Infant Brain Atlases from Neonates to 1- and 2-Year-Olds

Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desire...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 6; no. 4; p. e18746
Main Authors Shi, Feng, Yap, Pew-Thian, Wu, Guorong, Jia, Hongjun, Gilmore, John H., Lin, Weili, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.04.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size. To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies. We expect that the proposed infant 0-1-2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website, http://bric.unc.edu/ideagroup/free-softwares/.
AbstractList Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size.BACKGROUNDStudies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size.To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies.METHODOLOGYTo this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies.We expect that the proposed infant 0-1-2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website, http://bric.unc.edu/ideagroup/free-softwares/.CONCLUSIONSWe expect that the proposed infant 0-1-2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website, http://bric.unc.edu/ideagroup/free-softwares/.
Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size. To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies. We expect that the proposed infant 0-1-2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website, http://bric.unc.edu/ideagroup/free-softwares/.
Background Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size. Methodology To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies. Conclusions We expect that the proposed infant 0–1–2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website, http://bric.unc.edu/ideagroup/free-softwares/.
Background Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size. Methodology To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies. Conclusions We expect that the proposed infant 0-1-2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website,
Background Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size. Methodology To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies. Conclusions We expect that the proposed infant 0–1–2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website, http://bric.unc.edu/ideagroup/free-softwares/.
BackgroundStudies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size.MethodologyTo this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies.ConclusionsWe expect that the proposed infant 0-1-2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website, http://bric.unc.edu/ideagroup/free-softwares/.
Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size. To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies. We expect that the proposed infant 0-1-2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website, http://bric.unc.edu/ideagroup/free-softwares/.
Audience Academic
Author Wu, Guorong
Jia, Hongjun
Shi, Feng
Yap, Pew-Thian
Lin, Weili
Gilmore, John H.
Shen, Dinggang
AuthorAffiliation 3 MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
2 Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
1 IDEA Lab, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
Tokyo Medical and Dental University, Japan
AuthorAffiliation_xml – name: 1 IDEA Lab, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
– name: Tokyo Medical and Dental University, Japan
– name: 3 MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
– name: 2 Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
Author_xml – sequence: 1
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
– sequence: 2
  givenname: Pew-Thian
  surname: Yap
  fullname: Yap, Pew-Thian
– sequence: 3
  givenname: Guorong
  surname: Wu
  fullname: Wu, Guorong
– sequence: 4
  givenname: Hongjun
  surname: Jia
  fullname: Jia, Hongjun
– sequence: 5
  givenname: John H.
  surname: Gilmore
  fullname: Gilmore, John H.
– sequence: 6
  givenname: Weili
  surname: Lin
  fullname: Lin, Weili
– sequence: 7
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21533194$$D View this record in MEDLINE/PubMed
BookMark eNqNk9uL1DAUxousuBf9D0QLguJDx9zapPsgjIuXgcUBb-BTSNPTmSydZExS0f_ejNNdpssi0oc2p7_vO8lHzml2ZJ2FLHuM0QxTjl9ducFb1c-2qTxDCAvOqnvZCa4pKSqC6NHB93F2GsIVQiUVVfUgOya4pBTX7CQTC9spG_M3Xhmbz2OvAoS8826TfwRnVUyr6HJc5Mq2OSm-g_LFsm_Dw-x-p_oAj8b3Wfb13dsvFx-Ky-X7xcX8stC85LHgXaMboeoWgGkmSoFRJ0Rd8U6DAKExU0xzVBEKbU1LLsqmoRpjzAhwmjZ8lj3d-257F-R46CAxxQQLwjhOxGJPtE5dya03G-V_S6eM_FtwfiWVj0b3IEtCS6UZUZgBawVplCICWKkZQMeZTl6vx25Ds4FWg41e9RPT6R9r1nLlfkqKOGeIJoMXo4F3PwYIUW5M0ND3yoIbghQV4wJTVCfy2S3y7sON1Eql_RvbudRW7zzlnPEqJVmVKFGzO6j0tLAxOl2QzqT6RPByIkhMhF9xpYYQ5OLzp_9nl9-m7PMDdg2qj-vg-iEaZ8MUfHIY9E3C1zczAWwPaO9C8NDdIBjJ3QBcxyV3AyDHAUiy81sybaLatU-JmP7f4j98-Qhh
CitedBy_id crossref_primary_10_1002_hbm_24340
crossref_primary_10_1016_j_isci_2024_109662
crossref_primary_10_1186_s12887_015_0439_z
crossref_primary_10_3389_fnins_2021_810833
crossref_primary_10_1364_BOE_5_004300
crossref_primary_10_1038_s41598_022_12864_4
crossref_primary_10_1186_s13229_023_00543_8
crossref_primary_10_1007_s00247_022_05510_8
crossref_primary_10_7554_eLife_37125
crossref_primary_10_1093_cercor_bhab408
crossref_primary_10_1002_hbm_25548
crossref_primary_10_1007_s00234_022_02939_4
crossref_primary_10_1016_j_media_2012_07_006
crossref_primary_10_1016_j_neuroimage_2012_01_059
crossref_primary_10_1371_journal_pone_0166112
crossref_primary_10_1002_hbm_23003
crossref_primary_10_1002_dev_22419
crossref_primary_10_3389_fnins_2022_952355
crossref_primary_10_1007_s00429_018_1707_0
crossref_primary_10_1038_s41598_020_61326_2
crossref_primary_10_1002_jia2_25863
crossref_primary_10_1038_pr_2015_202
crossref_primary_10_1073_pnas_1717603115
crossref_primary_10_1016_j_neubiorev_2018_03_025
crossref_primary_10_7554_eLife_84122
crossref_primary_10_1016_j_pediatrneurol_2023_03_013
crossref_primary_10_1001_jamanetworkopen_2022_36102
crossref_primary_10_1002_hbm_25456
crossref_primary_10_1016_j_dcn_2015_08_008
crossref_primary_10_1098_rspb_2017_1169
crossref_primary_10_1002_dev_22529
crossref_primary_10_1371_journal_pone_0177466
crossref_primary_10_1371_journal_pone_0262607
crossref_primary_10_1016_j_neuroimage_2017_02_030
crossref_primary_10_1002_hbm_25689
crossref_primary_10_1089_brain_2020_0965
crossref_primary_10_1111_desc_13323
crossref_primary_10_1016_j_neuroimage_2020_117440
crossref_primary_10_1093_brain_awz319
crossref_primary_10_1016_j_neuroimage_2022_119097
crossref_primary_10_1117_1_NPh_8_2_025009
crossref_primary_10_1016_j_nicl_2024_103572
crossref_primary_10_1002_dev_20579
crossref_primary_10_1016_j_clinph_2024_02_009
crossref_primary_10_1016_j_heares_2018_05_004
crossref_primary_10_1073_pnas_2303491120
crossref_primary_10_1016_j_neuroimage_2013_11_040
crossref_primary_10_1093_cercor_bhaa226
crossref_primary_10_1111_desc_12344
crossref_primary_10_1002_hbm_25677
crossref_primary_10_1016_j_media_2024_103396
crossref_primary_10_1016_j_infbeh_2020_101427
crossref_primary_10_1002_epi4_12433
crossref_primary_10_1016_j_bandl_2016_08_002
crossref_primary_10_1089_brain_2022_0073
crossref_primary_10_1002_hbm_23573
crossref_primary_10_1001_jamanetworkopen_2024_13508
crossref_primary_10_1016_j_neuroimage_2016_09_046
crossref_primary_10_1111_jon_70004
crossref_primary_10_1371_journal_pone_0066656
crossref_primary_10_1016_j_neuroimage_2013_08_008
crossref_primary_10_1007_s11011_015_9771_0
crossref_primary_10_1002_hbm_24534
crossref_primary_10_1007_s00247_018_4140_x
crossref_primary_10_1016_j_biopsych_2022_05_011
crossref_primary_10_1038_s41467_024_55178_x
crossref_primary_10_1038_pr_2016_49
crossref_primary_10_1371_journal_pone_0123807
crossref_primary_10_1016_j_neucom_2016_05_107
crossref_primary_10_1007_s10334_015_0518_z
crossref_primary_10_1016_j_clinph_2022_05_010
crossref_primary_10_1016_j_dcn_2023_101250
crossref_primary_10_1016_j_jpeds_2019_06_030
crossref_primary_10_1038_s41598_022_07173_9
crossref_primary_10_1016_j_clinph_2023_01_005
crossref_primary_10_1117_1_JMI_11_6_064004
crossref_primary_10_1007_s11682_020_00277_8
crossref_primary_10_1016_j_bpsgos_2021_05_002
crossref_primary_10_1007_s00247_020_04875_y
crossref_primary_10_3389_fneur_2020_00235
crossref_primary_10_1016_j_neuroimage_2011_06_064
crossref_primary_10_1016_j_dcn_2016_10_006
crossref_primary_10_1016_j_neuroimage_2024_120536
crossref_primary_10_3389_fpsyt_2019_00122
crossref_primary_10_1007_s00429_016_1296_8
crossref_primary_10_1016_j_neuroimage_2014_12_042
crossref_primary_10_1016_j_neuroimage_2018_03_049
crossref_primary_10_1093_cercor_bhs265
crossref_primary_10_1016_j_neuroimage_2018_03_042
crossref_primary_10_1016_j_neuroimage_2016_09_068
crossref_primary_10_1016_j_nicl_2020_102171
crossref_primary_10_1038_s41598_019_39993_7
crossref_primary_10_1016_j_ins_2016_01_035
crossref_primary_10_1016_j_dcn_2024_101405
crossref_primary_10_1097_WNP_0000000000001131
crossref_primary_10_3389_fnins_2024_1467446
crossref_primary_10_1038_s41467_021_24358_4
crossref_primary_10_1159_000536513
crossref_primary_10_1371_journal_pone_0080954
crossref_primary_10_1007_s00234_020_02552_3
crossref_primary_10_3174_ajnr_A7419
crossref_primary_10_1038_s42003_024_06641_4
crossref_primary_10_3389_fnins_2019_00899
crossref_primary_10_1016_j_tics_2018_01_005
crossref_primary_10_1016_j_dcn_2023_101235
crossref_primary_10_1126_scitranslmed_3004978
crossref_primary_10_1002_hbm_24308
crossref_primary_10_1007_s00259_019_04665_1
crossref_primary_10_1007_s00429_014_0917_3
crossref_primary_10_1093_cercor_bhy023
crossref_primary_10_3389_fnins_2022_1098735
crossref_primary_10_1016_j_dcn_2017_11_003
crossref_primary_10_1007_s12204_024_2782_4
crossref_primary_10_1148_radiol_223262
crossref_primary_10_3390_brainsci15010082
crossref_primary_10_1016_j_dcn_2017_03_003
crossref_primary_10_1016_j_neuroimage_2019_05_075
crossref_primary_10_1016_j_neuroimage_2023_120071
crossref_primary_10_1038_s41467_022_28326_4
crossref_primary_10_1007_s00247_024_06022_3
crossref_primary_10_1093_cercor_bhz109
crossref_primary_10_1002_hbm_22432
crossref_primary_10_1016_j_neuroimage_2019_01_059
crossref_primary_10_1016_j_dcn_2020_100893
crossref_primary_10_3389_fnins_2022_949230
crossref_primary_10_3389_fpsyt_2022_892259
crossref_primary_10_1111_desc_12768
crossref_primary_10_1016_j_cortex_2021_02_005
crossref_primary_10_1016_j_heares_2022_108521
crossref_primary_10_1002_hbm_22786
crossref_primary_10_1002_hbm_21453
crossref_primary_10_1093_braincomms_fcac295
crossref_primary_10_1002_hbm_25816
crossref_primary_10_1016_j_nicl_2017_09_020
crossref_primary_10_1093_cercor_bhac225
crossref_primary_10_1002_hbm_23552
crossref_primary_10_1038_s41467_023_44050_z
crossref_primary_10_1016_j_neuroimage_2011_09_062
crossref_primary_10_1016_j_dcn_2014_09_005
crossref_primary_10_1044_2024_AJA_24_00139
crossref_primary_10_1002_mrm_29572
crossref_primary_10_1007_s00234_024_03453_5
crossref_primary_10_1259_bjr_20140086
crossref_primary_10_1038_s41390_022_02279_2
crossref_primary_10_1016_j_bandl_2024_105461
crossref_primary_10_1016_j_ajog_2015_12_028
crossref_primary_10_1002_hbm_21486
crossref_primary_10_1097_PEP_0000000000000886
crossref_primary_10_1016_j_biopsych_2021_03_026
crossref_primary_10_1002_hbm_24636
crossref_primary_10_1038_srep23470
crossref_primary_10_1093_cercor_bhx062
crossref_primary_10_1093_cercor_bhz126
crossref_primary_10_1016_j_neuroimage_2017_01_065
crossref_primary_10_1016_j_dcn_2022_101092
crossref_primary_10_1016_j_compbiomed_2022_105555
crossref_primary_10_3389_fnins_2023_1214080
crossref_primary_10_1016_j_neuroimage_2018_09_048
crossref_primary_10_1136_archdischild_2020_320400
crossref_primary_10_1002_hbm_22444
crossref_primary_10_1016_j_neuroimage_2020_117031
crossref_primary_10_1016_j_neuroimage_2015_04_055
crossref_primary_10_1016_j_jpeds_2021_07_002
crossref_primary_10_1002_mp_15545
crossref_primary_10_1016_j_media_2014_06_007
crossref_primary_10_1007_s00429_020_02132_4
crossref_primary_10_1016_j_media_2025_103541
crossref_primary_10_1038_s41598_020_71914_x
crossref_primary_10_1016_j_media_2024_103140
crossref_primary_10_1111_acer_12930
crossref_primary_10_1016_j_neures_2014_01_003
crossref_primary_10_1016_j_nicl_2018_01_032
crossref_primary_10_1111_desc_13304
crossref_primary_10_1111_desc_13418
crossref_primary_10_1016_j_nicl_2019_101806
crossref_primary_10_1038_s41598_021_98574_9
crossref_primary_10_1038_s41592_022_01703_z
crossref_primary_10_1111_desc_12564
crossref_primary_10_1002_hbm_24924
crossref_primary_10_1016_j_dcn_2025_101535
crossref_primary_10_1002_hbm_22502
crossref_primary_10_1002_aur_2169
crossref_primary_10_1523_JNEUROSCI_5072_13_2014
crossref_primary_10_1093_cercor_bhz178
crossref_primary_10_1002_dev_22166
crossref_primary_10_3389_fninf_2017_00001
crossref_primary_10_3389_fnins_2020_00858
crossref_primary_10_1371_journal_pone_0186976
crossref_primary_10_1007_s12021_018_9359_z
crossref_primary_10_1093_cercor_bhr327
crossref_primary_10_1371_journal_pone_0059990
crossref_primary_10_1093_cercor_bhs413
crossref_primary_10_1093_cercor_bhac438
crossref_primary_10_1093_cercor_bhaa135
crossref_primary_10_1016_j_dcn_2021_100976
crossref_primary_10_1016_j_cortex_2012_07_006
crossref_primary_10_1093_cercor_bhab230
crossref_primary_10_1016_j_media_2017_03_008
crossref_primary_10_1007_s11042_019_07829_1
crossref_primary_10_1016_j_nicl_2022_103206
crossref_primary_10_1007_s11517_020_02244_3
crossref_primary_10_1002_hbm_24948
crossref_primary_10_1523_JNEUROSCI_3976_13_2014
crossref_primary_10_1016_j_dcn_2017_10_004
crossref_primary_10_1073_pnas_1704907114
crossref_primary_10_1093_cercor_bhac444
crossref_primary_10_1007_s12640_016_9642_4
crossref_primary_10_1016_j_neuroimage_2017_06_038
crossref_primary_10_1016_j_neuroimage_2022_119641
crossref_primary_10_1073_pnas_1805572115
crossref_primary_10_1109_TNNLS_2019_2935184
crossref_primary_10_1371_journal_pone_0134195
crossref_primary_10_1002_hbm_22957
crossref_primary_10_1016_j_neuroimage_2018_07_004
crossref_primary_10_1371_journal_pone_0073821
crossref_primary_10_1161_STROKEAHA_116_014186
crossref_primary_10_1016_j_media_2018_07_006
crossref_primary_10_1038_s41398_022_02073_y
crossref_primary_10_1109_JBHI_2019_2897020
crossref_primary_10_1016_j_dcn_2020_100814
crossref_primary_10_1038_tp_2016_146
crossref_primary_10_1002_acn3_52168
crossref_primary_10_1016_j_neuroimage_2014_07_001
crossref_primary_10_1111_ejn_15882
crossref_primary_10_3389_fnins_2021_753033
crossref_primary_10_1073_pnas_2121748119
crossref_primary_10_1007_s11682_016_9586_6
crossref_primary_10_1186_s13229_025_00640_w
crossref_primary_10_1016_j_neuroimage_2021_118284
crossref_primary_10_1097_NNR_0000000000000241
crossref_primary_10_1016_j_dcn_2022_101117
crossref_primary_10_1093_cercor_bhad288
crossref_primary_10_1016_j_neuroimage_2019_116018
crossref_primary_10_1016_j_ajog_2016_09_089
crossref_primary_10_1073_pnas_1324118111
crossref_primary_10_1093_cercor_bhw269
crossref_primary_10_1038_srep17755
crossref_primary_10_1002_brb3_1846
crossref_primary_10_1162_imag_a_00180
crossref_primary_10_1038_s41593_023_01501_6
crossref_primary_10_1093_cercor_bhad176
crossref_primary_10_1093_cercor_bhae145
crossref_primary_10_1016_j_bpsc_2018_08_010
crossref_primary_10_1186_s12916_023_03141_w
crossref_primary_10_1523_JNEUROSCI_0874_22_2022
crossref_primary_10_1016_j_jad_2023_06_054
crossref_primary_10_3389_fnins_2022_806268
crossref_primary_10_1016_j_neuroimage_2013_07_045
crossref_primary_10_3389_fnhum_2021_780076
crossref_primary_10_1016_j_cub_2021_09_058
crossref_primary_10_1093_brain_awab118
crossref_primary_10_1002_mrm_26455
crossref_primary_10_1016_j_biopsych_2017_06_021
crossref_primary_10_1093_cercor_bhab041
crossref_primary_10_1016_j_nicl_2018_02_002
crossref_primary_10_1016_j_heliyon_2023_e22414
crossref_primary_10_1093_cercor_bhad100
crossref_primary_10_1007_s00429_022_02565_z
crossref_primary_10_3389_fnins_2022_874062
crossref_primary_10_1016_j_neuroimage_2018_10_060
crossref_primary_10_1038_s41562_021_01237_y
crossref_primary_10_3389_fnins_2016_00220
crossref_primary_10_1093_braincomms_fcac009
crossref_primary_10_4103_1673_5374_247468
crossref_primary_10_1038_s41562_022_01355_1
crossref_primary_10_1016_j_biopsych_2023_03_004
crossref_primary_10_1016_j_dcn_2020_100850
crossref_primary_10_1038_s42003_024_06016_9
crossref_primary_10_1016_j_neuroimage_2017_06_074
crossref_primary_10_1118_1_4868455
crossref_primary_10_1016_j_neuroimage_2022_118983
crossref_primary_10_1016_j_neuroimage_2013_07_025
crossref_primary_10_1111_jcpp_12838
crossref_primary_10_1016_j_nicl_2022_103153
crossref_primary_10_1097_PRS_0000000000008931
crossref_primary_10_1111_desc_12841
crossref_primary_10_1159_000438749
crossref_primary_10_1093_cercor_bhad117
crossref_primary_10_1016_j_ijdevneu_2019_09_005
crossref_primary_10_1007_s00330_022_09374_2
crossref_primary_10_3389_fnhum_2015_00021
crossref_primary_10_1016_j_neuroimage_2018_07_023
crossref_primary_10_1016_j_compmedimag_2019_101660
crossref_primary_10_3389_fnins_2016_00560
crossref_primary_10_1002_hbm_26183
crossref_primary_10_1523_JNEUROSCI_1506_21_2022
crossref_primary_10_1016_j_dcn_2019_100654
crossref_primary_10_1016_j_media_2020_101853
crossref_primary_10_1523_JNEUROSCI_1209_24_2025
crossref_primary_10_3389_fnins_2022_972882
crossref_primary_10_3390_diagnostics13081508
crossref_primary_10_1016_j_neuroscience_2017_05_011
crossref_primary_10_1523_JNEUROSCI_1780_24_2025
crossref_primary_10_1109_ACCESS_2019_2918926
crossref_primary_10_1016_j_neuroimage_2016_04_037
crossref_primary_10_1093_cercor_bhab078
crossref_primary_10_1016_j_neuroimage_2022_119241
crossref_primary_10_1007_s11682_021_00616_3
crossref_primary_10_1007_s00213_018_5161_8
crossref_primary_10_1002_hbm_25158
crossref_primary_10_1002_hbm_26126
crossref_primary_10_1016_j_neuroimage_2018_06_038
crossref_primary_10_1371_journal_pone_0262310
crossref_primary_10_1016_j_jad_2019_10_047
crossref_primary_10_1016_j_nicl_2020_102423
crossref_primary_10_1016_j_mri_2019_03_016
crossref_primary_10_1109_TMI_2016_2587628
crossref_primary_10_1038_s41467_024_54657_5
crossref_primary_10_1038_srep37666
crossref_primary_10_1016_j_bpsc_2020_03_008
crossref_primary_10_1007_s11033_019_04916_2
crossref_primary_10_1136_bmjopen_2017_020478
crossref_primary_10_1002_dneu_22742
crossref_primary_10_1093_cercor_bhv300
crossref_primary_10_1117_1_NPh_7_1_015009
crossref_primary_10_1007_s00429_017_1600_2
crossref_primary_10_3389_fbioe_2021_706566
crossref_primary_10_1093_cercor_bhae092
crossref_primary_10_1038_s41598_024_66830_3
crossref_primary_10_1016_j_nicl_2018_03_020
crossref_primary_10_1016_j_dcn_2023_101203
crossref_primary_10_3389_fped_2022_847037
crossref_primary_10_3390_jcm9030834
crossref_primary_10_1038_srep27893
crossref_primary_10_1016_j_neuroimage_2014_06_028
crossref_primary_10_1016_j_neuroimage_2018_06_027
crossref_primary_10_1371_journal_pone_0272125
crossref_primary_10_2139_ssrn_3774446
crossref_primary_10_1002_hbm_24199
crossref_primary_10_1007_s00429_014_0710_3
crossref_primary_10_1089_brain_2021_0133
crossref_primary_10_3174_ajnr_A5559
crossref_primary_10_3389_fnins_2019_01025
crossref_primary_10_1007_s00234_016_1714_x
crossref_primary_10_7554_eLife_06356
crossref_primary_10_15302_J_QB_021_0275
crossref_primary_10_52294_001c_130075
crossref_primary_10_1016_j_neuroimage_2017_04_010
crossref_primary_10_1016_j_ntt_2017_10_005
crossref_primary_10_1016_j_cmpb_2024_108479
crossref_primary_10_1016_j_neuroimage_2012_05_026
crossref_primary_10_1016_j_dcn_2023_101314
crossref_primary_10_1002_hbm_26442
crossref_primary_10_1371_journal_pone_0301520
crossref_primary_10_1162_imag_a_00206
crossref_primary_10_1007_s00429_018_1735_9
crossref_primary_10_1016_j_heliyon_2019_e02350
crossref_primary_10_1038_s41390_021_01550_2
crossref_primary_10_1007_s12021_012_9164_z
crossref_primary_10_3390_app12115377
crossref_primary_10_1038_s41467_023_41499_w
crossref_primary_10_1016_j_neuroimage_2014_07_030
crossref_primary_10_1080_02699052_2022_2034041
crossref_primary_10_1016_j_ejpn_2024_06_009
crossref_primary_10_3389_fnhum_2018_00514
crossref_primary_10_3389_fpsyg_2018_01968
crossref_primary_10_1523_JNEUROSCI_4333_14_2015
crossref_primary_10_1002_hbm_26315
crossref_primary_10_1016_j_neuroimage_2015_08_002
crossref_primary_10_1016_j_neuroimage_2014_06_004
crossref_primary_10_1523_JNEUROSCI_2232_21_2022
crossref_primary_10_1093_cercor_bhs197
crossref_primary_10_1016_j_neuroimage_2018_05_046
crossref_primary_10_1002_hbm_23160
crossref_primary_10_1016_j_neuroimage_2022_119319
crossref_primary_10_1016_j_neuroimage_2012_05_042
crossref_primary_10_1371_journal_pone_0040558
crossref_primary_10_3389_fnins_2021_698007
crossref_primary_10_1007_s12021_020_09482_8
crossref_primary_10_1016_j_dcn_2017_08_009
crossref_primary_10_1111_jcpp_13555
crossref_primary_10_1118_1_4922393
crossref_primary_10_1002_brb3_3154
crossref_primary_10_1016_j_cortex_2016_01_012
crossref_primary_10_1073_pnas_1617589114
crossref_primary_10_1016_j_media_2015_10_007
crossref_primary_10_3389_fneur_2024_1346632
crossref_primary_10_1016_j_neuroimage_2020_116946
crossref_primary_10_1016_j_compmedimag_2018_08_007
crossref_primary_10_1016_j_compmedimag_2018_08_009
crossref_primary_10_1080_21681163_2014_933679
crossref_primary_10_1007_s00247_013_2822_y
crossref_primary_10_1016_j_neuroimage_2018_04_003
crossref_primary_10_1093_braincomms_fcaa209
crossref_primary_10_1016_j_nicl_2018_05_030
crossref_primary_10_1002_hbm_26695
crossref_primary_10_1016_j_neuroimage_2017_03_012
crossref_primary_10_1002_hbm_25242
crossref_primary_10_1080_15622975_2021_2016955
crossref_primary_10_1002_aur_2626
crossref_primary_10_1016_j_nicl_2021_102739
crossref_primary_10_1016_j_jpeds_2020_01_034
crossref_primary_10_1016_j_compbiomed_2015_06_016
crossref_primary_10_1016_j_media_2015_04_005
crossref_primary_10_1360_TB_2022_0621
crossref_primary_10_1002_hbm_70126
crossref_primary_10_1093_cercor_bhu027
crossref_primary_10_3389_fnins_2017_00394
crossref_primary_10_1016_j_neuroimage_2021_118068
crossref_primary_10_1016_j_jad_2024_03_092
crossref_primary_10_1016_j_neuroimage_2018_06_069
crossref_primary_10_1016_j_neuroimage_2013_12_038
crossref_primary_10_1111_desc_13078
Cites_doi 10.1016/j.neuroimage.2006.01.015
10.1109/42.963819
10.1016/j.neuroimage.2006.05.061
10.1136/jamia.1996.96236280
10.1109/2945.537306
10.1016/j.neuroimage.2010.02.025
10.1093/cercor/5.1.56
10.1006/nimg.1995.1012
10.1002/(SICI)1097-0193(1999)8:2/3<73::AID-HBM1>3.0.CO;2-7
10.1016/j.media.2005.05.007
10.1016/j.neuroimage.2008.07.060
10.1016/j.neuroimage.2007.07.030
10.1136/jamia.2001.0080401
10.1016/j.neuroimage.2004.07.068
10.1006/nimg.2001.0978
10.1016/S1053-8119(03)00185-X
10.2307/1932409
10.1002/hbm.10053
10.1523/JNEUROSCI.3339-06.2007
10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
10.1016/j.neuroimage.2009.07.066
10.1097/00004728-199803000-00032
10.1016/j.neuroimage.2010.03.010
10.1109/TMI.2002.803111
10.1016/S0167-8655(98)00121-4
10.1016/j.neuroimage.2009.10.065
10.1016/j.neuroimage.2008.10.048
10.1109/42.668698
10.1016/j.neuroimage.2005.02.018
10.1002/hbm.20906
10.1098/rstb.2001.0915
10.1523/JNEUROSCI.3479-08.2008
10.1016/j.neuroimage.2009.02.043
10.1016/j.neuroimage.2007.05.004
10.1093/cercor/11.1.1
10.1016/j.neuroimage.2007.11.034
10.1016/j.neuroimage.2010.10.019
10.1016/j.media.2008.06.005
10.1007/s00791-002-0084-6
10.1016/j.neuroimage.2009.04.068
ContentType Journal Article
Copyright COPYRIGHT 2011 Public Library of Science
2011 Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Shi et al. 2011
Copyright_xml – notice: COPYRIGHT 2011 Public Library of Science
– notice: 2011 Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Shi et al. 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0018746
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Agricultural Science Database






MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Engineering
Biology
DocumentTitleAlternate Infant 0-1-2 Brain Atlases
EISSN 1932-6203
ExternalDocumentID 1312182471
oai_doaj_org_article_5235ac42a14e4d82baa28e45c4eef74c
PMC3077403
2900559851
A476896650
21533194
10_1371_journal_pone_0018746
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations North Carolina
United States--US
GeographicLocations_xml – name: North Carolina
– name: United States--US
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH088520
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NINDS NIH HHS
  grantid: NS055754
– fundername: NIBIB NIH HHS
  grantid: R03 EB008760
– fundername: NINDS NIH HHS
  grantid: R01 NS055754
– fundername: NIBIB NIH HHS
  grantid: EB006733
– fundername: NIBIB NIH HHS
  grantid: EB008374
– fundername: NIMH NIH HHS
  grantid: MH070890
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIMH NIH HHS
  grantid: RC1 MH088520
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RIG
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c757t-7fbcb8a9dee4c485810f88967fce8e8c14a4c70623ed935785bb3c11142e73053
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:42 EST 2021
Wed Aug 27 01:29:33 EDT 2025
Thu Aug 21 13:53:46 EDT 2025
Thu Jul 10 19:35:45 EDT 2025
Fri Jul 25 10:20:11 EDT 2025
Tue Jun 17 21:25:30 EDT 2025
Tue Jun 10 20:27:21 EDT 2025
Fri Jun 27 03:36:01 EDT 2025
Fri Jun 27 03:55:06 EDT 2025
Thu May 22 21:20:25 EDT 2025
Mon Jul 21 06:06:39 EDT 2025
Tue Jul 01 02:48:00 EDT 2025
Thu Apr 24 22:53:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c757t-7fbcb8a9dee4c485810f88967fce8e8c14a4c70623ed935785bb3c11142e73053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: DS FS. Performed the experiments: FS GR. Analyzed the data: FS DS. Contributed reagents/materials/analysis tools: DS WL JHG HJ GR. Wrote the paper: FS P-TY DS.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0018746
PMID 21533194
PQID 1312182471
PQPubID 1436336
PageCount e18746
ParticipantIDs plos_journals_1312182471
doaj_primary_oai_doaj_org_article_5235ac42a14e4d82baa28e45c4eef74c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3077403
proquest_miscellaneous_864781309
proquest_journals_1312182471
gale_infotracmisc_A476896650
gale_infotracacademiconefile_A476896650
gale_incontextgauss_ISR_A476896650
gale_incontextgauss_IOV_A476896650
gale_healthsolutions_A476896650
pubmed_primary_21533194
crossref_primary_10_1371_journal_pone_0018746
crossref_citationtrail_10_1371_journal_pone_0018746
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-14
PublicationDateYYYYMMDD 2011-04-14
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2011
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References H Jia (ref43) 2010; 51
J Ashburner (ref48) 2005; 26
S Baloch (ref38) 2009; 45
NI Weisenfeld (ref22) 2006
V Spitzer (ref10) 1996; 3
JC Mazziotta (ref7) 1995; 2
K Brodmann (ref5) 1909
S Tang (ref39) 2009; 47
PA Yushkevich (ref31) 2006; 31
JG Sled (ref32) 1998; 17
AW Toga (ref4) 2002
RA Heckemann (ref36) 2006; 33
RP Woods (ref14) 1999; 8
N Tzourio-Mazoyer (ref35) 2002; 15
J Mazziotta (ref9) 2001; 356
F Shi (ref25) 2010; 51
M Prastawa (ref19) 2005; 9
NI Weisenfeld (ref24) 2009; 47
H Xue (ref20) 2007; 38
RC Knickmeyer (ref17) 2008; 28
M Wilke (ref44) 2002; 17
S Joshi (ref42) 2004; 23
PM Thompson (ref15) 2001; 11
CJ Holmes (ref37) 1998; 22
PM Thompson (ref3) 2002; 5
M Kuklisova-Murgasova (ref26) 2010; 54
LR Dice (ref47) 1945; 26
J Ashburner (ref46) 1999; 7
E Armstrong (ref33) 1995; 5
J Talairach (ref6) 1988
Z Song (ref23) 2007
J Mazziotta (ref16) 2001; 8
AC Evans (ref8) 1993
K Kazemi (ref11) 2007; 37
DE Rex (ref45) 2003; 19
PA Habas (ref50) 2009
NI Weisenfeld (ref21) 2006
JD Van Horn (ref1) 2009
F Shi (ref28) 2010; 49
BTT Yeo (ref49) 2008; 12
JH Gilmore (ref18) 2007; 27
M Altaye (ref12) 2008; 43
D Shen (ref40) 2002; 21
T Rohlfing (ref13) 2010; 31
DW Shattuck (ref30) 2001; 20
R Kikinis (ref2) 1996; 2
G Wu (ref41) 2010; 49
G Wu (ref29) 2011
DL Pham (ref34) 1999; 20
IS Gousias (ref27) 2008; 40
References_xml – volume: 31
  start-page: 1116
  year: 2006
  ident: ref31
  article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 20
  start-page: 1167
  year: 2001
  ident: ref30
  article-title: Automated graph-based analysis and correction of cortical volume topology.
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.963819
– volume: 33
  start-page: 115
  year: 2006
  ident: ref36
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.061
– volume: 3
  start-page: 118
  year: 1996
  ident: ref10
  article-title: The visible human male: a technical report.
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.1996.96236280
– year: 2011
  ident: ref29
  article-title: Feature-based Groupwise Registration by Hierarchical Anatomical Correspondence Detection.
  publication-title: Human Brain Mapping
– year: 2002
  ident: ref4
  article-title: Brain mapping: The methods.
– volume: 2
  start-page: 232
  year: 1996
  ident: ref2
  article-title: A digital brain atlas for surgical planning, model-drivensegmentation, and teaching.
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/2945.537306
– volume: 51
  start-page: 684
  year: 2010
  ident: ref25
  article-title: Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.025
– volume: 5
  start-page: 56
  year: 1995
  ident: ref33
  article-title: The Ontogeny of Human Gyrification.
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/5.1.56
– start-page: 263
  year: 2009
  ident: ref1
  article-title: Brain Atlases: Their Development and Role in Functional Inference.
– volume: 2
  start-page: 89
  year: 1995
  ident: ref7
  article-title: A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM).
  publication-title: Neuroimage
  doi: 10.1006/nimg.1995.1012
– volume: 8
  start-page: 73
  year: 1999
  ident: ref14
  article-title: Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data.
  publication-title: Human Brain Mapping
  doi: 10.1002/(SICI)1097-0193(1999)8:2/3<73::AID-HBM1>3.0.CO;2-7
– volume: 9
  start-page: 457
  year: 2005
  ident: ref19
  article-title: Automatic segmentation of MR images of the developing newborn brain.
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2005.05.007
– volume: 43
  start-page: 721
  year: 2008
  ident: ref12
  article-title: Infant brain probability templates for MRI segmentation and normalization.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.07.060
– volume: 38
  start-page: 461
  year: 2007
  ident: ref20
  article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.030
– volume: 8
  start-page: 401
  year: 2001
  ident: ref16
  article-title: A four-dimensional probabilistic atlas of the human brain.
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.2001.0080401
– start-page: 883
  year: 2007
  ident: ref23
  article-title: Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors.
  publication-title: MICCAI 2007
– volume: 23
  start-page: 151
  year: 2004
  ident: ref42
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.068
– start-page: 1813
  year: 1993
  ident: ref8
  article-title: 3D statistical neuroanatomical models from 305 MRI volumes.
  publication-title: Proc IEEE-Nuclear Science Symposium and Medical Imaging Conference
– start-page: 199
  year: 2006
  ident: ref21
  article-title: Highly accurate segmentation of brain tissue and subcortical gray matter from newborn MRI.
  publication-title: MICCAI 2006
– year: 1988
  ident: ref6
  article-title: Co-planar stereotaxic atlas of the human brain
– volume: 15
  start-page: 273
  year: 2002
  ident: ref35
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 19
  start-page: 1033
  year: 2003
  ident: ref45
  article-title: The LONI Pipeline Processing Environment.
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00185-X
– volume: 26
  start-page: 297
  year: 1945
  ident: ref47
  article-title: Measures of the Amount of Ecologic Association Between Species.
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 17
  start-page: 48
  year: 2002
  ident: ref44
  article-title: Assessment of spatial normalization of whole-brain magnetic resonance images in children.
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.10053
– volume: 27
  start-page: 1255
  year: 2007
  ident: ref18
  article-title: Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3339-06.2007
– volume: 7
  start-page: 254
  year: 1999
  ident: ref46
  article-title: Nonlinear spatial normalization using basis functions.
  publication-title: Human Brain Mapping
  doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
– volume: 49
  start-page: 391
  year: 2010
  ident: ref28
  article-title: Neonatal brain image segmentation in longitudinal MRI studies.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.07.066
– volume: 22
  start-page: 324
  year: 1998
  ident: ref37
  article-title: Enhancement of MR images using registration for signal averaging.
  publication-title: Journal of Computer Assisted Tomography
  doi: 10.1097/00004728-199803000-00032
– volume: 51
  start-page: 1057
  year: 2010
  ident: ref43
  article-title: ABSORB: Atlas Building by Self-organized Registration and Bundling.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.010
– volume: 21
  start-page: 1421
  year: 2002
  ident: ref40
  article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration.
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2002.803111
– volume: 20
  start-page: 57
  year: 1999
  ident: ref34
  article-title: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities.
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(98)00121-4
– volume: 49
  start-page: 2225
  year: 2010
  ident: ref41
  article-title: TPS-HAMMER: Improving HAMMER registration algorithm by soft correspondence matching and thin-plate splines based deformation interpolation.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.065
– start-page: 766
  year: 2006
  ident: ref22
  article-title: Segmentation of newborn brain MRI.
  publication-title: Macro to Nano
– volume: 45
  start-page: S73
  year: 2009
  ident: ref38
  article-title: Morphological appearance manifolds in computational anatomy: Groupwise registration and morphological analysis.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.048
– volume: 17
  start-page: 87
  year: 1998
  ident: ref32
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data.
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.668698
– volume: 26
  start-page: 839
  year: 2005
  ident: ref48
  article-title: Unified segmentation.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 31
  start-page: 798
  year: 2010
  ident: ref13
  article-title: The SRI24 multichannel atlas of normal adult human brain structure.
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.20906
– volume: 356
  start-page: 1293
  year: 2001
  ident: ref9
  article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM).
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2001.0915
– volume: 28
  start-page: 12176
  year: 2008
  ident: ref17
  article-title: A structural MRI study of human brain development from birth to 2 years.
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3479-08.2008
– volume: 47
  start-page: 1277
  year: 2009
  ident: ref39
  article-title: RABBIT: rapid alignment of brains by building intermediate templates.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.043
– volume: 37
  start-page: 463
  year: 2007
  ident: ref11
  article-title: A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.05.004
– volume: 11
  start-page: 1
  year: 2001
  ident: ref15
  article-title: Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas.
  publication-title: Cerebal Cortex
  doi: 10.1093/cercor/11.1.1
– volume: 40
  start-page: 672
  year: 2008
  ident: ref27
  article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.034
– volume: 54
  start-page: 2750
  year: 2010
  ident: ref26
  article-title: A dynamic 4D probabilistic atlas of the developing brain.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.10.019
– volume: 12
  start-page: 603
  year: 2008
  ident: ref49
  article-title: Effects of registration regularization and atlas sharpness on segmentation accuracy.
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2008.06.005
– volume: 5
  start-page: 13
  year: 2002
  ident: ref3
  article-title: A framework for computational anatomy.
  publication-title: Computing and Visualization in Science
  doi: 10.1007/s00791-002-0084-6
– year: 1909
  ident: ref5
  article-title: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues.
– volume: 47
  start-page: 564
  year: 2009
  ident: ref24
  article-title: Automatic segmentation of newborn brain MRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.04.068
– start-page: 289
  year: 2009
  ident: ref50
  article-title: A spatio-temporal atlas of the human fetal brain with application to tissue segmentation.
  publication-title: MICCAI 2009
SSID ssj0053866
Score 2.5384629
Snippet Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide...
Background Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can...
BackgroundStudies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can...
Background Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e18746
SubjectTerms Accuracy
Adults
Age
Atlases as Topic
Babies
Bibliography
Biology
Brain
Brain - anatomy & histology
Brain mapping
Child, Preschool
Data acquisition
Data processing
Engineering
Female
Females
Humans
Image contrast
Image processing
Image segmentation
Infant
Infant, Newborn
Infants
Information processing
Magnetic Resonance Imaging
Male
Males
Medical imaging
Medicine
Morphology
Neonates
Neuroimaging
Newborn babies
Newborn infants
Recruitment
Registration
Segmentation
Structure-function relationships
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnrggylcDBSyEBBzcxvE4do4FUbVIgAQU9WY5jlOQVsmKZA_8e8axN2pQpXLguOtJtHmesd9kPW8IeSkacKWvJFPSA4PaWoYktmFIrS3uP1q6ScD046fy9Bw-XMiLK62-wpmwKA8cgTvCRElaB4Xl4KHRBd6t0B6kA-9bBS6svrjn7ZKpuAZjFJdlKpQTih-leTnc9J0_jH3oysVGNOn1z6vyarPuh-so598nJ69sRSd3yZ3EIelx_O175Jbv7pG9FKUDfZ2kpN_cJ_qsaxE6WodGENSOSJXRIJSU0M6H9-b4aewpZ9R2DS3Yb_R71q-b4QE5P3n_7d0pS70SmFNSjUy1tau1rRrvwYGWmuet1lWpWue1146DBadyJDu-qSaFm7oWjodKWo9BLsVDsuoQnX1CbQ4gkBkVXreA0FfcCnBt44XLWyldRsQOOOOSkHjoZ7E2079jChOKiIMJcJsEd0bYfNUmCmncYP82zMlsG2Swpy_QOUxyDnOTc2TkeZhRE2tK52A2x4BZFiZ6Ms_Ii8kiSGF04azNpd0Ogzn7_P0fjL5-WRi9SkZtj3A4m-ob8JmCxNbC8mBhiQHtFsP7wf92qAyIEQ86-0gj8MqdT14_TOfhcNNwfg69aTsYPZUUi7zKyKPowTOwRWD8vIKMqIVvL5BfjnQ_f0xC5Lg_KMjF4_8xVU_I7fi6HhiHA7Iaf239U-R7Y_1sCu0_T0lSDQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELagvPCCGL8WGBAhJODBW5ycY-cJdYhpQ2KTgKHyZDmOsyFVSVna_5-7xA0ETcBj60vlfr6z75y77xh7mVXgcl9IrqQHDqW1HJ3YiqNrbfH80dL1BKYfT_Pjc_iwkItw4daFtMrtnthv1FXr6I78QGSCyMZxL327-sGpaxS9XQ0tNG6yW0RdRildajEGXGjLeR7K5TIlDsLq7K_axu8P3ejyyXHUs_aPe_NstWy76xzPP_MnfzuQju6yO8GTjOfD0u-wG765x3aCrXbx60Ao_eY-0ydNjQDGh9QOIp6v0WFGASosiU893Z7jp3UbCx7bpopT_g21n58tq-4BOz96_-XdMQ8dE7hTUq25qktXaltU3oMDLbVIaq2LXNXOa6-dAAtOJejy-KroeW7KMnOC6mk9mrrMHrJZg-jsstgmABn6R6nXNVgHhbAZuLrymUtqKV3Esi1wxgU6cepqsTT9OzKFYcWAgyG4TYA7Ynx8ajXQafxD_pDWZJQlMuz-i_bqwgTbMhhLS5xhagV4qHSKCpdqD9KB97UCnOpzWlEzVJaOJm3mgLEWhnsyidiLXoIIMRrKuLmwm64zJ2df_0Po86eJ0KsgVLcIh7OhygH_ExFtTST3JpJo1m4yvEv6t0WlM78MAJ_c6uT1w_E4TD9KWXSNbzed0X1hcZYUEXs0aPAIbEp-vyggYmqi2xPkpyPN98uejhxPCQVJ9vjvs3rCbg_X8cAF7LHZ-mrjn6I_ty6f9Ub7E-IKSBY
  priority: 102
  providerName: ProQuest
Title Infant Brain Atlases from Neonates to 1- and 2-Year-Olds
URI https://www.ncbi.nlm.nih.gov/pubmed/21533194
https://www.proquest.com/docview/1312182471
https://www.proquest.com/docview/864781309
https://pubmed.ncbi.nlm.nih.gov/PMC3077403
https://doaj.org/article/5235ac42a14e4d82baa28e45c4eef74c
http://dx.doi.org/10.1371/journal.pone.0018746
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TiB4QKx8rDBKhJCAB1dJc46dB4TaqWVDaocGRd1TlDjOQKqS0rQSe-Fv5-y40YKKQLxYanwXpee78_njfkfISz8FGaiQUc4UUEjimGIQm1IMrWOcfwSTBsB0Mg1OZ_BhzuZ7ZFuz1Qqw3Lm00_WkZqtF78f363do8G9N1QbubZl6yyJXvarKXLBPDnBu4tpUJ1CfK6B1B4FNoPsTp4EHxiDIC6ExVxlI_9pxt5aLotwVlf5-ufLGbDW-T-7ZMNMZVHpxSPZU3ia3qsKT121y9wYMYZvcntgD9jY5tLZeOq8tIPWbB0Sc5RkOgDPU5SScwRoDbiTQiSnOVOndd_y1LhyPOnGeOn16idZDzxdp-ZDMxqPPJ6fUVlygkjO-pjxLZCLiMFUKJAgmPDcTIgx4JpVQQnoQg-QuhkwqDQ1OTpL40tP5uApdBfMfkVaOsjwiTuwC-Bhf9ZXIIJYQerEPMkuVL92MMdkh_la2kbRw5LoqxiIyZ2wclyWVqCI9OJEdnA6hNdeyguP4C_1QD1tNq8G0zYNidRVZ24xwLc7wC_uxBwpS0UeF7QsFTIJSGQf81Od60KMqM7V2CdEAcK2Gy0XmdsgLQ6EBNXJ9Y-cq3pRldHb-5R-IPl00iF5ZoqxAccjYZkngf9JAXQ3K4wYlugXZ6D7SKrqVSoky8jRaPwYjyLlV293dTt2tX6pv4eWq2JSRMInJvht2yONKyWvBbk2mQ3hD_RuSb_bk374aOHOcZTi4_pP_5nxK7lQ7_UA9OCat9WqjnmGouE66ZJ_PObbixNPt-H2XHAxH048XXbP50jXeQbc_R78AjLZsUA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4QAXRHk1tFALgYDDtn6MvesDQilQJbRNJWhROC3r9bpFiuxQJ0L8KX4jM36BUQVcekx2HG2-nZ2Hd-cbxp4EKZjIxiEXoQUOidYcg9iUY2it0f_I0FQEpkfTaHwK72bhbI39aGth6FplaxMrQ50Wht6R73qBR2TjaEtfLb5y6hpFp6ttC41aLQ7s92-YspUvJ29wfZ_6_v7bk9dj3nQV4EaEYslFlphE6ji1FgzIUHpuJmUcicxYaaXxQIMRLoYFNo0rLpgkCYxHNacWtwN1iUCTfw0dr0s7Ssy6BA9tRxQ15XmB8HYbbdhZFLndqbvfRT33V3UJ6HzBYDEvyssC3T_va_7mAPdvsZtN5OqMalVbZ2s2v83WG9tQOs8bAusXd5ic5BkumLNH7Sec0RIDdBSgQhZnaultPX5aFo7HHZ2njs8_Iaz8eJ6Wd9nplWB5jw1yRGeDOdoFCDAe863MQBuIPR2AyVIbGDcLQzNkQQucMg19OXXRmKvqTE5gGlPjoAhu1cA9ZLx7alHTd_xDfo_WpJMl8u3qi-LiTDV7WWHuHuIMfe2BhVT6qOC-tBAasDYTgFPdphVVdSVrZ0LUCDC3w_QydIfscSVBBBw53fA506uyVJPjj_8h9OF9T-hZI5QVCIfRTVUF_ici9upJbvUk0YyY3vAG6V-LSql-bTh8stXJy4edbph-lG7t5bZYlUpWhcyBGw_Z_VqDO2B9yjO8GIZM9HS7h3x_JP9yXtGfo1cS4AYP_j6rbXZ9fHJ0qA4n04NNdqM-CgDuwRYbLC9W9iHGksvkUbWBHfb5qi3GT9eEhI8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIiFeEONrZYNFCAQ8eMuHHTsPCHWMamXQIWBTeTKO42xIVVKWVoh_jb-Ou8QJBE3Ayx5bXyr357vzXez7HSGPooyZ2CacCm4ZZanWFILYjEJorWH_kdzUBKZvp_HBMXs947M18qOthcFrla1PrB11Vhp8R74bRAGSjYMv3c3dtYh3--MXi68UO0jhSWvbTqNRkUP7_Rukb9XzyT6s9eMwHL_6-PKAug4D1AgullTkqUmlTjJrmWGSy8DPpUxikRsrrTQB08wIH0IEmyU1L0yaRibA-lMLpoEdI8D9XxERD9DGxKxL9sCPxLEr1Ytgzk4zdhZlYXeaTnhxbyusOwZ0-8JgMS-ri4LeP-9u_rYZjm-Q6y6K9UaN2q2TNVvcJOvOT1TeU0dm_ewWkZMih8Xz9rAVhTdaQrAOAljU4k0tvrmHT8vSC6ini8wL6SeAlR7Ns-o2Ob4ULO-QQQHobBBP-4xFEJuFVuZMG5YEOmImz2xk_JxzMyRRC5wyjsocO2rMVX0-JyClaXBQCLdycA8J7Z5aNFQe_5DfwzXpZJGIu_6iPD9Vzq4V5PEcZhjqgFmWyRCUPZSWccOszQWDqW7jiqqmqrVzJ2rEIM-DVJP7Q_KwlkAyjgLV-lSvqkpNjk7-Q-jD-57QEyeUlwCH0a7CAv4Tknz1JLd6kuBSTG94A_WvRaVSv4wPnmx18uJhrxvGH8UbfIUtV5WSdVFz5CdDcrfR4A7YEHOOIGFDInq63UO-P1J8Oaup0GGHEsyP7v19VtvkKvgK9WYyPdwk15pTAUYDtkUGy_OVvQ9h5TJ9UNuvRz5ftsP4CSq1iMU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infant+Brain+Atlases+from+Neonates+to+1-+and+2-Year-Olds&rft.jtitle=PloS+one&rft.au=Shi%2C+Feng&rft.au=Yap%2C+Pew-Thian&rft.au=Wu%2C+Guorong&rft.au=Jia%2C+Hongjun&rft.date=2011-04-14&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=6&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0018746&rft_id=info%3Apmid%2F21533194&rft.externalDocID=PMC3077403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon