA strongly inhibited the cell proliferation, cell cycle progression, self-renewal, epithelial to mesenchymal transition (EMT) and invasion. In pancreatic CSCs, modulation of miR-34a induced apoptosis by activating caspase-3/7. Treatment of pancreatic CSCs with the chromatin-modulating agents resulted in the inhibition of Bcl-2, CDK6 and SIRT1, which are the putative targets of miR-34a. MiR-34a upregulation by these agents also induced acetylated p53, p21 WAF1 , p27 KIP1 and PUMA in pancreatic CSCs. Inhibition of miR-34a by antagomiR abrogates the effects of 5-Aza-dC and SAHA, suggesting that 5-Aza-dC and SAHA regulate stem cell characteristics through miR-34a. In CSCs, SAHA inhibited Notch pathway, suggesting its suppression may contribute to inhibition of the self-renewal capacity and induction of apoptosis. Interestingly, treatment of pancreatic CSCs with SAHA resulted in the inhibition of EMT with the transcriptional up-regulation of E-Cadherin and down-regulation of N-Cadherin. Expression of EMT inducers (Zeb-1, Snail and Slug) was inhibited in CSCs upon treatment with SAHA. 5-Aza-dC and SAHA also retard in vitro migration and invasion of CSCs. Conclusions The present study thus demonstrates the role of miR-34a as a critical regulator of pancreatic cancer progression by the regulating CSC characteristics. The restoration of its expression by 5-Aza-dC and SAHA in CSCs will not only provide mechanistic insight and therapeutic targets for pancreatic cancer but also promising reagents to boost patient response to existing chemotherapies or as a standalone cancer drug by eliminating the CSC characteristics. MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) and HDAC inhibitor Vorinostat (SAHA). Re-expression of miR-34a in human pancreatic cancer stem cells (CSCs) and in human pancreatic cancer cell lines upon treatment with 5-Aza-dC and SAHA strongly inhibited the cell proliferation, cell cycle progression, self-renewal, epithelial to mesenchymal transition (EMT) and invasion. In pancreatic CSCs, modulation of miR-34a induced apoptosis by activating caspase-3/7. Treatment of pancreatic CSCs with the chromatin-modulating agents resulted in the inhibition of Bcl-2, CDK6 and SIRT1, which are the putative targets of miR-34a. MiR-34a upregulation by these agents also induced acetylated p53, p21.sup.WAF1, p27.sup.KIP1 and PUMA in pancreatic CSCs. Inhibition of miR-34a by antagomiR abrogates the effects of 5-Aza-dC and SAHA, suggesting that 5-Aza-dC and SAHA regulate stem cell characteristics through miR-34a. In CSCs, SAHA inhibited Notch pathway, suggesting its suppression may contribute to inhibition of the self-renewal capacity and induction of apoptosis. Interestingly, treatment of pancreatic CSCs with SAHA resulted in the inhibition of EMT with the transcriptional up-regulation of E-Cadherin and down-regulation of N-Cadherin. Expression of EMT inducers (Zeb-1, Snail and Slug) was inhibited in CSCs upon treatment with SAHA. 5-Aza-dC and SAHA also retard in vitro migration and invasion of CSCs. The present study thus demonstrates the role of miR-34a as a critical regulator of pancreatic cancer progression by the regulating CSC characteristics. The restoration of its expression by 5-Aza-dC and SAHA in CSCs will not only provide mechanistic insight and therapeutic targets for pancreatic cancer but also promising reagents to boost patient response to existing chemotherapies or as a standalone cancer drug by eliminating the CSC characteristics. Background MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2′-deoxycytidine (5-Aza-dC) and HDAC inhibitor Vorinostat (SAHA). Methodology/Principal Findings Re-expression of miR-34a in human pancreatic cancer stem cells (CSCs) and in human pancreatic cancer cell lines upon treatment with 5-Aza-dC and SAHA strongly inhibited the cell proliferation, cell cycle progression, self-renewal, epithelial to mesenchymal transition (EMT) and invasion. In pancreatic CSCs, modulation of miR-34a induced apoptosis by activating caspase-3/7. Treatment of pancreatic CSCs with the chromatin-modulating agents resulted in the inhibition of Bcl-2, CDK6 and SIRT1, which are the putative targets of miR-34a. MiR-34a upregulation by these agents also induced acetylated p53, p21WAF1, p27KIP1 and PUMA in pancreatic CSCs. Inhibition of miR-34a by antagomiR abrogates the effects of 5-Aza-dC and SAHA, suggesting that 5-Aza-dC and SAHA regulate stem cell characteristics through miR-34a. In CSCs, SAHA inhibited Notch pathway, suggesting its suppression may contribute to inhibition of the self-renewal capacity and induction of apoptosis. Interestingly, treatment of pancreatic CSCs with SAHA resulted in the inhibition of EMT with the transcriptional up-regulation of E-Cadherin and down-regulation of N-Cadherin. Expression of EMT inducers (Zeb-1, Snail and Slug) was inhibited in CSCs upon treatment with SAHA. 5-Aza-dC and SAHA also retard in vitro migration and invasion of CSCs. Conclusions The present study thus demonstrates the role of miR-34a as a critical regulator of pancreatic cancer progression by the regulating CSC characteristics. The restoration of its expression by 5-Aza-dC and SAHA in CSCs will not only provide mechanistic insight and therapeutic targets for pancreatic cancer but also promising reagents to boost patient response to existing chemotherapies or as a standalone cancer drug by eliminating the CSC characteristics. MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) and HDAC inhibitor Vorinostat (SAHA).Re-expression of miR-34a in human pancreatic cancer stem cells (CSCs) and in human pancreatic cancer cell lines upon treatment with 5-Aza-dC and SAHA strongly inhibited the cell proliferation, cell cycle progression, self-renewal, epithelial to mesenchymal transition (EMT) and invasion. In pancreatic CSCs, modulation of miR-34a induced apoptosis by activating caspase-3/7. Treatment of pancreatic CSCs with the chromatin-modulating agents resulted in the inhibition of Bcl-2, CDK6 and SIRT1, which are the putative targets of miR-34a. MiR-34a upregulation by these agents also induced acetylated p53, p21(WAF1), p27(KIP1) and PUMA in pancreatic CSCs. Inhibition of miR-34a by antagomiR abrogates the effects of 5-Aza-dC and SAHA, suggesting that 5-Aza-dC and SAHA regulate stem cell characteristics through miR-34a. In CSCs, SAHA inhibited Notch pathway, suggesting its suppression may contribute to inhibition of the self-renewal capacity and induction of apoptosis. Interestingly, treatment of pancreatic CSCs with SAHA resulted in the inhibition of EMT with the transcriptional up-regulation of E-Cadherin and down-regulation of N-Cadherin. Expression of EMT inducers (Zeb-1, Snail and Slug) was inhibited in CSCs upon treatment with SAHA. 5-Aza-dC and SAHA also retard in vitro migration and invasion of CSCs.The present study thus demonstrates the role of miR-34a as a critical regulator of pancreatic cancer progression by the regulating CSC characteristics. The restoration of its expression by 5-Aza-dC and SAHA in CSCs will not only provide mechanistic insight and therapeutic targets for pancreatic cancer but also promising reagents to boost patient response to existing chemotherapies or as a standalone cancer drug by eliminating the CSC characteristics. MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) and HDAC inhibitor Vorinostat (SAHA). Re-expression of miR-34a in human pancreatic cancer stem cells (CSCs) and in human pancreatic cancer cell lines upon treatment with 5-Aza-dC and SAHA strongly inhibited the cell proliferation, cell cycle progression, self-renewal, epithelial to mesenchymal transition (EMT) and invasion. In pancreatic CSCs, modulation of miR-34a induced apoptosis by activating caspase-3/7. Treatment of pancreatic CSCs with the chromatin-modulating agents resulted in the inhibition of Bcl-2, CDK6 and SIRT1, which are the putative targets of miR-34a. MiR-34a upregulation by these agents also induced acetylated p53, p21(WAF1), p27(KIP1) and PUMA in pancreatic CSCs. Inhibition of miR-34a by antagomiR abrogates the effects of 5-Aza-dC and SAHA, suggesting that 5-Aza-dC and SAHA regulate stem cell characteristics through miR-34a. In CSCs, SAHA inhibited Notch pathway, suggesting its suppression may contribute to inhibition of the self-renewal capacity and induction of apoptosis. Interestingly, treatment of pancreatic CSCs with SAHA resulted in the inhibition of EMT with the transcriptional up-regulation of E-Cadherin and down-regulation of N-Cadherin. Expression of EMT inducers (Zeb-1, Snail and Slug) was inhibited in CSCs upon treatment with SAHA. 5-Aza-dC and SAHA also retard in vitro migration and invasion of CSCs. The present study thus demonstrates the role of miR-34a as a critical regulator of pancreatic cancer progression by the regulating CSC characteristics. The restoration of its expression by 5-Aza-dC and SAHA in CSCs will not only provide mechanistic insight and therapeutic targets for pancreatic cancer but also promising reagents to boost patient response to existing chemotherapies or as a standalone cancer drug by eliminating the CSC characteristics. |
Audience | Academic |
Author | Tang, Su-Ni Rodova, Marianna Srivastava, Rakesh K. Shankar, Sharmila Nalls, Dara |
AuthorAffiliation | 1 Departments of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States of America 2 Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America 4 The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America 3 Department of Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States of America University of Nebraska Medical Center, United States of America |
AuthorAffiliation_xml | – name: 4 The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America – name: 2 Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America – name: University of Nebraska Medical Center, United States of America – name: 1 Departments of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States of America – name: 3 Department of Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States of America |
Author_xml | – sequence: 1 givenname: Dara surname: Nalls fullname: Nalls, Dara – sequence: 2 givenname: Su-Ni surname: Tang fullname: Tang, Su-Ni – sequence: 3 givenname: Marianna surname: Rodova fullname: Rodova, Marianna – sequence: 4 givenname: Rakesh K. surname: Srivastava fullname: Srivastava, Rakesh K. – sequence: 5 givenname: Sharmila surname: Shankar fullname: Shankar, Sharmila |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21909380$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk12L1DAUhousuB_6D0QLguLFjEnT5sMLYRlWHVhYmR29DUmadDK0zWzSiot_3nRnZpmui0gvmpw87zk5LzmnyVHrWp0kLyGYQkTgh7XrfSvq6SaGpwBkOWDsSXICGcomOAPo6GB9nJyGsAagQBTjZ8lxBhlgiIKT5PdS-Ep3tq3Si42tdBvXKl3oqq9FZ12bOpM2djFBuUiN8-nSa9E1uu2Gg2-iVcM-KmZxqX0qb9N5u7LS7rV_I9edbtKZruvwPHlqRB30i93_LPn--WI5-zq5vPoyn51fThQpSDehiiCpCRN5IXKmKTZGxm6JkBJqIIgkNCclNhJLRAUgUCMjCZalAswUuUFnyett3k3tAt_5FjhEgDAAC0wjMd8SpRNrvvG2Ef6WO2H5XcD5igsfe6g1N0hRmJek0DjLYxmmoAGkkBAYg0smY65Pu2q9bHSpolde1KOk45PWrnjlfnIEMQZkuMy7XQLvbnodOt7YoKJhotWuD5xSBgnDNI_kmwfk483tqErE-9vWuFhWDTn5eU4wpTDDKFLTR6j4lbqxKr4xY2N8JHg_EkSm07-6SvQh8Pn14v_Zqx9j9u0Bu9Ki7lbB1f3wosIYfHVo9L3D-8cdgXwLKO9C8NrcIxDwYYb2dvFhhvhuhqLs4wOZst3dMERHbP1v8R-oUiJ0 |
CitedBy_id | crossref_primary_10_3390_ijms20102415 crossref_primary_10_18632_oncotarget_24116 crossref_primary_10_2147_OTT_S286666 crossref_primary_10_1016_j_bbcan_2012_03_009 crossref_primary_10_1016_j_ejphar_2019_172551 crossref_primary_10_3389_fonc_2016_00115 crossref_primary_10_1007_s00534_012_0547_1 crossref_primary_10_1038_cddis_2017_495 crossref_primary_10_1016_j_canlet_2012_10_005 crossref_primary_10_1039_C6MD00297H crossref_primary_10_3390_ijms22147350 crossref_primary_10_1016_j_lfs_2021_119504 crossref_primary_10_1111_jcmm_17092 crossref_primary_10_1155_2014_678401 crossref_primary_10_18632_oncotarget_3536 crossref_primary_10_3892_ijo_2015_3142 crossref_primary_10_1080_10715762_2021_1953004 crossref_primary_10_1016_j_omton_2024_200765 crossref_primary_10_1177_1176935119828746 crossref_primary_10_1016_j_biocel_2022_106168 crossref_primary_10_1038_cddis_2014_270 crossref_primary_10_1517_14728222_2012_726985 crossref_primary_10_2217_epi_12_39 crossref_primary_10_3109_00365521_2013_865075 crossref_primary_10_1007_s13277_014_2328_8 crossref_primary_10_1186_s12645_020_00070_8 crossref_primary_10_3390_ijms24087030 crossref_primary_10_3390_ijms19071939 crossref_primary_10_1038_onc_2013_55 crossref_primary_10_18632_oncotarget_3394 crossref_primary_10_1007_s10534_015_9872_6 crossref_primary_10_3389_fendo_2020_00638 crossref_primary_10_1186_s43046_025_00266_2 crossref_primary_10_18632_oncotarget_10860 crossref_primary_10_3892_ol_2017_6444 crossref_primary_10_1016_j_cmet_2015_08_015 crossref_primary_10_1158_1535_7163_MCT_14_0209 crossref_primary_10_3390_diseases5030016 crossref_primary_10_2147_OTT_S234549 crossref_primary_10_1016_j_ctrv_2013_12_002 crossref_primary_10_3390_ijms23062926 crossref_primary_10_1016_j_biochi_2020_09_014 crossref_primary_10_1080_09168451_2017_1364965 crossref_primary_10_3390_biomedicines12020386 crossref_primary_10_3390_ijms19123952 crossref_primary_10_1586_14737140_2016_1129276 crossref_primary_10_1016_j_radonc_2020_07_034 crossref_primary_10_2147_CMAR_S245872 crossref_primary_10_1016_j_ejphar_2021_174006 crossref_primary_10_3892_or_2015_4010 crossref_primary_10_1517_14728222_2012_714774 crossref_primary_10_1007_s11010_012_1422_8 crossref_primary_10_1016_j_bbcan_2012_06_002 crossref_primary_10_3390_cancers14081908 crossref_primary_10_1016_j_bbagen_2014_09_017 crossref_primary_10_3892_etm_2012_585 crossref_primary_10_1016_j_semcancer_2017_04_006 crossref_primary_10_1007_s11888_012_0147_0 crossref_primary_10_3390_ijms21134767 crossref_primary_10_3390_jcm5060059 crossref_primary_10_3892_ijo_2019_4700 crossref_primary_10_1097_MPA_0000000000001934 crossref_primary_10_2174_1871520620666200424123139 crossref_primary_10_1016_j_stemcr_2020_11_002 crossref_primary_10_1016_j_canlet_2012_04_020 crossref_primary_10_1007_s13402_016_0275_7 crossref_primary_10_14701_ahbps_2018_22_4_305 crossref_primary_10_3390_ijms17122138 crossref_primary_10_3390_cancers15194723 crossref_primary_10_1016_j_bbrc_2013_05_061 crossref_primary_10_3892_or_2013_2905 crossref_primary_10_1016_j_addr_2014_10_020 crossref_primary_10_1371_journal_pone_0049636 crossref_primary_10_3390_cancers16244187 crossref_primary_10_1371_journal_pcbi_1002488 crossref_primary_10_1517_14728222_2014_975794 crossref_primary_10_3892_mmr_2015_3182 crossref_primary_10_1007_s00204_014_1223_9 crossref_primary_10_2217_epi_14_83 crossref_primary_10_1016_j_molmet_2019_01_014 crossref_primary_10_1155_2016_2732705 crossref_primary_10_3390_ijms17060809 crossref_primary_10_1517_14712598_2015_1025047 crossref_primary_10_18632_oncotarget_13991 crossref_primary_10_1089_cbr_2012_1218 crossref_primary_10_1371_journal_pone_0158669 crossref_primary_10_3390_biology10060467 crossref_primary_10_1159_000367802 crossref_primary_10_3389_fonc_2022_955892 crossref_primary_10_1186_s12906_015_0640_5 crossref_primary_10_18632_oncotarget_1825 crossref_primary_10_1517_14728222_2012_691473 crossref_primary_10_1038_srep05911 crossref_primary_10_1371_journal_pone_0073195 crossref_primary_10_29252_ibj_24_6_356 crossref_primary_10_3389_fcell_2021_640587 crossref_primary_10_1007_s13277_015_3428_9 crossref_primary_10_1177_1010428318773675 crossref_primary_10_1016_j_yexmp_2015_06_014 crossref_primary_10_1155_2018_1027453 crossref_primary_10_1007_s10549_019_05504_5 crossref_primary_10_1038_srep32174 crossref_primary_10_1007_s13277_012_0632_8 crossref_primary_10_3390_stresses1010004 crossref_primary_10_1186_s13020_025_01084_3 crossref_primary_10_3390_epigenomes2020010 crossref_primary_10_1016_j_ajpath_2018_10_005 crossref_primary_10_2174_0929867325666180706105903 crossref_primary_10_1016_j_ajpath_2012_08_011 crossref_primary_10_1096_fj_12_218222 crossref_primary_10_2152_jmi_67_70 crossref_primary_10_7785_tcrt_2012_500364 crossref_primary_10_1002_stem_2114 crossref_primary_10_3390_cancers11101530 crossref_primary_10_1155_2014_642916 crossref_primary_10_1016_j_semcancer_2020_12_004 crossref_primary_10_1016_j_biopha_2017_11_065 crossref_primary_10_1038_srep32743 crossref_primary_10_3390_ijms17050718 crossref_primary_10_1016_j_amjms_2016_05_002 crossref_primary_10_1038_mtna_2014_47 crossref_primary_10_1186_s41544_019_0014_0 crossref_primary_10_1016_j_yexcr_2012_03_018 crossref_primary_10_1038_onc_2013_128 crossref_primary_10_1155_2015_624132 crossref_primary_10_1007_s10620_013_2983_4 crossref_primary_10_1111_jcmm_13666 crossref_primary_10_3892_etm_2018_6744 crossref_primary_10_4155_tde_12_153 crossref_primary_10_1007_s13277_014_2861_5 crossref_primary_10_1093_jnci_dju257 crossref_primary_10_1016_j_bcp_2023_115543 crossref_primary_10_3389_fonc_2020_589241 crossref_primary_10_1016_j_dnarep_2018_07_008 crossref_primary_10_1186_s12935_024_03338_w crossref_primary_10_1042_BSR20211812 crossref_primary_10_2319_090219_574_1 crossref_primary_10_3390_cells11193117 crossref_primary_10_3892_or_2015_4331 crossref_primary_10_3390_ijms20010051 crossref_primary_10_1158_1078_0432_CCR_13_1354 crossref_primary_10_3390_ijms21062228 crossref_primary_10_1016_j_bbadis_2018_11_015 crossref_primary_10_3390_jcm4111951 crossref_primary_10_1002_ddr_21268 crossref_primary_10_1186_s13046_018_0836_x crossref_primary_10_1186_s13046_023_02693_2 crossref_primary_10_1002_0471141755_ph1425s61 crossref_primary_10_3748_wjg_v21_i12_3519 crossref_primary_10_1038_s41598_021_85342_y crossref_primary_10_18632_oncotarget_7443 crossref_primary_10_1517_14728222_2012_696102 crossref_primary_10_3892_ijo_2017_4015 crossref_primary_10_1097_CCO_0000000000000503 crossref_primary_10_1016_j_oraloncology_2016_02_015 crossref_primary_10_1016_j_bcp_2022_115110 crossref_primary_10_1016_j_yexmp_2014_08_002 crossref_primary_10_12659_MSM_902692 crossref_primary_10_1371_journal_pone_0073803 crossref_primary_10_3390_ijms18071338 crossref_primary_10_1007_s10238_023_01066_5 crossref_primary_10_1016_j_bbcan_2022_188676 crossref_primary_10_1186_s12885_017_3340_3 crossref_primary_10_1155_2015_425708 crossref_primary_10_1002_ijc_28761 crossref_primary_10_2217_fon_2015_0050 crossref_primary_10_1073_pnas_1206432109 crossref_primary_10_1016_j_mrrev_2012_05_004 crossref_primary_10_1038_s12276_023_01014_z crossref_primary_10_1038_leu_2017_64 crossref_primary_10_1016_j_canlet_2012_03_018 crossref_primary_10_3390_jcm8070912 crossref_primary_10_2174_1871520621666210608103251 crossref_primary_10_1124_molpharm_120_000130 crossref_primary_10_3390_cancers11020148 crossref_primary_10_2217_epi_15_10 crossref_primary_10_1242_jcs_155523 crossref_primary_10_1007_s12029_019_00338_2 crossref_primary_10_1007_s00109_012_0917_9 crossref_primary_10_1007_s40495_014_0008_4 crossref_primary_10_1016_j_mrrev_2017_02_003 crossref_primary_10_1186_1471_2407_13_450 crossref_primary_10_3390_cancers13061317 crossref_primary_10_1080_19336918_2015_1112486 crossref_primary_10_1128_JVI_00626_19 crossref_primary_10_1186_s12885_020_07751_y crossref_primary_10_18632_oncotarget_15214 crossref_primary_10_1586_erm_13_38 crossref_primary_10_1007_s11010_012_1493_6 crossref_primary_10_1080_10408398_2018_1551778 crossref_primary_10_3389_fbioe_2023_1188652 |
Cites_doi | 10.1073/pnas.0510565103 10.2174/156800910791190229 10.1158/1940-6207.CAPR-09-0094 10.1002/jcp.10208 10.1093/carcin/bgq033 10.1016/j.molcel.2007.05.010 10.1373/clinchem.2008.112805 10.1038/nrm2009 10.1146/annurev.pathol.4.110807.092222 10.1038/nrm2868 10.1007/s00018-007-7164-1 10.4161/cc.8.5.7753 10.1186/1471-2407-8-48 10.1038/onc.2008.274 10.2741/2446 10.4161/cc.7.16.6533 10.1111/j.1460-9568.2007.05370.x 10.1208/s12248-010-9181-5 10.1038/sj.bjc.6690466 10.1038/nrgastro.2010.188 10.1158/0008-5472.CAN-10-0655 10.1016/j.molcel.2007.05.017 10.1093/carcin/bgp220 10.1002/ijc.25014 10.1158/1078-0432.CCR-08-2004 10.1038/nrc2619 10.1001/jama.297.17.1923 10.1002/bdrc.20071 10.1111/j.1349-7006.2006.00369.x 10.1089/dna.2006.0544 10.1016/j.bbrc.2008.09.086 10.1007/978-1-59745-280-9_10 10.1038/nrclinonc.2010.196 10.1593/neo.04655 10.1371/journal.pone.0016530 10.1038/nn1475 10.1146/annurev.med.59.053006.104707 10.1097/01.sla.0000189115.94847.f1 10.1038/sj.onc.1210293 10.2353/ajpath.2008.070778 10.1158/1535-7163.MCT-08-1004 10.1016/j.cell.2005.06.036 10.1053/j.gastro.2009.03.022 10.1158/1078-0432.CCR-09-2642 10.1038/nrc2232 10.1073/pnas.0908428107 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 Public Library of Science 2011 Nalls et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Nalls et al. 2011 |
Copyright_xml | – notice: COPYRIGHT 2011 Public Library of Science – notice: 2011 Nalls et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Nalls et al. 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0024099 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni) Medical Database ProQuest Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Medicine Biology |
DocumentTitleAlternate | miR34a Inhibits Pancreatic Cancer Stem Cells |
EISSN | 1932-6203 |
ExternalDocumentID | 1307901568 oai_doaj_org_article_f3c814d75e624b769c1f075b10ff6d9b PMC3166078 2900159731 A476881263 21909380 10_1371_journal_pone_0024099 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US Kansas City Missouri Kansas |
GeographicLocations_xml | – name: Kansas City Missouri – name: Kansas – name: United States--US |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: 3R01CA125262-03S1 – fundername: NCI NIH HHS grantid: R01CA125262 – fundername: NCI NIH HHS grantid: R01CA114469 – fundername: NCI NIH HHS grantid: R01 CA114469 – fundername: NCI NIH HHS grantid: R01 CA125262 – fundername: NCI NIH HHS grantid: 3R01CA114469-05S1 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM BBORY CGR CUY CVF ECM EIF NPM PV9 RZL PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c757t-8c73be79a45a49e86ffb2407abb1e0a7b7847d6fb6b38a071e3fb76bdc09f54f3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Jun 04 06:36:53 EDT 2023 Wed Aug 27 01:30:07 EDT 2025 Thu Aug 21 13:50:59 EDT 2025 Fri Jul 11 07:07:35 EDT 2025 Fri Jul 25 10:25:27 EDT 2025 Tue Jun 17 21:17:43 EDT 2025 Tue Jun 10 20:16:40 EDT 2025 Fri Jun 27 03:35:47 EDT 2025 Fri Jun 27 03:38:34 EDT 2025 Thu May 22 21:19:55 EDT 2025 Thu Apr 03 07:09:18 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 Tue Jul 01 01:28:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c757t-8c73be79a45a49e86ffb2407abb1e0a7b7847d6fb6b38a071e3fb76bdc09f54f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: RKS SS. Performed the experiments: DN S-NT MR. Analyzed the data: DN SS. Contributed reagents/materials/analysis tools: RKS SS. Wrote the paper: SS. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0024099 |
PMID | 21909380 |
PQID | 1307901568 |
PQPubID | 1436336 |
PageCount | e24099 |
ParticipantIDs | plos_journals_1307901568 doaj_primary_oai_doaj_org_article_f3c814d75e624b769c1f075b10ff6d9b pubmedcentral_primary_oai_pubmedcentral_nih_gov_3166078 proquest_miscellaneous_889179684 proquest_journals_1307901568 gale_infotracmisc_A476881263 gale_infotracacademiconefile_A476881263 gale_incontextgauss_ISR_A476881263 gale_incontextgauss_IOV_A476881263 gale_healthsolutions_A476881263 pubmed_primary_21909380 crossref_primary_10_1371_journal_pone_0024099 crossref_citationtrail_10_1371_journal_pone_0024099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-31 |
PublicationDateYYYYMMDD | 2011-08-31 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2011 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | A Bergan (ref23) 2000; 17 S Volinia (ref42) 2006; 103 S Shankar (ref52) 2007; 12 M Katoh (ref39) 2006; 17 E Bandres (ref5) 2007; 26 CL Bartels (ref13) 2009; 55 D Lodygin (ref28) 2008; 7 TE Fandy (ref43) 2005; 7 M Yamakuchi (ref46) 2009; 8 H Immervoll (ref19) 2008; 8 PM Voorhoeve (ref9) 2010; 1805 M Inui (ref2) 2010; 11 S Baranwal (ref8) 2010; 126 P Buchler (ref50) 2005; 242 K Kimura (ref49) 2007; 98 CS Chim (ref29) 2010; 31 K Yoon (ref34) 2005; 8 Y Fujita (ref47) 2008; 377 MS Nicoloso (ref10) 2009; 9 YX Hu (ref24) 1999; 80 S Shankar (ref44) 2009; 8 J Li (ref1) 2010; 12 Z Wang (ref40) 2011; 8 U Koch (ref48) 2007; 64 S Sharma (ref3) 2010; 31 S Shankar (ref51) 2005; 16 YS Lee (ref7) 2009; 4 R Garzon (ref6) 2009; 60 J Wang (ref12) 2009; 2 DC Corney (ref30) 2010; 16 JP Morton (ref22) 2010; 107 R Schickel (ref4) 2008; 27 ME Mullendore (ref32) 2009; 15 JF Wiggins (ref15) 2010; 70 C Li (ref18) 2009; 568 JP Morton (ref21) 2008; 172 H Kawahira (ref25) 2000; 47 OJ De La (ref33) 2009; 136 SJ Bray (ref35) 2006; 7 AS Azmi (ref45) 2010; 10 S Shankar (ref17) 2011; 6 L He (ref31) 2007; 7 CL Bartels (ref14) 2010; 68 CM Croce (ref16) 2005; 122 N Raver-Shapira (ref26) 2007; 26 T Iso (ref36) 2003; 194 N Takebe (ref38) 2011; 8 TC Chang (ref20) 2007; 26 C Welch (ref27) 2007; 26 O Basak (ref37) 2007; 25 JR O'Rourke (ref41) 2006; 78 SA Waldman (ref11) 2007; 297 19752007 - Carcinogenesis. 2010 Jan;31(1):27-36 17687513 - Cell Mol Life Sci. 2007 Nov;64(21):2746-62 18261235 - BMC Cancer. 2008;8:48 18817506 - Annu Rev Pathol. 2009;4:199-227 17540599 - Mol Cell. 2007 Jun 8;26(5):745-52 19877123 - Int J Cancer. 2010 Mar 15;126(6):1283-90 16525728 - Int J Mol Med. 2006 Apr;17(4):681-5 20570894 - Cancer Res. 2010 Jul 15;70(14):5923-30 12548545 - J Cell Physiol. 2003 Mar;194(3):237-55 17297654 - Cancer Sci. 2007 Feb;98(2):155-62 20370686 - Curr Cancer Drug Targets. 2010 May;10(3):319-31 21304978 - PLoS One. 2011;6(1):e16530 16327489 - Ann Surg. 2005 Dec;242(6):791-800, discussion 800-1 15917835 - Nat Neurosci. 2005 Jun;8(6):709-15 19262572 - Nat Rev Cancer. 2009 Apr;9(4):293-302 18834855 - Biochem Biophys Res Commun. 2008 Dec 5;377(1):114-9 21151206 - Nat Rev Clin Oncol. 2011 Feb;8(2):97-106 19221490 - Cell Cycle. 2009 Mar 1;8(5):712-5 16461460 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2257-61 18719384 - Cell Cycle. 2008 Aug 15;7(16):2591-600 17914404 - Nat Rev Cancer. 2007 Nov;7(11):819-22 11029493 - Int J Oncol. 2000 Nov;17(5):921-6 19723895 - Cancer Prev Res (Phila). 2009 Sep;2(9):807-13 20216554 - Nat Rev Mol Cell Biol. 2010 Apr;11(4):252-63 17569628 - Front Biosci. 2007;12:5039-51 19246618 - Clin Chem. 2009 Apr;55(4):623-31 19509267 - Mol Cancer Ther. 2009 Jun;8(6):1596-605 20478768 - Ann Biol Clin (Paris). 2010 May-Jun;68(3):263-72 17504023 - DNA Cell Biol. 2007 May;26(5):273-82 17473304 - JAMA. 2007 May 2;297(17):1923-5 18836476 - Oncogene. 2008 Oct 6;27(45):5959-74 17331197 - Eur J Neurosci. 2007 Feb;25(4):1006-22 16273296 - Int J Mol Med. 2005 Dec;16(6):1125-38 19258443 - Clin Cancer Res. 2009 Apr 1;15(7):2291-301 11020860 - Hepatogastroenterology. 2000 Jul-Aug;47(34):973-7 16847882 - Birth Defects Res C Embryo Today. 2006 Jun;78(2):172-9 16921404 - Nat Rev Mol Cell Biol. 2006 Sep;7(9):678-89 17540598 - Mol Cell. 2007 Jun 8;26(5):731-43 19747962 - Biochim Biophys Acta. 2010 Jan;1805(1):72-86 21102532 - Nat Rev Gastroenterol Hepatol. 2011 Jan;8(1):27-33 17297439 - Oncogene. 2007 Jul 26;26(34):5017-22 19630570 - Annu Rev Med. 2009;60:167-79 20018721 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):246-51 20198462 - AAPS J. 2010 Jun;12(2):223-32 10362119 - Br J Cancer. 1999 Jun;80(7):1075-9 19327730 - Gastroenterology. 2009 May;136(5):1499-502 20145172 - Clin Cancer Res. 2010 Feb 15;16(4):1119-28 16009126 - Cell. 2005 Jul 15;122(1):6-7 19582426 - Methods Mol Biol. 2009;568:161-73 16026644 - Neoplasia. 2005 Jul;7(7):646-57 20118199 - Carcinogenesis. 2010 Apr;31(4):745-50 18310506 - Am J Pathol. 2008 Apr;172(4):1081-7 |
References_xml | – volume: 103 start-page: 2257 year: 2006 ident: ref42 article-title: A microRNA expression signature of human solid tumors defines cancer gene targets. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0510565103 – volume: 10 start-page: 319 year: 2010 ident: ref45 article-title: Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. publication-title: Curr Cancer Drug Targets doi: 10.2174/156800910791190229 – volume: 16 start-page: 1125 year: 2005 ident: ref51 article-title: Interactive effects of histone deacetylase inhibitors and TRAIL on apoptosis in human leukemia cells: involvement of both death receptor and mitochondrial pathways. publication-title: Int J Mol Med – volume: 2 start-page: 807 year: 2009 ident: ref12 article-title: MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. publication-title: Cancer Prev Res (Phila Pa) doi: 10.1158/1940-6207.CAPR-09-0094 – volume: 194 start-page: 237 year: 2003 ident: ref36 article-title: HES and HERP families: multiple effectors of the Notch signaling pathway. publication-title: J Cell Physiol doi: 10.1002/jcp.10208 – volume: 31 start-page: 745 year: 2010 ident: ref29 article-title: Epigenetic inactivation of the miR-34a in hematological malignancies. publication-title: Carcinogenesis doi: 10.1093/carcin/bgq033 – volume: 26 start-page: 745 year: 2007 ident: ref20 article-title: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. publication-title: Mol Cell doi: 10.1016/j.molcel.2007.05.010 – volume: 55 start-page: 623 year: 2009 ident: ref13 article-title: MicroRNAs: novel biomarkers for human cancer. publication-title: Clin Chem doi: 10.1373/clinchem.2008.112805 – volume: 7 start-page: 678 year: 2006 ident: ref35 article-title: Notch signalling: a simple pathway becomes complex. publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2009 – volume: 4 start-page: 199 year: 2009 ident: ref7 article-title: MicroRNAs in cancer. publication-title: Annu Rev Pathol doi: 10.1146/annurev.pathol.4.110807.092222 – volume: 11 start-page: 252 year: 2010 ident: ref2 article-title: MicroRNA control of signal transduction. publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2868 – volume: 64 start-page: 2746 year: 2007 ident: ref48 article-title: Notch and cancer: a double-edged sword. publication-title: Cell Mol Life Sci doi: 10.1007/s00018-007-7164-1 – volume: 8 start-page: 712 year: 2009 ident: ref46 article-title: MiR-34, SIRT1 and p53: the feedback loop. publication-title: Cell Cycle doi: 10.4161/cc.8.5.7753 – volume: 8 start-page: 48 year: 2008 ident: ref19 article-title: Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. publication-title: BMC Cancer doi: 10.1186/1471-2407-8-48 – volume: 27 start-page: 5959 year: 2008 ident: ref4 article-title: MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. publication-title: Oncogene doi: 10.1038/onc.2008.274 – volume: 12 start-page: 5039 year: 2007 ident: ref52 article-title: Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. publication-title: Front Biosci doi: 10.2741/2446 – volume: 17 start-page: 921 year: 2000 ident: ref23 article-title: p53 accumulation confers prognostic information in resectable adenocarcinomas with ductal but not with intestinal differentiation in the pancreatic head. publication-title: Int J Oncol – volume: 7 start-page: 2591 year: 2008 ident: ref28 article-title: Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. publication-title: Cell Cycle doi: 10.4161/cc.7.16.6533 – volume: 25 start-page: 1006 year: 2007 ident: ref37 article-title: Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2007.05370.x – volume: 12 start-page: 223 year: 2010 ident: ref1 article-title: Pancreatic cancer: pathobiology, treatment options, and drug delivery. publication-title: AAPS J doi: 10.1208/s12248-010-9181-5 – volume: 47 start-page: 973 year: 2000 ident: ref25 article-title: p53 protein expression in intraductal papillary mucinous tumors (IPMT) of the pancreas as an indicator of tumor malignancy. publication-title: Hepatogastroenterology – volume: 1805 start-page: 72 year: 2010 ident: ref9 article-title: MicroRNAs: Oncogenes, tumor suppressors or master regulators of cancer heterogeneity? publication-title: Biochim Biophys Acta – volume: 80 start-page: 1075 year: 1999 ident: ref24 article-title: Bcl-2 expression related to altered p53 protein and its impact on the progression of human pancreatic carcinoma. publication-title: Br J Cancer doi: 10.1038/sj.bjc.6690466 – volume: 8 start-page: 27 year: 2011 ident: ref40 article-title: Pancreatic cancer: understanding and overcoming chemoresistance. publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2010.188 – volume: 68 start-page: 263 year: 2010 ident: ref14 article-title: [MicroRNAs: novel biomarkers for human cancer]. publication-title: Ann Biol Clin (Paris) – volume: 70 start-page: 5923 year: 2010 ident: ref15 article-title: Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-0655 – volume: 26 start-page: 731 year: 2007 ident: ref26 article-title: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. publication-title: Mol Cell doi: 10.1016/j.molcel.2007.05.017 – volume: 31 start-page: 27 year: 2010 ident: ref3 article-title: Epigenetics in cancer. publication-title: Carcinogenesis doi: 10.1093/carcin/bgp220 – volume: 126 start-page: 1283 year: 2010 ident: ref8 article-title: miRNA control of tumor cell invasion and metastasis. publication-title: Int J Cancer doi: 10.1002/ijc.25014 – volume: 15 start-page: 2291 year: 2009 ident: ref32 article-title: Ligand-dependent Notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer. publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-2004 – volume: 9 start-page: 293 year: 2009 ident: ref10 article-title: MicroRNAs—the micro steering wheel of tumour metastases. publication-title: Nat Rev Cancer doi: 10.1038/nrc2619 – volume: 297 start-page: 1923 year: 2007 ident: ref11 article-title: Translating MicroRNA discovery into clinical biomarkers in cancer. publication-title: JAMA doi: 10.1001/jama.297.17.1923 – volume: 78 start-page: 172 year: 2006 ident: ref41 article-title: MicroRNAs in mammalian development and tumorigenesis. publication-title: Birth Defects Res C Embryo Today doi: 10.1002/bdrc.20071 – volume: 98 start-page: 155 year: 2007 ident: ref49 article-title: Activation of Notch signaling in tumorigenesis of experimental pancreatic cancer induced by dimethylbenzanthracene in mice. publication-title: Cancer Sci doi: 10.1111/j.1349-7006.2006.00369.x – volume: 26 start-page: 273 year: 2007 ident: ref5 article-title: MicroRNAs as cancer players: potential clinical and biological effects. publication-title: DNA Cell Biol doi: 10.1089/dna.2006.0544 – volume: 377 start-page: 114 year: 2008 ident: ref47 article-title: Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2008.09.086 – volume: 568 start-page: 161 year: 2009 ident: ref18 article-title: Identification of human pancreatic cancer stem cells. publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-280-9_10 – volume: 8 start-page: 97 year: 2011 ident: ref38 article-title: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2010.196 – volume: 17 start-page: 681 year: 2006 ident: ref39 article-title: Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. publication-title: Int J Mol Med – volume: 7 start-page: 646 year: 2005 ident: ref43 article-title: Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. publication-title: Neoplasia doi: 10.1593/neo.04655 – volume: 6 start-page: e16530 year: 2011 ident: ref17 article-title: Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. publication-title: PLoS One doi: 10.1371/journal.pone.0016530 – volume: 8 start-page: 709 year: 2005 ident: ref34 article-title: Notch signaling in the mammalian central nervous system: insights from mouse mutants. publication-title: Nat Neurosci doi: 10.1038/nn1475 – volume: 60 start-page: 167 year: 2009 ident: ref6 article-title: MicroRNAs in Cancer. publication-title: Annu Rev Med doi: 10.1146/annurev.med.59.053006.104707 – volume: 242 start-page: 791 year: 2005 ident: ref50 article-title: The Notch signaling pathway is related to neurovascular progression of pancreatic cancer. publication-title: Ann Surg doi: 10.1097/01.sla.0000189115.94847.f1 – volume: 26 start-page: 5017 year: 2007 ident: ref27 article-title: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. publication-title: Oncogene doi: 10.1038/sj.onc.1210293 – volume: 172 start-page: 1081 year: 2008 ident: ref21 article-title: Trp53 deletion stimulates the formation of metastatic pancreatic tumors. publication-title: Am J Pathol doi: 10.2353/ajpath.2008.070778 – volume: 8 start-page: 1596 year: 2009 ident: ref44 article-title: Suberoylanilide hydroxamic acid (Zolinza/vorinostat) sensitizes TRAIL-resistant breast cancer cells orthotopically implanted in BALB/c nude mice. publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-08-1004 – volume: 122 start-page: 6 year: 2005 ident: ref16 article-title: miRNAs, cancer, and stem cell division. publication-title: Cell doi: 10.1016/j.cell.2005.06.036 – volume: 136 start-page: 1499 year: 2009 ident: ref33 article-title: Notch signaling: where pancreatic cancer and differentiation meet? publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.03.022 – volume: 16 start-page: 1119 year: 2010 ident: ref30 article-title: Frequent downregulation of miR-34 family in human ovarian cancers. publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-2642 – volume: 7 start-page: 819 year: 2007 ident: ref31 article-title: microRNAs join the p53 network—another piece in the tumour-suppression puzzle. publication-title: Nat Rev Cancer doi: 10.1038/nrc2232 – volume: 107 start-page: 246 year: 2010 ident: ref22 article-title: Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0908428107 – reference: 18817506 - Annu Rev Pathol. 2009;4:199-227 – reference: 17297439 - Oncogene. 2007 Jul 26;26(34):5017-22 – reference: 16327489 - Ann Surg. 2005 Dec;242(6):791-800, discussion 800-1 – reference: 17540598 - Mol Cell. 2007 Jun 8;26(5):731-43 – reference: 11020860 - Hepatogastroenterology. 2000 Jul-Aug;47(34):973-7 – reference: 18261235 - BMC Cancer. 2008;8:48 – reference: 19327730 - Gastroenterology. 2009 May;136(5):1499-502 – reference: 19262572 - Nat Rev Cancer. 2009 Apr;9(4):293-302 – reference: 20370686 - Curr Cancer Drug Targets. 2010 May;10(3):319-31 – reference: 16273296 - Int J Mol Med. 2005 Dec;16(6):1125-38 – reference: 15917835 - Nat Neurosci. 2005 Jun;8(6):709-15 – reference: 17297654 - Cancer Sci. 2007 Feb;98(2):155-62 – reference: 17540599 - Mol Cell. 2007 Jun 8;26(5):745-52 – reference: 16921404 - Nat Rev Mol Cell Biol. 2006 Sep;7(9):678-89 – reference: 20145172 - Clin Cancer Res. 2010 Feb 15;16(4):1119-28 – reference: 20570894 - Cancer Res. 2010 Jul 15;70(14):5923-30 – reference: 16847882 - Birth Defects Res C Embryo Today. 2006 Jun;78(2):172-9 – reference: 19221490 - Cell Cycle. 2009 Mar 1;8(5):712-5 – reference: 16525728 - Int J Mol Med. 2006 Apr;17(4):681-5 – reference: 19752007 - Carcinogenesis. 2010 Jan;31(1):27-36 – reference: 19877123 - Int J Cancer. 2010 Mar 15;126(6):1283-90 – reference: 16026644 - Neoplasia. 2005 Jul;7(7):646-57 – reference: 20118199 - Carcinogenesis. 2010 Apr;31(4):745-50 – reference: 21151206 - Nat Rev Clin Oncol. 2011 Feb;8(2):97-106 – reference: 19246618 - Clin Chem. 2009 Apr;55(4):623-31 – reference: 17687513 - Cell Mol Life Sci. 2007 Nov;64(21):2746-62 – reference: 18836476 - Oncogene. 2008 Oct 6;27(45):5959-74 – reference: 18834855 - Biochem Biophys Res Commun. 2008 Dec 5;377(1):114-9 – reference: 17504023 - DNA Cell Biol. 2007 May;26(5):273-82 – reference: 19723895 - Cancer Prev Res (Phila). 2009 Sep;2(9):807-13 – reference: 16461460 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2257-61 – reference: 19509267 - Mol Cancer Ther. 2009 Jun;8(6):1596-605 – reference: 17914404 - Nat Rev Cancer. 2007 Nov;7(11):819-22 – reference: 20216554 - Nat Rev Mol Cell Biol. 2010 Apr;11(4):252-63 – reference: 19630570 - Annu Rev Med. 2009;60:167-79 – reference: 19747962 - Biochim Biophys Acta. 2010 Jan;1805(1):72-86 – reference: 17473304 - JAMA. 2007 May 2;297(17):1923-5 – reference: 20478768 - Ann Biol Clin (Paris). 2010 May-Jun;68(3):263-72 – reference: 10362119 - Br J Cancer. 1999 Jun;80(7):1075-9 – reference: 20198462 - AAPS J. 2010 Jun;12(2):223-32 – reference: 18719384 - Cell Cycle. 2008 Aug 15;7(16):2591-600 – reference: 16009126 - Cell. 2005 Jul 15;122(1):6-7 – reference: 19582426 - Methods Mol Biol. 2009;568:161-73 – reference: 21102532 - Nat Rev Gastroenterol Hepatol. 2011 Jan;8(1):27-33 – reference: 17569628 - Front Biosci. 2007;12:5039-51 – reference: 19258443 - Clin Cancer Res. 2009 Apr 1;15(7):2291-301 – reference: 12548545 - J Cell Physiol. 2003 Mar;194(3):237-55 – reference: 21304978 - PLoS One. 2011;6(1):e16530 – reference: 20018721 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):246-51 – reference: 17331197 - Eur J Neurosci. 2007 Feb;25(4):1006-22 – reference: 18310506 - Am J Pathol. 2008 Apr;172(4):1081-7 – reference: 11029493 - Int J Oncol. 2000 Nov;17(5):921-6 |
SSID | ssj0053866 |
Score | 2.4890754 |
Snippet | MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional... Background MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional... Background MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e24099 |
SubjectTerms | Apoptosis Apoptosis - drug effects Apoptosis - genetics Azacitidine - pharmacology Azacitidine - therapeutic use Azacytidine Bcl-2 protein Biology Biomarkers Breast cancer Cancer Cancer prevention Cancer therapies Care and treatment Caspase Caspase-3 Cell cycle Cell Cycle - drug effects Cell Cycle - genetics Cell growth Cell Line, Tumor Cell Movement - drug effects Cell proliferation Cell Proliferation - drug effects Cell self-renewal Chemotherapy Chromatin Chromatin - metabolism Cyclin-dependent kinase inhibitor p21 Cyclin-dependent kinase inhibitor p27 Departments Development and progression E-cadherin Epigenesis, Genetic - drug effects Epigenetic inheritance Epigenetics Epithelial-Mesenchymal Transition - drug effects Epithelial-Mesenchymal Transition - genetics Gene expression Gene Expression Regulation, Neoplastic - drug effects Gene regulation Histone deacetylase Humans Hydroxamic Acids - pharmacology Hydroxamic Acids - therapeutic use Inhibition Laboratories Leukemia Medical prognosis Medicine Mesenchyme Metastasis MicroRNAs - genetics MicroRNAs - metabolism miRNA Modulators Multiple myeloma Mutation N-Cadherin Neoplasm Invasiveness Neoplastic Stem Cells - drug effects Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Notch protein p53 Protein Pancreatic cancer Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - genetics Pancreatic Neoplasms - pathology Pathology Pharmacology Physiology Prostate cancer Reagents Restoration Ribonucleic acid RNA Scholarships & fellowships SIRT1 protein Spheroids, Cellular - drug effects Spheroids, Cellular - metabolism Spheroids, Cellular - pathology Stem cells Toxicology Transcription Tumor cell lines Tumor proteins Tumor Stem Cell Assay Tumorigenesis Up-Regulation - drug effects Up-Regulation - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAhZCAg5pE-zYybEgqoIESKVFvUW2Y7eRSrLa7B4Qf54Z20kbqFQOXHfGUXbeE48_E_KSN5AIVMFTo6BF4Sp3aaVVljacq8xZ8DE_RPP5izg84Z9Oi9MrV33hTFiABw6C23PMlDlvZGHFW66lqEzuIM3pPHNONJXG6As5b2ymQgwGLxYiHpRjMt-Letld9p3d9bBeHuv1MhF5vP4pKi-WF_1wXcn55-TklVR0cJfciTUk3Q_vvkVu2e4e2YpeOtDXEUr6zX3y69gPekN6onaJuJt4ZJGuwv3zoBHaO_qjPUoZVxSqVzqNnSMB4kQoKQ01aBsrqn_StjtvdTuu_ZsFcaEp7gYMD8jJwYfj94dpvG4hNbKQ67Q0kmkrK8ULxStbCuc09ntK69xmSmoJmawRTgvNSgWliWUOFKIbk1Wu4I49JIsOBLxNqCmdKyougSIQ0F1ZlnGX60obASWPTQgbZV-biEWOV2Jc1H6DTUJPEkRZo8bqqLGEpNOqZcDiuIH_Hap14kUkbf8D2Fcd7au-yb4S8hyNog7HUqd4UO9zaNSgOhIsIS88B6JpdDiuc6Y2w1B__Pr9H5i-Hc2YXkUm14M4jIpHJOA_IUrXjHNnxgkxwczI22jCo1QG3LSUWPmJElaOZn09mU5kfCiO4HW23wx1WUJnX4mSJ-RRcIJJsJD1soqVWULkzD1mkp9TuvbcY5mzXAioUh__D1U9Ibcvv_jvkMV6tbFPoWRc62c-OvwGygdsIg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegSIgXxMbHAgMshAQ8ZEuwYydPaFQrG9IAdR3aW2Q79lapS0LTPiD-ec6OkxKYgNfcOUrufB-2z79D6CUtIBCIhIZKwBKFitiEmRRRWFAqIqPBxlwRzckndnRGP54n537DrfFllZ1PdI66qJTdI98HX8tt7GLpu_pbaLtG2dNV30LjJroVQ6SxJV3p5EPnicGWGfPX5QiP97129uqq1HsO3Mshvm7CkUPt733zqF5UzXWJ5-_1k78EpMk9dNdnkvigVf0WuqHLbXT7xJ-Vb6Mtb7YNfu2xpd_cRz9mrvIb4hU-rC0Qp73DiKdtQ3pQEa4MvppPQ0IFhnQWz7o6dEv4AjPE5ZgKj-1kWWL5HR-Xl3M578b-yXK60ld4rBeL5gE6mxzOxkeh778QKp7wVZgqTqTmmaCJoJlOmTHSLgCFlLGOBJccQlvBjGSSpAJyFU2M5EwWKspMQg15iEYlyHoHYZUak2SUA4VZhHehSURNLDOpGORAOkCkU0OuPDi57ZGxyN2JG4dFSivV3Cov98oLUNiPqltwjn_wv7ca7nkttLZ7UC0vcm-puSEqjWnBE83eUvidTMUG8ioZR8awIpMBem7nR97eU-0dRH5AYeUG6RIjAXrhOCy8Rmnrdy7Eumny489f_4PpdDpgeuWZTAXiUMLfmYB_srBdA87dASc4CTUg79jZ3EmlyTfmBCO7GX49Gfdk-1Jbk1fqat3kaQpL_YylNECPWnvoBQthMMpIGgWIDyxlIPkhpZxfOnBzEjMGaevjv3_VE3Rns7m_i0ar5Vo_hexwJZ85F_ATMZNlaw priority: 102 providerName: ProQuest |
Title | Targeting Epigenetic Regulation of miR-34a for Treatment of Pancreatic Cancer by Inhibition of Pancreatic Cancer Stem Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21909380 https://www.proquest.com/docview/1307901568 https://www.proquest.com/docview/889179684 https://pubmed.ncbi.nlm.nih.gov/PMC3166078 https://doaj.org/article/f3c814d75e624b769c1f075b10ff6d9b http://dx.doi.org/10.1371/journal.pone.0024099 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYBQLIQEPqZLZseMHhLaqZUPamLoW7S2yU3ur1CWlaSUmJP52zs4HBIrYix9y50g53_l-F5_vEHpNp-AIZET9VEKIQmVofKFk4E8plYHRYGMuieb0jB1P6KfL6HIL1T1bKwEWG0M7209qspz3vn29_QAG_951beBhPam3yDPdc0W7hNhGO-CbuO1pcEqbcwWwbnd6aVGLzw4CUl2m-9dbWs7K1fRvdu7OYp4Xm2Dpn9mVv7mr4QN0v8KZ-LBUjF20pbOHaLey5AK_rcpNv3uEvo9dMji4MDxY2Nqc9lojHpU96mHVcG7wzWzkEyoxIFw8rlPTLeEclMbBzhT3rf4ssbrFJ9n1TM3quX-zXKz0De7r-bx4jCbDwbh_7FctGfyUR3zlxyknSnMhaSSp0DEzRtmYUCoV6kByxcHbTZlRTJFYAnzRxCjO1DQNhImoIU9QJwMB7yGcxsZEgnKgMFv0XWoSUBMqoVIGsEh7iNSyT9KqXrltmzFP3CEch7ilFGViVyypVsxDfjNrUdbr-A__kV3WhtdW23YP8uVVUhlvYkgah3TKI80OKHyOSEMDUEuFgTFsKpSHXlqlSMqrq82ekRxSCOYAQTHioVeOw1bcyGxKz5VcF0Vy8vnLHZguRi2mNxWTyUEcqayuUcA32UpeLc79FifsG2mLvGdVuJZKYQ82uUWHLIaZtVpvJuOGbF9q0_Qyna-LJI4h-hcsph56WhpBI1jwjIEgceAh3jKPluTblGx27eqdk5AxQLLP7iLD5-jer7_--6izWq71C4CNK9VF2_ySwxj3QzsOP3bRztHg7HzUdT9ium6nsOOPwU_7NnJH |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYALouXRQKEWAgGHtMnasZMDQqV02aUPULtFvQXbsduVtsnSbIUq_hO_kXHipAQq4NLrzjjazIy_GcfzQOgZzcARiIj6SsARhYrQ-IkUgZ9RKgKjYY9VSTQ7u2xwQD8cRodz6EdTC2PTKhtMrIA6K5T9Rr4GWMut72Lxm-lX306NsrerzQiN2iy29Pk3OLKVr4fvQL_Pe73-5mhj4LupAr7iEZ_5seJEap4IGgma6JgZI-2xRkgZ6kBwyQGwM2YkkyQW4IE1MZIzmakgMRE1BJ57DV2nBDy5rUzvv2-QH7CDMVeeR3i45qxhdVrkerVqJlZ1mL1wf9WUgNYXzE8nRXlZoPt7vuYvDrB_B912kSter01tAc3pfBHd2HF384towcFEiV-6Xtav7qLvoyrTHPwj3pzaxp-2ZhLv6SM3NQwXBp-M93xCBYbwGY-avHdL-AQWWcW0Cm9Y4zzF8hwP8-OxHDdr_2TZn-kTvKEnk_IeOrgSzdxH8znIeglhFRsTJZQDhdmO8kKTgJpQJlIxiLm0h0ijhlS5Zuh2JsckrW74OByKaqmmVnmpU56H_HbVtG4G8g_-t1bDLa9t5V39UJwepQ4ZUkNUHNKMR5r1KLxOokIDcZwMA2NYlkgPrVj7SOu62BaQ0nUKJ0UIzxjx0NOKw7bzyG2-0JE4K8t0-PHzfzDt73WYXjgmU4A4lHA1GvBOtk1Yh3O5wwmgpDrkJWvNjVTK9GL7wsrGwi8n45ZsH2pzAHNdnJVpHCfgPVhMPfSg3g-tYMHtBgmJAw_xzk7pSL5LycfHVTN1EjIGYfLDv_-rFXRzMNrZTreHu1uP0K2Li4VlND87PdOPITKdyScVHGD05arx5yf9EKPB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkSZeEBsfCwxmIRDwkDWZHTt5QGh0m1bGxtRtaG_BduytUpeUphOa-M_46zinTkpgAl722jtHzX387hyf7xB6QTMIBCKivhKwRaEiNH4iReBnlIrAaPCxqohm_4DtntAPp9HpAvpR34WxZZU1JlZAnRXKfiPvAtZyG7tY3DWuLOJwa-fd-KtvJ0jZk9Z6nMbMRPb01TfYvpVv-1ug65cbGzvbx71d300Y8BWP-NSPFSdS80TQSNBEx8wYabc4QspQB4JLDuCdMSOZJLGAaKyJkZzJTAWJiagh8Nxb6DYnPLY-Fvea8hLAEcbcVT3Cw66zjPVxkev1qrFY1W12HgqriQFNXOiMR0V5XdL7e-3mL8Fw5x6667JYvDkzuyW0oPNltLjvzumX0ZKDjBK_dn2t39xH34-rqnOIlXh7bJuA2vuTeKDP3AQxXBh8MRz4hAoMqTQ-rmvgLeEQrLPKbxXuWUOdYHmF-_n5UA7rtX-yHE31Be7p0ah8gE5uRDMPUScHWa8grGJjooRyoDDbXV5oElATykQqBvmX9hCp1ZAq1xjdzucYpdVpH4cN0kyqqVVe6pTnIb9ZNZ41BvkH_3ur4YbXtvWufigmZ6lDidQQFYc045FmGxReJ1GhgZxOhoExLEukh9asfaSzO7INOKWbFHaNkKox4qHnFYdt7ZFbJzkTl2WZ9j99_g-mo0GL6ZVjMgWIQwl3XwPeybYMa3GutjgBoFSLvGKtuZZKmc5dGVbWFn49GTdk-1BbD5jr4rJM4ziBSMJi6qFHM39oBAshOEhIHHiItzylJfk2JR-eV43VScgYpMyP__6v1tAiIE_6sX-w9wTdmZ8xrKLOdHKpn0KSOpXPKjTA6MtNw89PE2qnwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+Epigenetic+Regulation+of+miR-34a+for+Treatment+of+Pancreatic+Cancer+by+Inhibition+of+Pancreatic+Cancer+Stem+Cells&rft.jtitle=PloS+one&rft.au=Nalls%2C+Dara&rft.au=Tang%2C+Su-Ni&rft.au=Rodova%2C+Marianna&rft.au=Srivastava%2C+Rakesh+K&rft.date=2011-08-31&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=6&rft.issue=8&rft.spage=e24099&rft_id=info:doi/10.1371%2Fjournal.pone.0024099&rft.externalDBID=IOV&rft.externalDocID=A476881263 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |