Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer's Disease
The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI...
Saved in:
Published in | PloS one Vol. 6; no. 10; p. e25446 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
13.10.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0025446 |
Cover
Abstract | The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI analysis techniques. Automatically estimated MR features used are hippocampal volume, tensor-based morphometry, cortical thickness and a novel technique based on manifold learning. Baseline MRIs acquired from all 834 subjects (231 healthy controls (HC), 238 stable mild cognitive impairment (S-MCI), 167 MCI to AD progressors (P-MCI), 198 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used for evaluation. We compared the classification accuracy achieved with linear discriminant analysis (LDA) and support vector machines (SVM). The best results achieved with individual features are 90% sensitivity and 84% specificity (HC/AD classification), 64%/66% (S-MCI/P-MCI) and 82%/76% (HC/P-MCI) with the LDA classifier. The combination of all features improved these results to 93% sensitivity and 85% specificity (HC/AD), 67%/69% (S-MCI/P-MCI) and 86%/82% (HC/P-MCI). Compared with previously published results in the ADNI database using individual MR-based features, the presented results show that a comprehensive analysis of MRI images combining multiple features improves classification accuracy and predictive power in detecting early AD. The most stable and reliable classification was achieved when combining all available features. |
---|---|
AbstractList | The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI analysis techniques. Automatically estimated MR features used are hippocampal volume, tensor-based morphometry, cortical thickness and a novel technique based on manifold learning. Baseline MRIs acquired from all 834 subjects (231 healthy controls (HC), 238 stable mild cognitive impairment (S-MCI), 167 MCI to AD progressors (P-MCI), 198 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used for evaluation. We compared the classification accuracy achieved with linear discriminant analysis (LDA) and support vector machines (SVM). The best results achieved with individual features are 90% sensitivity and 84% specificity (HC/AD classification), 64%/66% (S-MCI/P-MCI) and 82%/76% (HC/P-MCI) with the LDA classifier. The combination of all features improved these results to 93% sensitivity and 85% specificity (HC/AD), 67%/69% (S-MCI/P-MCI) and 86%/82% (HC/P-MCI). Compared with previously published results in the ADNI database using individual MR-based features, the presented results show that a comprehensive analysis of MRI images combining multiple features improves classification accuracy and predictive power in detecting early AD. The most stable and reliable classification was achieved when combining all available features.The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI analysis techniques. Automatically estimated MR features used are hippocampal volume, tensor-based morphometry, cortical thickness and a novel technique based on manifold learning. Baseline MRIs acquired from all 834 subjects (231 healthy controls (HC), 238 stable mild cognitive impairment (S-MCI), 167 MCI to AD progressors (P-MCI), 198 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used for evaluation. We compared the classification accuracy achieved with linear discriminant analysis (LDA) and support vector machines (SVM). The best results achieved with individual features are 90% sensitivity and 84% specificity (HC/AD classification), 64%/66% (S-MCI/P-MCI) and 82%/76% (HC/P-MCI) with the LDA classifier. The combination of all features improved these results to 93% sensitivity and 85% specificity (HC/AD), 67%/69% (S-MCI/P-MCI) and 86%/82% (HC/P-MCI). Compared with previously published results in the ADNI database using individual MR-based features, the presented results show that a comprehensive analysis of MRI images combining multiple features improves classification accuracy and predictive power in detecting early AD. The most stable and reliable classification was achieved when combining all available features. The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI analysis techniques. Automatically estimated MR features used are hippocampal volume, tensor-based morphometry, cortical thickness and a novel technique based on manifold learning. Baseline MRIs acquired from all 834 subjects (231 healthy controls (HC), 238 stable mild cognitive impairment (S-MCI), 167 MCI to AD progressors (P-MCI), 198 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used for evaluation. We compared the classification accuracy achieved with linear discriminant analysis (LDA) and support vector machines (SVM). The best results achieved with individual features are 90% sensitivity and 84% specificity (HC/AD classification), 64%/66% (S-MCI/P-MCI) and 82%/76% (HC/P-MCI) with the LDA classifier. The combination of all features improved these results to 93% sensitivity and 85% specificity (HC/AD), 67%/69% (S-MCI/P-MCI) and 86%/82% (HC/P-MCI). Compared with previously published results in the ADNI database using individual MR-based features, the presented results show that a comprehensive analysis of MRI images combining multiple features improves classification accuracy and predictive power in detecting early AD. The most stable and reliable classification was achieved when combining all available features. |
Audience | Academic |
Author | Lötjönen, Jyrki Koikkalainen, Juha Niskanen, Eini Wolz, Robin Rueckert, Daniel Soininen, Hilkka Julkunen, Valtteri Zhang, Dong Ping |
AuthorAffiliation | University Hospital La Paz, Spain 4 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland 5 Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland 2 Department of Neurology, Kuopio University Hospital, Kuopio, Finland 1 Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom 3 Knowledge Intensive Services, VTT Technical Research Centre of Finland, Tampere, Finland |
AuthorAffiliation_xml | – name: 3 Knowledge Intensive Services, VTT Technical Research Centre of Finland, Tampere, Finland – name: University Hospital La Paz, Spain – name: 4 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland – name: 5 Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland – name: 1 Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom – name: 2 Department of Neurology, Kuopio University Hospital, Kuopio, Finland |
Author_xml | – sequence: 1 givenname: Robin surname: Wolz fullname: Wolz, Robin – sequence: 2 givenname: Valtteri surname: Julkunen fullname: Julkunen, Valtteri – sequence: 3 givenname: Juha surname: Koikkalainen fullname: Koikkalainen, Juha – sequence: 4 givenname: Eini surname: Niskanen fullname: Niskanen, Eini – sequence: 5 givenname: Dong Ping surname: Zhang fullname: Zhang, Dong Ping – sequence: 6 givenname: Daniel surname: Rueckert fullname: Rueckert, Daniel – sequence: 7 givenname: Hilkka surname: Soininen fullname: Soininen, Hilkka – sequence: 8 givenname: Jyrki surname: Lötjönen fullname: Lötjönen, Jyrki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22022397$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk12L1DAUhousuB_6D0QLgosXMyZp81EvhGFddWCHgfXjNqTpaSdD2oxNK46_3sxOR6bLIpKLhpPnfdPzknMenTSugSh6jtEUJxy_Xbu-bZSdbkJ5ihChacoeRWc4S8iEEZScHO1Po3Pv1wjRRDD2JDolBBGSZPwsWi5625nJArqVK-JZMNx642NXxovbeTyvVQU-Nk18rVq7jT8YVTXOd0bfITP7ewWmhvbShyMPysPT6HGprIdnw_ci-vbx-uvV58nN8tP8anYz0ZzybkLzgolMMcp0qiHDVNCiVEBwrhRQjrAilCGqNaGgcF4iwdMcEAAiiidaJxfRy73vxjovhyy8xAkmWBBBaCDme6Jwai03ralVu5VOGXlXcG0lVRs6sSAJ01mCIClSIlJOdMbKEA_BGCHIKWXB6_1wW5_XUGhoulbZken4pDErWbmfMsEZ4TQLBpeDQet-9OA7WRuvwVrVgOu9zBBHhAssAvnqHvlwcwNVqfD_pilduFbvPOUs5UwwEfwCNX2ACquA2ujwbkoT6iPBm5EgMB386irVey_nX27_n11-H7Ovj9gVKNutvLN9Z1zjx-CL46D_Jnx4sAF4twd067xvoZTadGrnE1ozVmIkd9NxCE3upkMO0xHE6T3xwf-fsj-Z2RD3 |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2013_06_033 crossref_primary_10_3390_math9233101 crossref_primary_10_1142_S0129065718500223 crossref_primary_10_1142_S0218213018500112 crossref_primary_10_1007_s11831_021_09674_8 crossref_primary_10_1016_j_nicl_2022_102948 crossref_primary_10_5812_ircmj_17_4_2015_24557 crossref_primary_10_1016_j_neurobiolaging_2014_06_031 crossref_primary_10_1098_rsfs_2012_0072 crossref_primary_10_1039_C8RA03620A crossref_primary_10_1016_j_pscychresns_2015_08_014 crossref_primary_10_1016_j_jneumeth_2013_09_001 crossref_primary_10_1007_s10072_021_05568_6 crossref_primary_10_1016_j_ijrobp_2017_01_005 crossref_primary_10_1177_0284185115584656 crossref_primary_10_1016_j_neuroimage_2018_08_042 crossref_primary_10_1049_ipr2_12605 crossref_primary_10_1155_2020_3743171 crossref_primary_10_1109_TCBB_2021_3053061 crossref_primary_10_3390_s20113243 crossref_primary_10_1002_hbm_23922 crossref_primary_10_1002_hbm_23483 crossref_primary_10_1016_j_neurobiolaging_2017_06_027 crossref_primary_10_1016_j_neuroimage_2016_06_049 crossref_primary_10_1159_000447122 crossref_primary_10_1016_j_bbe_2021_02_006 crossref_primary_10_1016_j_jneumeth_2020_108698 crossref_primary_10_1016_j_neuroimage_2015_01_048 crossref_primary_10_1016_j_neubiorev_2023_105393 crossref_primary_10_1016_j_neurobiolaging_2024_01_005 crossref_primary_10_1212_WNL_0000000000006310 crossref_primary_10_1016_j_neuroimage_2014_02_028 crossref_primary_10_1016_j_mri_2018_03_003 crossref_primary_10_1016_j_media_2016_11_002 crossref_primary_10_1371_journal_pone_0153040 crossref_primary_10_3389_fneur_2019_00904 crossref_primary_10_3390_jpm10030061 crossref_primary_10_1016_j_pscychresns_2014_08_005 crossref_primary_10_1016_j_nicl_2023_103533 crossref_primary_10_1016_j_patcog_2018_01_028 crossref_primary_10_1002_hcs2_84 crossref_primary_10_1007_s00259_014_2728_4 crossref_primary_10_1049_ipr2_12618 crossref_primary_10_1038_s41514_023_00129_x crossref_primary_10_1038_s41598_019_39809_8 crossref_primary_10_1016_j_ncl_2019_08_003 crossref_primary_10_2217_nmt_12_13 crossref_primary_10_1016_j_neuroimage_2014_10_002 crossref_primary_10_1016_j_jneumeth_2013_10_003 crossref_primary_10_1371_journal_pone_0267608 crossref_primary_10_1016_j_patcog_2016_10_009 crossref_primary_10_1016_j_eswa_2023_122253 crossref_primary_10_1016_j_jneumeth_2017_03_006 crossref_primary_10_1109_ACCESS_2018_2871977 crossref_primary_10_1038_srep26712 crossref_primary_10_1155_2019_1437123 crossref_primary_10_1109_ACCESS_2020_2989396 crossref_primary_10_1007_s11042_020_09062_7 crossref_primary_10_1016_j_jalz_2014_11_001 crossref_primary_10_18632_aging_101883 crossref_primary_10_1016_j_neuroimage_2016_02_079 crossref_primary_10_1186_s13195_021_00900_w crossref_primary_10_5402_2013_627303 crossref_primary_10_1016_j_jalz_2015_05_014 crossref_primary_10_3389_fnagi_2016_00076 crossref_primary_10_1016_j_neurobiolaging_2014_05_040 crossref_primary_10_1002_hbm_23147 crossref_primary_10_1016_j_neurobiolaging_2018_04_009 crossref_primary_10_1016_j_ejmp_2017_04_027 crossref_primary_10_1109_JIOT_2023_3245067 crossref_primary_10_1016_j_neuroimage_2017_03_057 crossref_primary_10_1002_sim_10324 crossref_primary_10_1016_j_mri_2014_05_008 crossref_primary_10_1097_WCO_0b013e3283557b36 crossref_primary_10_1371_journal_pone_0105542 crossref_primary_10_1016_j_nicl_2017_08_014 crossref_primary_10_1007_s10548_014_0415_1 crossref_primary_10_1016_j_cmpb_2017_03_006 crossref_primary_10_1016_j_nicl_2012_10_002 crossref_primary_10_1371_journal_pone_0173372 crossref_primary_10_1016_j_acra_2015_04_008 crossref_primary_10_1016_j_jneumeth_2017_12_010 crossref_primary_10_1109_TBME_2015_2496233 crossref_primary_10_3390_app13148298 crossref_primary_10_1016_j_neucom_2018_11_111 crossref_primary_10_1109_TMI_2013_2287121 crossref_primary_10_3233_JAD_220806 crossref_primary_10_1016_j_nicl_2016_02_019 crossref_primary_10_1109_JBHI_2017_2732287 crossref_primary_10_1109_TBME_2016_2549363 crossref_primary_10_1007_s12021_013_9218_x crossref_primary_10_1093_braincomms_fcaa132 crossref_primary_10_1007_s11682_016_9528_3 crossref_primary_10_1007_s11910_017_0718_1 crossref_primary_10_1371_journal_pone_0052531 crossref_primary_10_1155_2020_8015156 crossref_primary_10_3389_fnagi_2021_688926 crossref_primary_10_1016_j_media_2015_08_010 crossref_primary_10_3389_fnagi_2014_00260 crossref_primary_10_1038_s41598_018_29295_9 crossref_primary_10_1016_j_compbiomed_2024_108622 crossref_primary_10_1007_s11590_021_01816_y crossref_primary_10_3389_fnins_2021_584641 crossref_primary_10_1186_1471_2474_14_198 crossref_primary_10_1186_s42492_020_00062_w crossref_primary_10_3233_ADR_210314 crossref_primary_10_1093_brain_awy244 crossref_primary_10_1186_s13195_024_01517_5 crossref_primary_10_1109_TMI_2016_2515021 crossref_primary_10_1142_S1793536914500046 crossref_primary_10_1371_journal_pone_0073186 crossref_primary_10_1109_TMI_2016_2582386 crossref_primary_10_1155_2019_2492719 crossref_primary_10_1371_journal_pone_0105563 crossref_primary_10_1007_s42835_022_01317_7 crossref_primary_10_1007_s10548_015_0455_1 crossref_primary_10_1371_journal_pone_0067346 crossref_primary_10_1016_j_media_2014_04_006 crossref_primary_10_3233_JAD_201254 crossref_primary_10_1002_14651858_CD009628_pub2 crossref_primary_10_1038_s41598_019_49970_9 crossref_primary_10_1152_physrev_00037_2021 crossref_primary_10_3389_fnins_2017_00056 crossref_primary_10_1038_s41598_018_37769_z crossref_primary_10_1246_bcsj_20190356 crossref_primary_10_1016_j_compmedimag_2017_11_001 crossref_primary_10_1371_journal_pone_0170875 crossref_primary_10_1016_j_compbiomed_2018_09_004 crossref_primary_10_21518_ms2024_289 crossref_primary_10_1002_hbm_22741 crossref_primary_10_1155_2014_862307 crossref_primary_10_3390_healthcare10101842 crossref_primary_10_1002_brb3_942 crossref_primary_10_1016_j_bspc_2018_08_009 crossref_primary_10_1016_j_radonc_2018_02_011 crossref_primary_10_3389_fnagi_2020_00176 crossref_primary_10_1007_s12021_016_9318_5 crossref_primary_10_1016_j_mri_2021_02_001 crossref_primary_10_1038_s41598_018_22871_z crossref_primary_10_3390_ijms23116079 crossref_primary_10_1016_j_artmed_2016_06_003 crossref_primary_10_1371_journal_pone_0194479 crossref_primary_10_3390_app10051894 crossref_primary_10_1111_jon_12214 crossref_primary_10_3233_JAD_200175 crossref_primary_10_1109_RBME_2018_2796598 crossref_primary_10_1016_j_dadm_2018_07_003 crossref_primary_10_1109_TBME_2015_2404809 crossref_primary_10_1016_j_nicl_2013_07_004 crossref_primary_10_1016_j_neuroimage_2016_02_036 crossref_primary_10_1016_j_compmedimag_2018_08_002 crossref_primary_10_1371_journal_pone_0222446 crossref_primary_10_1016_j_nicl_2013_11_010 crossref_primary_10_1002_jnr_24084 crossref_primary_10_1016_j_media_2020_101850 crossref_primary_10_1016_j_neurobiolaging_2014_04_034 crossref_primary_10_1016_j_jalz_2012_11_009 crossref_primary_10_1016_j_jalz_2013_05_1769 crossref_primary_10_1002_hbm_22254 crossref_primary_10_1007_s00234_021_02761_4 crossref_primary_10_1007_s11042_022_13523_6 crossref_primary_10_3389_fninf_2017_00016 crossref_primary_10_1016_j_cmpb_2019_105242 crossref_primary_10_1016_j_neuroimage_2014_03_036 crossref_primary_10_1016_j_neunet_2023_04_018 crossref_primary_10_1155_2016_9523849 crossref_primary_10_1016_j_neuroimage_2012_09_058 crossref_primary_10_1007_s11682_018_9846_8 crossref_primary_10_1016_j_bspc_2023_105773 crossref_primary_10_1002_hbm_22926 crossref_primary_10_3233_XST_200771 crossref_primary_10_1109_TNNLS_2012_2226748 crossref_primary_10_1142_S0219467824500311 crossref_primary_10_1186_s13195_019_0526_8 crossref_primary_10_1002_hbm_22522 crossref_primary_10_1016_j_mri_2014_04_016 crossref_primary_10_1212_WNL_0b013e318295d6cf crossref_primary_10_1007_s11042_014_2123_y crossref_primary_10_3233_IDT_160260 crossref_primary_10_1016_j_jneumeth_2015_08_011 |
Cites_doi | 10.1016/j.neuroimage.2008.02.043 10.1016/j.neuroimage.2005.03.036 10.1016/j.neurobiolaging.2010.04.022 10.1109/42.668698 10.1212/01.wnl.0000256697.20968.d7 10.1016/S0140-6736(06)68542-5 10.1097/00005072-199311000-00006 10.1016/j.neuroimage.2007.09.073 10.1016/j.neuroimage.2004.07.045 10.1212/01.WNL.0000115115.98960.37 10.1212/WNL.43.11.2412-a 10.1148/radiol.2511080924 10.1016/j.neuroimage.2004.05.007 10.1162/089976603321780317 10.1212/WNL.0b013e3181cb3e25 10.1016/j.neuroimage.2009.05.022 10.1016/j.neuroimage.2010.04.006 10.1007/BF00994018 10.1016/j.neuroimage.2011.03.029 10.1098/rstb.2001.0915 10.1212/WNL.0b013e3181e8e8b8 10.1093/brain/awp105 10.1212/01.wnl.0000295996.54210.69 10.1007/BF00308809 10.1016/j.nic.2005.09.008 10.1159/000289814 10.1016/j.neuroimage.2010.08.044 10.1016/j.neurobiolaging.2010.01.022 10.1016/j.neuroimage.2011.01.062 10.1002/ana.410410106 10.1002/hbm.10062 10.1016/j.jalz.2007.04.381 10.1109/42.796284 10.1212/WNL.56.9.1133 10.3174/ajnr.A1809 10.1212/WNL.34.7.939 10.1016/j.neuroimage.2009.10.026 10.1038/nrd3115 10.1109/42.811270 10.1016/j.neuroimage.2009.05.036 10.1016/j.jalz.2007.08.006 10.1016/j.neuroimage.2009.02.013 10.1002/jmri.21049 |
ContentType | Journal Article |
Contributor | Jack, Jr, Clifford R Romirowsky, Aliza Schuff, Norbert Roberts, Peggy Shaw, Les Johnson, Kris Doody, Rachelle S Frank, Richard Molchan, Susan Chen, Kewei Duara, Ranjan Jagust, William Mintun, Mark A Green, Robert C Grossman, Hillel Felmlee, Joel Pawluczyk, Sonia Weiner, Michael Montine, Tom Dolen, Sara Varon, Daniel Thompson, Paul Trojanowki, John Q DeCarli, Charles Fox, Nick Griffith, Randall Kachaturian, Zaven Mitsis, Effie Lind, Betty Korecka, Magdalena Schneider, Stacy Walter, Sarah Quinn, Joseph Bell, Karen L Villanueva-Meyer, Javier Liu, Enchi Bandy, Dan Neu, Scott Sather, Tamie Aisen, Paul Morris, John Stern, Yaakov Lord, Joanne L Marson, Daniel Heidebrink, Judith L Reiman, Eric M Trojanowki, J Q Morris, John C Shah, Raj C Kornak, John Foster, Norm Mathis, Chet Foroud, Tatiana M Lee, Virginia M Y Kaye, Jeffrey Saykin, Andrew J Chowdhury, Munir Harvey, Danielle Leon, Sue Koeppe, Robert A Potkin, Steven Gessert, Devon Carroll, Maria Petersen, Ronald Gamst, Anthony Donohue, Michael Schneider, Lon S Thomas, Ronald G Alexander, Gene Shen, Li Spann, Bry |
Contributor_xml | – sequence: 1 givenname: Michael surname: Weiner fullname: Weiner, Michael – sequence: 2 givenname: Paul surname: Aisen fullname: Aisen, Paul – sequence: 3 givenname: Ronald surname: Petersen fullname: Petersen, Ronald – sequence: 4 givenname: Clifford R surname: Jack, Jr fullname: Jack, Jr, Clifford R – sequence: 5 givenname: William surname: Jagust fullname: Jagust, William – sequence: 6 givenname: John Q surname: Trojanowki fullname: Trojanowki, John Q – sequence: 7 givenname: Arthur W surname: Toga fullname: Toga, Arthur W – sequence: 8 givenname: Laurel surname: Beckett fullname: Beckett, Laurel – sequence: 9 givenname: Robert C surname: Green fullname: Green, Robert C – sequence: 10 givenname: Andrew J surname: Saykin fullname: Saykin, Andrew J – sequence: 11 givenname: John surname: Morris fullname: Morris, John – sequence: 12 givenname: Enchi surname: Liu fullname: Liu, Enchi – sequence: 13 givenname: Tom surname: Montine fullname: Montine, Tom – sequence: 14 givenname: Anthony surname: Gamst fullname: Gamst, Anthony – sequence: 15 givenname: Ronald G surname: Thomas fullname: Thomas, Ronald G – sequence: 16 givenname: Michael surname: Donohue fullname: Donohue, Michael – sequence: 17 givenname: Sarah surname: Walter fullname: Walter, Sarah – sequence: 18 givenname: Devon surname: Gessert fullname: Gessert, Devon – sequence: 19 givenname: Tamie surname: Sather fullname: Sather, Tamie – sequence: 20 givenname: Danielle surname: Harvey fullname: Harvey, Danielle – sequence: 21 givenname: John surname: Kornak fullname: Kornak, John – sequence: 22 givenname: Anders surname: Dale fullname: Dale, Anders – sequence: 23 givenname: Matthew surname: Bernstein fullname: Bernstein, Matthew – sequence: 24 givenname: Joel surname: Felmlee fullname: Felmlee, Joel – sequence: 25 givenname: Nick surname: Fox fullname: Fox, Nick – sequence: 26 givenname: Paul surname: Thompson fullname: Thompson, Paul – sequence: 27 givenname: Norbert surname: Schuff fullname: Schuff, Norbert – sequence: 28 givenname: Gene surname: Alexander fullname: Alexander, Gene – sequence: 29 givenname: Charles surname: DeCarli fullname: DeCarli, Charles – sequence: 30 givenname: Dan surname: Bandy fullname: Bandy, Dan – sequence: 31 givenname: Robert A surname: Koeppe fullname: Koeppe, Robert A – sequence: 32 givenname: Norm surname: Foster fullname: Foster, Norm – sequence: 33 givenname: Eric M surname: Reiman fullname: Reiman, Eric M – sequence: 34 givenname: Kewei surname: Chen fullname: Chen, Kewei – sequence: 35 givenname: Chet surname: Mathis fullname: Mathis, Chet – sequence: 36 givenname: Nigel J surname: Cairns fullname: Cairns, Nigel J – sequence: 37 givenname: Lisa surname: Taylor-Reinwald fullname: Taylor-Reinwald, Lisa – sequence: 38 givenname: J Q surname: Trojanowki fullname: Trojanowki, J Q – sequence: 39 givenname: Les surname: Shaw fullname: Shaw, Les – sequence: 40 givenname: Virginia M Y surname: Lee fullname: Lee, Virginia M Y – sequence: 41 givenname: Magdalena surname: Korecka fullname: Korecka, Magdalena – sequence: 42 givenname: Karen surname: Crawford fullname: Crawford, Karen – sequence: 43 givenname: Scott surname: Neu fullname: Neu, Scott – sequence: 44 givenname: Tatiana M surname: Foroud fullname: Foroud, Tatiana M – sequence: 45 givenname: Steven surname: Potkin fullname: Potkin, Steven – sequence: 46 givenname: Li surname: Shen fullname: Shen, Li – sequence: 47 givenname: Zaven surname: Kachaturian fullname: Kachaturian, Zaven – sequence: 48 givenname: Richard surname: Frank fullname: Frank, Richard – sequence: 49 givenname: Peter J surname: Snyder fullname: Snyder, Peter J – sequence: 50 givenname: Susan surname: Molchan fullname: Molchan, Susan – sequence: 51 givenname: Jeffrey surname: Kaye fullname: Kaye, Jeffrey – sequence: 52 givenname: Joseph surname: Quinn fullname: Quinn, Joseph – sequence: 53 givenname: Betty surname: Lind fullname: Lind, Betty – sequence: 54 givenname: Sara surname: Dolen fullname: Dolen, Sara – sequence: 55 givenname: Lon S surname: Schneider fullname: Schneider, Lon S – sequence: 56 givenname: Sonia surname: Pawluczyk fullname: Pawluczyk, Sonia – sequence: 57 givenname: Bryan M surname: Spann fullname: Spann, Bryan M – sequence: 58 givenname: James surname: Brewer fullname: Brewer, James – sequence: 59 givenname: Helen surname: Vanderswag fullname: Vanderswag, Helen – sequence: 60 givenname: Judith L surname: Heidebrink fullname: Heidebrink, Judith L – sequence: 61 givenname: Joanne L surname: Lord fullname: Lord, Joanne L – sequence: 62 givenname: Kris surname: Johnson fullname: Johnson, Kris – sequence: 63 givenname: Rachelle S surname: Doody fullname: Doody, Rachelle S – sequence: 64 givenname: Javier surname: Villanueva-Meyer fullname: Villanueva-Meyer, Javier – sequence: 65 givenname: Munir surname: Chowdhury fullname: Chowdhury, Munir – sequence: 66 givenname: Yaakov surname: Stern fullname: Stern, Yaakov – sequence: 67 givenname: Lawrence S surname: Honig fullname: Honig, Lawrence S – sequence: 68 givenname: Karen L surname: Bell fullname: Bell, Karen L – sequence: 69 givenname: John C surname: Morris fullname: Morris, John C – sequence: 70 givenname: Beau surname: Ances fullname: Ances, Beau – sequence: 71 givenname: Maria surname: Carroll fullname: Carroll, Maria – sequence: 72 givenname: Sue surname: Leon fullname: Leon, Sue – sequence: 73 givenname: Mark A surname: Mintun fullname: Mintun, Mark A – sequence: 74 givenname: Stacy surname: Schneider fullname: Schneider, Stacy – sequence: 75 givenname: Daniel surname: Marson fullname: Marson, Daniel – sequence: 76 givenname: Randall surname: Griffith fullname: Griffith, Randall – sequence: 77 givenname: David surname: Clark fullname: Clark, David – sequence: 78 givenname: Hillel surname: Grossman fullname: Grossman, Hillel – sequence: 79 givenname: Effie surname: Mitsis fullname: Mitsis, Effie – sequence: 80 givenname: Aliza surname: Romirowsky fullname: Romirowsky, Aliza – sequence: 81 givenname: Leyla surname: deToledo-Morrell fullname: deToledo-Morrell, Leyla – sequence: 82 givenname: Raj C surname: Shah fullname: Shah, Raj C – sequence: 83 givenname: Ranjan surname: Duara fullname: Duara, Ranjan – sequence: 84 givenname: Daniel surname: Varon fullname: Varon, Daniel – sequence: 85 givenname: Peggy surname: Roberts fullname: Roberts, Peggy – sequence: 86 givenname: Marilyn surname: Albert fullname: Albert, Marilyn |
Copyright | COPYRIGHT 2011 Public Library of Science 2011 Wolz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Wolz et al. 2011 |
Copyright_xml | – notice: COPYRIGHT 2011 Public Library of Science – notice: 2011 Wolz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Wolz et al. 2011 |
CorporateAuthor | the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0025446 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Medicine Engineering |
DocumentTitleAlternate | Early Diagnostics of AD Using MRI-Based Biomarkers |
EISSN | 1932-6203 |
ExternalDocumentID | 1312182825 oai_doaj_org_article_26c930e3d428472c96f22321100eb556 PMC3192759 2900565851 A476868702 22022397 10_1371_journal_pone_0025446 |
Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Finland |
GeographicLocations_xml | – name: Finland |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG022374 – fundername: NIA NIH HHS grantid: U19 AG010483 – fundername: NIA NIH HHS grantid: P30 AG019610 – fundername: NIA NIH HHS grantid: P30 AG013846 – fundername: NIA NIH HHS grantid: R01 AG012101 – fundername: NIA NIH HHS grantid: U01 AG024904 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM BBORY CGR CUY CVF ECM EIF NPM PV9 RZL PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 ESTFP PUEGO 5PM - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c757t-5bd689a656c4ce91585dfae21baae5701a25605cc25ea1bf0874be0ee02a73cc3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:12:38 EST 2021 Wed Aug 27 01:19:43 EDT 2025 Thu Aug 21 18:24:15 EDT 2025 Fri Sep 05 08:05:01 EDT 2025 Fri Jul 25 10:22:24 EDT 2025 Tue Jun 17 21:17:36 EDT 2025 Tue Jun 10 20:16:34 EDT 2025 Fri Jun 27 03:35:40 EDT 2025 Fri Jun 27 03:38:27 EDT 2025 Thu May 22 21:19:53 EDT 2025 Thu Apr 03 07:05:23 EDT 2025 Tue Jul 01 01:03:21 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c757t-5bd689a656c4ce91585dfae21baae5701a25605cc25ea1bf0874be0ee02a73cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 For information on the Alzheimer's Disease Neuroimaging Initiative please see the Acknowledgments section. Conceived and designed the experiments: RW VJ JK DR HS JL. Performed the experiments: RW VJ JK EN DPZ. Analyzed the data: RW VJ JK. Contributed reagents/materials/analysis tools: RW JK DR JL. Wrote the paper: RW VJ. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0025446 |
PMID | 22022397 |
PQID | 1312182825 |
PQPubID | 1436336 |
PageCount | e25446 |
ParticipantIDs | plos_journals_1312182825 doaj_primary_oai_doaj_org_article_26c930e3d428472c96f22321100eb556 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3192759 proquest_miscellaneous_907027818 proquest_journals_1312182825 gale_infotracmisc_A476868702 gale_infotracacademiconefile_A476868702 gale_incontextgauss_ISR_A476868702 gale_incontextgauss_IOV_A476868702 gale_healthsolutions_A476868702 pubmed_primary_22022397 crossref_citationtrail_10_1371_journal_pone_0025446 crossref_primary_10_1371_journal_pone_0025446 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-13 |
PublicationDateYYYYMMDD | 2011-10-13 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2011 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | J Morris (ref32) 1993; 43 J Cummings (ref2) 2007; 69 S Gauthier (ref4) 2006; 367 R Brookmeyer (ref1) 2007; 3 AP Zijdenbos (ref42) 1998 M Belkin (ref48) 2003; 15 R Wolz (ref20) 2011 J Tohka (ref43) 2004; 23 SG Mueller (ref28) 2005; 15 JG Sled (ref40) 1998; 17 WJ Krzanowski (ref52) 1988 C Hinrichs (ref14) 2009 J Lerch (ref38) 2005; 24 O Querbes (ref27) 2009; 132 H Hampel (ref12) 2010; 9 E Gerardin (ref23) 2009; 47 C Cortes (ref53) 1995; 20 G Wenk (ref6) 2003; 64 G McKhann (ref33) 1984; 34 J Mazziotta (ref39) 2001; 356 H Braak (ref5) 1991; 82 H Hampel (ref7) 2008; 4 K Van Leemput (ref37) 1999; 18 CC Brun (ref46) 2009; 48 C Davatzikos (ref15) 2010 E Westman (ref55) 2011; 54 O Kohannim (ref17) 2010; 31 KB Walhovd (ref19) 2010; 31 DP Devanand (ref22) 2007; 68 R Petersen (ref3) 2001; 56 P Vemuri (ref54) 2008; 39 Y Fan (ref13) 2008; 41 R Cuingnet (ref29) 2010 JS Kim (ref44) 2005; 27 D Rueckert (ref49) 1999; 18 C Jack Jr (ref11) 2010; 27 Y Liu (ref25) 2010; 31 RC Petersen (ref30) 2010; 74 JM Lotjonen (ref35) 2010; 49 CR Jack Jr (ref34) 2008; 27 J Lotjonen (ref36) 2011; 56 BT Hyman (ref8) 1993; 52 M Chupin (ref21) 2009; 46 S Landau (ref18) 2010; 75 MF Folstein (ref31) 1975; 12 M Chung (ref45) 2004 J Koikkalainen (ref47) 2011; 56 T Gmez-Isla (ref9) 1997; 41 L McEvoy (ref26) 2009; 251 NR Draper (ref51) 1998 M Ingelsson (ref10) 2004; 62 C Eckerstrom (ref16) 2010; 29 SM Smith (ref41) 2002; 17 Y Liu (ref24) 2009 R Wolz (ref50) 2010; 52 |
References_xml | – volume: 41 start-page: 277 year: 2008 ident: ref13 article-title: Structural and functional biomarkers of prodromal alzheimer's disease: A high-dimensional pattern classification study. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.02.043 – volume: 64 year: 2003 ident: ref6 article-title: Neuropathologic changes in alzheimer's disease. publication-title: Journal of Clinical Psychiatry – volume: 27 start-page: 210 year: 2005 ident: ref44 article-title: Automated 3-d extraction and evaluation of the inner and outer cortical surfaces using a laplacian map and partial volume effect classification. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.03.036 – volume: 31 start-page: 1429 year: 2010 ident: ref17 article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers. publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2010.04.022 – volume: 17 start-page: 87 year: 1998 ident: ref40 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.668698 – year: 2010 ident: ref15 article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. – start-page: 439 year: 1998 ident: ref42 article-title: Automatic quantification of MS lesions in 3D MRI brain data sets: Validation of INSECT. – start-page: 432 year: 2004 ident: ref45 article-title: Diffusion smoothing on brain surface via finite element method. – volume: 68 start-page: 828 year: 2007 ident: ref22 article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment - Prediction of Alzheimer disease. publication-title: Neurology doi: 10.1212/01.wnl.0000256697.20968.d7 – volume: 367 start-page: 1262 year: 2006 ident: ref4 article-title: Mild cognitive impairment. publication-title: Lancet doi: 10.1016/S0140-6736(06)68542-5 – volume: 52 start-page: 594 year: 1993 ident: ref8 article-title: The lack of accumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution. publication-title: J Neuropathol Exp Neurol doi: 10.1097/00005072-199311000-00006 – start-page: 960 year: 2011 ident: ref20 article-title: Manifold learning combining imaging with non-imaging information. – volume: 39 start-page: 1186 year: 2008 ident: ref54 article-title: Alzheimer's disease diagnosis in individual subjects using structural mr images: Validation studies. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.073 – start-page: 786 year: 2009 ident: ref14 article-title: Mkl for robust multi-modality ad classification. – volume: 24 start-page: 163 year: 2005 ident: ref38 article-title: Cortical thickness analysis examined through power analysis and a population simulation. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.045 – volume: 62 start-page: 925 year: 2004 ident: ref10 article-title: Early abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in ad brain. publication-title: Neurology doi: 10.1212/01.WNL.0000115115.98960.37 – volume: 43 start-page: 2412 year: 1993 ident: ref32 article-title: The Clinical Dementia Rating (CDR): current version and scoring rules. publication-title: Neurology doi: 10.1212/WNL.43.11.2412-a – year: 1988 ident: ref52 article-title: Principles of Multivariate Analysis: A User's Perspective – volume: 251 start-page: 1950 year: 2009 ident: ref26 article-title: Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. publication-title: Radiology doi: 10.1148/radiol.2511080924 – volume: 23 start-page: 84 year: 2004 ident: ref43 article-title: Fast and robust parameter estimation for statistical partial volume models in brain mri. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.05.007 – volume: 15 start-page: 1373 year: 2003 ident: ref48 article-title: Laplacian eigenmaps for dimensionality reduction and data representation. publication-title: Neural Computation doi: 10.1162/089976603321780317 – volume: 27 start-page: 685 year: 2010 ident: ref11 article-title: Hypothetical model of dynamic biomarkers of the alzheimer's pathological cascade. publication-title: Lancet Neurology – volume: 74 start-page: 201 year: 2010 ident: ref30 article-title: Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization. publication-title: Neurology doi: 10.1212/WNL.0b013e3181cb3e25 – volume: 48 start-page: 37 year: 2009 ident: ref46 article-title: Mapping the regional inuence of genetics on brain structure variability – a tensor-based morphometry study. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.022 – volume: 52 start-page: 1009 year: 2010 ident: ref50 article-title: Measurement of hippocampal atrophy using 4D graph-cut segmentation: Application to ADNI. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.04.006 – volume: 20 start-page: 273 year: 1995 ident: ref53 article-title: Support-vector networks. publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 56 start-page: 1134 year: 2011 ident: ref47 article-title: Multi-template tensor-based morphometry: Application to analysis of alzheimer's disease. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.029 – volume: 356 start-page: 1293 year: 2001 ident: ref39 article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2001.0915 – volume: 75 start-page: 230 year: 2010 ident: ref18 article-title: Comparing predictors of conversion and decline in mild cognitive impairment. publication-title: Neurology doi: 10.1212/WNL.0b013e3181e8e8b8 – volume: 132 start-page: 2036 year: 2009 ident: ref27 article-title: Early diagnosis of alzheimer's disease using cortical thickness: impact of cognitive reserve. publication-title: Brain doi: 10.1093/brain/awp105 – volume: 69 start-page: 1622 year: 2007 ident: ref2 article-title: Disease-modifying therapies for alzheimer disease: challenges to early intervention. publication-title: Neurology doi: 10.1212/01.wnl.0000295996.54210.69 – volume: 12 start-page: 189 issue: 3 year: 1975 ident: ref31 article-title: Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. publication-title: Journal of Psychiatric Research – volume: 82 start-page: 239 year: 1991 ident: ref5 article-title: Neuropathological stageing of Alzheimer-related changes. publication-title: Acta Neuropathologica doi: 10.1007/BF00308809 – year: 2010 ident: ref29 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database. – volume: 15 start-page: 869 year: 2005 ident: ref28 article-title: The Alzheimer's Disease Neuroimaging Initiative. publication-title: Neuroimaging Clinics of North America doi: 10.1016/j.nic.2005.09.008 – volume: 29 start-page: 294 year: 2010 ident: ref16 article-title: Combination of hippocampal volume and cerebrospinal uid biomarkers improves predictive value in mild cognitive impairment. publication-title: Dement Geriatr Cogn Disord doi: 10.1159/000289814 – volume: 54 start-page: 1178 year: 2011 ident: ref55 article-title: Multivariate analysis of mri data for alzheimer's disease, mild cognitive impairment and healthy controls. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.08.044 – volume: 31 start-page: 1375 year: 2010 ident: ref25 article-title: Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer's disease. publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2010.01.022 – volume: 56 start-page: 185 year: 2011 ident: ref36 article-title: Fast and robust extraction of hippocampus from mr images for diagnostics of alzheimer's disease. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.062 – volume: 41 start-page: 17 year: 1997 ident: ref9 article-title: Neuronal loss correlates with but exceeds neurofibrillary tangles in alzheimer's disease. publication-title: Ann Neurol doi: 10.1002/ana.410410106 – year: 2009 ident: ref24 article-title: Combination analysis of neuropsychological tests and structural MRI measures in differentiating AD, MCI and control groups–The AddNeuroMed study. – volume: 17 start-page: 143 year: 2002 ident: ref41 article-title: Fast robust automated brain extraction. publication-title: Hum Brain Mapp doi: 10.1002/hbm.10062 – volume: 3 start-page: 186 year: 2007 ident: ref1 article-title: Forecasting the global burden of Alzheimer's disease. publication-title: Alzheimer's and Dementia doi: 10.1016/j.jalz.2007.04.381 – volume: 18 start-page: 712 year: 1999 ident: ref49 article-title: Nonrigid registration using free-form deformations: Application to breast MR images. publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.796284 – volume: 56 start-page: 1133 year: 2001 ident: ref3 article-title: Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). publication-title: Neurology doi: 10.1212/WNL.56.9.1133 – volume: 31 start-page: 347 year: 2010 ident: ref19 article-title: Combining MR Imaging, Positron-Emission Tomography, and CSF Biomarkers in the Diagnosis and Prognosis of Alzheimer Disease. publication-title: American Journal of Neuroradiology doi: 10.3174/ajnr.A1809 – volume: 34 start-page: 939 year: 1984 ident: ref33 article-title: Clinical diagnosis of alzheimer's disease: report of the nincds-adrda work group under the auspices of department of health and human services task force on alzheimer's disease. publication-title: Neurology doi: 10.1212/WNL.34.7.939 – volume: 49 start-page: 2352 year: 2010 ident: ref35 article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.026 – year: 1998 ident: ref51 article-title: Applied Regression Analysis (Wiley Series in Probability and Statistics). publication-title: Wiley – volume: 9 start-page: 560 year: 2010 ident: ref12 article-title: Biomarkers for alzheimer's disease: academic, industry and regulatory perspectives. publication-title: NatRevDrug Discov doi: 10.1038/nrd3115 – volume: 18 start-page: 897 year: 1999 ident: ref37 article-title: Automated model-based tissue classification of MR images of the brain. publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.811270 – volume: 47 start-page: 1476 year: 2009 ident: ref23 article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.036 – volume: 4 start-page: 38 year: 2008 ident: ref7 article-title: Core candidate neurochemical and imaging biomarkers of alzheimer's disease. publication-title: Alzheimer's and Dementia doi: 10.1016/j.jalz.2007.08.006 – volume: 46 start-page: 749 year: 2009 ident: ref21 article-title: Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.013 – volume: 27 start-page: 685 year: 2008 ident: ref34 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.21049 |
SSID | ssj0053866 |
Score | 2.501782 |
Snippet | The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e25446 |
SubjectTerms | Accuracy Activities of daily living Advertising executives Aged Alzheimer Disease - diagnosis Alzheimer's disease Alzheimers disease Biomarkers Brain Brain research Case-Control Studies Cerebral Cortex - pathology Classification Cognitive ability Cognitive Dysfunction - diagnosis Cortex Development and progression Discriminant analysis Engineering Female Finite element analysis Hippocampus Hospitals Humans Image classification Machine learning Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Manifolds (mathematics) Medical diagnosis Medical imaging Medical research Medicine Methods Morphometry Multivariate analysis Neurodegenerative diseases Neuroimaging Neurology NMR Nuclear magnetic resonance Parameter estimation Regression analysis Sensitivity Support vector machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAhZCKhzSOnZsN8cFUbVIpVKhqDfLsR260ja7anYv_fWdib1RgyqVA9d4YiXz8nzJ-DMhH8sGC3Nncw1oIS-9ljngLJsr7T2gMcd8g58GTn6oo_Py-4W8uHPUF_aERXrgqLh9mKgSLAhfYiLlrlINrGgIW1iopezJtlnFNmAq5mCIYqXSRjmhi_1kl73log17kZZLjRainq9_yMqT5XzR3Vdy_t05eWcpOnxKnqQakk7js2-RR6F9RrZSlHb0U6KS_vycnPb7a_N4TDS1iYCELhp6cnZMZ1eQTDo6a2lAmmPqY9sdEjejyHR-cxlmV-F6t6PpP84Lcn747dfXozwdoZA7LfUql7VXB5WFos2VLlQFgAPf2MCL2togNSssljzSOS6DLeqGHeiyDiwExq0WzomXZNKC0rYJVYLxEJRovBalt4DIa6VgOl-AGaSuMiI2-jQu8YvjMRdz0_8004AzonoMWsEkK2QkH-5aRn6NB-S_oKkGWWTH7i-Az5jkM-Yhn8nIezS0iVtNhxg30xLAl4IMxjPyoZdAhowWW3D-2HXXmePT3_8g9PNsJLSbhJoFqMPZtO0B3gmZt0aSOyNJiHM3Gt5Gt9xopQMdFUi_DxAf7ty46v3DdBjGSbGtrg2LdWcqSPhcQ82WkVfRsQfFcg7VHRSrGdEjlx9pfjzSzi57fnLI6lzL6vX_MNUb8pinrstC7JDJ6nod3kIZuKrf9RF_C9sOWAc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXClgIqXBIm9ixvTmh5VG6SEulQlFvkWM77UrbZNnsXvj1zDhOIKgCrpmJlczLM_b4MyEv0xITc6MjBdVClFolIqizdCSVtVCNmdiWuDQw_yyPz9JP5-I8LLg1oa2yi4k-UNva4Br5YcITBBuHgubN6nuEt0bh7mq4QuMmuZXATIN2Pjn62EVi8GUpw3E5rpLDoJ2DVV25gxacSw6mI4_a38fm0WpZN9clnn_2T_42IR3dJXdCJkmnrep3yA1X3SM7wVcb-ioASr--T078Kdto7i-Lph0MCa1LOj-d0dkVhJSGLirqwY7p-7b5DuGbkWW6_HHpFlduvd8Aye_mPCBnRx--vjuOwkUKkVFCbSJRWDnJNKRuJjUuS6BEsKV2LCm0dkLFicbERxjDhNNJUcYTlRYudi5mWnFj-EMyqkBou4RKHjPnJC-t4qnVUJcXUsJwNimEECobE97JMzcBZRwvu1jmfutMQbXRiidHLeRBC2MS9W-tWpSNf_C_RVX1vIiR7R_U64s8uFwOJpjx2HGb4hTMTCZLyIWw4I0dfCwM8hwVnbcHTntPz6cplGAS4hgbkxeeA3EyKmzEudDbpslnJ9_-g-nL6YBpPzCVNYjD6HD4Af4J8bcGnHsDTvB2MyDvoll2UmnyX34Bb3amej2Z9mQcFJvrKldvmzyDsM8UZG5j8qg17F6wjEGOBynrmKiByQ8kP6RUi0uPUg6xnSmRPf77Vz0ht1noqkz4Hhlt1lv3FNK8TfHM-_JPkBVQjQ priority: 102 providerName: ProQuest |
Title | Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer's Disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22022397 https://www.proquest.com/docview/1312182825 https://www.proquest.com/docview/907027818 https://pubmed.ncbi.nlm.nih.gov/PMC3192759 https://doaj.org/article/26c930e3d428472c96f22321100eb556 http://dx.doi.org/10.1371/journal.pone.0025446 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLa27sIFMX6tY5QIIQ0OqRIntpsDQt1oWZG6oUJRb5HjOFulLi1NKwEH_nbec5yIoCLg4kP8bCXPz8_fi-3vEfIizBCYK-kKiBbcMBXMhThLulykKURjyksz_DUwvuQX0_D9jM32SJWz1Sqw2BnaYT6p6XrR_frl2xuY8K9N1gbhV426q2WuuyXpFt8nB7A2cQzHxmG9rwCz2-xeImpxOfUCe5nuT700FivD6V977tZqsSx2wdLfT1f-slwN75G7Fmc6_dIwDsmezu-TQzuTC-elpZt-9YBcmTu47tikknYqkhJnmTnjycgZ3YLDKZx57hgqZOdteTQPyZ1RpL_4fqPnt3p9WkCV2et5SKbDwafzC9emWXCVYGLjsiTlvUgCsFOh0pEPAUSaSU39RErNhOdLhEVMKcq09JPM64kw0Z7WHpUiUCp4RFo5KO2IODzwqNY8yFIRhKmEqD3hHLpL_YQxJqI2CSp9xspykGMqjEVsNtYExCKlemIchdiOQpu4datVycHxF_kzHKpaFhm0zYPl-jq2EzIGA40CTwdpiAs0VRHPAClhOOxpeFno5BkOdFxeR639QNwPIUDj4OVomzw3EsiikeMxnWu5LYp4dPX5H4Q-ThpCp1YoW4I6lLRXI-CbkJ2rIXnSkARfoBrVR2iWlVYK0JGPFP09yqBlZaq7q526GjvFo3e5Xm6LOIJFgQrAdW3yuDTsWrGUAgIEQNsmomHyDc03a_L5jeEwB89PBYuO_3Non5A71B7C9IMT0tqst_opoMJN0iH7Yiag7J37WA7fdcjB2eDyw6Rj_rN0jCPA8sfgJ1HLZOQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGeYAXxPi1wmAWAg0esiV2YjcPCJWNaWXrJo0N7c04jrNV6pLSrELwR_E3cpc4gaAJeNlrfbHS8_nuu_j8HSEvwgyBudGehGzBC1MZeZBnaU_INIVszPhphp8Gxgdi9yT8cBqdLpEfzV0YLKtsfGLlqNPC4DfyzYAHSDYOCc3b2RcPu0bh6WrTQqM2iz377SukbOWb0Tas70vGdt4fb-16rquAZ2QkL70oScUg1oBjTGhsHABeTjNtWZBobSPpBxpRQGQMi6wOkswfyDCxvrU-05Ibw2HeG-RmyLnAXTTYaktKwHcI4a7ncRlsOmvYmBW53ajJwEQn_FVdAtpY0JtNi_IqoPtnveZvAXDnLrnjkCsd1qa2TJZsfo8sO99Q0leOwPr1fXJY3er1xlVzatrQntAio-OjER1dgAsr6SSnFbky3a6L_ZAuGkWG0-_ndnJh5-slDFWnRw_IybWo-CHp5aC0FUIF95m1gmep5GGqbcISIWC6NEiiKJJxn_BGn8o4VnNsrjFV1VGdhOymVo_CVVBuFfrEa5-a1awe_5B_h0vVyiInd_VDMT9TbosrMPmY-5anIYZ8ZmKRAfbCBNu38LIwyRoutKovuLaeRQ1DSPkE-E3WJ88rCeTlyLHw50wvylKNDj_9h9DHo47QuhPKClCH0e6yBfwn5PvqSK52JMG7mM7wCpplo5VS_dqH8GRjqlcP03YYJ8VivtwWi1LFEGaYBKTYJ49qw24VyxhgSoDIfSI7Jt_RfHckn5xXrOgQS5iM4sd_f6s1cmv3eLyv9kcHe0_IbeYqOgO-SnqX84V9ChDzMnlW7WtKPl-3I_kJGGKOaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkRAviPFrhcEsBBo8ZE3sJG4eECor1crohgab9mYcx9kqdUlpWiH40_jruEucQNAEvOy1vljp-Xz3XXz-jpBnforAXCtHQLbg-IkIHMizlBOKJIFsTLtJip8GJgfh3rH_7jQ4XSM_6rswWFZZ-8TSUSe5xm_kPY97SDYOCU0vtWURH4aj1_MvDnaQwpPWup1GZSL75ttXSN-KV-MhrPVzxkZvP-3uObbDgKNFIJZOECdhP1KAabSvTeQBdk5SZZgXK2UC4XoKEUGgNQuM8uLU7Qs_Nq4xLlOCa81h3mvkuuBC4O7q7zblJeBHwtBe1ePC61nL2JnnmdmpiMHCVigsOwY0caEzn-XFZaD3z9rN34Lh6Da5ZVEsHVRmt07WTHaHrFs_UdAXlsz65V1yWN7wdSZlo2paU6DQPKWTozEdX4A7K-g0oyXRMh1WhX9IHY0ig9n3czO9MIvtAobKk6R75PhKVHyfdDJQ2gahIXeZMSFPE8H9RJmYxWEI0yVeHASBiLqE1_qU2jKcY6ONmSyP7QRkOpV6JK6CtKvQJU7z1Lxi-PiH_BtcqkYW-bnLH_LFmbTbXYL5R9w1PPEx_DMdhSngMEy2XQMvC5Ns4ULL6rJr42XkwIf0LwQfyrrkaSmBHB0ZWvuZWhWFHB-e_IfQx6OW0LYVSnNQh1b24gX8J-T-aklutiTB0-jW8AaaZa2VQv7ak_BkbaqXD9NmGCfFwr7M5KtCRhBymADU2CUPKsNuFMsY4EuAy10iWibf0nx7JJuelwzpEFeYCKKHf3-rLXIDXIh8Pz7Yf0RuMlvc6fFN0lkuVuYxoM1l_KTc1pR8vmo_8hPLd5Kh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Method+Analysis+of+MRI+Images+in+Early+Diagnostics+of+Alzheimer%27s+Disease&rft.jtitle=PloS+one&rft.au=Wolz%2C+Robin&rft.au=Julkunen%2C+Valtteri&rft.au=Koikkalainen%2C+Juha&rft.au=Niskanen%2C+Eini&rft.date=2011-10-13&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=6&rft.issue=10&rft.spage=e25446&rft_id=info:doi/10.1371%2Fjournal.pone.0025446&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0025446 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |