Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer's Disease

The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 6; no. 10; p. e25446
Main Authors Wolz, Robin, Julkunen, Valtteri, Koikkalainen, Juha, Niskanen, Eini, Zhang, Dong Ping, Rueckert, Daniel, Soininen, Hilkka, Lötjönen, Jyrki
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.10.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0025446

Cover

Abstract The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI analysis techniques. Automatically estimated MR features used are hippocampal volume, tensor-based morphometry, cortical thickness and a novel technique based on manifold learning. Baseline MRIs acquired from all 834 subjects (231 healthy controls (HC), 238 stable mild cognitive impairment (S-MCI), 167 MCI to AD progressors (P-MCI), 198 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used for evaluation. We compared the classification accuracy achieved with linear discriminant analysis (LDA) and support vector machines (SVM). The best results achieved with individual features are 90% sensitivity and 84% specificity (HC/AD classification), 64%/66% (S-MCI/P-MCI) and 82%/76% (HC/P-MCI) with the LDA classifier. The combination of all features improved these results to 93% sensitivity and 85% specificity (HC/AD), 67%/69% (S-MCI/P-MCI) and 86%/82% (HC/P-MCI). Compared with previously published results in the ADNI database using individual MR-based features, the presented results show that a comprehensive analysis of MRI images combining multiple features improves classification accuracy and predictive power in detecting early AD. The most stable and reliable classification was achieved when combining all available features.
AbstractList The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI analysis techniques. Automatically estimated MR features used are hippocampal volume, tensor-based morphometry, cortical thickness and a novel technique based on manifold learning. Baseline MRIs acquired from all 834 subjects (231 healthy controls (HC), 238 stable mild cognitive impairment (S-MCI), 167 MCI to AD progressors (P-MCI), 198 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used for evaluation. We compared the classification accuracy achieved with linear discriminant analysis (LDA) and support vector machines (SVM). The best results achieved with individual features are 90% sensitivity and 84% specificity (HC/AD classification), 64%/66% (S-MCI/P-MCI) and 82%/76% (HC/P-MCI) with the LDA classifier. The combination of all features improved these results to 93% sensitivity and 85% specificity (HC/AD), 67%/69% (S-MCI/P-MCI) and 86%/82% (HC/P-MCI). Compared with previously published results in the ADNI database using individual MR-based features, the presented results show that a comprehensive analysis of MRI images combining multiple features improves classification accuracy and predictive power in detecting early AD. The most stable and reliable classification was achieved when combining all available features.The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI analysis techniques. Automatically estimated MR features used are hippocampal volume, tensor-based morphometry, cortical thickness and a novel technique based on manifold learning. Baseline MRIs acquired from all 834 subjects (231 healthy controls (HC), 238 stable mild cognitive impairment (S-MCI), 167 MCI to AD progressors (P-MCI), 198 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used for evaluation. We compared the classification accuracy achieved with linear discriminant analysis (LDA) and support vector machines (SVM). The best results achieved with individual features are 90% sensitivity and 84% specificity (HC/AD classification), 64%/66% (S-MCI/P-MCI) and 82%/76% (HC/P-MCI) with the LDA classifier. The combination of all features improved these results to 93% sensitivity and 85% specificity (HC/AD), 67%/69% (S-MCI/P-MCI) and 86%/82% (HC/P-MCI). Compared with previously published results in the ADNI database using individual MR-based features, the presented results show that a comprehensive analysis of MRI images combining multiple features improves classification accuracy and predictive power in detecting early AD. The most stable and reliable classification was achieved when combining all available features.
The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI analysis techniques. Automatically estimated MR features used are hippocampal volume, tensor-based morphometry, cortical thickness and a novel technique based on manifold learning. Baseline MRIs acquired from all 834 subjects (231 healthy controls (HC), 238 stable mild cognitive impairment (S-MCI), 167 MCI to AD progressors (P-MCI), 198 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used for evaluation. We compared the classification accuracy achieved with linear discriminant analysis (LDA) and support vector machines (SVM). The best results achieved with individual features are 90% sensitivity and 84% specificity (HC/AD classification), 64%/66% (S-MCI/P-MCI) and 82%/76% (HC/P-MCI) with the LDA classifier. The combination of all features improved these results to 93% sensitivity and 85% specificity (HC/AD), 67%/69% (S-MCI/P-MCI) and 86%/82% (HC/P-MCI). Compared with previously published results in the ADNI database using individual MR-based features, the presented results show that a comprehensive analysis of MRI images combining multiple features improves classification accuracy and predictive power in detecting early AD. The most stable and reliable classification was achieved when combining all available features.
Audience Academic
Author Lötjönen, Jyrki
Koikkalainen, Juha
Niskanen, Eini
Wolz, Robin
Rueckert, Daniel
Soininen, Hilkka
Julkunen, Valtteri
Zhang, Dong Ping
AuthorAffiliation University Hospital La Paz, Spain
4 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
5 Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
2 Department of Neurology, Kuopio University Hospital, Kuopio, Finland
1 Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
3 Knowledge Intensive Services, VTT Technical Research Centre of Finland, Tampere, Finland
AuthorAffiliation_xml – name: 3 Knowledge Intensive Services, VTT Technical Research Centre of Finland, Tampere, Finland
– name: University Hospital La Paz, Spain
– name: 4 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
– name: 5 Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
– name: 1 Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
– name: 2 Department of Neurology, Kuopio University Hospital, Kuopio, Finland
Author_xml – sequence: 1
  givenname: Robin
  surname: Wolz
  fullname: Wolz, Robin
– sequence: 2
  givenname: Valtteri
  surname: Julkunen
  fullname: Julkunen, Valtteri
– sequence: 3
  givenname: Juha
  surname: Koikkalainen
  fullname: Koikkalainen, Juha
– sequence: 4
  givenname: Eini
  surname: Niskanen
  fullname: Niskanen, Eini
– sequence: 5
  givenname: Dong Ping
  surname: Zhang
  fullname: Zhang, Dong Ping
– sequence: 6
  givenname: Daniel
  surname: Rueckert
  fullname: Rueckert, Daniel
– sequence: 7
  givenname: Hilkka
  surname: Soininen
  fullname: Soininen, Hilkka
– sequence: 8
  givenname: Jyrki
  surname: Lötjönen
  fullname: Lötjönen, Jyrki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22022397$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L1DAUhousuB_6D0QLgosXMyZp81EvhGFddWCHgfXjNqTpaSdD2oxNK46_3sxOR6bLIpKLhpPnfdPzknMenTSugSh6jtEUJxy_Xbu-bZSdbkJ5ihChacoeRWc4S8iEEZScHO1Po3Pv1wjRRDD2JDolBBGSZPwsWi5625nJArqVK-JZMNx642NXxovbeTyvVQU-Nk18rVq7jT8YVTXOd0bfITP7ewWmhvbShyMPysPT6HGprIdnw_ci-vbx-uvV58nN8tP8anYz0ZzybkLzgolMMcp0qiHDVNCiVEBwrhRQjrAilCGqNaGgcF4iwdMcEAAiiidaJxfRy73vxjovhyy8xAkmWBBBaCDme6Jwai03ralVu5VOGXlXcG0lVRs6sSAJ01mCIClSIlJOdMbKEA_BGCHIKWXB6_1wW5_XUGhoulbZken4pDErWbmfMsEZ4TQLBpeDQet-9OA7WRuvwVrVgOu9zBBHhAssAvnqHvlwcwNVqfD_pilduFbvPOUs5UwwEfwCNX2ACquA2ujwbkoT6iPBm5EgMB386irVey_nX27_n11-H7Ovj9gVKNutvLN9Z1zjx-CL46D_Jnx4sAF4twd067xvoZTadGrnE1ozVmIkd9NxCE3upkMO0xHE6T3xwf-fsj-Z2RD3
CitedBy_id crossref_primary_10_1016_j_neuroimage_2013_06_033
crossref_primary_10_3390_math9233101
crossref_primary_10_1142_S0129065718500223
crossref_primary_10_1142_S0218213018500112
crossref_primary_10_1007_s11831_021_09674_8
crossref_primary_10_1016_j_nicl_2022_102948
crossref_primary_10_5812_ircmj_17_4_2015_24557
crossref_primary_10_1016_j_neurobiolaging_2014_06_031
crossref_primary_10_1098_rsfs_2012_0072
crossref_primary_10_1039_C8RA03620A
crossref_primary_10_1016_j_pscychresns_2015_08_014
crossref_primary_10_1016_j_jneumeth_2013_09_001
crossref_primary_10_1007_s10072_021_05568_6
crossref_primary_10_1016_j_ijrobp_2017_01_005
crossref_primary_10_1177_0284185115584656
crossref_primary_10_1016_j_neuroimage_2018_08_042
crossref_primary_10_1049_ipr2_12605
crossref_primary_10_1155_2020_3743171
crossref_primary_10_1109_TCBB_2021_3053061
crossref_primary_10_3390_s20113243
crossref_primary_10_1002_hbm_23922
crossref_primary_10_1002_hbm_23483
crossref_primary_10_1016_j_neurobiolaging_2017_06_027
crossref_primary_10_1016_j_neuroimage_2016_06_049
crossref_primary_10_1159_000447122
crossref_primary_10_1016_j_bbe_2021_02_006
crossref_primary_10_1016_j_jneumeth_2020_108698
crossref_primary_10_1016_j_neuroimage_2015_01_048
crossref_primary_10_1016_j_neubiorev_2023_105393
crossref_primary_10_1016_j_neurobiolaging_2024_01_005
crossref_primary_10_1212_WNL_0000000000006310
crossref_primary_10_1016_j_neuroimage_2014_02_028
crossref_primary_10_1016_j_mri_2018_03_003
crossref_primary_10_1016_j_media_2016_11_002
crossref_primary_10_1371_journal_pone_0153040
crossref_primary_10_3389_fneur_2019_00904
crossref_primary_10_3390_jpm10030061
crossref_primary_10_1016_j_pscychresns_2014_08_005
crossref_primary_10_1016_j_nicl_2023_103533
crossref_primary_10_1016_j_patcog_2018_01_028
crossref_primary_10_1002_hcs2_84
crossref_primary_10_1007_s00259_014_2728_4
crossref_primary_10_1049_ipr2_12618
crossref_primary_10_1038_s41514_023_00129_x
crossref_primary_10_1038_s41598_019_39809_8
crossref_primary_10_1016_j_ncl_2019_08_003
crossref_primary_10_2217_nmt_12_13
crossref_primary_10_1016_j_neuroimage_2014_10_002
crossref_primary_10_1016_j_jneumeth_2013_10_003
crossref_primary_10_1371_journal_pone_0267608
crossref_primary_10_1016_j_patcog_2016_10_009
crossref_primary_10_1016_j_eswa_2023_122253
crossref_primary_10_1016_j_jneumeth_2017_03_006
crossref_primary_10_1109_ACCESS_2018_2871977
crossref_primary_10_1038_srep26712
crossref_primary_10_1155_2019_1437123
crossref_primary_10_1109_ACCESS_2020_2989396
crossref_primary_10_1007_s11042_020_09062_7
crossref_primary_10_1016_j_jalz_2014_11_001
crossref_primary_10_18632_aging_101883
crossref_primary_10_1016_j_neuroimage_2016_02_079
crossref_primary_10_1186_s13195_021_00900_w
crossref_primary_10_5402_2013_627303
crossref_primary_10_1016_j_jalz_2015_05_014
crossref_primary_10_3389_fnagi_2016_00076
crossref_primary_10_1016_j_neurobiolaging_2014_05_040
crossref_primary_10_1002_hbm_23147
crossref_primary_10_1016_j_neurobiolaging_2018_04_009
crossref_primary_10_1016_j_ejmp_2017_04_027
crossref_primary_10_1109_JIOT_2023_3245067
crossref_primary_10_1016_j_neuroimage_2017_03_057
crossref_primary_10_1002_sim_10324
crossref_primary_10_1016_j_mri_2014_05_008
crossref_primary_10_1097_WCO_0b013e3283557b36
crossref_primary_10_1371_journal_pone_0105542
crossref_primary_10_1016_j_nicl_2017_08_014
crossref_primary_10_1007_s10548_014_0415_1
crossref_primary_10_1016_j_cmpb_2017_03_006
crossref_primary_10_1016_j_nicl_2012_10_002
crossref_primary_10_1371_journal_pone_0173372
crossref_primary_10_1016_j_acra_2015_04_008
crossref_primary_10_1016_j_jneumeth_2017_12_010
crossref_primary_10_1109_TBME_2015_2496233
crossref_primary_10_3390_app13148298
crossref_primary_10_1016_j_neucom_2018_11_111
crossref_primary_10_1109_TMI_2013_2287121
crossref_primary_10_3233_JAD_220806
crossref_primary_10_1016_j_nicl_2016_02_019
crossref_primary_10_1109_JBHI_2017_2732287
crossref_primary_10_1109_TBME_2016_2549363
crossref_primary_10_1007_s12021_013_9218_x
crossref_primary_10_1093_braincomms_fcaa132
crossref_primary_10_1007_s11682_016_9528_3
crossref_primary_10_1007_s11910_017_0718_1
crossref_primary_10_1371_journal_pone_0052531
crossref_primary_10_1155_2020_8015156
crossref_primary_10_3389_fnagi_2021_688926
crossref_primary_10_1016_j_media_2015_08_010
crossref_primary_10_3389_fnagi_2014_00260
crossref_primary_10_1038_s41598_018_29295_9
crossref_primary_10_1016_j_compbiomed_2024_108622
crossref_primary_10_1007_s11590_021_01816_y
crossref_primary_10_3389_fnins_2021_584641
crossref_primary_10_1186_1471_2474_14_198
crossref_primary_10_1186_s42492_020_00062_w
crossref_primary_10_3233_ADR_210314
crossref_primary_10_1093_brain_awy244
crossref_primary_10_1186_s13195_024_01517_5
crossref_primary_10_1109_TMI_2016_2515021
crossref_primary_10_1142_S1793536914500046
crossref_primary_10_1371_journal_pone_0073186
crossref_primary_10_1109_TMI_2016_2582386
crossref_primary_10_1155_2019_2492719
crossref_primary_10_1371_journal_pone_0105563
crossref_primary_10_1007_s42835_022_01317_7
crossref_primary_10_1007_s10548_015_0455_1
crossref_primary_10_1371_journal_pone_0067346
crossref_primary_10_1016_j_media_2014_04_006
crossref_primary_10_3233_JAD_201254
crossref_primary_10_1002_14651858_CD009628_pub2
crossref_primary_10_1038_s41598_019_49970_9
crossref_primary_10_1152_physrev_00037_2021
crossref_primary_10_3389_fnins_2017_00056
crossref_primary_10_1038_s41598_018_37769_z
crossref_primary_10_1246_bcsj_20190356
crossref_primary_10_1016_j_compmedimag_2017_11_001
crossref_primary_10_1371_journal_pone_0170875
crossref_primary_10_1016_j_compbiomed_2018_09_004
crossref_primary_10_21518_ms2024_289
crossref_primary_10_1002_hbm_22741
crossref_primary_10_1155_2014_862307
crossref_primary_10_3390_healthcare10101842
crossref_primary_10_1002_brb3_942
crossref_primary_10_1016_j_bspc_2018_08_009
crossref_primary_10_1016_j_radonc_2018_02_011
crossref_primary_10_3389_fnagi_2020_00176
crossref_primary_10_1007_s12021_016_9318_5
crossref_primary_10_1016_j_mri_2021_02_001
crossref_primary_10_1038_s41598_018_22871_z
crossref_primary_10_3390_ijms23116079
crossref_primary_10_1016_j_artmed_2016_06_003
crossref_primary_10_1371_journal_pone_0194479
crossref_primary_10_3390_app10051894
crossref_primary_10_1111_jon_12214
crossref_primary_10_3233_JAD_200175
crossref_primary_10_1109_RBME_2018_2796598
crossref_primary_10_1016_j_dadm_2018_07_003
crossref_primary_10_1109_TBME_2015_2404809
crossref_primary_10_1016_j_nicl_2013_07_004
crossref_primary_10_1016_j_neuroimage_2016_02_036
crossref_primary_10_1016_j_compmedimag_2018_08_002
crossref_primary_10_1371_journal_pone_0222446
crossref_primary_10_1016_j_nicl_2013_11_010
crossref_primary_10_1002_jnr_24084
crossref_primary_10_1016_j_media_2020_101850
crossref_primary_10_1016_j_neurobiolaging_2014_04_034
crossref_primary_10_1016_j_jalz_2012_11_009
crossref_primary_10_1016_j_jalz_2013_05_1769
crossref_primary_10_1002_hbm_22254
crossref_primary_10_1007_s00234_021_02761_4
crossref_primary_10_1007_s11042_022_13523_6
crossref_primary_10_3389_fninf_2017_00016
crossref_primary_10_1016_j_cmpb_2019_105242
crossref_primary_10_1016_j_neuroimage_2014_03_036
crossref_primary_10_1016_j_neunet_2023_04_018
crossref_primary_10_1155_2016_9523849
crossref_primary_10_1016_j_neuroimage_2012_09_058
crossref_primary_10_1007_s11682_018_9846_8
crossref_primary_10_1016_j_bspc_2023_105773
crossref_primary_10_1002_hbm_22926
crossref_primary_10_3233_XST_200771
crossref_primary_10_1109_TNNLS_2012_2226748
crossref_primary_10_1142_S0219467824500311
crossref_primary_10_1186_s13195_019_0526_8
crossref_primary_10_1002_hbm_22522
crossref_primary_10_1016_j_mri_2014_04_016
crossref_primary_10_1212_WNL_0b013e318295d6cf
crossref_primary_10_1007_s11042_014_2123_y
crossref_primary_10_3233_IDT_160260
crossref_primary_10_1016_j_jneumeth_2015_08_011
Cites_doi 10.1016/j.neuroimage.2008.02.043
10.1016/j.neuroimage.2005.03.036
10.1016/j.neurobiolaging.2010.04.022
10.1109/42.668698
10.1212/01.wnl.0000256697.20968.d7
10.1016/S0140-6736(06)68542-5
10.1097/00005072-199311000-00006
10.1016/j.neuroimage.2007.09.073
10.1016/j.neuroimage.2004.07.045
10.1212/01.WNL.0000115115.98960.37
10.1212/WNL.43.11.2412-a
10.1148/radiol.2511080924
10.1016/j.neuroimage.2004.05.007
10.1162/089976603321780317
10.1212/WNL.0b013e3181cb3e25
10.1016/j.neuroimage.2009.05.022
10.1016/j.neuroimage.2010.04.006
10.1007/BF00994018
10.1016/j.neuroimage.2011.03.029
10.1098/rstb.2001.0915
10.1212/WNL.0b013e3181e8e8b8
10.1093/brain/awp105
10.1212/01.wnl.0000295996.54210.69
10.1007/BF00308809
10.1016/j.nic.2005.09.008
10.1159/000289814
10.1016/j.neuroimage.2010.08.044
10.1016/j.neurobiolaging.2010.01.022
10.1016/j.neuroimage.2011.01.062
10.1002/ana.410410106
10.1002/hbm.10062
10.1016/j.jalz.2007.04.381
10.1109/42.796284
10.1212/WNL.56.9.1133
10.3174/ajnr.A1809
10.1212/WNL.34.7.939
10.1016/j.neuroimage.2009.10.026
10.1038/nrd3115
10.1109/42.811270
10.1016/j.neuroimage.2009.05.036
10.1016/j.jalz.2007.08.006
10.1016/j.neuroimage.2009.02.013
10.1002/jmri.21049
ContentType Journal Article
Contributor Jack, Jr, Clifford R
Romirowsky, Aliza
Schuff, Norbert
Roberts, Peggy
Shaw, Les
Johnson, Kris
Doody, Rachelle S
Frank, Richard
Molchan, Susan
Chen, Kewei
Duara, Ranjan
Jagust, William
Mintun, Mark A
Green, Robert C
Grossman, Hillel
Felmlee, Joel
Pawluczyk, Sonia
Weiner, Michael
Montine, Tom
Dolen, Sara
Varon, Daniel
Thompson, Paul
Trojanowki, John Q
DeCarli, Charles
Fox, Nick
Griffith, Randall
Kachaturian, Zaven
Mitsis, Effie
Lind, Betty
Korecka, Magdalena
Schneider, Stacy
Walter, Sarah
Quinn, Joseph
Bell, Karen L
Villanueva-Meyer, Javier
Liu, Enchi
Bandy, Dan
Neu, Scott
Sather, Tamie
Aisen, Paul
Morris, John
Stern, Yaakov
Lord, Joanne L
Marson, Daniel
Heidebrink, Judith L
Reiman, Eric M
Trojanowki, J Q
Morris, John C
Shah, Raj C
Kornak, John
Foster, Norm
Mathis, Chet
Foroud, Tatiana M
Lee, Virginia M Y
Kaye, Jeffrey
Saykin, Andrew J
Chowdhury, Munir
Harvey, Danielle
Leon, Sue
Koeppe, Robert A
Potkin, Steven
Gessert, Devon
Carroll, Maria
Petersen, Ronald
Gamst, Anthony
Donohue, Michael
Schneider, Lon S
Thomas, Ronald G
Alexander, Gene
Shen, Li
Spann, Bry
Contributor_xml – sequence: 1
  givenname: Michael
  surname: Weiner
  fullname: Weiner, Michael
– sequence: 2
  givenname: Paul
  surname: Aisen
  fullname: Aisen, Paul
– sequence: 3
  givenname: Ronald
  surname: Petersen
  fullname: Petersen, Ronald
– sequence: 4
  givenname: Clifford R
  surname: Jack, Jr
  fullname: Jack, Jr, Clifford R
– sequence: 5
  givenname: William
  surname: Jagust
  fullname: Jagust, William
– sequence: 6
  givenname: John Q
  surname: Trojanowki
  fullname: Trojanowki, John Q
– sequence: 7
  givenname: Arthur W
  surname: Toga
  fullname: Toga, Arthur W
– sequence: 8
  givenname: Laurel
  surname: Beckett
  fullname: Beckett, Laurel
– sequence: 9
  givenname: Robert C
  surname: Green
  fullname: Green, Robert C
– sequence: 10
  givenname: Andrew J
  surname: Saykin
  fullname: Saykin, Andrew J
– sequence: 11
  givenname: John
  surname: Morris
  fullname: Morris, John
– sequence: 12
  givenname: Enchi
  surname: Liu
  fullname: Liu, Enchi
– sequence: 13
  givenname: Tom
  surname: Montine
  fullname: Montine, Tom
– sequence: 14
  givenname: Anthony
  surname: Gamst
  fullname: Gamst, Anthony
– sequence: 15
  givenname: Ronald G
  surname: Thomas
  fullname: Thomas, Ronald G
– sequence: 16
  givenname: Michael
  surname: Donohue
  fullname: Donohue, Michael
– sequence: 17
  givenname: Sarah
  surname: Walter
  fullname: Walter, Sarah
– sequence: 18
  givenname: Devon
  surname: Gessert
  fullname: Gessert, Devon
– sequence: 19
  givenname: Tamie
  surname: Sather
  fullname: Sather, Tamie
– sequence: 20
  givenname: Danielle
  surname: Harvey
  fullname: Harvey, Danielle
– sequence: 21
  givenname: John
  surname: Kornak
  fullname: Kornak, John
– sequence: 22
  givenname: Anders
  surname: Dale
  fullname: Dale, Anders
– sequence: 23
  givenname: Matthew
  surname: Bernstein
  fullname: Bernstein, Matthew
– sequence: 24
  givenname: Joel
  surname: Felmlee
  fullname: Felmlee, Joel
– sequence: 25
  givenname: Nick
  surname: Fox
  fullname: Fox, Nick
– sequence: 26
  givenname: Paul
  surname: Thompson
  fullname: Thompson, Paul
– sequence: 27
  givenname: Norbert
  surname: Schuff
  fullname: Schuff, Norbert
– sequence: 28
  givenname: Gene
  surname: Alexander
  fullname: Alexander, Gene
– sequence: 29
  givenname: Charles
  surname: DeCarli
  fullname: DeCarli, Charles
– sequence: 30
  givenname: Dan
  surname: Bandy
  fullname: Bandy, Dan
– sequence: 31
  givenname: Robert A
  surname: Koeppe
  fullname: Koeppe, Robert A
– sequence: 32
  givenname: Norm
  surname: Foster
  fullname: Foster, Norm
– sequence: 33
  givenname: Eric M
  surname: Reiman
  fullname: Reiman, Eric M
– sequence: 34
  givenname: Kewei
  surname: Chen
  fullname: Chen, Kewei
– sequence: 35
  givenname: Chet
  surname: Mathis
  fullname: Mathis, Chet
– sequence: 36
  givenname: Nigel J
  surname: Cairns
  fullname: Cairns, Nigel J
– sequence: 37
  givenname: Lisa
  surname: Taylor-Reinwald
  fullname: Taylor-Reinwald, Lisa
– sequence: 38
  givenname: J Q
  surname: Trojanowki
  fullname: Trojanowki, J Q
– sequence: 39
  givenname: Les
  surname: Shaw
  fullname: Shaw, Les
– sequence: 40
  givenname: Virginia M Y
  surname: Lee
  fullname: Lee, Virginia M Y
– sequence: 41
  givenname: Magdalena
  surname: Korecka
  fullname: Korecka, Magdalena
– sequence: 42
  givenname: Karen
  surname: Crawford
  fullname: Crawford, Karen
– sequence: 43
  givenname: Scott
  surname: Neu
  fullname: Neu, Scott
– sequence: 44
  givenname: Tatiana M
  surname: Foroud
  fullname: Foroud, Tatiana M
– sequence: 45
  givenname: Steven
  surname: Potkin
  fullname: Potkin, Steven
– sequence: 46
  givenname: Li
  surname: Shen
  fullname: Shen, Li
– sequence: 47
  givenname: Zaven
  surname: Kachaturian
  fullname: Kachaturian, Zaven
– sequence: 48
  givenname: Richard
  surname: Frank
  fullname: Frank, Richard
– sequence: 49
  givenname: Peter J
  surname: Snyder
  fullname: Snyder, Peter J
– sequence: 50
  givenname: Susan
  surname: Molchan
  fullname: Molchan, Susan
– sequence: 51
  givenname: Jeffrey
  surname: Kaye
  fullname: Kaye, Jeffrey
– sequence: 52
  givenname: Joseph
  surname: Quinn
  fullname: Quinn, Joseph
– sequence: 53
  givenname: Betty
  surname: Lind
  fullname: Lind, Betty
– sequence: 54
  givenname: Sara
  surname: Dolen
  fullname: Dolen, Sara
– sequence: 55
  givenname: Lon S
  surname: Schneider
  fullname: Schneider, Lon S
– sequence: 56
  givenname: Sonia
  surname: Pawluczyk
  fullname: Pawluczyk, Sonia
– sequence: 57
  givenname: Bryan M
  surname: Spann
  fullname: Spann, Bryan M
– sequence: 58
  givenname: James
  surname: Brewer
  fullname: Brewer, James
– sequence: 59
  givenname: Helen
  surname: Vanderswag
  fullname: Vanderswag, Helen
– sequence: 60
  givenname: Judith L
  surname: Heidebrink
  fullname: Heidebrink, Judith L
– sequence: 61
  givenname: Joanne L
  surname: Lord
  fullname: Lord, Joanne L
– sequence: 62
  givenname: Kris
  surname: Johnson
  fullname: Johnson, Kris
– sequence: 63
  givenname: Rachelle S
  surname: Doody
  fullname: Doody, Rachelle S
– sequence: 64
  givenname: Javier
  surname: Villanueva-Meyer
  fullname: Villanueva-Meyer, Javier
– sequence: 65
  givenname: Munir
  surname: Chowdhury
  fullname: Chowdhury, Munir
– sequence: 66
  givenname: Yaakov
  surname: Stern
  fullname: Stern, Yaakov
– sequence: 67
  givenname: Lawrence S
  surname: Honig
  fullname: Honig, Lawrence S
– sequence: 68
  givenname: Karen L
  surname: Bell
  fullname: Bell, Karen L
– sequence: 69
  givenname: John C
  surname: Morris
  fullname: Morris, John C
– sequence: 70
  givenname: Beau
  surname: Ances
  fullname: Ances, Beau
– sequence: 71
  givenname: Maria
  surname: Carroll
  fullname: Carroll, Maria
– sequence: 72
  givenname: Sue
  surname: Leon
  fullname: Leon, Sue
– sequence: 73
  givenname: Mark A
  surname: Mintun
  fullname: Mintun, Mark A
– sequence: 74
  givenname: Stacy
  surname: Schneider
  fullname: Schneider, Stacy
– sequence: 75
  givenname: Daniel
  surname: Marson
  fullname: Marson, Daniel
– sequence: 76
  givenname: Randall
  surname: Griffith
  fullname: Griffith, Randall
– sequence: 77
  givenname: David
  surname: Clark
  fullname: Clark, David
– sequence: 78
  givenname: Hillel
  surname: Grossman
  fullname: Grossman, Hillel
– sequence: 79
  givenname: Effie
  surname: Mitsis
  fullname: Mitsis, Effie
– sequence: 80
  givenname: Aliza
  surname: Romirowsky
  fullname: Romirowsky, Aliza
– sequence: 81
  givenname: Leyla
  surname: deToledo-Morrell
  fullname: deToledo-Morrell, Leyla
– sequence: 82
  givenname: Raj C
  surname: Shah
  fullname: Shah, Raj C
– sequence: 83
  givenname: Ranjan
  surname: Duara
  fullname: Duara, Ranjan
– sequence: 84
  givenname: Daniel
  surname: Varon
  fullname: Varon, Daniel
– sequence: 85
  givenname: Peggy
  surname: Roberts
  fullname: Roberts, Peggy
– sequence: 86
  givenname: Marilyn
  surname: Albert
  fullname: Albert, Marilyn
Copyright COPYRIGHT 2011 Public Library of Science
2011 Wolz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Wolz et al. 2011
Copyright_xml – notice: COPYRIGHT 2011 Public Library of Science
– notice: 2011 Wolz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Wolz et al. 2011
CorporateAuthor the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0025446
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Agricultural Science Database





MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Engineering
DocumentTitleAlternate Early Diagnostics of AD Using MRI-Based Biomarkers
EISSN 1932-6203
ExternalDocumentID 1312182825
oai_doaj_org_article_26c930e3d428472c96f22321100eb556
PMC3192759
2900565851
A476868702
22022397
10_1371_journal_pone_0025446
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Finland
GeographicLocations_xml – name: Finland
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG022374
– fundername: NIA NIH HHS
  grantid: U19 AG010483
– fundername: NIA NIH HHS
  grantid: P30 AG019610
– fundername: NIA NIH HHS
  grantid: P30 AG013846
– fundername: NIA NIH HHS
  grantid: R01 AG012101
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RIG
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
BBORY
CGR
CUY
CVF
ECM
EIF
NPM
PV9
RZL
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
ESTFP
PUEGO
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c757t-5bd689a656c4ce91585dfae21baae5701a25605cc25ea1bf0874be0ee02a73cc3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:38 EST 2021
Wed Aug 27 01:19:43 EDT 2025
Thu Aug 21 18:24:15 EDT 2025
Fri Sep 05 08:05:01 EDT 2025
Fri Jul 25 10:22:24 EDT 2025
Tue Jun 17 21:17:36 EDT 2025
Tue Jun 10 20:16:34 EDT 2025
Fri Jun 27 03:35:40 EDT 2025
Fri Jun 27 03:38:27 EDT 2025
Thu May 22 21:19:53 EDT 2025
Thu Apr 03 07:05:23 EDT 2025
Tue Jul 01 01:03:21 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c757t-5bd689a656c4ce91585dfae21baae5701a25605cc25ea1bf0874be0ee02a73cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
For information on the Alzheimer's Disease Neuroimaging Initiative please see the Acknowledgments section.
Conceived and designed the experiments: RW VJ JK DR HS JL. Performed the experiments: RW VJ JK EN DPZ. Analyzed the data: RW VJ JK. Contributed reagents/materials/analysis tools: RW JK DR JL. Wrote the paper: RW VJ.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0025446
PMID 22022397
PQID 1312182825
PQPubID 1436336
PageCount e25446
ParticipantIDs plos_journals_1312182825
doaj_primary_oai_doaj_org_article_26c930e3d428472c96f22321100eb556
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3192759
proquest_miscellaneous_907027818
proquest_journals_1312182825
gale_infotracmisc_A476868702
gale_infotracacademiconefile_A476868702
gale_incontextgauss_ISR_A476868702
gale_incontextgauss_IOV_A476868702
gale_healthsolutions_A476868702
pubmed_primary_22022397
crossref_citationtrail_10_1371_journal_pone_0025446
crossref_primary_10_1371_journal_pone_0025446
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-13
PublicationDateYYYYMMDD 2011-10-13
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2011
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Morris (ref32) 1993; 43
J Cummings (ref2) 2007; 69
S Gauthier (ref4) 2006; 367
R Brookmeyer (ref1) 2007; 3
AP Zijdenbos (ref42) 1998
M Belkin (ref48) 2003; 15
R Wolz (ref20) 2011
J Tohka (ref43) 2004; 23
SG Mueller (ref28) 2005; 15
JG Sled (ref40) 1998; 17
WJ Krzanowski (ref52) 1988
C Hinrichs (ref14) 2009
J Lerch (ref38) 2005; 24
O Querbes (ref27) 2009; 132
H Hampel (ref12) 2010; 9
E Gerardin (ref23) 2009; 47
C Cortes (ref53) 1995; 20
G Wenk (ref6) 2003; 64
G McKhann (ref33) 1984; 34
J Mazziotta (ref39) 2001; 356
H Braak (ref5) 1991; 82
H Hampel (ref7) 2008; 4
K Van Leemput (ref37) 1999; 18
CC Brun (ref46) 2009; 48
C Davatzikos (ref15) 2010
E Westman (ref55) 2011; 54
O Kohannim (ref17) 2010; 31
KB Walhovd (ref19) 2010; 31
DP Devanand (ref22) 2007; 68
R Petersen (ref3) 2001; 56
P Vemuri (ref54) 2008; 39
Y Fan (ref13) 2008; 41
R Cuingnet (ref29) 2010
JS Kim (ref44) 2005; 27
D Rueckert (ref49) 1999; 18
C Jack Jr (ref11) 2010; 27
Y Liu (ref25) 2010; 31
RC Petersen (ref30) 2010; 74
JM Lotjonen (ref35) 2010; 49
CR Jack Jr (ref34) 2008; 27
J Lotjonen (ref36) 2011; 56
BT Hyman (ref8) 1993; 52
M Chupin (ref21) 2009; 46
S Landau (ref18) 2010; 75
MF Folstein (ref31) 1975; 12
M Chung (ref45) 2004
J Koikkalainen (ref47) 2011; 56
T Gmez-Isla (ref9) 1997; 41
L McEvoy (ref26) 2009; 251
NR Draper (ref51) 1998
M Ingelsson (ref10) 2004; 62
C Eckerstrom (ref16) 2010; 29
SM Smith (ref41) 2002; 17
Y Liu (ref24) 2009
R Wolz (ref50) 2010; 52
References_xml – volume: 41
  start-page: 277
  year: 2008
  ident: ref13
  article-title: Structural and functional biomarkers of prodromal alzheimer's disease: A high-dimensional pattern classification study.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.02.043
– volume: 64
  year: 2003
  ident: ref6
  article-title: Neuropathologic changes in alzheimer's disease.
  publication-title: Journal of Clinical Psychiatry
– volume: 27
  start-page: 210
  year: 2005
  ident: ref44
  article-title: Automated 3-d extraction and evaluation of the inner and outer cortical surfaces using a laplacian map and partial volume effect classification.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.03.036
– volume: 31
  start-page: 1429
  year: 2010
  ident: ref17
  article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers.
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2010.04.022
– volume: 17
  start-page: 87
  year: 1998
  ident: ref40
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data.
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.668698
– year: 2010
  ident: ref15
  article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification.
– start-page: 439
  year: 1998
  ident: ref42
  article-title: Automatic quantification of MS lesions in 3D MRI brain data sets: Validation of INSECT.
– start-page: 432
  year: 2004
  ident: ref45
  article-title: Diffusion smoothing on brain surface via finite element method.
– volume: 68
  start-page: 828
  year: 2007
  ident: ref22
  article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment - Prediction of Alzheimer disease.
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000256697.20968.d7
– volume: 367
  start-page: 1262
  year: 2006
  ident: ref4
  article-title: Mild cognitive impairment.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68542-5
– volume: 52
  start-page: 594
  year: 1993
  ident: ref8
  article-title: The lack of accumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution.
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/00005072-199311000-00006
– start-page: 960
  year: 2011
  ident: ref20
  article-title: Manifold learning combining imaging with non-imaging information.
– volume: 39
  start-page: 1186
  year: 2008
  ident: ref54
  article-title: Alzheimer's disease diagnosis in individual subjects using structural mr images: Validation studies.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.073
– start-page: 786
  year: 2009
  ident: ref14
  article-title: Mkl for robust multi-modality ad classification.
– volume: 24
  start-page: 163
  year: 2005
  ident: ref38
  article-title: Cortical thickness analysis examined through power analysis and a population simulation.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.045
– volume: 62
  start-page: 925
  year: 2004
  ident: ref10
  article-title: Early abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in ad brain.
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000115115.98960.37
– volume: 43
  start-page: 2412
  year: 1993
  ident: ref32
  article-title: The Clinical Dementia Rating (CDR): current version and scoring rules.
  publication-title: Neurology
  doi: 10.1212/WNL.43.11.2412-a
– year: 1988
  ident: ref52
  article-title: Principles of Multivariate Analysis: A User's Perspective
– volume: 251
  start-page: 1950
  year: 2009
  ident: ref26
  article-title: Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment.
  publication-title: Radiology
  doi: 10.1148/radiol.2511080924
– volume: 23
  start-page: 84
  year: 2004
  ident: ref43
  article-title: Fast and robust parameter estimation for statistical partial volume models in brain mri.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.05.007
– volume: 15
  start-page: 1373
  year: 2003
  ident: ref48
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation.
  publication-title: Neural Computation
  doi: 10.1162/089976603321780317
– volume: 27
  start-page: 685
  year: 2010
  ident: ref11
  article-title: Hypothetical model of dynamic biomarkers of the alzheimer's pathological cascade.
  publication-title: Lancet Neurology
– volume: 74
  start-page: 201
  year: 2010
  ident: ref30
  article-title: Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization.
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181cb3e25
– volume: 48
  start-page: 37
  year: 2009
  ident: ref46
  article-title: Mapping the regional inuence of genetics on brain structure variability – a tensor-based morphometry study.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.022
– volume: 52
  start-page: 1009
  year: 2010
  ident: ref50
  article-title: Measurement of hippocampal atrophy using 4D graph-cut segmentation: Application to ADNI.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.006
– volume: 20
  start-page: 273
  year: 1995
  ident: ref53
  article-title: Support-vector networks.
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 56
  start-page: 1134
  year: 2011
  ident: ref47
  article-title: Multi-template tensor-based morphometry: Application to analysis of alzheimer's disease.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.029
– volume: 356
  start-page: 1293
  year: 2001
  ident: ref39
  article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM).
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2001.0915
– volume: 75
  start-page: 230
  year: 2010
  ident: ref18
  article-title: Comparing predictors of conversion and decline in mild cognitive impairment.
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e8e8b8
– volume: 132
  start-page: 2036
  year: 2009
  ident: ref27
  article-title: Early diagnosis of alzheimer's disease using cortical thickness: impact of cognitive reserve.
  publication-title: Brain
  doi: 10.1093/brain/awp105
– volume: 69
  start-page: 1622
  year: 2007
  ident: ref2
  article-title: Disease-modifying therapies for alzheimer disease: challenges to early intervention.
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000295996.54210.69
– volume: 12
  start-page: 189
  issue: 3
  year: 1975
  ident: ref31
  article-title: Mini-mental state: A practical method for grading the cognitive state of patients for the clinician.
  publication-title: Journal of Psychiatric Research
– volume: 82
  start-page: 239
  year: 1991
  ident: ref5
  article-title: Neuropathological stageing of Alzheimer-related changes.
  publication-title: Acta Neuropathologica
  doi: 10.1007/BF00308809
– year: 2010
  ident: ref29
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database.
– volume: 15
  start-page: 869
  year: 2005
  ident: ref28
  article-title: The Alzheimer's Disease Neuroimaging Initiative.
  publication-title: Neuroimaging Clinics of North America
  doi: 10.1016/j.nic.2005.09.008
– volume: 29
  start-page: 294
  year: 2010
  ident: ref16
  article-title: Combination of hippocampal volume and cerebrospinal uid biomarkers improves predictive value in mild cognitive impairment.
  publication-title: Dement Geriatr Cogn Disord
  doi: 10.1159/000289814
– volume: 54
  start-page: 1178
  year: 2011
  ident: ref55
  article-title: Multivariate analysis of mri data for alzheimer's disease, mild cognitive impairment and healthy controls.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.08.044
– volume: 31
  start-page: 1375
  year: 2010
  ident: ref25
  article-title: Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer's disease.
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2010.01.022
– volume: 56
  start-page: 185
  year: 2011
  ident: ref36
  article-title: Fast and robust extraction of hippocampus from mr images for diagnostics of alzheimer's disease.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.062
– volume: 41
  start-page: 17
  year: 1997
  ident: ref9
  article-title: Neuronal loss correlates with but exceeds neurofibrillary tangles in alzheimer's disease.
  publication-title: Ann Neurol
  doi: 10.1002/ana.410410106
– year: 2009
  ident: ref24
  article-title: Combination analysis of neuropsychological tests and structural MRI measures in differentiating AD, MCI and control groups–The AddNeuroMed study.
– volume: 17
  start-page: 143
  year: 2002
  ident: ref41
  article-title: Fast robust automated brain extraction.
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10062
– volume: 3
  start-page: 186
  year: 2007
  ident: ref1
  article-title: Forecasting the global burden of Alzheimer's disease.
  publication-title: Alzheimer's and Dementia
  doi: 10.1016/j.jalz.2007.04.381
– volume: 18
  start-page: 712
  year: 1999
  ident: ref49
  article-title: Nonrigid registration using free-form deformations: Application to breast MR images.
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.796284
– volume: 56
  start-page: 1133
  year: 2001
  ident: ref3
  article-title: Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review).
  publication-title: Neurology
  doi: 10.1212/WNL.56.9.1133
– volume: 31
  start-page: 347
  year: 2010
  ident: ref19
  article-title: Combining MR Imaging, Positron-Emission Tomography, and CSF Biomarkers in the Diagnosis and Prognosis of Alzheimer Disease.
  publication-title: American Journal of Neuroradiology
  doi: 10.3174/ajnr.A1809
– volume: 34
  start-page: 939
  year: 1984
  ident: ref33
  article-title: Clinical diagnosis of alzheimer's disease: report of the nincds-adrda work group under the auspices of department of health and human services task force on alzheimer's disease.
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
– volume: 49
  start-page: 2352
  year: 2010
  ident: ref35
  article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.026
– year: 1998
  ident: ref51
  article-title: Applied Regression Analysis (Wiley Series in Probability and Statistics).
  publication-title: Wiley
– volume: 9
  start-page: 560
  year: 2010
  ident: ref12
  article-title: Biomarkers for alzheimer's disease: academic, industry and regulatory perspectives.
  publication-title: NatRevDrug Discov
  doi: 10.1038/nrd3115
– volume: 18
  start-page: 897
  year: 1999
  ident: ref37
  article-title: Automated model-based tissue classification of MR images of the brain.
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.811270
– volume: 47
  start-page: 1476
  year: 2009
  ident: ref23
  article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.036
– volume: 4
  start-page: 38
  year: 2008
  ident: ref7
  article-title: Core candidate neurochemical and imaging biomarkers of alzheimer's disease.
  publication-title: Alzheimer's and Dementia
  doi: 10.1016/j.jalz.2007.08.006
– volume: 46
  start-page: 749
  year: 2009
  ident: ref21
  article-title: Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.013
– volume: 27
  start-page: 685
  year: 2008
  ident: ref34
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods.
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.21049
SSID ssj0053866
Score 2.501782
Snippet The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e25446
SubjectTerms Accuracy
Activities of daily living
Advertising executives
Aged
Alzheimer Disease - diagnosis
Alzheimer's disease
Alzheimers disease
Biomarkers
Brain
Brain research
Case-Control Studies
Cerebral Cortex - pathology
Classification
Cognitive ability
Cognitive Dysfunction - diagnosis
Cortex
Development and progression
Discriminant analysis
Engineering
Female
Finite element analysis
Hippocampus
Hospitals
Humans
Image classification
Machine learning
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Manifolds (mathematics)
Medical diagnosis
Medical imaging
Medical research
Medicine
Methods
Morphometry
Multivariate analysis
Neurodegenerative diseases
Neuroimaging
Neurology
NMR
Nuclear magnetic resonance
Parameter estimation
Regression analysis
Sensitivity
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAhZCKhzSOnZsN8cFUbVIpVKhqDfLsR260ja7anYv_fWdib1RgyqVA9d4YiXz8nzJ-DMhH8sGC3Nncw1oIS-9ljngLJsr7T2gMcd8g58GTn6oo_Py-4W8uHPUF_aERXrgqLh9mKgSLAhfYiLlrlINrGgIW1iopezJtlnFNmAq5mCIYqXSRjmhi_1kl73log17kZZLjRainq9_yMqT5XzR3Vdy_t05eWcpOnxKnqQakk7js2-RR6F9RrZSlHb0U6KS_vycnPb7a_N4TDS1iYCELhp6cnZMZ1eQTDo6a2lAmmPqY9sdEjejyHR-cxlmV-F6t6PpP84Lcn747dfXozwdoZA7LfUql7VXB5WFos2VLlQFgAPf2MCL2togNSssljzSOS6DLeqGHeiyDiwExq0WzomXZNKC0rYJVYLxEJRovBalt4DIa6VgOl-AGaSuMiI2-jQu8YvjMRdz0_8004AzonoMWsEkK2QkH-5aRn6NB-S_oKkGWWTH7i-Az5jkM-Yhn8nIezS0iVtNhxg30xLAl4IMxjPyoZdAhowWW3D-2HXXmePT3_8g9PNsJLSbhJoFqMPZtO0B3gmZt0aSOyNJiHM3Gt5Gt9xopQMdFUi_DxAf7ty46v3DdBjGSbGtrg2LdWcqSPhcQ82WkVfRsQfFcg7VHRSrGdEjlx9pfjzSzi57fnLI6lzL6vX_MNUb8pinrstC7JDJ6nod3kIZuKrf9RF_C9sOWAc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXClgIqXBIm9ixvTmh5VG6SEulQlFvkWM77UrbZNnsXvj1zDhOIKgCrpmJlczLM_b4MyEv0xITc6MjBdVClFolIqizdCSVtVCNmdiWuDQw_yyPz9JP5-I8LLg1oa2yi4k-UNva4Br5YcITBBuHgubN6nuEt0bh7mq4QuMmuZXATIN2Pjn62EVi8GUpw3E5rpLDoJ2DVV25gxacSw6mI4_a38fm0WpZN9clnn_2T_42IR3dJXdCJkmnrep3yA1X3SM7wVcb-ioASr--T078Kdto7i-Lph0MCa1LOj-d0dkVhJSGLirqwY7p-7b5DuGbkWW6_HHpFlduvd8Aye_mPCBnRx--vjuOwkUKkVFCbSJRWDnJNKRuJjUuS6BEsKV2LCm0dkLFicbERxjDhNNJUcYTlRYudi5mWnFj-EMyqkBou4RKHjPnJC-t4qnVUJcXUsJwNimEECobE97JMzcBZRwvu1jmfutMQbXRiidHLeRBC2MS9W-tWpSNf_C_RVX1vIiR7R_U64s8uFwOJpjx2HGb4hTMTCZLyIWw4I0dfCwM8hwVnbcHTntPz6cplGAS4hgbkxeeA3EyKmzEudDbpslnJ9_-g-nL6YBpPzCVNYjD6HD4Af4J8bcGnHsDTvB2MyDvoll2UmnyX34Bb3amej2Z9mQcFJvrKldvmzyDsM8UZG5j8qg17F6wjEGOBynrmKiByQ8kP6RUi0uPUg6xnSmRPf77Vz0ht1noqkz4Hhlt1lv3FNK8TfHM-_JPkBVQjQ
  priority: 102
  providerName: ProQuest
Title Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer's Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/22022397
https://www.proquest.com/docview/1312182825
https://www.proquest.com/docview/907027818
https://pubmed.ncbi.nlm.nih.gov/PMC3192759
https://doaj.org/article/26c930e3d428472c96f22321100eb556
http://dx.doi.org/10.1371/journal.pone.0025446
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLa27sIFMX6tY5QIIQ0OqRIntpsDQt1oWZG6oUJRb5HjOFulLi1NKwEH_nbec5yIoCLg4kP8bCXPz8_fi-3vEfIizBCYK-kKiBbcMBXMhThLulykKURjyksz_DUwvuQX0_D9jM32SJWz1Sqw2BnaYT6p6XrR_frl2xuY8K9N1gbhV426q2WuuyXpFt8nB7A2cQzHxmG9rwCz2-xeImpxOfUCe5nuT700FivD6V977tZqsSx2wdLfT1f-slwN75G7Fmc6_dIwDsmezu-TQzuTC-elpZt-9YBcmTu47tikknYqkhJnmTnjycgZ3YLDKZx57hgqZOdteTQPyZ1RpL_4fqPnt3p9WkCV2et5SKbDwafzC9emWXCVYGLjsiTlvUgCsFOh0pEPAUSaSU39RErNhOdLhEVMKcq09JPM64kw0Z7WHpUiUCp4RFo5KO2IODzwqNY8yFIRhKmEqD3hHLpL_YQxJqI2CSp9xspykGMqjEVsNtYExCKlemIchdiOQpu4datVycHxF_kzHKpaFhm0zYPl-jq2EzIGA40CTwdpiAs0VRHPAClhOOxpeFno5BkOdFxeR639QNwPIUDj4OVomzw3EsiikeMxnWu5LYp4dPX5H4Q-ThpCp1YoW4I6lLRXI-CbkJ2rIXnSkARfoBrVR2iWlVYK0JGPFP09yqBlZaq7q526GjvFo3e5Xm6LOIJFgQrAdW3yuDTsWrGUAgIEQNsmomHyDc03a_L5jeEwB89PBYuO_3Non5A71B7C9IMT0tqst_opoMJN0iH7Yiag7J37WA7fdcjB2eDyw6Rj_rN0jCPA8sfgJ1HLZOQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGeYAXxPi1wmAWAg0esiV2YjcPCJWNaWXrJo0N7c04jrNV6pLSrELwR_E3cpc4gaAJeNlrfbHS8_nuu_j8HSEvwgyBudGehGzBC1MZeZBnaU_INIVszPhphp8Gxgdi9yT8cBqdLpEfzV0YLKtsfGLlqNPC4DfyzYAHSDYOCc3b2RcPu0bh6WrTQqM2iz377SukbOWb0Tas70vGdt4fb-16rquAZ2QkL70oScUg1oBjTGhsHABeTjNtWZBobSPpBxpRQGQMi6wOkswfyDCxvrU-05Ibw2HeG-RmyLnAXTTYaktKwHcI4a7ncRlsOmvYmBW53ajJwEQn_FVdAtpY0JtNi_IqoPtnveZvAXDnLrnjkCsd1qa2TJZsfo8sO99Q0leOwPr1fXJY3er1xlVzatrQntAio-OjER1dgAsr6SSnFbky3a6L_ZAuGkWG0-_ndnJh5-slDFWnRw_IybWo-CHp5aC0FUIF95m1gmep5GGqbcISIWC6NEiiKJJxn_BGn8o4VnNsrjFV1VGdhOymVo_CVVBuFfrEa5-a1awe_5B_h0vVyiInd_VDMT9TbosrMPmY-5anIYZ8ZmKRAfbCBNu38LIwyRoutKovuLaeRQ1DSPkE-E3WJ88rCeTlyLHw50wvylKNDj_9h9DHo47QuhPKClCH0e6yBfwn5PvqSK52JMG7mM7wCpplo5VS_dqH8GRjqlcP03YYJ8VivtwWi1LFEGaYBKTYJ49qw24VyxhgSoDIfSI7Jt_RfHckn5xXrOgQS5iM4sd_f6s1cmv3eLyv9kcHe0_IbeYqOgO-SnqX84V9ChDzMnlW7WtKPl-3I_kJGGKOaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkRAviPFrhcEsBBo8ZE3sJG4eECor1crohgab9mYcx9kqdUlpWiH40_jruEucQNAEvOy1vljp-Xz3XXz-jpBnforAXCtHQLbg-IkIHMizlBOKJIFsTLtJip8GJgfh3rH_7jQ4XSM_6rswWFZZ-8TSUSe5xm_kPY97SDYOCU0vtWURH4aj1_MvDnaQwpPWup1GZSL75ttXSN-KV-MhrPVzxkZvP-3uObbDgKNFIJZOECdhP1KAabSvTeQBdk5SZZgXK2UC4XoKEUGgNQuM8uLU7Qs_Nq4xLlOCa81h3mvkuuBC4O7q7zblJeBHwtBe1ePC61nL2JnnmdmpiMHCVigsOwY0caEzn-XFZaD3z9rN34Lh6Da5ZVEsHVRmt07WTHaHrFs_UdAXlsz65V1yWN7wdSZlo2paU6DQPKWTozEdX4A7K-g0oyXRMh1WhX9IHY0ig9n3czO9MIvtAobKk6R75PhKVHyfdDJQ2gahIXeZMSFPE8H9RJmYxWEI0yVeHASBiLqE1_qU2jKcY6ONmSyP7QRkOpV6JK6CtKvQJU7z1Lxi-PiH_BtcqkYW-bnLH_LFmbTbXYL5R9w1PPEx_DMdhSngMEy2XQMvC5Ns4ULL6rJr42XkwIf0LwQfyrrkaSmBHB0ZWvuZWhWFHB-e_IfQx6OW0LYVSnNQh1b24gX8J-T-aklutiTB0-jW8AaaZa2VQv7ak_BkbaqXD9NmGCfFwr7M5KtCRhBymADU2CUPKsNuFMsY4EuAy10iWibf0nx7JJuelwzpEFeYCKKHf3-rLXIDXIh8Pz7Yf0RuMlvc6fFN0lkuVuYxoM1l_KTc1pR8vmo_8hPLd5Kh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Method+Analysis+of+MRI+Images+in+Early+Diagnostics+of+Alzheimer%27s+Disease&rft.jtitle=PloS+one&rft.au=Wolz%2C+Robin&rft.au=Julkunen%2C+Valtteri&rft.au=Koikkalainen%2C+Juha&rft.au=Niskanen%2C+Eini&rft.date=2011-10-13&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=6&rft.issue=10&rft.spage=e25446&rft_id=info:doi/10.1371%2Fjournal.pone.0025446&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0025446
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon